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Abstract—In the framework of prediction of individual se-
guences, sequential prediction methods are to be construed
that perform nearly as well as the best expert from a given clas.
We consider prediction strategies that compete with the clss
of switching strategies that can segment a given sequencetan
several blocks, and follow the advice of a different “base” gpert
in each block. As usual, the performance of the algorithm is
measured by the regret defined as the excess loss relative toet
best switching strategy selected in hindsight for the partular
sequence to be predicted. In this paper we construct predign
strategies of low computational cost for the case where thees
of base experts is large. In particular we provide a method that
can transform any prediction algorithm A that is designed for
the base class into a tracking algorithm. The resulting traking
algorithm can take advantage of the prediction performanceand
potential computational efficiency of A in the sense that it can
be implemented with time and space complexity onlyO(n” Inn)
times larger than that of .4, where n is the time horizon and
~ > 0 is a parameter of the algorithm. With A properly chosen,
our algorithm achieves a regret bound of optimal order fory > 0,
and only O(Inn) times larger than the optimal order for v =0
for all typical regret bound types we examined. For examplefor
predicting binary sequences with switching parameters undr the
logarithmic loss, our method achieves the optimaOD(Inn) regret
rate with time complexity O(n'™ Inn) for any v € (0, 1).

I. INTRODUCTION

with expert advice.” The maximum excess loRs, of the
forecaster relative to the best expert is called the (worst-
case) cumulative regret, where the maximum is taken over
all possible behaviors of the environment amdlenotes the
time horizon of the problem. Several methods are known
that can compete successfully with different expert cksse
in the sense that the regret only grows sub-linearly, that is
lim,, o Ry, /n = 0. We refer to[1] for a survey.

While the goal in the standard online prediction problem is
to perform nearly as well as the best expert in the class
a more ambitious goal is to compete with the bestjluence
of expert predictions that may switch its experts a certain,
limited, number of times. This, seemingly more complex,
problem may be regarded as a special case of the standard
setup by introducing the so-calledeta expertsA meta expert
is described by a sequence of base exp@its .. ,i,) € £",
such that at time instants= 1, ..., n the meta expert follows
the predictions of the “base” expegte £ by predictingf;, ;.
The complexity of such a meta expert may be measured by
C = |{t € {1,2,....,n =1} : iy # 4t41}|, the number
of times it changes the base predictor (each such change is
called a switch). Note that’ switches partition{1,...,n}
into C' + 1 contiguous segments, on each of which the meta
expert follows the predictions of the same base expert. If a

In the on-line (sequential) decision problems considered g aximum ofm changes are allowed and the set of base experts
this paper, a decision maker (or forecaster) chooses, &t €ags N elements, then the class of meta experts is of size

time instantt = 1,2,..., an action from a set. After each
action taken, the decision maker suffers some loss basdtkon

g:;"zo (";.1)N(N —1)7. Since the computational complexity
f basic prediction algorithms, such as the exponentially

state of the environment and the chosen decision. The denggighted average forecaster, scales with the number ofescpe
goal of the forecaster is to minimize its cumulative 10S$; najve implementation of these algorithms is not feasible i

Specifically, the forecaster's aim is to achieve a cumuatiyhis case. However, several more efficient algorithms haeab
loss that is not much larger than that of the best eXpﬁ‘:ﬁtoposed.

(forecaster) in a reference claSsfrom which the best expert

One approach, widely used in the information theory/source

is chosen in hindsight. This problem is known as “predictiogoding literature, is based on transition diagrafis [2]; [8]
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transition diagram is used to define a prior distribution loa t
switches of the experts, and the starting point of the cairren
segment is estimated using this prior. A transition diagdem
fines a Markovian model on the switching times: a state of the
model describes the “status” of a switch process (corredpon

The material in this paper was presented in part at the 20BEIE ing to, e.g., the time when the last switch occurred and the
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actual time), and the transition diagram defines the triamnsit
probabilities among these states. In its straightforwamion,

at each time instant, the performance of an expert algorithm

is emulated for all possible segment starting points. ., ¢,

and a weighted average of the resulting estimates is used to
form the next prediction. In effect, this method converts an
efficient algorithm to compete with the best expert in a class
£ into one that competes with the best sequence of experts
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with a limited number of changes. The time complexity oflata compression [13]=[15], the shortest path problem,[16]
the method depends on how complex the prior distributidi?], or limited-delay lossy data compression|[18]-[20]cB
is, which determines the amount of computation necessarysjgecial algorithms can easily be incorporated in transitio
update the weights in the estimate. Note that a general pribagram-based tracking methods, but the resulting cortglex
distribution would require exponential computational gdex- is quadratic inn (see, e.g.,[[3] for such an application to
ity in the sequence length, while at each time instant thessless data compression or [[21]2[23] for applications to
transition diagram model requires computations propoaio signal processing and universal portfolio selection). Hé t
to the number of achievable states at that time instant.dJsispecial algorithms for large base expert classes are caubin
a state space that describes the actual time, the time of tith the algorithm of [[4] to compete with meta experts, the
last switch, and the number of switches so faf, [2] provide@sulting algorithms again have quadratic complexity;isee,
a prediction scheme achieving the optimal regret up to ax., [5], [24] (the main reason for this is that the special
additive constant (for the logarithmic loss), and, omgtihe implementation tricks used for the large base expert ctasse
number of switches from the states, a prediction algoritheuch as dynamic programming, are incompatible with the
with optimal regret rate was provided! [3] showed (also Far t efficient implementation of the algorithm ofl[4] for switcty
logarithmic loss) that the transition probabilities in tlagter experts). The only example we are aware of where efficient
model can be selected so that the resulting prediction sehetracking algorithms with linear time complexity are avaika
achieves the optimal regret rate with the best possiblérigadfor a meaningful, large class of base experts is the case of
constant, and the distributions they use allow computirgy tlonline convex programming, where the set of base experts
weights at time instant with O(¢) complexity. As a result, is a finite dimensional convex set and the (time-varying)
in n time steps, the time complexity of the best transitioress functions are convek [R5] (see also the related problem
diagram based algorithm is a factor(n) times larger than of tracking linear predictors[[26]). In this case projected
that of the original algorithm that competes wifh yielding gradient methods (including exponentially weighted agera
a total complexity that is quadratic in. prediction) lead to tracking regret bounds of optimal order

For the same problem, a method of linear complexity wadote that instead of the number of switches, these bounds
developed in[[4]. It was shown iri][5] that this method isneasure the complexity of the meta experts with the more
equivalent to an easy-to-implement weighting of the paths iefined notion ofL, norms.
the full transition diagram. Although, unlike transitioragram In this paper we tackle the complexity issue in competing
based methods, the original version of the algorithm[of [4}ith meta-experts for large base expert classes by presgenti
requires an a priori known upper bound on the number afgeneral method for designing reduced transition diagrams
switches, the algorithm can be modified to compete wiffihe resulting algorithm converts any (black-box) prediati
meta experts with an arbitrary number of switches: a lineatgorithm A achieving good regret against the base-expert
complexity variant achieves this goal (by letting its sWitty class into one that achieves good tracking and adaptivetregr
parametera decrease to zero) at the price of somewhdthe advantage of this transition-diagram based approach is
increasing the regret|[6]. A slightly better regret bound be that the conversion is independent of the base prediction
achieved for the case when switching occurs more often at #gorithm A, and so some favorable properties df are
price of increasing the computational complexity from &ine automatically transferred to our algorithm. In particuldre
to O(n3/?) [7], [8] (by discretizing its switching parameter complexity of our method depends on the base-expert class
to /n levels). only through the base prediction algorithfy thus exploiting

In another approach, reduced transition diagrams have béisnpotential computational efficiengyOur algorithm unifies
used for the logarithmic loss (i.e., lossless data comjmels and generalizes the algorithms [of [9], [11] and our earlierkwv
by [9] and by [3] (the latter work considers a probabilistifl0]. This algorithm has an explicit complexity-regretdea
setup as opposed to the individual sequence setting). Rdducff, covering essentially all such results in the literatumn
transition diagrams are obtained by restricting some iranaddition to the (almost) linear complexity algorithms ireth
tions, and consequently, excluding some states from tle oraforementioned papers, the parameters of our algorithm can
inal transition diagram, resulting in (computationallynpler be set to reproduce the methods based on the full transition
models that, however, have less descriptive power to reptesdiagram [[2], [3], [21], or the complexity-regret behaviof o
switches. An efficient algorithm based on a reduced tramsiti[7], [8]. Also, our algorithm has regret of optimal order kit
diagram for the general tracking problem was givenin [10gomplexity O(n'*Inn) for any v € (0,1), while setting
while [11] developed independently a similar algorithm te = 0 results in complexityO(nInn) and a regret rate that is
minimize adaptive regret, which is the maximal worst-casenly a factor oflnn larger than the optimal one (similarly to
cumulative excess loss over any contiguous time segm@it[11]).
relative to a constant expert. It is easy to see that algnsth The rest of the paper is organized as follows. First the
with good adaptive regret also yield good tracking regret. online prediction and the tracking problems are introduced

An important question is how one can compete with meta Section[I). In Sectiof IlI-A we describe our general algo-
experts when the base expert classs very large. In such rithm. Sectiond TlI-B andIlI-C present a unified method for

cases special algorithms are needed to compete with ex-
P 9 P XlOther black-box reductions of forecasters for differertiors of regret are

perts from the pasg class_ eve_n W'thOUt. SWItChlng. Such IarQféﬁlable in the literature; for example, the conversiofiooécasters achieving
base classes arise in on-line linear optimization [12]slEss good external regret to ones achieving good internal regt [28].



only grows sub-linearly, that idjm,,_,., R,/n = 0. One of
the most popular among theseeigponential weightingiVhen

PREDICTION WITH EXPERT ADVICE the expert clasg€ is finite or countably infinite, this method
For each round = 1.2. . .. assigns, at each time instaiptthe nonnegative weight
(1) the environment chooses the next outcogne S wie b

and the expert advicgf;; € D : i € £}; the > jes wye i
expert advice is revealed to the forecaster; ) i1 .

