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Abstract—In the framework of prediction of individual se-
quences, sequential prediction methods are to be constructed
that perform nearly as well as the best expert from a given class.
We consider prediction strategies that compete with the class
of switching strategies that can segment a given sequence into
several blocks, and follow the advice of a different “base” expert
in each block. As usual, the performance of the algorithm is
measured by the regret defined as the excess loss relative to the
best switching strategy selected in hindsight for the particular
sequence to be predicted. In this paper we construct prediction
strategies of low computational cost for the case where the set
of base experts is large. In particular we provide a method that
can transform any prediction algorithm A that is designed for
the base class into a tracking algorithm. The resulting tracking
algorithm can take advantage of the prediction performanceand
potential computational efficiency ofA in the sense that it can
be implemented with time and space complexity onlyO(nγ lnn)
times larger than that of A, where n is the time horizon and
γ ≥ 0 is a parameter of the algorithm. With A properly chosen,
our algorithm achieves a regret bound of optimal order forγ > 0,
and only O(lnn) times larger than the optimal order for γ = 0
for all typical regret bound types we examined. For example,for
predicting binary sequences with switching parameters under the
logarithmic loss, our method achieves the optimalO(lnn) regret
rate with time complexity O(n1+γ lnn) for any γ ∈ (0, 1).

I. I NTRODUCTION

In the on-line (sequential) decision problems considered in
this paper, a decision maker (or forecaster) chooses, at each
time instantt = 1, 2, . . ., an action from a set. After each
action taken, the decision maker suffers some loss based on the
state of the environment and the chosen decision. The general
goal of the forecaster is to minimize its cumulative loss.
Specifically, the forecaster’s aim is to achieve a cumulative
loss that is not much larger than that of the best expert
(forecaster) in a reference classE , from which the best expert
is chosen in hindsight. This problem is known as “prediction
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with expert advice.” The maximum excess lossRn of the
forecaster relative to the best expert is called the (worst-
case) cumulative regret, where the maximum is taken over
all possible behaviors of the environment andn denotes the
time horizon of the problem. Several methods are known
that can compete successfully with different expert classes
in the sense that the regret only grows sub-linearly, that is,
limn→∞ Rn/n = 0. We refer to [1] for a survey.

While the goal in the standard online prediction problem is
to perform nearly as well as the best expert in the classE ,
a more ambitious goal is to compete with the bestsequence
of expert predictions that may switch its experts a certain,
limited, number of times. This, seemingly more complex,
problem may be regarded as a special case of the standard
setup by introducing the so-calledmeta experts. A meta expert
is described by a sequence of base experts(i1, . . . , in) ∈ En,
such that at time instantst = 1, . . . , n the meta expert follows
the predictions of the “base” expertit ∈ E by predictingfit,t.
The complexity of such a meta expert may be measured by
C = |{t ∈ {1, 2, . . . , n − 1} : it 6= it+1}|, the number
of times it changes the base predictor (each such change is
called a switch). Note thatC switches partition{1, . . . , n}
into C + 1 contiguous segments, on each of which the meta
expert follows the predictions of the same base expert. If a
maximum ofm changes are allowed and the set of base experts
has N elements, then the class of meta experts is of size∑m

j=0

(
n−1
j

)
N(N − 1)j . Since the computational complexity

of basic prediction algorithms, such as the exponentially
weighted average forecaster, scales with the number of experts,
a naive implementation of these algorithms is not feasible in
this case. However, several more efficient algorithms have been
proposed.

