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Abstract—This paper develops the fundamental capacity
limits of a sampled analog channel under a sub-Nyquist
sampling rate constraint. In particular, we derive the
capacity of sampled analog channels over a general class
of time-preserving sampling methods including irregular
nonuniform sampling. Our results indicate that the optimal
sampling structures extract out the set of frequencies
that exhibits the highest SNR among all spectral sets of
support size equal to the sampling rate. The capacity under
sub-Nyquist sampling can be attained through filter-bank
sampling, or through a single branch of modulation and
filtering followed by uniform sampling. The capacity under
sub-Nyquist sampling is a monotone function of the sam-
pling rate. These results indicate that the optimal sampling
schemes suppress aliasing, and that employing irregular
nonuniform sampling does not provide capacity gain over
uniform sampling sets with appropriate preprocessing for
a large class of channels.

Index Terms—nonuniform sampling, sampled analog
channels, sub-Nyquist sampling

I. INTRODUCTION

Capacity of analog channels along with the capacity-
achieving transmission strategies was pioneered by Shan-
non. These results have provided fundamental insights
for modern communication system design. Most Shan-
non capacity results (e.g. [1], [2]) focus on the analog ca-
pacity commensurate with sampling at or above twice the
channel bandwidth, which does not explicitly account for
the effects upon capacity of sub-Nyquist rate sampling.
In practice, however, hardware and power limitations
may preclude sampling at the Nyquist rate associated
with the channel bandwidth. On the other hand, although
the Nyquist sampling rate is necessary for perfect recov-
ery of bandlimited functions, this rate can be excessive
when certain signal structures are properly exploited.
Inspired by recent “compressive sensing” ideas, sub-
Nyquist sampling approaches have been developed to
exploit the structure of various classes of input signals
with different structures (e.g. [3]).

Although optimal sampling methods have been ex-
tensively explored in the sampling literature, they are

typically investigated either under a noiseless setting, or
based on statistical reconstruction measures (e.g. mean
squared error (MSE)). Berger et. al. [4] related MSE-
based optimal sampling with capacity for several special
channels but did not derive the sampled capacity for
more general channels. Our recent work [5] established a
new framework that characterized sub-Nyquist sampled
channel capacity for a broad class of sampling methods,
including filter-bank and modulation-bank sampling [3],
[6]. For these sampling methods, we determined optimal
sampling structures based on capacity as a metric, illu-
minated intriguing connections between MIMO channel
capacity and capacity of undersampled channels, as well
as a new connection between capacity and MSE.

One interesting fact we discovered in this previous
work is the non-monotonicity of capacity with sam-
pling rate under filter- and modulation-bank sampling,
assuming an equal sampling rate per branch for a given
number of branches. This indicates that more sophisti-
cated sampling schemes, adaptive to the sampling rate,
are needed to maximize capacity under sub-Nyquist
rate constraints, including both uniform and nonuniform
sampling. Beurling pioneered the investigation of general
nonuniform sampling for bandlimited functions. How-
ever, it is unclear which sampling method can best ex-
ploit the channel structure, thereby maximizing sampled
capacity under a sub-Nyquist sampling rate constraint.
Although several classes of sampling methods were
shown in [5] to have a closed-form capacity solution,
the capacity limit might not exist for general sampling.
It remains unknown whether there exists a capacity upper
bound over a general class of sub-Nyquist sampling
systems and, if so, when the bound is achievable.

In this paper, we derive the sub-Nyquist sampled
channel capacity for a general class of time-preserving
nonuniform sampling methods. We demonstrate that the
fundamental limit can be achieved through filter-bank
sampling with varied sampling rate at different branches,
or a single branch of modulation and filtering followed
by uniform sampling. Our results indicate that irregular
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sampling sets, which are more complicated to realize
in hardware, do not provide capacity increase compared
with regular uniform sampling sets for a broad class of
channels. Furthermore, we demonstrate that the optimal
sampling schemes suppress aliasing through filter bank,
modulation, or input optimization.

