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Abstract—The multi-way relay channel (MWRC) models coop-
erative communication networks in which many users exchange
messages via a relay. In this paper, we consider the finite field
MWRC with correlated messages. The problem is to find all
achievable rates, defined as the number of channel uses required
per reliable exchange of message tuple. For the case of three users,
we have previously established that for a special class of source
distributions, the set of all achievable rates can be found [Ong
et al., ISIT 2010]. The class is specified by an almost balanced
conditional mutual information (ABCMI) condition. In this paper,
we first generalize the ABCMI condition to the case of more than
three users. We then show that if the sources satisfy the ABCMI
condition, then the set of all achievable rates is found and can
be attained using a separate source-channel coding architecture.

I. INTRODUCTION

This paper investigates multi-way relay channels (MWRCs)
where multiple users exchange correlated data via a relay. More
specifically, each user is to send its data to all other users. There
is no direct link among the users, and hence the users first
transmit to a relay, which processes its received information
and transmits back to the users (refer to Fig. 1). The purpose
of this paper is to find the set of all achievable rates, which
are defined as the number of channel uses required to reliably
(in the usual Shannon sense) exchange each message tuple.

The joint source-channel coding problem in Fig. 1 includes,
as special cases, the source coding work of Wyner et al. [1]
and the channel capacity work of Ong et al. [2]. Separately,
the Shannon limits of source coding [1] (through noiseless
channel) and of channel coding [2] (with independent sources)
are well established. However, these limits have not yet been
discovered for noisy channels with correlated sources in general.
For three users, Ong et al. [3] gave sufficient conditions
for reliable communication using the separate source-channel
coding paradigm. The key result of [3] was to show that these
sufficient conditions are also necessary for a special class of
source distributions, hence giving the set of all achievable rates.
The class was characterized by an almost balanced conditional
mutual information (ABCMI) condition. This paper extends
the ABCMI concept to more than three users, and shows that
if the sources have ABCMI, then the set of all achievable rates
can be found. While the ABCMI condition for the three-user
case is expressed in terms of the standard Shannon information
measure, we will use I-Measure [4, Ch. 3] for more then three
users—using Shannon’s measure is possible but the expressions
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Fig. 1. The finite field MWRC in which L users (nodes 1, 2, . . . , L) exchange
correlated messages through a relay (node 0). The uplink channel is marked
with solid lines and the downlink channel with dotted lines.

would be much more complicated.
Though the ABCMI condition limits the class of sources for

which the set of all achievable rates is found, this paper provides
the following insights: (i) As achievability is derived based on
a separate source-channel coding architecture, we show that
source-channel separation is optimal for finite field MWRC
with sources having ABCMI. (ii) Since ABCMI are constraints
on the sources, the results in this paper are potentially useful for
other channel models (not restricted to the finite field model).
(iii) This paper highlights the usefulness of the I-Measure as a
complement to the standard Shannon information measure.

II. MAIN RESULTS

A. The Network Model

1) Sources: Consider m independent and identically
distributed (i.i.d.) drawings of a tuple of correlated
discrete finite random variables (W1,W2, . . . ,WL), i.e.,
{(W1[t],W2[t], . . . ,WL[t])}mt=1. The message of user i is given
by W i = (Wi[1],Wi[2], . . . ,Wi[m]).

2) Channel: Each channel use of the finite field MWRC
consists of an uplink and L downlinks, characterized by

Uplink: Y0 = X1 ⊕X2 ⊕ · · · ⊕XL ⊕NL (1)
Downlinks: Yi = X0 ⊕Ni, for all i ∈ {1, 2, . . . , L}, (2)

where X`, Y`, N`, for all ` ∈ {0, 1, . . . , L}, each take values in
a finite field F , ⊕ denotes addition over F , X` is the channel

ar
X

iv
:1

20
5.

56
03

v1
  [

cs
.I

T
] 

 2
5 

M
ay

 2
01

2



input from node `, Y` is the channel output received by node
`, and N` is the receiver noise at node `. The noise N` is
arbitrarily distributed, but is i.i.d. for each channel use. We
have used the subscript i to denote a user and the subscript `
to denote a node (which can be a user or the relay).