One approach, widely used in the information theory/source
coding literature, is based on transition diagrams [2], [3]: A
transition diagram is used to define a prior distribution on the
switches of the experts, and the starting point of the current
segment is estimated using this prior. A transition diagramde-
fines a Markovian model on the switching times: a state of the
model describes the “status” of a switch process (correspond-
ing to, e.g., the time when the last switch occurred and the
actual time), and the transition diagram defines the transition
probabilities among these states. In its straightforward version,
at each time instantt, the performance of an expert algorithm
is emulated for all possible segment starting points1, . . . , t,
and a weighted average of the resulting estimates is used to
form the next prediction. In effect, this method converts an
efficient algorithm to compete with the best expert in a class
E into one that competes with the best sequence of experts
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with a limited number of changes. The time complexity of
the method depends on how complex the prior distribution
is, which determines the amount of computation necessary to
update the weights in the estimate. Note that a general prior
distribution would require exponential computational complex-
ity in the sequence length, while at each time instant the
transition diagram model requires computations proportional
to the number of achievable states at that time instant. Using
a state space that describes the actual time, the time of the
last switch, and the number of switches so far, [2] provided
a prediction scheme achieving the optimal regret up to an
additive constant (for the logarithmic loss), and, omitting the
number of switches from the states, a prediction algorithm
with optimal regret rate was provided. [3] showed (also for the
logarithmic loss) that the transition probabilities in thelatter
model can be selected so that the resulting prediction scheme
achieves the optimal regret rate with the best possible leading
constant, and the distributions they use allow computing the
weights at time instantt with O(t) complexity. As a result,
in n time steps, the time complexity of the best transition-
diagram based algorithm is a factorO(n) times larger than
that of the original algorithm that competes withE , yielding
a total complexity that is quadratic inn.

For the same problem, a method of linear complexity was
developed in [4]. It was shown in [5] that this method is
equivalent to an easy-to-implement weighting of the paths in
the full transition diagram. Although, unlike transition diagram
based methods, the original version of the algorithm of [4]
requires an a priori known upper bound on the number of
switches, the algorithm can be modified to compete with
meta experts with an arbitrary number of switches: a linear
complexity variant achieves this goal (by letting its switching
parameterα decrease to zero) at the price of somewhat
increasing the regret [6]. A slightly better regret bound can be
achieved for the case when switching occurs more often at the
price of increasing the computational complexity from linear
to O(n3/2) [7], [8] (by discretizing its switching parameterα
to

√
n levels).

In another approach, reduced transition diagrams have been
used for the logarithmic loss (i.e., lossless data compression)
by [9] and by [3] (the latter work considers a probabilistic
setup as opposed to the individual sequence setting). Reduced
transition diagrams are obtained by restricting some transi-
tions, and consequently, excluding some states from the orig-
inal transition diagram, resulting in (computationally) simpler
models that, however, have less descriptive power to represent
switches. An efficient algorithm based on a reduced transition
diagram for the general tracking problem was given in [10],
while [11] developed independently a similar algorithm to
minimize adaptive regret, which is the maximal worst-case
cumulative excess loss over any contiguous time segment
relative to a constant expert. It is easy to see that algorithms
with good adaptive regret also yield good tracking regret.

An important question is how one can compete with meta
experts when the base expert classE is very large. In such
cases special algorithms are needed to compete with ex-
perts from the base class even without switching. Such large
base classes arise in on-line linear optimization [12], lossless

data compression [13]–[15], the shortest path problem [16],
[17], or limited-delay lossy data compression [18]–[20]. Such
special algorithms can easily be incorporated in transition-
diagram-based tracking methods, but the resulting complexity
is quadratic inn (see, e.g., [3] for such an application to
lossless data compression or [21]–[23] for applications to
signal processing and universal portfolio selection). If the
special algorithms for large base expert classes are combined
with the algorithm of [4] to compete with meta experts, the
resulting algorithms again have quadratic complexity inn; see,
e.g., [5], [24] (the main reason for this is that the special
implementation tricks used for the large base expert classes,
such as dynamic programming, are incompatible with the
efficient implementation of the algorithm of [4] for switching
experts). The only example we are aware of where efficient
tracking algorithms with linear time complexity are available
for a meaningful, large class of base experts is the case of
online convex programming, where the set of base experts
is a finite dimensional convex set and the (time-varying)
loss functions are convex [25] (see also the related problem
of tracking linear predictors [26]). In this case projected
gradient methods (including exponentially weighted average
prediction) lead to tracking regret bounds of optimal order.
Note that instead of the number of switches, these bounds
measure the complexity of the meta experts with the more
refined notion ofLp norms.