II. SAMPLED CHANNEL CAPACITY

A. System Model
We consider a waveform channel, which is mod-

eled as a linear time-invariant (LTI) filter with im-
pulse response h(t) and frequency response H(f) =´∞
−∞ h(t)e−j2πftdt. The channel output is given by

r(t) = h(t) ∗ x(t) + η(t), (1)

where x(t) is the transmitted signal, and η(t) is station-
ary Gaussian noise with power spectral density Sη (f).
We assume throughout that perfect channel state infor-
mation is known at both the transmitter and receiver.

The analog channel output is passed through M (1 ≤
M ≤ ∞) linear preprocessing systems each followed
by a pointwise sampler, as illustrated in Fig. 1. The
preprocessed output yk(t) at the kth branch is obtained
by applying a linear operator Tk to r(t), i.e. yk(t) =
Tk (r(t)). The linear operators can be time-varying, and
include filtering and modulation as special cases. We
define the impulse response q(t, τ) of a time-varying
system as the output seen at time t due to an impulse
in the input at time τ . The pointwise sampler following
the preprocessor can be nonuniform. The preprocessed
output yk(t) is sampled at times tk,n (n ∈ Z), yielding
a sequence yk[n] = yk (tk,n) . At the kth branch, the
sampling set is defined by Λk := {tk,n | n ∈ Z} . When
tk,n = nTs, Λk is said to be uniform with period Ts.

B. Sampling Rate
In general, the sampling set Λ may be irregular. This

calls for a generalized definition of the sampling rate.
One notion commonly used in sampling theory is the
Beurling density [7] as defined below.

Definition 1 (Beurling Density). For a sampling set Λ,
the upper and lower Beurling density are defined as{

D+ (Λ) = limr→∞ supz∈R
cardinality(Λ∩[z,z+r])

r ,

D− (Λ) = limr→∞ infz∈R
cardinality(Λ∩[z,z+r])

r .

When D+ (Λ) = D− (Λ), the sampling set Λ is said to
be of uniform Beurling density D (Λ) := D− (Λ).

When the sampling set is uniform with period Ts, the
Beurling density is D(Λ) = 1/Ts, which coincides with
our conventional definition of the sampling rate.

Given a preprocessed output yk(t), we can use Beurl-
ing density to characterize the sampling rate on yk(t).
However, since the preprocessor might distort the time
scale of the input, the resulting “sampling rate” might
not make physical sense, as illustrated below.

Example 1 (Compressor). Consider a preprocessor de-
fined by the relation y(t) = T (r(t)) = r (Lt) with
L ≥ 2 being a positive integer. If we apply a uniform
sampling set Λ = {tn : tn = n/fs} on y(t), then the
sampled sequence at a “sampling rate” fs is given by
y[n] = y (n/fs) = r (nL/fs), which corresponds to
sampling r(t) at rate fs/L. The compressor effectively
time-warps the signal, thus resulting in a mismatch of
the time scales between the input and output.

The example of the compressor illustrates that the
notion of a given sampling rate may be misleading for
systems that exhibit time warping. Hence, our results will
focus on sampling that preserves time scales. A class of
linear systems that preserves time scales are modulation
operators (y(t) = p(t)x(t),∀t), which perform pointwise
scaling of the input, and hence do not change the time
scale. Another class are periodic systems which includes
LTI filtering, and are defined as follows.

Preprocessor 

h(t)

Analog  
Channel 

Figure 1. The input x(t) is constrained to [−T, T ] and passed
through an analog channel and contaminated by noise η(t). The ana-
log channel output r(t) is then passed through a linear preprocessing
system T . The preprocessed output y(t) is observed over [−T, T ]
and sampled on the sampling set Λ = {tn | n ∈ Z}.

Definition 2 (Periodic System). A linear preprocessing
system is said to be periodic with period Tq if its impulse
response q(t, τ) satisfies

q(t, τ) = q(t+ Tq, τ + Tq), ∀t, τ ∈ R. (2)

A more general class of systems that preserve the time
scale can be generated through modulation and periodic
subsystems. Specifically, we can define a general time-
preserving system by connecting a set of modulation or
periodic operators in parallel or in serial. This leads to
the following definition.