3) Block Codes (joint source-channel codes with feedback):
Consider block codes for which the users exchange m message
tuples in n channel uses. [Encoding:] The t-th transmitted
channel symbol of node ` is a function of its message
and the (t − 1) symbols it previously observed on the
downlink: X`[t] = f`[t](W `, Y`[1], Y`[2], . . . , Y`[t − 1]), for
all ` ∈ {0, 1, . . . , L} and for all t ∈ {1, 2, . . . , n}. As the relay
has no message, we set W 0 = ∅. [Decoding:] The messages
decoded by user i are a function of its message and the symbols
it observed on the downlink: (Ŵ j,i : ∀j ∈ {1, . . . , L}\{i}) =
hi(W i, Yi[1], Yi[2], . . . , Yi[n]), for all i ∈ {1, 2, . . . , L}.

4) Achievable Rate: Let Pe denote the probability that
Ŵ j,i 6= W i for any i 6= j. The rate (or bandwidth expansion
factor) of the code is the ratio of channel symbols to source
symbols, κ = n/m. The rate κ is said to be achievable if the
following is true: for any ε > 0, there exists a block code, with
n and m sufficiently large and n/m = κ, such that Pe < ε.

B. Statement of Main Results

Theorem 1: Consider an L-user finite field MWRC with
correlated sources. If the sources (W1,W2, . . . ,WL) have
almost balanced conditional mutual information (ABCMI),
then κ is achievable if and only if

κ ≥ max
i∈{1,2,...,L}

H(W{1,2,...,L}\{i}|Wi)

log2 |F| −max{H(N0), H(Ni)}
. (3)

The ABCMI condition used in Theorem 1 is rather technical
and best defined using the I-measure [4, Ch. 3]. For this reason,
we specify this condition later in Section III-B after giving
a brief review of the I-measure in Section III-A. For now, it
suffices to note that it is a non-trivial constraint placed on the
joint distribution of (W1,W2, . . . ,WL).

The achievability (if assertion) of Theorem 1 is proved
using a separate source-channel coding architecture, which
involves intersecting a certain Slepian-Wolf source-coding
region with the finite field MWRC capacity region [2]. The
particular source-coding region of interest is the classic Slepian-
Wolf region [5] with the total sum-rate constraint omitted;
specifically, it is the set of all source-coding rate tuples
(r1, r2, . . . , rL) such that∑

i∈S
ri ≥ H(WS |W{1,2,...,L}\S) (4)

holds for all strict subsets S ⊂ {1, 2, . . . , L}. The next theorem
will be a critical step in the proof of Theorem 1.

Theorem 2: If L arbitrarily correlated random variables
(W1,W2, . . . ,WL) have ABCMI, then we can find a non-
negative real tuple (r1, r2, . . . , rL) such that

[C1] the inequality (4) holds for all subsets S ⊂ {1, 2, . . . , L}
for which 1 ≤ |S| ≤ L− 2,

[C2] the inequality (4) holds with equality for all subsets S ⊂
{1, 2, . . . , L} for which |S| = L− 1.

Remark 1: Theorem 1 characterizes a class of sources (on
any finite field MWRC) for which (i) the set of all achievable
rates is known, and (ii) source-channel separation holds.

Remark 2: Slepian-Wolf type constraints of the form (4)
appear often in multi-terminal information theory. Since
Theorem 2 applies directly to such constraints, it might be
useful beyond its application here to the finite field MWRC.

Remark 3: To prove Theorem 2, we need to select L non-
negative numbers that satisfy (2L − 2) equations.

III. DEFINITION OF ABCMI

A. The I-Measure

Consider L jointly distributed random variables (W1,W2,
. . . ,WL). The Shannon measures of these random variables can
be efficiently characterized via set operations and the I-measure.
For each random variable Wi, we define a (corresponding) set
W̃i. Let FL be the field generated by {W̃i} using the usual
set operations union ∪, intersection ∩, complement c, and
difference −. The relationship between W̃i and Wi is described
by the I-Measure µ∗ on FL, defined as [4, Ch. 3]

µ∗(W̃S) = H(WS), (5)

for any non-empty S ⊆ {1, 2, . . . , L}, where W̃S =
⋃

i∈S W̃i

and WS , {Wi : i ∈ S}.
The atoms of FL are sets of the form

⋂L
i=1 Ui, where Ui

can either be W̃i or W̃ c
i . There are 2L atoms in FL, and we

denote the atoms by

a(K) ,
⋂
i∈K

W̃i −
⋃
j∈Kc

W̃j , (6)

for all K ⊆ {1, 2, . . . , L} where Kc , {1, 2, . . . , L} \K. Note
that each atom corresponds to a unique K ⊆ {1, 2, . . . , L}. For
the atom in (6), we call |K| the weight of the atom.