(2) the forecaster chooses the predictipre D; to each expert € &. Here Liy—1 = >, {(fis.ys) s the

(3) the environment reveals the next outcomes cumulatlye loss of expertup to timet — 1, 5, > 0 is ca_lll_e_d
v the learning parameter, and thg > 0 are nonnegative initial

weights with>". _.w; =1, so thatd_, . m: = 1 (we define

(4) the forecaster incurs los&p;,y:) and each ieE i€ -
experti incurs 10Sst( i+, y:). Lo =0 for all i € & as well asLy = 0). The decision
' chosen by this algorithm is
ﬁt = Zﬂ'i,tfi,t (1)
ic€

Fig. 1. The repeated game of prediction with expert advice. . . . . .
which is well defined sinc® is convex.

In this paper we concentrate on two special types of loss
the low-complexity implementation of the general algarith functions: bounded convex and exp-concave. For such loss
via reduced transition diagrams. Bounds for the perforraaniinctions the regret of the exponentially weighted average
the algorithm are developed in Section 10-D. More eXpnci{orecaster is well understood. For example, assdiseonvex
bounds are presented for some important special casednidts first argument and takes its values|in1], and the set
Section§TIE an@TIF. The results are extended to thateel Of €xperts is finite with €| = N. If »; is nonincreasing in,
framework of randomized prediction in Sectién] IV. Soméhen for alln,

applications to specific examples are given in Sediion V. R 1 1 LA
Lngm_in{Li_,n—i-—ln—}—i-Z—, (2)
g Mn W; — 8

see [29]. By setting the initial weights te; = 1/N,i =
In this section we review some basic facts about predictiqn . N and with the choice, = 2,/In N/t, one obtains for
with expert advice, and introduce the tracking problem.  gjj 5, > 1,
R, <VnlnN . @)

A. Prediction with expert advice If, on the other hand, for someg > 0 the function F(p) =

Let the decision spac® be a convex subset of a vectorfi__"g(p’y) is concave for any fixed) € ) (such loss func-
space and le) be a set representing the outcome space( Lettions are calledexp-concave then, choosingy: = n and

Il. PRELIMINARIES

DxY — R be aloss function, assumed to be convex in its firsti = 1/N,i=1,..., N, one has for alh > 1,
argument. At each time instant= 1, ..., n, the environment InN
chooses an actiop € ) and each “expert? from a reference R, < - (4)

class& forms its predictionf;; € D. Then the forecaster
chooses an actiof; € D (without knowingy,), suffers loss ' ) ] )
(Br, ), and the losses(f; . y,),i € € are revealed to the time hOl‘IZO!’], that is, they hold S|multaneo.usly f_orallz 1.
forecaster. (This is known as the full information case and i 1he family of exp-concave loss functions mcIudesé for
this paper we only consider this model. In other, well-stagi €<@mple, forp, y < [0, 1], the square losé(p,y) = (p — y)

variants of the problem, the forecaster only receives &chit With 77 < 1/2, and the relative entropy log¢p, y) = y1n 7 +
information about the losses.) (1- y)ln% with n < 1. A special case of the latter is
_The goal of the forecaster is to minimize its cumulative log§€ logarithmic loss defined foy € {0,1} andp € [0,1]

Ly = 312, £(Pr,yr), which is equivalent to minimizing its by {(p,y) = —Iy—1Inp — I,—In(1 — p), which plays a
excess l0sd,, — min;c¢ L; ,, relative to the the set of expertscentral role in data compression. Here and throughout the
g, whereL;,, = S0 {(fis,y:) foralli e &, paperlp denotes the indicator of ever?. We refer to [1]

Several methods are known that can compete successfifffy discussions of these bounds.
with different expert classe$ in the sense that the (worst-
case) cumulative regret, defined as B. The tracking problem

We note that the regret bounds i (2}-(4) do not require a fixed

~ ] In the standard online prediction problem the goal is to
N eyn (Ln — Li,n) perform as well as the best expert in a given reference class
: E. In this paper we consider the more ambitious goal of

n n
max Zé(@ ) —minZZ(f“ t) competing with a sequence of expert predictions that are
(y1,ym) V™ \ e — allowed to switch between experts. Formally, suchmata

Ry,

I
B
&

(Y1,



expertis defined as follows. Fix the time horizon> 1. A We will also consider the related notion aflaptive regret
meta expert that changes base experts at figst0 times can ,

be described by a vector of expertis= (i, ...,ic) € £ a _ : . o : .
and a “transition path’T" = (¢1,...,tc;n) such thatty := R = FE Ry ;Z(p”%) Iirél?;é(f”’%)

1<ty <...<tc <tcy1:=n-+1. Foreachc=0,...,C, a

the meta expert follows the advice of expertin the time introduced in [31] and[[11], which is the maximal worst-
interval [t., t.;1). When the time horizom is clear from the case cumulative excess loss over any contiguous time seégmen
context, we will omit it from the description df and simply relative to a constant expert. Minimizing the tracking and
write T = (11, ..., tc). We note that this representation is nothe adaptive regret are similar problems. In fact, one can
unique as the definition does not require that base expertsshow that the FLH1 algorithm of [31] developed to minimize

andi.,; be different. Any meta expert that can be definetne adaptive regret and a dynamic version of the fixed-share

using a given transition path is said to follow?". algorithm of [4] introduced by[[6] to minimize the tracking
The total loss of the meta expert indexed (. a), accu- regret_ are identical. Fur_thermore, any a}lgorithm With dmal
mulated during: rounds, is adaptive regret also enjoys small tracking regret, sinee th
regret, inn time steps, relative to a meta expert that can
c switch the base expeft times can be bounded K¢’ + 1) R?.
L,(T,a) = ZLic(tatH—l) Although tracking regret bounds do not immediately yield
—0 bounds on the adaptive regret (since the regret on a time
segment may be negative), it is usually straightforward to
whereL;(t1,ty) = fg:;ll ((f;.+,y:) denotes the loss of expertmodify the proofs for tracking regret to obtain bounds on the

i € £ in the interval[t;,t,),1 < t; < t, < n. For any adaptive regret; see, e.g., the proof of Theorém 2.

t > 1, let 7; denote the set of all transition paths up to time

t represented by vector$y, ..., tc;t) With 1 < t; < to < IIl. A REDUCED COMPLEXITY TRACKING ALGORITHM
... <tc <tand0 < C <t ForanyT = (t1,...,tc) € A. A general tracking algorithm

T andt < n define the truncation of” at imet asT; = Here we introduce a general tracking method which forms
(t1,...,tx;t), wherek is such thatt, <t < tiiy (n_ote that 6 basis of our reduced complexity tracking algorithm. Con

t < n guarantees thato 1 = n+1> ¢, and soty1 is well- — giyor a0 on_line forecasting algorithrd that chooses an
defined). Furthermore, let(T)) = 7(T%) = ¢, denote the last element of the decision space depending on the past outcomes

change up to _time, and Iet_Ot(T) - O(_Tt) =k denqte the and the expert advices according to the protocol described
number of switches up to time A transition pathl” with C in Figure[1. Suppose that for alt and possible outcome

switches splits the time intervdl, n] into C' + 1 contiguous sequences of length, A satisfies a regret bound

segments.

Our goal is to perform nearly as well as the meta-experts, R, < pe(n) (5)
that is, to keep the regrét, — L, (7, a) small relative to the i respect to the base expert claswherepe : [0, 00) —
meta-expert§T,a) for all outcome sequences,...,y,. It

: ; , [0, 00) is @ nondecreasing and concave function wigi0) =
is clear that this cannot be done uniformly well for all metg These assumptions gr are usually satisfied by the known
experts; for example, it is obvious that the performance Pégret bounds for different algorithms, such as the boujis (

a meta expert that is allowed to switch experts at each tingg [3) (with definingos (0) = 0 in the latter case). Suppose
instant cannot be achieved for all outcome sequences. dndeg t, < t» < n and an instance ofl is used for time instants

it is known [4], [30] that, for exp-concave loss functions, € [t1,t2) := {t1,...,ts — 1}, that is, algorithmA is run on
the worst-case regret of any prediction algorithm relatve data obtained in the segmet, £»). The accumulated loss of

the best meta-expert with at moét switches, selected in 4 during this period will be denoted bi 4(t1,t2). Then [5)
hindsight, is at least of the order 6 + 1) logn, where the

implies
worst-case tracking regret with respect to meta experts wit P
at mostC' switches is defined as La(ti,t2) — min Li(t1,t2) < pe(ta — t1).
~ ) Running algorithm A on a transition path?T =
max (Ln - (T_’a):félnl{lT):cL( : )) (t1,...,tc;n) means that at the beginning of each segment

of T (at time instants.) we restartA; this algorithm will

Algorithms achieving optimal regret rates are known und&€ denoted in the sequel biyd, 7). Denote the output of
general conditions: for general convex loss functions af@iS algorithm at timet by fa:(T:) = fa(7(T)). This
a finite number of base experts, a tracking regret of ordaptation emphasizes the fact that, sindes restarted at the
(C(T) + 1)VnInn (or V(C + Dnlnn if C is known in b(_eg!nnlng of each segment @f, the output of(A_7 T_) at time
advance) can be achieved [4]] [5], [24], while th¥(C + tis |anuenced.by1“ only throughm(T"), the_ beginning of the
1)Inn) lower bound is achievable in case of exp-concave lo§ggment that includes The loss of algorithm(A, 7)) up to
functions and a finite number of experis [2]-[4]] [6], [21]UMe€ 7 IS c

or Whe_n the _base experts form a convex subset of a finite Lo(AT) = ZLA(%LLHI) _

dimensional linear space [31].