Definition 3 (Time-preserving System). Given an index
set I, a preprocessing system T : x(t) 7→ {yk(t), k ∈ I}
is said to be time-preserving if

(1) The system input is passed through |I| (possibly
countably many) branches of linear preprocessors, yield-
ing a set of analog outputs {yk(t) | k ∈ I}.

(2) In each branch, the preprocessor comprises a set
of periodic or modulation operators connected in serial.

With a preprocessing system that preserves the time
scale, we can now define the aggregate sampling rate
through Beurling density.

Definition 4. A sampling system is said to be time-
preserving with sampling rate fs if

(1) Its preprocessing system T is time-preserving.
(2) The preprocessed output yk(t) is sampled by a

sampling set Λk = {tl,k | l ∈ Z} with a uniform Beurling
density fk,s, which satisfies

∑
k∈I fk,s = fs.

C. Capacity Definition

Suppose that the transmit signal x(t) is constrained
to the time interval [−T, T ], and the received signal
y(t) is sampled and observed over [−T, T ]. For a given
sampling system P that consists of a preprocessor T
and a sampling set Λ, and a given time duration T , the
capacity CPT (fs, P ) is defined as

CPT (fs, P ) = max
p(x)

1

2T
I
(
x ([−T, T ]) , {y[n]}[−T,T ]

)
subject to a power constraint E( 1

2T

´ T
−T |x(t)|2dt) ≤ P .

Here, {y[tn]}[−T,T ] denotes the set of samples obtained
within time [−T, T ]. The sub-Nyquist sampled channel
capacity for the given system can be studied by tak-
ing the limit as T → ∞. It was shown in [5] that
limT→∞C

P
T (fs, P ) exists for a broad class of sampling

methods. We caution, however, that the existence of the
limit is not guaranteed for all sampling methods, e.g. the
limit might not exist for an irregular sampling set. The
capacity and an upper bound under general nonuniform
sampling is defined as follows.

Definition 5. (1) CP(P ) is said to be the capacity of
a given sampled analog channel if limT→∞C

P
T (fs, P )

exists and CP(fs, P ) = limT→∞C
P
T (fs, P );

(2) CPu (P ) is said to be a capacity upper
bound of the sampled channel if CPu (fs, P ) ≥
lim supT→∞C

P
T (fs, P ).

The above capacity is defined for a specific sampling
system. Another metric of interest is the maximum date
rate for all sampling schemes within a general class
of nonuniform sampling systems. This motivates us to

define the sub-Nyquist sampled channel capacity for the
class of linear time-preserving systems as follows.

Definition 6 (Sampled Capacity under Time-preserv-
ing Linear Sampling). (1) C(fs, P ) is said to be the
sampled capacity of an analog channel under time-
preserving linear sampling for a given sampling rate fs
if C(fs, P ) = supP C

P(fs, P );
(2) Cu(P ) is said to be a capacity upper bound of

the sampled channel under this sampling if Cu(fs, P ) ≥
supP lim supT→∞C

P
T (fs, P ).

Here, the supremum on P is over all time-preserving
linear sampling systems.

III. CAPACITY ANALYSIS

A. An Upper Bound on Sampled Channel Capacity

A time-preserving sampling system preserves the time
scale of the signal, and hence does not compress or
expand the frequency response. We now determine an
upper limit on the sampled channel capacity for this class
of general nonuniform sampling systems.

Theorem 1 (Converse). Consider a time-preserving
sampling system with sampling rate fs. Suppose that the
output impulse response of the sampled channel is of
finite duration, and that there exists a frequency set Bm

that satisfies µ (Bm) = fs and
ˆ
f∈Bm

|H(f)|2

Sη(f)
df = sup

B:µ(B)=fs

ˆ
f∈B

|H(f)|2

Sη(f)
df,

where µ (·) denotes the Lebesgue measure. Then the
sampled channel capacity is upper bounded by

Cu (fs, P ) =

ˆ
f∈Bm

1

2

[
log

(
ν
|H(f)|2

Sη(f)

)]+

df, (3)

where [x]+
∆
= max (x, 0) and ν satisfies

ˆ
f∈Bm

[
ν − |H(f)|2

Sη(f)

]+

df = P. (4)