Remark 4: The I-measure of the atoms corresponds to the
conditional mutual information of the variables. More specifi-
cally, µ∗(a(K)) is the mutual information among the variables
{Wi : i ∈ K} conditioning on {Wj : j ∈ Kc}. For example, if
L = 4, then µ∗(a(1, 2)) = I(W1;W2|W3,W4), where I(·) is
Shannon’s measure of conditional mutual information.

B. Almost Balanced Conditional Mutual Information

For each K ∈ {1, 2, . . . , L− 1}, we define

µK , max
K⊆{1,2,...,L}

s.t. |K|=K

µ∗(a(K)) (7)

µ
K
, min
K⊆{1,2,...,L}

s.t. |K|=K

µ∗(a(K)), (8)

i.e., atoms of weight K with the largest and the smallest
measures respectively. With this, we define the ABCMI
condition for L random variables:

Definition 1: (W1,W2, . . . ,WL) are said to have ABCMI
if the following conditions hold:

µL−1 ≤ µL−1

(
1 +

1

L− 2

)



and

µK ≤ µK

(
1 +

1

K − 1

[
min

S∈{K,K+1,...,L−2}

β(L, S,K)

α(L, S,K)

])
,

for all K ∈ {2, 3, . . . , L− 2}, where

α(L, S,K) , S

(
L− 1

K

)
− (S −K)

(
S

K

)
(9)

β(L, S,K) , S

(
L− 1

K

)
− (L− 1)

(
S

K

)
, (10)

where
(
S
K

)
, S!

K!(S−K)! .
Remark 5: The ABCMI condition requires that all atoms of

the same weight (except for those with weight equal to zero,
one, or L) have about the same I-measure.

Remark 6: For any L, S, and K, such that 2 ≤ K ≤ S ≤
L− 2, it can be shown that α(L, S,K) ≥ β(L, S,K) ≥ 0.

Remark 7: For L = 3, we have µ2 ≤ 2µ
2
, i.e., we recover

the ABCMI condition for the three-user case [3].

IV. PROOF OF THEOREM 2

For the rest of this paper, we are interested in atoms only
with weight between one and (L− 1) inclusive. So, we define
K , {K ⊂ {1, 2, . . . , L} : 1 ≤ |K| ≤ L − 1} and refer to
A , {a(K) : ∀K ∈ K} as the set of all such atoms.

We propose to select (r1, r2, . . . , rL) in terms of the I-
Measure:

ri =
∑
K∈K

Ji(K), (11)

where

Ji(K) =
{
+L−|K|

L−1 µ
∗(a(K)), if i ∈ K

− |K|−1L−1 µ
∗(a(K)), otherwise, i.e., if i ∈ Kc.

Each ri is chosen as the sum of the weighted (by a
coefficient +L−|K|

L−1 or − |K|−1L−1 ) I-measure of all atoms in A.
The assignments of ri’s are depicted in Fig. 2. We term Ji(K)
the contribution from the atom a(K) to ri. Each contribution
is represented by a cell in Fig. 2, and each ri by a column.

We now show that conditions C1 and C2 in Theorem 2 hold
when the ri’s are chosen as per (11).

A. For |S| = L− 1:

We first show that for any i ∈ {1, 2, . . . , L}, we have∑
j∈{1,2,...,L}\{i}

rj = H(W{1,2,...,L}\{i}|Wi). (12)

Since ri’s are defined in terms of I-Measure, we link the
measure of atoms to the entropies of the corresponding random
variables:

H(WS |WSc) = µ∗(W̃S − W̃Sc) (13a)

=
∑

non-empty K⊆S

µ∗(a(K)), (13b)

where (13a) follows from [4, eqn. (3.43)], and (13b) is obtained
by counting all the atoms in the set (W̃S − W̃Sc).

This means the RHS of (12) equals∑
non-empty K⊆{1,2,...,L}\{i} µ

∗(a(K)).

a(K)

|K
| =

KK
∈
K

Ji(K)

ri

i ∈ S
i ∈ {1, 2, . . . , L}

w
ith

w
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A
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s

Fig. 2. Each row represents the contributions from a unique atom, and ri
is the summation of all cells, i.e., {Ji(·)}, in the i-th column. The hashed
region shows the contributions from all atoms with weight K to all ri’s for i
in some set S.