c=0



As most tracking algorithms, our algorithm will use weight
functionsw, : T; — [0, 1] satisfying S

~ n - wn(T,)
Zwt(Tt) =1andw(T;) = Z wit1(T) 1) ~ < n ) 1 1
t t / t41: t/: t CT +_1n7/\ . (8)
T.€T; Ty €Terui =T, ©) (CTn) + L)pe C(T,) +1 N wy(Th)

forall t =1,2,...andT € 7. Thus eachu, is a probability Proof: Leta = (i, - . ., ic) be the expert vector such that

distribution on7; such that the family{w;;¢ = 1,...,n} is  the meta expert¢I’,a) and (T, &) perform identically. Then
consistent. To simplify the notation, we formally defifigas clearly

the “empty transition path7, := {7y}, Lo(A,Tp) := 0, and ~
wo (To) 1. Ln - an, a) R R R

We say that? € T, coversT € T, if the change points = Lp,—L,(AT,)+ L,(AT,) — L,(Ty,a) .
of T are also change points af. Note that if 7' coversT,
then any meta expert that follows transition pathlso follows

M%>
St
i
|
o
_|_
|
=)
—

IN

Using [3) and the concavity ofc, we get

transition pattl’. We say thatw, coversT,, if forany T € T, Lo(A,T,) — Ln(T), a)
there exists & € 7,, with w,(T') > 0 which coversT'. (T
Now we are ready to define our first master algorithm, given = Z <LA(fc, ter1) = Li, (e fc+1)>
in Algorithm[d. We note that the consistency {af;} implies g ‘
that, for any time horizom, Algorithm[d is equivalent to the c(F)
exponentially weighted average forecaskér (1) with theofet < Z pe(fosr —i0)

experts{(A,T) : T € T,,w,(T,) > 0} and initial weights
wy(T) for (A,T). The performance and the computational
complexity of the algorithm heavily depend on the propsrtie < (C’(fn) + 1)p5<+> ) (9)
of wy; in this paper we will concentrate on judicious choices C(Tn) +1

of w; that allow efficient computation of the summations in Agsume that the loss functicghis convex in its first argu-

Algorithm [ and have good prediction performance. ment and takes values in the intery@l1]. Since Algorithn{l
i : i is equivalent to the exponentially weighted average fatra
Algorithm 1.Gleneral trz?\ckmg alggrlthm. . with experts{(A,T) : T € T,,w,(T) > 0} and initial
Input: prediction algorithm.A4, weight functions{w:;t = weightsw, (T'), we can apply the bound](2) to obtain
1,...,n}, learning parameterg, > 0,t =1,...,n. "
Fort=1,...,n predict Ln < Lo(ATy) + - —i—zﬁ.
_ n — 8
_ Yper wi(T)emmEe AT f oy (7 (T)) o =
Dy = Srer we(T)e— L1 (ATi—D) : Combining this Wlth [®) proved(7).
i Now assumée is exp-concave. Then byl[4, Lemma 1],
~ ~ 1 1
The next lemma gives an upper bound on the performance Lo = Ln(ATh) = gln wn(fn) ‘ (10)
of Algorithm 1. _ . o
This, together with[{99), implies18).
Lemma 1:Supposej;.+1 < forall t =1,. —1, the -
transition pathT,, is covered byTn = (tl, .. C(T )) such
thatw, (T,,) > 0, and.4 satisfies the regret boudﬂ (5). Assumg 1y weight function
that the loss functio# is convex in its first argument and takes ] )
values in the interva0, 1]. Then for any meta expe(f,,a),  ONe may interpret the weight functiofw, } as the con-
the regret of Algorithnill is bounded as ditional .pr(.)bablllty that a new segment is started, given
N the beginning of the current segment and the current time
Ly — Ly(Ty, a) instant. In this case one may defifie;} in terms of a time-
C(Tn) 1 1 inhomogeneous Markov chaifU;; t = 1,2, ...} whose state
< Z pe(tep1 —te) + Z i 4+ —In— space at time is {1,...,¢}. Starting from statd/; = 1, at
—0 M wp(Th) any time instant, the Markov-chain either stays where it was
R at timet — 1 or switches to staté. The distribution of{U,}
< (C(Tn) +1)pe is uniquely determined by prescribiffU; = 1) = 1 and for
()+1 1<t <t
1
Z oy — : (7) P(Uy = t|U—1 = 1t')

T wn(m = 1-P(U =t|U1 =t') = p(tlt') (11)

On the other hand, if is exp-concave for the value ofand

Algorithm T is used withy, = 7, then where the so-callecdswitch probabilitiesp(t|t’) need only

R satisfy p(t|t') € [0,1] for all 1 < # < t. A realization
L,—L,(T,,a) of this Markov chain uniquely determines a transition path:



Ti(u1,...,ut) = (t1,...,tc) € Ty if and only if ug—1 # ur,  C. A low-complexity algorithm
for ke {t1,....tc}, andug—y = wy, for k & {t1,... . tc}, Efficient implementation of Algorithni]1 hinges on three
2 < k < t. Inverting this correspondence, alfiye 7; uniquely  factors: (i) Algorithm A can be efficiently implemented; (ii)

determines a realizatiofu,, . . ., u;). Now the weight function  the exponential weighting step can be efficiently impleraeint
is given for allt > 1 andT € 7; by which is facilitated by (iii) the availability of the losses
L A(t',t) at each time instantfor all 1 < ¢’ < ¢ in the sense
T)=PU; = LU= 12 AL SU s
wi(T) Oy =, Ve = u) (12) that these losses can be computed efficiently. In what fallow
where(uy, ..., us) is such thatl’ = T'(uy,...,u:). It is easy we assume that (i) and (iii) hold and develop a method for (ii)

to check that{w,} satisfies the two conditions ifl(6). Clearly,via constructing a new weight functidni; } that significantly

the switch probabilitie®(¢[t') uniquely determindw;}. The reduces the complexity of implementing Algorithid 1.

above structural assumption ¢m, }, originally introduced in  First, we observe that the predictgr of Algorithm[1 can

[2], greatly reduces the possible ways of weighting diffiere be rewritten as

transitior_l paths, allowing implementation of AIgoritm Itkv . Zil:1 o () fas(t)

complexity at mostO(n?) (if one step ofA can be imple- Pt = 7 p (16)

mented in constant time), instead of the potentially exptink 2= ()

time complexity of the algorithm in the naive implementatio Where the weights; are given by

see Sectiof III=C. . v(t') = S w(T)e b (AT, (17)
Some examples that have been proposed for this construc-

tion (given in terms of the switch probabilities) include

TeT:: e (T)=t’
_ _ _ Note thatwv,(¢') gives the weighted sum of the exponential
« w'"W, used in|[4], is defined byuw ([t') = o for some \eights of all transition paths with the last switchtat
0<a<l If the learning parameterg;, are constant during the time
w5, used in[[6], [8], [11], is defined by’S (¢|t') = 1/t. horizon, th_e_above means that AIg_oritHIh 1 can be_imple—
T mented efficiently by keeping a weight(¢') at each time

« wX7T, used in[[2], is defined by instantt for every possible starting point of a segmeht=
1/2 1,...,t. Indeed, ifn, = n for all ¢, then [17), [(I1), and_(12)
prr(tit') = P (13) imply that eachw,(t') can be computed recursively if(t)

o ] i ] _time from thev;_; (settinguv; (1) := 1 at the beginning) using
which is the Krichevsky-Trofimov estimaté [13] for bi-ine switch probabilities defining; as follows:
nary sequences of the probability that after observing

an all zero sequence of length— t/, the next symbol i1 ()(1 = p(t|t'))em A= () )
will be a one. Using standard bounds on the Krichevsky- fort/ =1,...,t—1,
Trofimov estimate, it is easy to show (see, eld., [2]) that“t(t )= i;il vt&(t//)p(ﬂt//)ewaﬂktfl(t”)-,ytfl)
for any T € 7, with segment lengthsy, s1,...,s¢ > 1 B for ' — ¢,
(satisfyingZCC:0 Se=mn) (18)
1 e Using this recursion, the overall complexity of computihg t
In —— < = Zm 5.+ (C+1)In2. (14) weights duringn rounds isO(n?). Furthermore,[(16) means
wikT(T) = 2 =0 that one needs to start an instance 4ffor each possible

starting point of a segment. If the complexity of running
o w”' andw?2 used in [3] (similar weight functions were algorithm A for n time steps isO(n) (i.e., computing.A
considered in[]5]), are defined as follows: for a giveat each time instant has complexi€y(1)), then the overall
0<e<1fletr, =1/j1t, 7, = Z;:lw(j) (with  complexity of our algorithm become3(n?).
Zy =0 andZ = Y2, 7(j)). Thenw?! andw?> are It is clearly not a desirable feature that the amount of
defined, respectively, by computation per time round grows (linearly) with the horizo
n. While we don’t know how to completely eliminate this

pr, () = -1 ever-growing computational demand, we are able to moderate
(Zoo = Zt-2) this growth significantly. To this end, we modify the weight
and . functions in such a way that at any time instanive allow
pe(tt) = mt—t) at mostO(gInt) actual segments with positive probability
: (Zoo = Zt—t141) (i.e., segments containingthat belong to sample paths with

positive weights), where > 0 is a parameter of the algorithm
Here we consider the weights®:. It is shown in [3, proof (note thatg may depend on, e.g., the time horizor).
of Eg. (39)] that for anyl" € T, Specifically, we will construct a new weight functiaiy such
that
1