In this paper we tackle the complexity issue in competing
with meta-experts for large base expert classes by presenting
a general method for designing reduced transition diagrams.
The resulting algorithm converts any (black-box) prediction
algorithm A achieving good regret against the base-expert
class into one that achieves good tracking and adaptive regret.
The advantage of this transition-diagram based approach is
that the conversion is independent of the base prediction
algorithm A, and so some favorable properties ofA are
automatically transferred to our algorithm. In particular, the
complexity of our method depends on the base-expert class
only through the base prediction algorithmA, thus exploiting
its potential computational efficiency.1 Our algorithm unifies
and generalizes the algorithms of [9], [11] and our earlier work
[10]. This algorithm has an explicit complexity-regret trade-
off, covering essentially all such results in the literature. In
addition to the (almost) linear complexity algorithms in the
aforementioned papers, the parameters of our algorithm can
be set to reproduce the methods based on the full transition
diagram [2], [3], [21], or the complexity-regret behavior of
[7], [8]. Also, our algorithm has regret of optimal order with
complexity O(n1+γ lnn) for any γ ∈ (0, 1), while setting
γ = 0 results in complexityO(n lnn) and a regret rate that is
only a factor oflnn larger than the optimal one (similarly to
[9]–[11]).

The rest of the paper is organized as follows. First the
online prediction and the tracking problems are introduced
in Section II. In Section III-A we describe our general algo-
rithm. Sections III-B and III-C present a unified method for

1Other black-box reductions of forecasters for different notions of regret are
available in the literature; for example, the conversion offorecasters achieving
good external regret to ones achieving good internal regret[27], [28].
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PREDICTION WITH EXPERT ADVICE

For each roundt = 1, 2, . . .

(1) the environment chooses the next outcomeyt
and the expert advice{fi,t ∈ D : i ∈ E}; the
expert advice is revealed to the forecaster;

(2) the forecaster chooses the predictionp̂t ∈ D;
(3) the environment reveals the next outcomeyt ∈

Y;
(4) the forecaster incurs lossℓ(p̂t, yt) and each

experti incurs lossℓ(fi,t, yt).

Fig. 1. The repeated game of prediction with expert advice.

the low-complexity implementation of the general algorithm
via reduced transition diagrams. Bounds for the performance
the algorithm are developed in Section III-D. More explicit
bounds are presented for some important special cases in
Sections III-E and III-F. The results are extended to the related
framework of randomized prediction in Section IV. Some
applications to specific examples are given in Section V.

II. PRELIMINARIES

In this section we review some basic facts about prediction
with expert advice, and introduce the tracking problem.

A. Prediction with expert advice

Let the decision spaceD be a convex subset of a vector
space and letY be a set representing the outcome space. Letℓ :
D×Y → R be a loss function, assumed to be convex in its first
argument. At each time instantt = 1, . . . , n, the environment
chooses an actionyt ∈ Y and each “expert”i from a reference
classE forms its predictionfi,t ∈ D. Then the forecaster
chooses an action̂pt ∈ D (without knowingyt), suffers loss
ℓ(p̂t, yt), and the lossesℓ(fi,t, yt), i ∈ E are revealed to the
forecaster. (This is known as the full information case and in
this paper we only consider this model. In other, well-studied,
variants of the problem, the forecaster only receives limited
information about the losses.)

The goal of the forecaster is to minimize its cumulative loss
L̂n =

∑n
t=1 ℓ(p̂t, yt), which is equivalent to minimizing its

excess losŝLn−mini∈E Li,n relative to the the set of experts
E , whereLi,n =

∑n
t=1 ℓ(fi,t, yt) for all i ∈ E .