We now evaluate the LHS of (12) for some fixed i. Consider
some atom a(K) where i /∈ K. We evaluate the contributions
from this atom to r−i , {rj : j ∈ {1, 2, . . . , L} \ {i}}, i.e.,
one specific row in Fig. 2 less the cell Ji(K):
• |K| of the (L− 1) cells each contribute L−|K|

L−1 µ
∗(a(K)).

• The remaining (L − 1 − |K|) cells each contribute
− |K|−1L−1 µ

∗(a(K)).
So, summing the contributions from a(K) to r−i, we have∑

j∈{1,2,...,L}\{i}

Jj(K)

=

[
|K|L− |K|

L− 1
− (L− 1− |K|) |K| − 1

L− 1

]
µ∗(a(K)) (14a)

= µ∗(a(K)). (14b)

Consider some atom a(K′) where i ∈ K′. The contributions
from this atom to r−i are as follows (again, one specific row
in Fig. 2 less the cell Ji(K′)):
• (|K′| − 1) of the (L − 1) cells each contribute

L−|K′|
L−1 µ∗(a(K′)).

• The remaining (L − |K′|) cells each contribute
− |K

′|−1
L−1 µ∗(a(K′)).

So, summing the contributions from a(K′) to r−i, we have∑
j∈{1,2,...,L}\{i}

Jj(K′)

=

[
(|K′| − 1)

L− |K′|
L− 1

− (L− |K′|) |K
′| − 1

L− 1

]
µ∗(a(K′)) = 0.

Combining the above results, we have, for a fixed i,∑
j∈{1,2,...,L}\{i}

rj

=
∑

j∈{1,2,...,L}\{i}

 ∑
K∈K

s.t. i/∈K

Jj(K) +
∑
K′∈K

s.t. i∈K′

Jj(K′)

 (15a)

=
∑
K∈K

s.t. i/∈K

µ∗(a(K)) (15b)



=
∑

non-empty K⊆{1,2,...,L}\{i}

µ∗(a(K)) (15c)

= H(W{1,2,...,L}\{i}|Wi). (15d)

B. For 1 ≤ |S| ≤ L− 2:
Consider some S ⊂ {1, 2, . . . , L} where 1 ≤ |S| ≤ L− 2.

We now show that if the ABCMI is satisfied, then∑
i∈S

ri ≥ H(WS |WSc) (16a)

=
∑

non-empty K⊆S

µ∗(a(K)). (16b)

Define S = |S| and rS , {ri : i ∈ S}. The LHS of (16a)
is the sum of contributions from all atoms in A to all ri ∈ rS .
We will divide all atoms in A according to their weight K: (i)
K = 1, (ii) 2 ≤ K ≤ S, and (iii) K ≥ S + 1. So, we have∑

i∈S
ri =

∑
i∈S

∑
K∈K

s.t. |K|=1

Ji(K) +
∑
i∈S

S∑
K=2

∑
K∈K

s.t. |K|=K

Ji(K)

+
∑
i∈S

L−1∑
K=S+1

∑
K∈K

s.t. |K|=K

Ji(K). (17)

1) Atoms with weight K = 1: For atoms with weight one,

Ji(K) =
{
µ∗(a(K)), if K = {i}
0, otherwise.

(18)

Summing the contributions from all atoms with weight one to
all ri ∈ rS ,∑

i∈S

∑
K∈K

s.t. |K|=1

Ji(K) =
∑
K⊆S

s.t. |K|=1

µ∗(a(K)). (19)

2) Atoms with weight 2 ≤ K ≤ S: We fix K. Consider the
contributions from all atoms with weight K to a particular ri,
i ∈ S (one column in the hashed region in Fig. 2). There are

[O1]
(
L−1
K−1

)
contributions with coefficient L−K

L−1 [from atoms
where i ∈ K; there are

(
L−1
K−1

)
ways to select the other

(K − 1) elements in K from {1, 2, . . . , L} \ {i}], and
[O2]

(
L−1

L−K−1
)

contributions with coefficient −K−1
L−1 [from

atoms where i ∈ Kc; there are
(

L−1
L−K−1

)
ways to select the

other (L−K−1) elements in Kc from {1, 2, . . . , L}\{i}].
There are

(
L
K

)
atoms with weight K. We can check that

(
L
K

)
=(

L−1
K−1

)
+
(

L−1
L−K−1

)
.