W (T) < (Cn(T)+€) Inn+In(14+€)—Cy(T) Ine . (15) [{r(T) - @n(Ty) > 0.T € To}| < [g] (llogt] + 1)

2The upper bound: < 1 is missing from [[3], although it is implicitly wherelog denOt?S base-2 Iogar_ithm. By doing so, the_time and
required in the proof. space complexity of the algorithm becom@$gInn) times

In



more than that of algorithrod, as we need to ru®(glnn) satisfyp(t|t’) € (0,1) forall 1 < ¢ < t. (Note that the weight
instances of4 in parallel and the number of non-zero term$unction examples introduced in Section 1l-B all satishist
in (I8) and [(Ab) is als®(gInn) (here we exclude the trivial condition.) The condition implies that;(7;) > 0 for all T; €
case whered has zero space complexity; also note that thg. Furthermore, ifl; = (¢1,...,tc) € T; satisfiest; 11 —t; <
time-complexity of A is at least linear im since it has to g2“4,i=1,...,C, whereuy, is the largest power of 2 divisor
make a prediction at each time instant). Thus, in case ofo&t;, then from [19) we geti.(T") > 0.
linear-time-complexity algorithmd, the overall complexity of ~ The next lemma gives a characterization of wiefs) = 1
Algorithm [ become®)(gnInn). and, as a consequence, bounds the number of valid segments
In order to construct the new weight function, at each tintbat are alive at.
instantt we force some segments to end. Then any path thatL 2L B
contains such a segment will start a new segment at tim emma z:Let? =
(and hence the corresponding vector of transitions cosnta(:?j
t). Specifically, any time instant can be uniquely written as
02" with o being a positive odd humber anda nonnegative
integer (i.e.,2" is the largest power of that dividess). We

>, 2% be the binary form of with
<up < up < o < Uy, S = Yo, 2%, anduy = —1.
henh;(s) =1 if and only if s = s — j2* for someuy_1 <
u<wugandj € {0,...,g — 1} such that2“ is the larges®-
power divisor ofs; in particular,j is even ifu = u; for some
ke {1,...,m}, and odd otherwise. As a consequence, at any

specify that a segment startingsatan “live” for at mostg2* . ;
time instants, wherg > 0 is a parameter of the aIgorithm,tlme mstant_t there are at mosfy/2|(|log?] + 1) segments
that are valid and alive.

so that at times + ¢g2* we force a switch in the path. More

precisely, given any switch probabiliy(|t') for all ¢’ < t, Proof: It is clear that for anys satisfying the conditions
we define a new switch probability of the lemmai;(s) = 1 sinces + g2% = s — j2% 4 g2% >
o , , sp + 2" >t > s. To prove the other direction, consider an
B(Et) = 1 = ho(t') (1 = p(tlt")) (19) € [1,t]; assumeh(s) = 1 and denote the largegtpower
where divisor of s by 2*. By definition, h,(s) = 1 if and only if
N 1 if s<t<s+g24 s+ 2% <t < s+ (j+ 1)2* for somej € {0,...,9 — 1}.
t(s) = 0 otherwise. After reordering we obtain

Thush(s) = 1 if and only if a segment started atis still PG +1)2"<s <t —j2" (1)

valid at timet. In terms of the Markov chaifU,} introduced |etfk e {1,...,m} be the unique index such that_; < u <
in (L1), the new switch probabilities in definition_{19) mean,, (note thatu < u., always holds). The* dividessy,, and
that if the chain is in stat€ at timet—1 such thati,(t') = 1, s, <t < s; 4+ 2“. Combining this inequality with[{21) gives
then the chain switches to statewith the original switch s, — (j41)2% < s < s, — (j — 1)2%. Taking into account that
probability p(t[t') and remains at staté with probability 1 — both s and s, are divisible by2“, we obtains = s;, — j2.
p(t|t'); but if h(t') = 0, then the chain switches to state Furthermore, sinc@* is the larges2-power divisor ofs, j

with probability 1. In this way, given the switch probali#é must be even whem = w, for somek € {1,...,m}, and
p(t|t') and the associated weight functi¢m, }, we can define odd otherwise.
a new weight function{xi;} via the new switch probabilities  Finally, for anyu € {0,1, ..., u,,}, the set

p(t|t') and the procedure described in SecfionTlI-B. Note that

the definition of{«, } implies that for a transition path € 7; {s=sr—j2" tup—1 <u<up,j=0,...,9—1,

either 2" is the larges®-power divisor ofs}
we(T)=0 or w(T)>w(T) . (20)

has at mosfg/2] elements. Since,,, = |logt|, the proof is
The above procedure is a common generalization of sevegamplete. u
algorithms previously reported in the literature for pngnthe ~ Note that forg = 1 the valid segments that are alive tat
transition paths. Specifically, = 1 yields the procedure of [9], start exactly ats;, k = 1,...,m, and so the number of valid
g = 3 yields our previous procedurg [10}, = 4 yields the segments at time is exactly the number of’s in the binary
method of [11], whileg = n yields the original weighting form of ¢ [9]. The above lemma implies that Algorithim 1 can
{w;} without pruning. We will show that the time complexitybe implemented efficiently with the proposed weight functio
of the method with a constant (i.e., wheng is independent {w:}.
of the time horizonn) is, in each time instant, at most

O(Inn) times the complexity of one step of, while the time {u;} derived using any > 0 from any weight function
complexity of the algorithm without pruning i©(n) times {w:} defined as in Sectiof IIB. Iy, — n for somen > 0
the complexity of A. Complexities that interpolate between' ' e =0 "

these two extremes can be achieved by settin and allt = 1,...,n, then the time and space complexity of
WO ex eV y setyng o(n) Algorithm[1 isO(g Inn) times the time and space complexity

Theorem 1:Assume AlgorithniIL is run with weight func-

appropriately. .
We say that a segment at time instarg alive if it contains of A, respectively.
t and isvalid if there is a pathT; with @, (7;) > 0 that Proof: The result follows since Lemnia 2 implies that the

contains exactly that segment. In what follows we assumie tlrumber of non-zero terms i {[18) aid(16) is alwé)}g Int).
the original switch probabilitiep(¢|t') associated with the, [ ]



D. Regret bounds [ti+1,t;+g2%] and sincea is divisible by2v:+lleels+1)]

To bound the regret, we need the following lemma whicH€ maximal property of the-power divisor2*+ of s implies
shows that any segmefit, ') can be covered with at mostthatuiyi > u; + [log(g + 1)]. Therefore, defining,, = s,
[ log(t' —t) W + 1 valid segments its largest2-power divisor is2“i+1, proving [25) forj =

[log(g+1)] ' (note that it is easy to show that the choicespfand hence

Lemma 3:For anyT € T,, there exists’ € T, such that that oftiyi, is unique). _
for any segmenft, ') of T with 1 <t < ¢ <n + 1, Now let !’ be the smallest integer such that,; > t'. To

(i) 1 (f) ~ 0, ¢ andt’ are switch points of (it =n+1 prove part (i) of the lemma, it is sufficient to show thaK [

A~ ’ ’ ’ /
it is considered as a switch point), aficcontains at most and/ the segmenisy, L), [t2, 1s), ..., [tl,‘l’ i), [, ') cover
log (' —t) . [t,¢"), which is clearly true ift;.; > ¢'. From [2%) and the
l= {gi] + 1 segments irjt, t');

[log(g+1)] ;e fact thatt;;1 — ¢; is divisible by2“:, we have
(ii) if the switch points of T in [t,¢') aret; :=t < t3 <
<ty < tpyr = t, thenl” < [, and for any ‘ > t+Xl:2“i _t+2l:2u1+z;:2(urujfl)
nondecreasing functioffi : [0, c0) — [0, ), = Pt N Pt
v 1 ,
S i — 1) > ¢4 3 gutEisliostery)
i=1 i=1
(=2 -t = gin-Hillog(g+1))
— o = ¢ guittllogly
< ; f <_2m‘og<g+1‘u> A1) (22) - ;
Lllog((t’—t))J vy - olllog(g+1)] _ 1
og(g+1 — , = t42Wr_——

>t 9(i—=1)[log(g+1)] > ¢/
where the second summation [n{22) is empty i 1.

compact and harder-to-handle formula the proof of (i). R
. L To prove (i), we first show that the transition pafh
log ZUOg(HUJiq‘f(Q“”;I constructed above satisfi€s(22), where, with a slight abuse
1= alloslatt] -1 | 4 of notation, we redefing; ., from part (i) to bet’. First
[log(g +1)] notice that since + ¢g2“/ -1 < t;_, + g2* -1 < t’, we have

up_q < {10g %J Repeated application df (25) implies, for
by taking into account that the last segmémtt; 1) inthe any;i=1,...,1' -1,
construction of the proof can always be defined to be of length

at least|log(g+1) |2*. Furthermore, foy = 1 it follows from u; < {bg t— tJ — (' =1—1) [log(g +1)]
[9] that the last term is not needed [n122), and hence therlatt
bound can be strengthened to and
4 [log(t'—t)] t/—t , .
S (b 1) < 72, (24) hr—ty < gals T ster )
i=1 i=0 < gols (' —1—19) log(g+1) ]