Several methods are known that can compete successfully
with different expert classesE in the sense that the (worst-
case) cumulative regret, defined as

Rn = max
(y1,...,yn)∈Yn

(
L̂n −min

i∈E
Li,n

)

= max
(y1,...,yn)∈Yn

(
n∑

t=1

ℓ(p̂t, yt)−min
i∈E

n∑

t=1

ℓ(fi,t, yt)

)

only grows sub-linearly, that is,limn→∞ Rn/n = 0. One of
the most popular among these isexponential weighting. When
the expert classE is finite or countably infinite, this method
assigns, at each time instantt, the nonnegative weight

πi,t =
wie

−ηtLi,t−1

∑
j∈E wje−ηtLi,t−1

to each experti ∈ E . HereLi,t−1 =
∑t−1

s=1 ℓ(fi,s, ys) is the
cumulative loss of experti up to timet− 1, ηt > 0 is called
the learning parameter, and thewi > 0 are nonnegative initial
weights with

∑
i∈E wi = 1, so that

∑
i∈E πi,t = 1 (we define

Li,0 = 0 for all i ∈ E , as well asL̂0 = 0). The decision
chosen by this algorithm is

p̂t =
∑

i∈E

πi,tfi,t (1)

which is well defined sinceD is convex.
In this paper we concentrate on two special types of loss

functions: bounded convex and exp-concave. For such loss
functions the regret of the exponentially weighted average
forecaster is well understood. For example, assumeℓ is convex
in its first argument and takes its values in[0, 1], and the set
of experts is finite with|E| = N . If ηt is nonincreasing int,
then for alln,

L̂n ≤ min
i

{
Li,n +

1

ηn
ln

1

wi

}
+

n∑

t=1

ηt
8

, (2)

see [29]. By setting the initial weights towi = 1/N, i =
1, . . . , N and with the choiceηt = 2

√
lnN/t, one obtains for

all n ≥ 1,
Rn ≤

√
n lnN . (3)

If, on the other hand, for someη > 0 the functionF (p) =
e−ηℓ(p,y) is concave for any fixedy ∈ Y (such loss func-
tions are calledexp-concave) then, choosingηt ≡ η and
wi = 1/N, i = 1, . . . , N , one has for alln ≥ 1,

Rn ≤ lnN

η
. (4)

We note that the regret bounds in (2)–(4) do not require a fixed
time horizon, that is, they hold simultaneously for alln ≥ 1.

The family of exp-concave loss functions includes, for
example, forp, y ∈ [0, 1], the square lossℓ(p, y) = (p − y)2

with η ≤ 1/2, and the relative entropy lossℓ(p, y) = y ln y
p +

(1 − y) ln 1−y
1−p with η ≤ 1. A special case of the latter is

the logarithmic loss defined fory ∈ {0, 1} and p ∈ [0, 1]
by ℓ(p, y) = −Iy=1 ln p − Iy=0 ln(1 − p), which plays a
central role in data compression. Here and throughout the
paperIB denotes the indicator of eventB. We refer to [1]
for discussions of these bounds.

B. The tracking problem

In the standard online prediction problem the goal is to
perform as well as the best expert in a given reference class
E . In this paper we consider the more ambitious goal of
competing with a sequence of expert predictions that are
allowed to switch between experts. Formally, such ameta
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expert is defined as follows. Fix the time horizonn ≥ 1. A
meta expert that changes base experts at mostC ≥ 0 times can
be described by a vector of expertsa = (i0, . . . , iC) ∈ EC+1

and a “transition path”T = (t1, . . . , tC ;n) such thatt0 :=
1 < t1 < . . . < tC < tC+1 := n+ 1. For eachc = 0, . . . , C,
the meta expert follows the advice of expertic in the time
interval [tc, tc+1). When the time horizonn is clear from the
context, we will omit it from the description ofT and simply
write T = (t1, . . . , tC). We note that this representation is not
unique as the definition does not require that base expertsic
and ic+1 be different. Any meta expert that can be defined
using a given transition pathT is said to followT .

The total loss of the meta expert indexed by(T, a), accu-
mulated duringn rounds, is

Ln(T, a) =

C∑

c=0

Lic(tc, tc+1)

whereLi(t1, t2) =
∑t2−1

t=t1
ℓ(fi,t, yt) denotes the loss of expert

i ∈ E in the interval [t1, t2), 1 ≤ t1 ≤ t2 ≤ n. For any
t ≥ 1, let Tt denote the set of all transition paths up to time
t represented by vectors(t1, . . . , tC ; t) with 1 < t1 < t2 <
. . . < tC ≤ t and 0 ≤ C ≤ t. For anyT = (t1, . . . , tC) ∈
Tn and t ≤ n define the truncation ofT at time t as Tt =
(t1, . . . , tk; t), wherek is such thattk ≤ t < tk+1 (note that
t ≤ n guarantees thattC+1 = n+1 > t, and sotk+1 is well-
defined). Furthermore, letτt(T ) = τt(Tt) = tk denote the last
change up to timet, and letCt(T ) = C(Tt) = k denote the
number of switches up to timet. A transition pathT with C
switches splits the time interval[1, n] into C + 1 contiguous
segments.