In other words, the upper limit is equivalent to the
maximum capacity of a channel whose spectral occu-
pancy is no larger than fs. The above result basically
implies that even if we allow for more complex irregular
sampling sets, the sampled capacity cannot exceed the
one commensurate with the analog capacity when con-
straining all transmit signals to the interval of bandwidth
fs that experience the highest SNR. Accordingly, the
optimal input distribution will lie in this frequency set.
This theorem also indicates that the capacity is attained
when aliasing is suppressed by the sampling structure,



as will be seen later in our capacity-achieving scheme.
When the optimal frequency interval Bm is selected, a
water filling power allocation strategy is performed over
the spectral domain with water level ν.

This theorem can be approximately interpreted based
on a Fourier domain analysis. The Fourier transform of
the analog channel output is given by H(f)X(f)+N(f),
where X(f) and N(f) denote, respectively, the Fourier
response of x(t) and η(t). This output is passed through
the sampling system to yield a sequence at a rate fs,
which can be further mapped to the space of bandlim-
ited functions L2(−fs/2, fs/2) through linear mapping
without frequency warping. The whitening operation
for the noise component, combined with the sampling
system operator, forms an orthonormal mapping from
L2(−∞,∞) to L2(−fs/2, fs/2). The optimal orthonor-
mal mapping that maximizes SNR is to extract out a
frequency set Bm of size fs that contains the frequency
components with the highest SNR, which leads to the
capacity upper bound (3).

The outline of the proof of Theorem 1 is sketched
below. We start from the capacity of periodic sampling
whose sampled channel capacity exists, and then derive
the upper bound through finite-duration approximation
of the true channels. Details can be found in [8].

h(t)
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Figure 2. (a) Filter-bank sampling: each branch filters out a fre-
quency interval of bandwidth Bk, and samples it with rate fk,s = Bk;
(b) A single branch of modulation and filtering: the channel output
is prefiltered by a filter with impulse response p(t), modulated by
a sequence q(t), post-filtered by another filter of impulse response
s(t), and finally sampled uniformly at a rate fs.

Suppose first that the whole sampling system is pe-
riodic, where the impulse response q(t, τ) is periodic
with period Tq (fsTq ∈ Z) and the sampling set
obeys tk+fsTq

= tk + Tq, ∀k ∈ Z. The periodicity
of the system guarantees the existence of limT→∞C

P
T .

Specifically, denote by Qk(f) the Fourier transform

Qk(f) :=
´∞
−∞ q(tk, tk − t) exp(−j2πft)dt, and intro-

duce an fqTs × ∞ dimensional matrix Fq (f) and an
infinite diagonal square matrix Fh (f) such that for all
m, l ∈ Z and 1 ≤ k ≤ fqTs,

(Fq)k,l (f) := Qk (f + lfq) , (Fh)l,l (f) = H (f + lfq) .

We can then express in closed form the sampled analog
capacity as given in the following theorem.

Theorem 2 (Capacity for Periodic Sampling). Suppose
the sampling system P is periodic with period Tq = 1/fq
and sampling rate fs. Assume that |H(f)Qk(f)|2 /Sη(f)
is bounded and satisfies

´∞
−∞ |H(f)Qk(f)|2 /Sη(f) <

∞ for all 1 ≤ k ≤ fqTs, and define Fw =(
FqF

∗
q

)− 1

2 FqFh. Then

CP (fs, P ) =
1

2

ˆ fq/2

−fq/2

fsTq∑
i=1

[log (νλi {FwF∗w})]
+ df,

where ν is chosen according to the water-filling strategy.

We observe that the capacity of any periodic sampling
system cannot exceed the capacity (3).

Now we consider the more general sampling system
that might not be periodic. For a given input and
output duration [−T, T ], the impulse response h(t, τ)
(|t|, |τ | ≤ T ) can be extended periodically to generate
an impulse response of a periodic system. Suppose first
that the impulse response is of finite duration, then for
sufficiently large T , the sampled capacity CT can be
upper bounded arbitrarily closely by the capacity of the
generated periodic system, which are further bounded
by the upper limit (3). Since the impulse response is
constrained in L2 space, the leakage signal between
different blocks can be made arbitrarily weak by intro-
ducing a guard zone with length T 1−ε. This shows the
full generality of our upper bound.