(# — )2~ =1-Dlos(g+ 1))

Proof: Clearly, it is enough to defing independently

in each segmenit,t’) of T. We construct the switch pointsysing the crude estimaté — ¢, < ' — ¢ finishes the proof

t1 <tz <--- <ty of T'in this interval, for some’ <, and of (22). The last inequality(23) holds trivially fdr= 1, and
an auxiliary variable;; 1 > t' one by one such that =t, holds forl > 2 since

ty < t' and, definingu; as the larges2-power divisor oft;, z
'—2

wj1 —uy > [log(g + 1) @5 Y f (L)
=0

2illog(g+1)]

for j = 1,...,I' — 1. Assume that we have already defined g
t1,...,t; satisfying [2b) forj = 1,...,7—1. Then a segment _ f(t/—t)+2f< t—t >
starting att; may be alive with positive probability at any — 2illog(g+1)]
time instant in[¢;,t; + ¢2“¢). Defineu;;; to be the largest ( lox(t/ ) ]_1 )
nonnegative integer such that there is are [t; + 1,¢; + < f(t -1 +/ Tlog(g+ D] ( t—t ) i
g2"i] such thaR"i+* dividess. Thens2~*: belongs to the set - 0 oz |log(g+1)]
Si = {t;27w 4,27 41, 4,27 42, ;27 % 4 g} (although, st/ 0y vy
clearly,s27% £ t;27%). SinceS; is a set ofg+1 consecutive < f(t' =6+ / f <m> dz.

0 .

integers, it has an elementthat is divisible by2ll°gls+1)]
and this element is not the odd numhkig?—%:, Thus2%ia € [ |



Taking into account tha€(T,,) < C(T,,) if T, coversT,, On the other hand, if is exp-concave for somg > 0 and
Lemmal3 trivially implies the following bounds. we letn, = n for t = 1,...,n in Algorithm[d, then for any

. ~ . n > 1 andT € 7, the tracking regret satisfies
Lemma 4:For anyT, € 7, there exists dl}, € 7, with

u?n(fn) > 0 such thatfn coversT,, and L, — Ln(T, a)
C(T) < C(Ty) < (C(Tn) + 1) Ler,ym — 1 26 n
h (T) < C(T,) < (C(Tn) + DLeqr,), (26) < Lo a(C(T) + 1)pe ( s 1)>
where rn (L 2C(T)+1)—1
[z ] +1 it o=, 4 Tnllema(C@) +1) ~1) (30)
Loy = ltozg(ngl)J _ (27) n
Toelean] T 2 if C>1. hile f .
while for 0 < ¢ < 1/2 andn > 5, the adaptive regret can be
bounded as
Proof: The lower bound is trivial, and the upper bound ,
directly follows from LemmaR3 foC(T,,) = 0. For C(T,,) > R® < Lonpe ( n ) L (Lon —1) _ 31)
1 the upper bounds follow since on each segment pfwe ’ Lo Ui
can defineTl;,, as in the proof of Lemmal3. Hence, Tt = . .
(t1,...,tc:n), then Proof: First we show the bo_unds fo_r the tracking regret.
To prove the theorem, |&E, be defined as in Lemnfa 1, and we
N o+l log(t; — ti_1) bound the first and last terms on the right-hand sidé€lof (7) and
C(T,)+1 < qmw + 1> @) (with @41 in place ofw,). Note that the conditions opg
i=1 89 imply thatzpg(y/x) is a nondecreasing function affor any
! log(t; — ti1) fixedy > 0 (this follows sinceps(z)/z = (pe(2)—0)/(z—0)
= ( llog(g + 1)J + 2) is a nonincreasing function aof > 0 by the concavity ofpg,
=1 and hencezpg(1/2) is nondecreasing). Combining this with
< (C+1 ( log & + > the bounds orC(T,,) in Lemmal4 implies
- [log(g + 1))
where in the last step we used Jensen's inequality and the (c(7,) + 1) ( n )
concavity of the logarithm. [ | C(T,)+1
We now apply the preceding construction and results to the < Loy n(C(T) + 1)pe ( " > .
weight function{w;} = {w’'} to obtain our main theorem: Lo (C(T) +1)

Theorem 2:Assume AlgorithnIL is run withy > 0 and The last term(1/n,,) In(1 /w5 n)) in (@) and [8) can be
Welght functlon{wt '} for some0 < e < 1 (derived from bounded by noting thal/wﬁl(An) < 1/w£1( L) by @0)
{wy*}), based on a prediction algorithm that satisflés (5) feid the latter can be bounded usifgl (15); this is givem,py
somepg. Let L¢,,, be defined by((27). If is convex in its first This finishes the proof of the tracking regret bounds.

argument and takes values in the interféall] and ;1 < 7 Next we prove the bounds for the adaptive regret. Assume
fort=1,...,n—1, then for alln > 1 and anyT" € 7,, the e want to bound the regret of our algorithm in a segment
tracking regret satisfies [t,t') with 1 < ¢ < ¢ < n+ 1. By Lemmal3B there exists
~ a transition path7,_; such that it has a switch point at
L, —L,(T,a) T log(t' 1) ;
n t, has at most = Tos(gT1)] +1 < Ly, segments in
< L Cc(T 1 o2l n ;
< Loma(C(T) + D)pe (LC(T),n(C(T) T 1)) [t,.t )t anfd;un( [)t i? tL)et t;], tg,.é. ,télden(;tel tth; swﬂ;:h
n B points of 7, in ,t') where C' < I, and letf, =
Z M, In (Loma(C(T) +1) ~ 1) (28) andis,, = t'. Notice that, since we are interested in the
= 8 Tin performance of the algorithm only in the intervglt'), a

modified version of Lemma&]l can be applied, where the
loss is considered only in the intervglt') and the weight
r(C) = (C+e)lnn+1In(l+e¢) — Clne. of T, can be thought to be the sum of the weight of all
transition paths that agree with, in [t t'). Specifically, letting
Furthermore, fore < 1/2 andn > 5, the adaptive regret of 7 (Tt/ )={Te€Ty_1:T and Ty, agree ont,t')} and
the algorithm satisfies u?ftl, (T,) = ZTeTt . wh' ,(T), it can be shown similarly to
" , Lemmall that in the case of a loss function that is convex
R < Lo.npe (Ln ) + % + (Lo —1) (29) in its first argument and takes values[in 1], for any expert
0 =1 T 1€ €,

where the functiorr,, (C) is defined as

where the function/, (C) is defined as ' —1

Z (ﬂ(ﬁmys) - é(a7y8))

s=t

' (C) = (C+1)Inn— (C + 1) Ine.
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< (A ) the middle}, n,/8 term becomes multiplied byC(T") + 1)
if the tracking bound is computed from the adaptive regret
1, 1 bound, resulting in an increased constant factor in the main
Z 5 In = - (32) term.

M=t ey (Ty-1) (i) The above theorem provides bounds on the tracking and

adaptive regrets in terms of the regret bousdof algorithm

A. However, in many practical situationgl behaves much

better than suggested by its regret bound. This behavior is

also preserved in our tracking algorithms: Omitting step (9

In 1A < @+t —1)— (@ +1)Ine in Lemmall we can replace the first term [n](28) and (30)
wfg (Ty—1) with L, (A,T,,) — L,(T,a), which is the actual regret of

~ =~ algorithm A on the (extended) transition paif,. Reordering

(C+1)Inn—(C+1)ne (33) the resulting inequality, we can see that the loss of our

whenevere < 1/2. Indeed, letB; denote the event thatis a algorithm is not much larger than that of run onT;,, for

Now —lnwf;,(Tt/,l) can be bounded in a similar way a
—Inwk(T,) in [3]: For t = 1 we can use[{15). Far> 2 it
can be shown, following the proof df_({L5) inl[3], that

IN

switch point and let4,, .. denote the event that,...,ts €xample, in the exp-concave case we have
are the switch points ift+1,¢'). Since the switch probabilities R I C(TY+1) — 1
pr, (s]s') are independent of and1—p,, (s|s’) = % L, —L,(AT,) < n (Lo (1) +1) )
for e <1/2, we have K
W (Ty 1) E. Exponential weighting
= ( OP(Ay, te |By) We now apply Theoreni]2 to the case wheseis the
topr—1 exponentially weighted average forecaster and the sets# ba
> H < H — ) experts is of sizeN, and discuss the obtained bounds (for
- Z - Ztc—2 Fli Z —Zr- simplicity we assume’(T) > 1, but C(T) = 0 would just
1, slightly change the presented bounds). In this casé, i
_ H — Zs1 H m(te—1) convex and bounded, then Ky (3) the regret/ofs bounded
Zoo — Zs—2 Zoo — Zs, 4 by pe(n) = vnln N. Settingn; = ¢Inn/\/n for somegp > 0
& (n: is independent of(T") but depends on the time horizon
_ Ze—Zy 11 m(te —1) n), the bound[{28) becomes, fgr= O(1),
Zoo—Zy o WLz 7, -
e=0 ~ Ln - Ln(Ta a)
(t _ 1)1+€ €t1+e EC
= M —1)(t—1+e€ (t+e)(t—1)+ (t' — 1) < (/n(C(T)+1) (loi + 2> In N
Butiis - [log(g +1)]
_ et L ¢valn | (C(T) + 1)V logn
(" — 1)AC+6(75 — 1+t + €) 8 ¢ [log(g +1)]
C+1 C+1
> . > oYY
(t’ _ 1)C+e tl—e (t’ _ 1)C+1 Inn