Our goal is to perform nearly as well as the meta-experts,
that is, to keep the regret̂Ln − Ln(T, a) small relative to the
meta-experts(T, a) for all outcome sequencesy1, . . . , yn. It
is clear that this cannot be done uniformly well for all meta
experts; for example, it is obvious that the performance of
a meta expert that is allowed to switch experts at each time
instant cannot be achieved for all outcome sequences. Indeed,
it is known [4], [30] that, for exp-concave loss functions,
the worst-case regret of any prediction algorithm relativeto
the best meta-expert with at mostC switches, selected in
hindsight, is at least of the order of(C + 1) logn, where the
worst-case tracking regret with respect to meta experts with
at mostC switches is defined as

max
y1,...,yn

(
L̂n − min

(T,a):Cn(T )=C
L(T, a)

)
.

Algorithms achieving optimal regret rates are known under
general conditions: for general convex loss functions and
a finite number of base experts, a tracking regret of order
(C(T ) + 1)

√
n lnn (or

√
(C + 1)n lnn if C is known in

advance) can be achieved [4], [5], [24], while theO((C +
1) lnn) lower bound is achievable in case of exp-concave loss
functions and a finite number of experts [2]–[4], [6], [21],
or when the base experts form a convex subset of a finite
dimensional linear space [31].

We will also consider the related notion ofadaptive regret

Ra
n = max

t≤t′
max

yt,yt+1,...,yt′




t′∑

τ=t

ℓ(p̂τ , yτ )−min
i∈E

t′∑

τ=t

ℓ(fi,τ , yτ )




introduced in [31] and [11], which is the maximal worst-
case cumulative excess loss over any contiguous time segment
relative to a constant expert. Minimizing the tracking and
the adaptive regret are similar problems. In fact, one can
show that the FLH1 algorithm of [31] developed to minimize
the adaptive regret and a dynamic version of the fixed-share
algorithm of [4] introduced by [6] to minimize the tracking
regret are identical. Furthermore, any algorithm with small
adaptive regret also enjoys small tracking regret, since the
regret, in n time steps, relative to a meta expert that can
switch the base expertC times can be bounded by(C+1)Ra

n.
Although tracking regret bounds do not immediately yield
bounds on the adaptive regret (since the regret on a time
segment may be negative), it is usually straightforward to
modify the proofs for tracking regret to obtain bounds on the
adaptive regret; see, e.g., the proof of Theorem 2.

III. A REDUCED COMPLEXITY TRACKING ALGORITHM

A. A general tracking algorithm

Here we introduce a general tracking method which forms
the basis of our reduced complexity tracking algorithm. Con-
sider an on-line forecasting algorithmA that chooses an
element of the decision space depending on the past outcomes
and the expert advices according to the protocol described
in Figure 1. Suppose that for alln and possible outcome
sequences of lengthn, A satisfies a regret bound

Rn ≤ ρE(n) (5)

with respect to the base expert classE , whereρE : [0,∞) →
[0,∞) is a nondecreasing and concave function withρE(0) =
0. These assumptions onρE are usually satisfied by the known
regret bounds for different algorithms, such as the bounds (3)
and (4) (with definingρE(0) = 0 in the latter case). Suppose
1 ≤ t1 < t2 ≤ n and an instance ofA is used for time instants
t ∈ [t1, t2) := {t1, . . . , t2 − 1}, that is, algorithmA is run on
data obtained in the segment[t1, t2). The accumulated loss of
A during this period will be denoted byLA(t1, t2). Then (5)
implies

LA(t1, t2)−min
i∈E

Li(t1, t2) ≤ ρE(t2 − t1).