Since observations O1 and O2 are true for each ri ∈ rS , we
have the following contributions from all atoms with weight
K to rS (the hashed region in Fig. 2): There are

[O3] S ·
(
L−1
K−1

)
contributions with coefficient L−K

L−1 , and
[O4] S ·

(
L−1

L−K−1
)

contributions with coefficient −K−1
L−1 .

For an atom a(K), we say that the atom is active if K ⊆ S;
otherwise, i.e., K * S , the atoms is said to be inactive,

Consider the contributions from a particular active atom
a(K) to rS (one row in the hashed region in Fig. 2). We have
the following contributions from this atom to rS :

[O5] Since K ⊆ S , K cells in the hashed row each contribute
L−K
L−1 µ

∗(a(K)).

[O6] The remaining (S − K) cells each contribute
−K−1

L−1 µ
∗(a(K)).

Summing the contributions from this active atom to rS ,∑
i∈S

Ji(K) =
[
K
L−K
L− 1

− (S −K)
K − 1

L− 1

]
µ∗(a(K))

=

[
1 +

(L− S − 1)(K − 1)

L− 1

]
µ∗(a(K)).

For any fixed S , there are
(
S
K

)
active atoms with weight K

(different ways of choosing K ⊆ S), and observations O5 and
O6 are true for each active atom. Combining O3–O6, we can
further categorize the contributions from all atoms with weight
K to rS :

[O7] Out of the S ·
(
L−1
K−1

)
contributions with coefficient L−K

L−1 ,
K ·

(
S
K

)
of them are from active atoms.

[O8] Out of the S ·
(

L−1
L−K−1

)
contributions with coefficient

−K−1
L−1 , (S −K)

(
S
K

)
of them are from active atoms.

Now, summing the contributions from all (active and inactive)
atoms with weight K to rS , we have∑
i∈S

∑
K∈K

s.t. |K|=K

Ji(K) =
∑
i∈S

∑
K⊆S

s.t. |K|=K

Ji(K) +
∑
i∈S

∑
K*S

s.t. |K|=K

Ji(K)

=
∑
K⊆S

s.t. |K|=K

[
1 +

(L− S − 1)(K − 1)

L− 1

]
µ∗(a(K))

+
∑
i∈S

∑
K*S

s.t. |K|=K

Ji(K)

≥
∑
K⊆S

s.t. |K|=K

µ∗(a(K)) +
(
S

K

)
(L− S − 1)(K − 1)

L− 1
µ
K

+

[
S ·
(
L− 1

K − 1

)
−K ·

(
S

K

)]
L−K
L− 1

µ
K

+

[
S ·
(

L− 1

L−K − 1

)
− (S −K) ·

(
S

K

)] −(K − 1)

L− 1
µK

(21a)

=
∑
K⊆S

s.t. |K|=K

µ∗(a(K)) + K − 1

L− 1
η, (21b)

where

η ,

[
α(L, S,K) +

β(L, S,K)

K − 1

]
µ
K
− α(L, S,K)µK ,

where α(L, S,K) is defined in (9) and β(L, S,K) in (10). If
the ABCMI condition is satisfied, then η ≥ 0.

3) Atoms with weight S + 1 ≤ K ≤ L − 1: Consider the
contributions from all atoms with weight K to ri, for some i.
From observations O1 and O2, we know that there are
•
(
L−1
K−1

)
contributions with coefficient L−K

L−1 , and
•
(

L−1
L−K−1

)
contributions with coefficient −K−1

L−1 .
Summing these contributions, we have for any i that∑
K∈K

s.t. |K|=K

Ji(K)



≥
(
L− 1

K − 1

)
L−K
L− 1

µ
K
+

(
L− 1

L−K − 1

)−(K − 1)

L− 1
µK

=
(L− 2)!

(L−K − 1)!K!

[
Kµ

K
− (K − 1)µK

]
≥ 0. (22)

Since α(L, S,K) ≥ β(L, S,K) ≥ 0, the ABCMI condition
implies that µK ≤

[
1 + 1

K−1

]
µ
K

= K
K−1µK

for all K ∈
{2, 3, . . . , L− 1}. Hence, the inequality in (22) follows.

4) Combining the contributions of A to rS: Substituting
(19), (21b), and (22) into (17), if the sources have ABCMI,
then∑

i∈S
ri ≥

∑
K⊆S

s.t. |K|=1

µ∗(a(K)) +
S∑

K=2

∑
K⊆S

s.t. |K|=K

µ∗(a(K))

= H(WS |WSc).