Furthermore, if an upper bourd on the complexity (number
where the second inequality follows form inequalities (8631 of switches) of the meta experts in the reference class iwkno
(38) in [3], and the third follows sincé —1+¢)(t+¢€) < t*. in advance, them, can be set as a function 6f > C(T') as

It is easy to see that the bound [n(33) is larger tham (15) if log n
n > 5. Thus, combining with[{32) for the maximizing value well. Letting n, = 4/8(C' +1)Inn (Llog(9+1)J T 2) /n. the
t=1,¢ =n+1 and usingC < Ly, we obtain the bound bound [28) becomes

(29) on the adaptive regret. A modified version[ofl (32) (witho i_r (T, )
the 3! —," /8 term) yields [31) n oo
logn

Remarks: (i) Note that the tracking regret can be trivially < \/H(C(T) +1) (ﬁ + 2) In N
bounded by(C(T') + 1) times the adaptive regret (as sug- 8\
gested by[[111]). However, the direct bounds on the tracking log n
regret are somewhat better than this: The first term com- I n(C+1) (Uog(gﬂ)J +2) Inn
ing from the adaptive regret bound would g ,,(C(T') + 2

1)pe(n/Lo. ), which is larger than the first teric ,, (C(T) +
1)pg(m) in the tracking regret bounds. This justi- +0 i
fies our cialm for exp-concave loss functions, since the last (C+1)Inn (m + 2)
terms will be essentially the same, although the main term in
the bound is not affected. The difference is more pronouncedWe note that these bounds are of orl€(7’)+1)Vn In*n,
for the case of the convex and bounded loss function, wheespectively vV (C + 1)nIn*n, only a factor of O(v/Inn)
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larger than the ones of optimal order resulting from earli@oncerning([4], we mean its combination with some efficient
algorithms|[4], [5], [24] which have complexit@(n?) (strictly algorithm designed for the base-expert class). Note thttisn
speaking, the complexity af[4] ©(nN), but, when combined case the algorithm is strongly sequential as its paranativiz
with efficient algorithms designed for the base-experts;lass independent of the time horizan For g = 2n” — 1, we
only O(n?) complexity versions are known [24]). In someobtain a bound of optimal orde?((C(T) + 1) Inn):
applications, such as online quantization![24], the number

of base expertsV depends on the time horizon in a En—Ln(T, a)

polynomial fashion, that isN ~ n® for somes > 0. In o +1) (2 +9

such cases the order of the upper bound is not changed; it < @+ )(7 - ) (InN +Inn) + O(1).
remains stillO((C(T)+1)VnIn n) if the number of switches n

is unknown, andO(V/(C(T) + 1)nln?n) if the maximum
number of switche€’(T") is known in advance. This bound is
within a factor of O(v/Inn) of the best achievable regret for
this case. s
Next we observe that at the price of a slight increase 9
computational complexity, regret bounds of the optimaleord
can be obtained. Indeed, settipg= 2n” — 1 for some~y €

Bounds of similar order can be obtained for exp-concave
loss functions in the more general case wlieis not of size
N, but is a bounded convex subset of Endimensional linear
pace. Theme (n) = O(Inn) for several algorithmsA under
ifferent assumptions. This is the case for exp-concave los
functions whenA performs exponential weighting over all
base experts. Using random-walk based sampling from log-
(0,1) andn, = ¢/ SR 4~ 0 independently of the concave distributions (se€ [32]), efficient probabiligmprox-

maximum number of switches, imations exist to perform this weighting in many cases. Exac
7 low complexity implementations, such as the Krichevsky-
L, —L,(T,a) , , L ‘
Trofimov estimate for the logarithmic logs [13] (see Exanible
1 below), are however, rare. When additional assumptions are
< C(T)+1)InN|—+42 ’ i o
- \/n( (T)+1)In (7 + ) made, e.g., the gradient of the loss function is bounded, the
online Newton step algorithm df [12] can be applied to achiev
+ (? + ﬂ) (l + 2> nlnn+ O ( /L) _logarithmic (standard) regret against the base-expesséla
8 ¢ o Inn We refer to [38] for a survey.
If n; is optimized for an a priori known boun@ > C(T),
then we get ) )
R F. The weight functionv®”
L,—L,(T,a)

1 In this section we analyze the performance of Algorifim 1
1 AN [inn for the case when the “Krichevsky-Trofimov” weight function
= \/n(C(T) 1 <7 * 2) ( A 2 ) w7 is used. Our analysis is based on part (i) of Lenirha 3,
m following ideas of Willems and Kromi [9] who only considered
+0 ( m) the logarithmic loss. Applying the weight functiat®” (de-
rived fromw®7), this analysis improves the constants relative
These bounds are of the sart&(C(T) + 1)v/nlnn) and, to Theoren[R for small values gf, although the resulting
respectivelyO(,/(C + 1)n1nn) order as the ones achievabléound has a less compact form. Nevertheless, in some special
with the quadratic complexity algorithms [21],_124], buteth situations the bounds can be expressed in a simple form. This
complexity of our algorithm is onlyO(n” Inn) times larger is the case for the logarithmic loss, where, for the special
than that of running4 (which is typically linear inn). Thus, choiceg = 1, applying [24), the new bound now achieves
in a sense the complexity of our algorithm can get very clogleat of [9] proved for the same algorithm. The idea is that in
to linear while guaranteeing a regret of optimal order. @Nothe proof of Theoreml2 the concavity pf was used to get
however, that a factot/,/y appears in the regret bounds ssimple bounds on sums which are sharp if the segments are
setting~ very small comes at a price.) of (approximately) equal length. However, in our constirct
A similar behavior is observed for exp-concave loss funthe length of the sub-segments (corresponding to the same
tions. Indeed, if¢ is exp-concave and! is the exponentially segment of the original transition path), or more precisely
weighted average forecaster, then by (4) the regredas their lower bounds, grow exponentially according(tol (25)isT
bounded byps(n) = l“TN In this case, forg = O(1), the makes it possible to improve the upper bounds in Theddem 2.
bound [3D) becomes It is interesting to note that the weight function$* andw*2
give better bounds fog = n”, where the segment lengths are

L, — L,(T,a) 1 ; approximately equal, while the large differences in thersegt
(C(T)+1) (fo%{ﬁ + 2) lengths forg = O(1) can be exploited by the weight function
< ey (InN +1nn) 4+ 0(1).  wKT
n

To obtain “almost closed-form” regret bounds for a general
which is a factor ofO(Inn) larger than the existing opti- ,. e need the following technical lemma.

mal bounds of ordeO((C(T') + 1)Inn) (see [2]-[4], [6],

[21]) valid for algorithms having complexity)(n?) (again, Lemma 5:Assumef : [1,00) — (0,00) is a differentiable



function andG > 1. Define F' : [1,00) — [0, 00) by

F(s)z/ob%f(%%) dc

for all s > 1. Then the second derivative &f is given by

12

On the other hand, if is exp-concave for the value afand
ne =n fort=1,...,n in Algorithm[, then for anyT’ € 7,
the tracking regret satisfies

™ (C)

n

Ln — Ln(T,a) < S(C,n) +

(35)

. 7'(s) £(s) Proof: We proceed similarly to the proof of Theordrh 2
F(s) = - : by first applying Lemm&]1l. However, the resulting two terms
sGIn2 s2GIn2 y pplying ' 9
. ) are now bounded using Lemnid 3 (ii) instead of Jensen’s
Therefore,F" is concave onl,c0) if sf'(s) < f(s) for all inequality, which allows us to make use of the potentially
s> 1. large differences in the segment lengths.
Proof: First note that, since¢ = s for ¢ = &8s For any transition pathl’ = (f1,...,tc) € Ta let
Leibniz’s integral rule gives @ T = (y,. .., tz) € T, denote the transition path defined by
Lemma3 with@ 7 (T') > 0. The first term of the first upper
, f(1) =3 , G bound given in LemmAl1 can be bounded as follows: for any
F(s) = sCln2 +/O f (2CG) 27 dc segmenft,, tey1) = [te, ter) of T, Lemma3 (i) and(23) yield
_ SO FM)+fs) _ f(s) el .
N sG1In2 ~ sGIn2 Z pe(tivr —t)
since . o log(to 1 —te)
59—¢ [Tog(g+1)] tea1 — te
gc% = f' (s27°¢) 27<C. < /0 pe (m> de + 2pg(tepr — te).

Differentiating F’ gives the desired result.