Running algorithm A on a transition pathT =
(t1, . . . , tC ;n) means that at the beginning of each segment
of T (at time instantstc) we restartA; this algorithm will
be denoted in the sequel by(A, T ). Denote the output of
this algorithm at timet by fA,t(Tt) = fA,t(τt(T )). This
notation emphasizes the fact that, sinceA is restarted at the
beginning of each segment ofT , the output of(A, T ) at time
t is influenced byT only throughτt(T ), the beginning of the
segment that includest. The loss of algorithm(A, T ) up to
time n is

Ln(A, T ) =

C∑

c=0

LA(tc, tc+1) .
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As most tracking algorithms, our algorithm will use weight
functionswt : Tt → [0, 1] satisfying
∑

Tt∈Tt

wt(Tt) = 1 andwt(Tt) =
∑

T ′
t+1∈Tt+1:T ′

t=Tt

wt+1(T
′
t+1)

(6)
for all t = 1, 2, . . . andT ∈ T . Thus eachwt is a probability
distribution onTt such that the family{wt; t = 1, . . . , n} is
consistent. To simplify the notation, we formally defineT0 as
the “empty transition path”T0 := {T0}, L0(A, T0) := 0, and
w0(T0) := 1.

We say thatT̂ ∈ Tn coversT ∈ Tn if the change points
of T are also change points of̂T . Note that if T̂ coversT ,
then any meta expert that follows transition pathT also follows
transition pathT̂ . We say thatwn coversTn if for any T ∈ Tn
there exists âT ∈ Tn with wn(T̂ ) > 0 which coversT .

Now we are ready to define our first master algorithm, given
in Algorithm 1. We note that the consistency of{wt} implies
that, for any time horizonn, Algorithm 1 is equivalent to the
exponentially weighted average forecaster (1) with the setof
experts{(A, T ) : T ∈ Tn, wn(Tn) > 0} and initial weights
wn(T ) for (A, T ). The performance and the computational
complexity of the algorithm heavily depend on the properties
of wt; in this paper we will concentrate on judicious choices
of wt that allow efficient computation of the summations in
Algorithm 1 and have good prediction performance.

Algorithm 1 General tracking algorithm.

Input: prediction algorithmA, weight functions{wt; t =
1, . . . , n}, learning parametersηt > 0, t = 1, . . . , n.
For t = 1, . . . , n predict

p̂t =

∑
T∈Tt

wt(T )e
−ηtLt−1(A,Tt−1)fA,t(τt(T ))∑

T∈Tt
wt(T )e−ηtLt−1(A,Tt−1)

.

The next lemma gives an upper bound on the performance
of Algorithm 1.

Lemma 1:Supposeηt+1 ≤ ηt for all t = 1, . . . , n− 1, the
transition pathTn is covered byT̂n = (t̂1, . . . , t̂C(T̂n)

) such

thatwn(T̂n) > 0, andA satisfies the regret bound (5). Assume
that the loss functionℓ is convex in its first argument and takes
values in the interval[0, 1]. Then for any meta expert(Tn, a),
the regret of Algorithm 1 is bounded as

L̂n − Ln(Tn, a)

≤
C(T̂n)∑

c=0

ρE(t̂c+1 − t̂c) +

n∑

t=1

ηt
8

+
1

ηn
ln

1

wn(T̂n)

≤ (C(T̂n) + 1)ρE

(
n

C(T̂n) + 1

)

+
n∑

t=1

ηt
8

+
1

ηn
ln

1

wn(T̂n)
. (7)

On the other hand, ifℓ is exp-concave for the value ofη and
Algorithm 1 is used withηt ≡ η, then

L̂n − Ln(Tn, a)

≤
C(T̂n)∑

c=0

ρE(t̂c+1 − t̂c) +
1

η
ln

1

wn(T̂n)

≤ (C(T̂n) + 1)ρE

(
n

C(T̂n) + 1

)
+

1

η
ln

1

wn(T̂n)
. (8)

Proof: Let â = (̂ı0, . . . , ı̂C) be the expert vector such that
the meta experts(T, a) and (T̂ , â) perform identically. Then
clearly

L̂n − Ln(T, a)

= L̂n − Ln(A, T̂n) + Ln(A, T̂n)− Ln(T̂n, â) .