This completes the proof of Theorem 2. �

V. PROOF OF THEOREM 1

A. Necessary Conditions

Lemma 1: Consider a finite field MWRC with correlated
sources. A rate κ is achievable only if (3) holds for all i ∈
{1, 2, . . . , L}.

Lemma 1 can be proved by generalizing the converse
theorem [6, Appx. A] for L = 3 to arbitrary L. The details
are omitted.

B. Sufficient Conditions

Consider a separate source-channel coding architecture.
1) Source Coding Region: We have the following source

coding result for correlated sources:
Lemma 2: Consider L correlated sources as defined in

Section II-A1. Each user i encodes its message W i to an
index M ′i ∈ {1, 2, . . . , 2mri}, for all i. It reveals its index to
all other users. Using these indices and its own message, each
user i can then decode the messages of all other users, i.e.,
{W j : ∀j ∈ {1, 2, . . . , L} \ {i}}, if (4) is satisfied for all
non-empty strict subsets S ⊂ {1, 2, . . . , L}.

The above result is obtained by combining the results for
(i) source coding for correlated sources [7, Thm. 2], and (ii)
the three-user noiseless MWRC [1, Sec. II.B.1]. Note that the
relay does not participate in the source code, in contrast to the
setup of [1]. Instead, the relay participates in the channel code.

2) Channel Coding Region: We have the following channel
coding result for the finite field MWRC [2]:

Lemma 3: Consider the finite field MWRC defined in (1)–
(2). Let the message of each user i be Mi, which is i.i.d. and
uniformly distributed on {1, . . . , 2nRi}. Using n uplink and
downlink channel uses, each user i can reliably decode the
message of all other users {Mj : ∀j ∈ {1, 2, . . . , L} \ {i}} if∑
j∈{1,2,...,L}\{i}

Rj ≤ log2 |F|−max{H(N0), H(Ni)}, (23)

for all i ∈ {1, 2, . . . , L}.

3) Achievable Rates: We propose the following sepa-
rate source-channel coding scheme. Fix mri = nRi. Let
(D1, . . . , DL), where each Di is i.i.d. and uniformly distributed
on {1, . . . , 2mri}. We call Di a dither. The dithers are made
known to all users. User i performs source coding to compresses
its message Wi to an index M ′i ∈ {1, . . . , 2mri} and
computes Mi =M ′i +Di mod 2mri . The random variables
(M1, . . . ,ML) are independent, with Mi being uniformly
distributed on {1, . . . , 2nRi}. The nodes then perform channel
coding with Mi as inputs. If (23) is satisfied, then each
user i can recover {Mj : ∀j ∈ {1, . . . , L} \ {i}}, from
which it can obtain {M ′j : ∀j ∈ {1, . . . , L} \ {i}}. If (4) is
satisfied, then each user i can recover all other users’ messages
{W j : ∀j ∈ {1, . . . , L} \ {i}}, using the indices M ′j’s and its
own message W i. This means the rate κ = n/m is achievable.

Using the above coding scheme, we have the following:
Lemma 4: Consider a finite field MWRC with correlated

sources. If there exist a tuple (r1, r2, . . . , rL) and a positive
real number κ such that (4) is satisfied for all non-empty
strict subsets S ⊂ {1, 2, . . . , L}, and (23) is satisfied for all
i ∈ {1, 2, . . . , L} with Ri = ri/κ, then the rate κ is achievable.

C. Proof of Theorem 1 (Necessary and Sufficient Conditions)
The “only if” part follows directly from Lemma 1 (regardless

of whether the sources have ABCMI). We now prove the “if”
part. Suppose that the sources have ABCMI. From Theorem 2,
there exists a tuple (r1, . . . , rL) such that conditions C1 and
C2 are satisfied. These conditions imply that (4) is satisfied for
all non-empty strict subsets S ⊂ {1, 2, . . . , L}. Let Ri = ri/κ.
Condition C2 further implies κ =

H(W{1,2,...,L}|Wi)∑
i∈{1,2,...,L}\{i} Rj

. So, if
(3) is true, then (23) is satisfied for all i ∈ {1, 2, . . . , L}. From
Lemma 4, κ is achievable. �.

Remark 8: For a fixed source correlation structure and
a finite field MWRC, one can check if the L-dimensional
polytope defined by the source coding region and that by the
channel coding region (scaled by κ) intersect when κ equals
the RHS of (3). If the regions intersect, then we have the set of
all achievable κ for this particular source-channel combination.
Theorem 1 characterizes a class of such sources.
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