Since the right-hand side of the above inequality is a comcav
function of s = t., 1 — t. by Lemmab and the conditions on

Next we give an improvement of Theoréin 2 for small values:, Jensen’s inequality implies
of g. For simplicity, the bounds are only given for the tracking;
regret. It is much more complicated to obtain sharp bounds fz petiss—
the adaptive regret, since, similarly to the proof of Theo
it would require to lower bound the probability that a new Cc -1
segment is started at some time instgnibut here the switch _ Z Z pg(fiH— fi)
probabilitiespr(t|t'), defined in[(AB), depend both érand
t’, unlike p., (t|t') which only depends on

c=0 i=¢
c log(teq1—te)

tc-l—l

Tog (1))
Theorem 3:Assume pg(x) is differentiable and satisfies S Z /0 pe (7%“0&((]“)] ) de+2pg(ter1—te)

pe(x) > xpe(z) for all z > 1, and Algorithm[1 is run with =0
. . N log =2~
weight function{wX7”}. Let e Toalai DT n,
< +>A pe( g

+2(C+ 1)pe (CLH) :

The weight function can be bounded in a similar way. By
the standard boun@{IL4) on the Krichevsky-Trofimov estimate
[14], we have

cLlog(9+1)J) i
S(C,n)

log =41

Tlog(g+1)] n
= C+1 —2
( +>A w<c+1

+2(C + 1)pe (ci 1)

ctlog(ngl)J) de (36)

" " T <
wn wn
Ty (O) c 1
_ (C+1)n2 log? 5 < Z <5 In(fey1 —t.) +1In 2) : (37)
4 [log(g +1)] e=0

Applying (22) for a segmenit..,t..1) = [ts,ts) of T yields

4 n
+ 14+ 1 + |1 +1)]+8]. "

(1 gty o8 gy + Lot + 1) ) o
Z (5 ln(ti+1 - tz) + In 2)
If ¢ is convex in its first argument and takes values in the=¢
interval [0, 1], andntfl < fort =1,...,n—1, then for (%}1
any T € 7, the tracking regret satisfies, for ail

1 tc+1 - tc
< ; (5 In (72i\_10g(g+1)J ) +In 2)
20 -

(34) + %m(tH1 —t.)+1n2

Lo — La(T,a) < S(C,n) + Z%
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111_2 1Og(tc-ﬁ-l_tc) 1— /C+1
{ w < 2y/(C(T)+1)nInN |14+ —X "

2 | [log(g+1)] < 1
[Spna] -1 o
og(g+
x | log(tet1 — te) — = > [log(g+1)] +2 b+ % 1 —
+ ——/2nlnn(4+~v+—-]+0 —
1 8 vy Inn
* 2 Infters —te) +1n2 whenn is set independently of.
In2 [ log?(tesq — te For exp-concave loss functions we have, §o= O(1),
< %(O%(;ll)—i—ﬂog(g—i-lﬂ—i-é% ~
[log(g + 1)] £ Lo(T,0)
4 C+1 /[ loggy ) ( n >
+ 4+ ———— ) log(tes1 — te < +2) (4InN +1
( [log(g + l)J) oellen )> in (Uog(g +1)] B

o(C1
where in the last step we bounded the ceiling function from +0(Clun)

above and from below, as appropriate. Furthermore, it ig eaghile if g = 2n” — 1 we get
to check that the last expression above is concave ia R
tes1—te. Therefore, combining it witH(37), applying Jensen’s Ln — Ly (T, a)

inequality, we obtain < C+1 <4 (l N 2) N4 (4 bt l) hm)
1 B 4n v ¥
n kT <) +0(0).
Applying this bound and[{36) in Lemnid 1 yields the state- Note that for both types of loss functions we have a clear
ments of the theorem. m improvement relative to Theordm 2, where we used the weight

, ) functionw*, for the case whep = O(1). However, no such
We now apply Theoreril]3 to the exponentially weightestinction can be made fay = 2n” — 1. Indeed, for convex

average predictor. For bounded convex loss functions Ws functions constant multiplicative changesijirvary the

have pe(n) = VnlnN. Assumingg = O(1), if 7 = exact form of the factotC + ) /b, with constants:, b > 0 in
P4/ nUfgl(%lOgnmb > 0 (i.e., n. is independent of the the second term, and, consequently, the order of the bounds
number of switche€’(T)), we obtain depends on the relative size@f while, for example, the value
~ of n determines the order of the bounds for exp-concave losses,
Ly = Ln(T'a) e.g., constructing the weigh functiainfrom w*! is better for
1 ,/¢+1 ~v > 1/3. Also note that the above bounds fgor= 3 and
< 2y/(C(T)+1)nlnN |14+ — " g = 4 have improved leading constant compared.td [10] and
[log(g +1)]In2 [31], respectively.
¢+ < nln?2
+ T¢ logn 2loglg + 1] o((C+1)vn). IV. RANDOMIZED PREDICTION

The results of the previous section may be adapted to
the closely related model of randomized prediction. In this
framework, the decision maker plays a repeated game against

Optimizing n; as a function of an upper bound on the
number of switches yields

Zn — L, (T,a) an adversary as follows: at each time instant 1,...,n,
1 Jem the decision maker chooses an actifhnfrom a finite set,
< 2/(C(T)+)nnN |1+ n say {1,...,N} and, independently, the adversary assigns
- llog(g+1)]In2 losses?;; € [0,1] to each actioni = 1,...,n. The goal
Gt niod® 1 of the decision maker is to minimize the cumulative loss
+ 1)nlog CL-Q—l n2 L, = Z?:l Ur
* \/ 8 log(g+1)] +o(V(C+1)n). Similarly to the previous section, the decision maker may tr

. 5 ] _ to compete with the best sequence of actions that can change
Note that if N' = O(n”) for some3 > 0, the first term is 4ctions a limited number of times. More precisely, the set

asymptotically negligible compared to the second in thevaboys ha5e experts i€ = {1,...,N} and as before, we may
bounds. For example, if is set independently af', we obtain  gefine a meta expert that changes base exgértanes by
I, — Lo(T,a) a traqsition pathT = (t1,...,tc;n) and a vector of actions
Ci1 a = (ig,...,ic), wheretg :=1<t; < ... <tc < toy1:=
< ¢+71Ogn nln2 +o((C +1)vm). n+1 andi; € {1,...,N}. The tota] loss ofthe_meta expert
4 2 |log(g +1)] indexed by(T, a), accumulated during rounds, is

On the other hand, i§ = 2n” — 1, the bound becomes

C
~ Ln Ta a) = Lic tca te
Th o L.(T.0) (T,a) ; (te,tet1)
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with we defineto = 1 andt.; =t + 1, and
tc+l 1

Li (te,te1) = Z li - B e
te L_A(tc,tc+1) = Z gs(p.A,S(tC))

s=t.

There are two differences relative to the setup considered
earlier. First, we do not assume that the loss functionfeis iS the cumulative expected loss suffered Hyin the time
special properties such as convexity in the first argumdRterval [tc, tc+1) with respect tof for s € [te, te11).
(although we do require that it be bounded). Second, we do not
assume in the current setup that the action space is convalgorithm 2 Randomized tracking algorithm.
and so a convex combination of the experts’ advice is npiput: Prediction algorithm.4, weight function {w;;t =

possible. On the other hand, similar results as before canye.. n}, learning parameterg > 0,t =1,...,n
achieved if the decision maker may randomize its decisiorfor¢ = 1,...,n choosel’ € 7; according to the distribution
and in this section we deal with this situation. -
. .. . . m (T)efntLtfl(-A-,thl)
In randomized prediction, before taking an action, the @(T) = t _ ,
decision maker chooses a probability distributipp over dorreT wt(T’)e‘"'Ltfl(A’thl)

{1,...,N} (a vector in the probability simpleR y in RY),

and chooses an actioh distributed according t@, (condi-

tionally, given the past actions of the decision maker ared th

losses assigned by the adversary). Corollary 1: Suppose;; € [0,1] foralli=1,..., N and
Note that now both,, and L,(T,a) are random variablest = 1,...,n, and A satisfies [(b) with respect to the loss

not only because the decision takes randomized decisidans founction{¢;}. Assume Algorithni 2 is run with weight function

also because the losses set by the adversary may dependwft} for somee > 0. Let § € (0,1). For anyT € T, the

past randomized choices of the decision maker. (This modegret of the algorithm satisfies, with probability at leastJ,

is known as the “non-oblivious adversary”.) We may defing

the expected lossf the decision maker by Ly = Ln(T; a)

choosep, = p 4 ,(7(T')), and pickl; ~ p,.

n S Uiz
v < Lo (C(0) + 1)pe ( JEDE:
D= piitlis Lomn(C(T)+1)) = 8
i=1 L (Lo (C(T)+1) —1) N [n L
wherep, ; denotes theé-th component op,. Nn 2 76

For details and discussion of this standard model we refe
to [1, Section 4.1]. In particular, since the results présgn

in Sectionl) can be extended to time-varying loss functions Proof: First note that Theorefd 2 can easily be extended
and since/, is a linear (convex) function, it can be showng time- -varying loss functions (in fact, Lemnia 1, and con-
that regret bounds of any forecaster in the model of Sectigaquently Theorernl 2, uses the bound (2) which allows time-
Mcan be extended to the sequence of loss functigndhat varying loss functions). Combining the obtained bound fer t
is, the bounds can be converted into bounds for the expectgghected loss with [1, Lemma 4.1] proves the corollarym
regret of a randomized forecaster. Furthermore, it is shown
in [1, Lemma 4.1] how such bounds in expectation can be
converted to bounds that hold with high probability.