Using (5) and the concavity ofρE , we get

Ln(A, T̂n)− Ln(T̂n, â)

=

C(T̂n)∑

c=0

(
LA(t̂c, t̂c+1)− Lı̂c(t̂c, t̂c+1)

)

≤
C(T̂n)∑

c=0

ρE(t̂c+1 − t̂c)

≤ (C(T̂n) + 1)ρE

(
n

C(T̂n) + 1

)
. (9)

Assume that the loss functionℓ is convex in its first argu-
ment and takes values in the interval[0, 1]. Since Algorithm 1
is equivalent to the exponentially weighted average forecaster
with experts{(A, T ) : T ∈ Tn, wn(T ) > 0} and initial
weightswn(T ), we can apply the bound (2) to obtain

L̂n ≤ Ln(A, T̂n) +
1

η
ln

1

wn(T̂n)
+

n∑

t=1

ηt
8
.

Combining this with (9) proves (7).
Now assumeℓ is exp-concave. Then by [4, Lemma 1],

L̂n − Ln(A, T̂n) ≤
1

η
ln

1

wn(T̂n)
. (10)

This, together with (9), implies (8).

B. The weight function

One may interpret the weight function{wt} as the con-
ditional probability that a new segment is started, given
the beginning of the current segment and the current time
instant. In this case one may define{wt} in terms of a time-
inhomogeneous Markov chain{Ut; t = 1, 2, . . .} whose state
space at timet is {1, . . . , t}. Starting from stateU1 = 1, at
any time instantt, the Markov-chain either stays where it was
at time t− 1 or switches to statet. The distribution of{Ut}
is uniquely determined by prescribingP(U1 = 1) = 1 and for
1 ≤ t′ < t,

P(Ut = t|Ut−1 = t′)

= 1− P(Ut = t′|Ut−1 = t′) = p(t|t′) (11)

where the so-calledswitch probabilitiesp(t|t′) need only
satisfy p(t|t′) ∈ [0, 1] for all 1 ≤ t′ < t. A realization
of this Markov chain uniquely determines a transition path:
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Tt(u1, . . . , ut) = (t1, . . . , tC) ∈ Tt if and only if uk−1 6= uk

for k ∈ {t1, . . . , tC}, anduk−1 = uk for k /∈ {t1, . . . , tC},
2 ≤ k ≤ t. Inverting this correspondence, anyT ∈ Tt uniquely
determines a realization(u1, . . . , ut). Now the weight function
is given for all t ≥ 1 andT ∈ Tt by

wt(T ) = P(U1 = u1, . . . , Ut = ut) (12)

where(u1, . . . , ut) is such thatT = T (u1, . . . , ut). It is easy
to check that{wt} satisfies the two conditions in (6). Clearly,
the switch probabilitiesp(t|t′) uniquely determine{wt}. The
above structural assumption on{wt}, originally introduced in
[2], greatly reduces the possible ways of weighting different
transition paths, allowing implementation of Algorithm 1 with
complexity at mostO(n2) (if one step ofA can be imple-
mented in constant time), instead of the potentially exponential
time complexity of the algorithm in the naive implementation;
see Section III-C.

Some examples that have been proposed for this construc-
tion (given in terms of the switch probabilities) include

• wHW , used in [4], is defined bypHW (t|t′) = α for some
0 < α < 1.

• wHS , used in [6], [8], [11], is defined bypHS(t|t′) = 1/t.