B. Achievability

For most scenarios of physical interest, the capacity
upper bound given in Theorem 1 can be achieved through
filter-bank sampling.

Theorem 3 (Achievability). Suppose that the SNR
|H(f)|2/Sη(f) of the analog channel is continuous and
Riemann integrable. Then the maximizing frequency set
Bm defined in Theorem 1 can be divided into Bm =
∪iBi ∪ D, where D contains a set of singular points,
Bi is a continuous interval, and D and Bi(i ∈ N) are
non-overlapping sets. The upper bound in (3) can be
achieved by filter-bank sampling. Specifically, in the kth



branch, the frequency response of the filter is given by

Sk(f) =

{
1, if f ∈ Bk,
0, otherwise,

and the filter is followed by a uniform sampler with
sampling rate µ (Bk).

Since the bandwidth of Bi may be irrational and the
system may require an infinite number of filters, the
sampling system is in general aperiodic. However, filter-
bank sampling with varied sampling rates in different
branches outperforms all other sampling mechanisms in
maximizing capacity.

The optimality of filter-bank sampling immediately
leads to another optimal sampling structure. As we have
shown in [5], filter-bank sampling can be replaced by a
single branch of modulation and filtering as illustrated
in Fig. 2, which can approach the capacity arbitrar-
ily closely if the spectral support can be divided into
subbands with constant SNR. A channel of physical
interest can often be approximated as piecewise constant
in this way. Given the maximizing frequency set Bm,
we first suppress the frequency components outside Bm
using an LTI prefilter. A modulation module is then
applied to move all frequency components within Bm
to the baseband [−fs/2, fs/2]. The aliasing effect can
be significantly mitigated by appropriate choices of
modulation weights for different spectral subbands. We
then employ another low-pass filter to suppress out-of-
band signals, and sample the output using a pointwise
uniform sampler. The optimizing modulation sequence
can be found in [5], [8]. Compared with filter-bank
sampling, a single branch of modulation and filtering
only requires the design of a low-pass filter, a band-pass
filter and a multiplication module, which are typically
lower complexity to implement than a filter bank.

IV. DISCUSSION

The above analytical results characterize the sampled
capacity for a general class of sampling methods. Some
properties of the capacity results are as follows.

Monotonicity. It can be seen from (3) that increasing
the sampling rate from fs to f̃s requires us to crop out
another frequency set B̃m of size f̃s that has the highest
SNRs. The original frequency set Bm we choose must
be a subset of B̃m, and hence the sampled capacity with
rate f̃s is no lower than that with rate fs.

Irregular sampling set. Sampling with irregular
sampling sets, while requiring complicated reconstruc-
tion techniques [7], does not outperform filter-bank or
modulation-bank sampling with regular uniform sam-
pling sets in maximizing achievable data rate.

Alias suppression. Aliasing does not allow a higher
capacity to be achieved. The optimal sampling method
corresponds to the optimal alias-suppression strategy.
This is in contrast to the benefits obtained through
scrambling of spectral contents in many sub-Nyquist
sampling schemes with unknown signal supports.

Perturbation of sampling set. If the optimal filter-
bank or modulation sampling is employed, mild per-
turbation of post-filtering uniform sampling sets does
not degrade the sampled capacity. For example, suppose
that a sampling rate f̂s is used in any branch and the
sampling set satisfies

∣∣∣t̂n − n/f̂s∣∣∣ ≤ f̂s/4. Kadec has

shown that
{

exp
(
j2πt̂nf

)
| n ∈ Z

}
also forms a Riesz

basis of L2(−f̂s/2, f̂s/2), thereby preserving informa-
tion integrity. The sampled capacity is invariant under
mild perturbation of the sampling sets.

Hardware implementation. When the sampling rate
is increased from fs1 to fs2, we need only to insert an
additional filter bank of overall sampling rate fs2−fs1 to
select another set of spectral components with bandwidth
fs2 − fs1. The adjustment of the hardware system for
filter-bank sampling is incremental with no need to
rebuild the whole system from scratch.
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