For example, a straightforward combination of [1, Lemma |n this section we apply the results of the paper for a few
4.1] and Theoreni]2 implies the following. Consider a Prespecific examples.
diction algorithm.A defined in the model of Sectidn TIHA,
that chooses an action in the decision spaze= Ay Example 1 (Krichevsky-Trofimov mixturesyssumeD =
and suppose that it satisfies a regret bound of the fim &)= (0,1) andy = {0,1}, and consider the logarithmic loss
under the loss functior?,(p,). Algorithm [2 below, which defined ag(p,y) = —I,—1 Inp—1I,—¢In(1—p). As mentioned
is a variant of Algorithm[Jl, convertsd into a forecaster before, the logarithmic loss is exp-concave with< 1, and
under the randomized model. At each time instanthe hence we choosg = 1. This loss plays a central role in data
algorithm chooses, in a randomized way, a transition pag®mpression. In particular, if a prediction method achseve
T = (t1,...,tc;t) € Tz, and uses the distributign, ,(7:(7")) 0N a particular binary sequengé = (y1....,yn), a lossL,,

that A would choose, had it been started at timéT’), the then using arithmetic coding the sequence can be described
time of the last Change in the pam up to timet. In the with at mOStL + 2 bits |_34] We note that the choice of the

herern( C) and L¢, are defined as in Theorem 2.

V. EXAMPLES

definition of the algorithm expert clas§. (0,1) corresponds tplthe snu_auon_wh_erel the
sequencey™ is encoded using an i.i.d. coding distribution.

= Competing against the expert cla§s= (0,1) also has a

Li(AT) = Z (te, teta) probabilistic interpretation: it is equivalent to miniririg the

=0 worst case maximum coding redundancy relative to the class

denotes the cumulative expected loss of algoritAimwhere of i.i.d. source distributions o0, 1}".
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Let no(t) = 22:1 I,,—0 andni(t) = 22:1 I,.—; denote @*' (and forw*?), as done in[[8] achieving Merhav’s lower

the number ofs and1s in 4¢, respectively. Then the loss ofbound [30].

an expert) € (0,1) at timet is Example 2 (Tracking structured classes of base experts):

Loy = —In ((1 _ 9)"0(t)9"1(t)) In recent years a significant body of research has been dkvote
to prediction problems in which the forecaster competeh wit
= —no(t)n(1—0) —m(t)nd a large but structured class of experts. We refef to [1]},[16]
which is the negative log-probability assigned,tdoy a mem- [17], [24], [35]-[38] for an incomplete but representative
oryless binary Bernoulli source generatitgywith probability list of papers. A quite general framework that has been
6. The Krichevsky-Trofimov forecaster is an exponentiallinvestigated is the following: a base expert is represebyea
weighted average forecaster over all expé@rs€ using initial -~ d-dimensional binary vecton € {0,1}4. Let £ c {0,1}? be
weightsl/(7+/0(1 — 6)) (i.e., the Betél /2, 1/2) distribution) the class of experts. The decision spares the convex hull of

defined as &, so the forecaster chooses, at each time instant, ..., n,
1 o—Loes a convex combinatiop; = .7, v € D C [0, 1]4. The
pET (Y = ——df outcome space i = [0,1]¢ and if the outcome ig; € ),
o m/O(1—0) then the loss of expert is ¢(v,y;) = vy, the standard
1
_ / (1 —g)rot=Dgm(t-1) " inner product ofv and y. The loss of the forecaster
m/0(1 -0 ' equalsft(py, y:) = o0 . [36] introduces a general
0 ( ) veEE )

prediction algorithm, called “Component Hedge,” that

. KT .
It is well known thatp;** can be computed efficiently aS chieves a regret

PET(1]yt=1) = 1— pET(0lyt~1) = M By [14], the N
performance of the Krichevsky-Trofimov mixture forecaster Z (Gury
ty Yy

can be bounded as 2 ) — {jlelg;ﬂ(v,yt)

1
Rnﬁilnn—i-lnz < dy/2Knln(d/K)+ dK In(d/K)

In this framework, a meta expert based on the base expattere K = max,ec¢ ||v]1. What makes Component Hedge
class € is allowed to changd € £ a certain number of interesting, apart from its good regret guarantee, is that f
times. In the probabilistic interpretation, this corresgs to many interesting classes of base experts it can be caldutate
the problem of coding a piecewise i.i.d. source [2], [8]{7]time that is polynomial ind, even wher€ has exponentially
[9]. If we apply Algorithm[1 to this problem witli® ™, we can many experts. We refer t¢_[36] for a list of such examples.
improve upon Theorerl 3 by using (C) instead ofS(C,n) The results of this paper show that we may obtain efficiently
in the bound (note that, (C') was obtained by calculating thecomputable algorithms for tracking such structured clagse
Krichevsky-Trofimov bound for the transition probabilgle base experts. For examplg, (28) of Theofém 2 applies in this
and obtain, for any transition path € 7, and meta expert case, withpgs(n) = d\/2Knln(d/K) + dKIn(d/K). The
(T, a) calculations of Sectioh TIIIE may be easily modified for this
case in a straightforward manner.

Ln — Ly (T, a)
< 27,(C(T)) Example 3 (Tracking the best quantizer3he problem of
2 n limited-delay adaptive universal lossy source coding of in
(C(T) + 1) In2 108" ooy +O((C(T) + 1) Inn).  dividual sequences has recently been investigated inldetai
2 [log(g +1)] [18]-[20], [24], [3S]-[41]. In the widely used model of fixed
For ¢ = 1, this bound recovers that of ][9] (at least in théate lossy source coding at rafé, an infinite sequence of
leading term), and improves the leading constantgor 3 [0, 1]-valued source symbols;, zs, ... is transformed into a

andg = 4 when compared td [10] and [11], respectively. ~Sequence of channel symbojs, y», ... which take values
On the other hand, fof = 2n” — 1, v > 0, using withw%: ~ from the finite channel alphabdftl,2,..., M}, M = 28,

in Algorithm [, Theorenf13 implies and these channel symbols are then used to produce the
3(C(T) +1) /1 ([0, 1]-valued) reproduction sequendg, @2, .... The quality
L,—L,(T,a) < — 5 (— + 2) Inn 4+ O(1). of the reproduction is measured by the average distortion
Y

i, d(zy, ), whered is some nonnegative bounded dis-
This bound achieves the optim@(Inn) order for anyy > 0; tortion measure. The squared eridir,z’) = (z — 2/)? is
however, with increased leading constant. On the negatiee s perhaps the most popular example.
for specific choices ofy our algorithm does not recover the The scheme is said to have overall delay at mostthere
best leading constants known in the literature (partly dubé exist nonnegative integeds andds with 6; + 92 < ¢ such that
common bounding technique for af): If v = 1/2, our bound each channel symba}, depends only on the source symbols
is a constant factor worse than those lof [7] ahd [8] which,...,z,s, and the reproductiots,, for the source symbol
have the samé®(n?/?) complexity (disregarding logarithmic z,, depends only on the channel symbgis. . ., y,+s,. When
factors); on the other hand, in case= 1 our algorithm is ¢ = 0, the scheme is said to have zero delay. In this case,
identical to theO(n?) complexity algorithm of Shamir and depends only oy, ..., z,, andZ, onyi,...,y,, so that the
Merhav [3], and hence an optimal bound can be proved fencoder produceg, as soon as:, becomes available, and



the decoder can produdg, wheny,, is received. The natural
reference class of codes (experts) in this case is the set
M-level scalar quantizers

0={Q:[0,1] = {c1,...,em},{c1,...,em} C[0,1]} .

The relative loss with respect to the reference clésss 1
known in this context as the distortion redundancy. For the
squared error distortion, the best randomized coding naisthol2]
[20], [39], [41], with linear computational complexity vt
respect to the se@, yield a distortion redundancy of order [3
O(n~14/lun).

The problem of competing with the best time-variant quant,,
tizer that can change the employed quantizer several times
(i.e., tracking the best quantizer), was analyzed [inl [24]{]
based on a combination of [20] and the tracking algorithm,
of [4]. There the best linear-complexity scheme achieves
O((C + 1)Inn/n'/%) distortion redundancy when an up-
per boundC on the number of switches in the referencel’]
class is known in advance. On the other hand, applying our
scheme withg = O(1) in the method of[[24] and using the
bounds in Sectiof 1lI-E, gives a linear-complexity alglonit
with distortion redundancy)((C' + 1)1/21n%*(n)/n'/4) +
O((C + 1)/(In*/?(n) /n1/2)) if C is known in advance and
only slightly worseO((C' + 1)/21n*4(n) /n*/*) + O((C +
1)In(n)/n'/?) distortion redundancy i€ is unknown. When
g = 2n” — 1, the distortion redundancy for linear complexity
becomes somewhat worse, proportionalrt62‘<2—l+w> up to
logarithmic factors.

El

[20]

[11]

VI. CONCLUSION
[12]

We examined the problem of efficiently tracking large expert
classes where the goal of the predictor is to perform
well as a given reference class. We considered prediction
strategies that compete with the class of switching stiaseg
that can segment a given sequence into several blocks, Hd4
follow the advice of a different base expert in each blockss
We derived a family of efficient tracking algorithms thaty fo
any prediction algorithm4 designed for the base class, capg)
be implemented with time and space complexityn” Inn)
times larger than that ofl, wheren is the time horizon and
~ > 0is a parameter of the algorithm. With properly chosen,
our algorithm achieves a regret bound of optimal order fg7
~v > 0, and onlyO(Inn) times larger than the optimal order
for v = 0 for all typical regret bound types we examined
For example, for predicting binary sequences with switghi
parameters, our method achieves the optiMén n) regret
rate with time complexityO(n!*”1Inn) for anyy € (0,1).
Linear complexity algorithms that achieve optimal regier
for small base expert classes have been shown to exist in [2b]
and [6]. Our results show that the optimal rate is achievable
with the slightly largerO(n!*7 Inn),~v > 0, complexity even [21]
if the number of switches is not known in advance and the base
expert class is large. It remains, however, an open question
whether the optimal rate is achievable with a linear comipfex
algorithm in this case.

18]

[19]
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