• wKT , used in [2], is defined by

pKT (t|t′) =
1/2

t− t′ + 1
(13)

which is the Krichevsky-Trofimov estimate [13] for bi-
nary sequences of the probability that after observing
an all zero sequence of lengtht − t′, the next symbol
will be a one. Using standard bounds on the Krichevsky-
Trofimov estimate, it is easy to show (see, e.g., [2]) that
for anyT ∈ Tn with segment lengthss0, s1, . . . , sC ≥ 1
(satisfying

∑C
c=0 sc = n)

ln
1

wKT (T )
≤ 1

2

C∑

c=0

ln sc + (C + 1) ln 2. (14)

• wL1 andwL2 used in [3] (similar weight functions were
considered in [5]), are defined as follows: for a given
0 < ǫ < 1,2 let πj = 1/j1+ǫ, Zt =

∑t
j=1 π(j) (with

Z0 = 0 andZ∞ =
∑∞

j=1 π(j)). ThenwL1 andwL2 are
defined, respectively, by

pL1(t|t′) =
π(t− 1)

(Z∞ − Zt−2)

and

pL2(t|t′) =
π(t− t′)

(Z∞ − Zt−t′+1)
.

Here we consider the weightswL1 . It is shown in [3, proof
of Eq. (39)] that for anyT ∈ Tn,

ln
1

wL1
n (T )

≤ (Cn(T )+ǫ) lnn+ln(1+ǫ)−Cn(T ) ln ǫ . (15)

2The upper boundǫ < 1 is missing from [3], although it is implicitly
required in the proof.

C. A low-complexity algorithm

Efficient implementation of Algorithm 1 hinges on three
factors: (i) AlgorithmA can be efficiently implemented; (ii)
the exponential weighting step can be efficiently implemented;
which is facilitated by (iii) the availability of the losses
LA(t

′, t) at each time instantt for all 1 ≤ t′ ≤ t in the sense
that these losses can be computed efficiently. In what follows
we assume that (i) and (iii) hold and develop a method for (ii)
via constructing a new weight function{ŵt} that significantly
reduces the complexity of implementing Algorithm 1.

First, we observe that the predictorp̂t of Algorithm 1 can
be rewritten as

p̂t =

∑t
t′=1 vt(t

′)fA,t(t
′)

∑t
t′=1 vt(t

′)
(16)

where the weightsvt are given by

vt(t
′) =

∑

T∈Tt: τt(T )=t′

wt(T )e
−ηtLt−1(A,Tt−1). (17)

Note thatvt(t′) gives the weighted sum of the exponential
weights of all transition paths with the last switch att′.

If the learning parametersηt are constant during the time
horizon, the above means that Algorithm 1 can be imple-
mented efficiently by keeping a weightvt(t′) at each time
instant t for every possible starting point of a segmentt′ =
1, . . . , t. Indeed, ifηt = η for all t, then (17), (11), and (12)
imply that eachvt(t′) can be computed recursively inO(t)
time from thevt−1 (settingv1(1) := 1 at the beginning) using
the switch probabilities definingwt as follows:

vt(t
′) =





vt−1(t
′)(1 − p(t|t′))e−ηℓ(fA,t−1(t

′),yt−1)

for t′ = 1, . . . , t− 1,∑t−1
t′′=1 vt−1(t

′′)p(t|t′′)e−ηℓ(fA,t−1(t
′′),yt−1)

for t′ = t.
(18)

Using this recursion, the overall complexity of computing the
weights duringn rounds isO(n2). Furthermore, (16) means
that one needs to start an instance ofA for each possible
starting point of a segment. If the complexity of running
algorithm A for n time steps isO(n) (i.e., computingA
at each time instant has complexityO(1)), then the overall
complexity of our algorithm becomesO(n2).

It is clearly not a desirable feature that the amount of
computation per time round grows (linearly) with the horizon
n. While we don’t know how to completely eliminate this
ever-growing computational demand, we are able to moderate
this growth significantly. To this end, we modify the weight
functions in such a way that at any time instantt we allow
at mostO(g ln t) actual segments with positive probability
(i.e., segments containingt that belong to sample paths with
positive weights), whereg > 0 is a parameter of the algorithm
(note that g may depend on, e.g., the time horizonn).
Specifically, we will construct a new weight function̂wt such
that

∣∣{τt(T ) : ŵt(Tt) > 0, T ∈ Tn}
∣∣ ≤

⌈g
2

⌉
(⌊log t⌋+ 1)

wherelog denotes base-2 logarithm. By doing so, the time and
space complexity of the algorithm becomesO(g lnn) times
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more than that of algorithmA, as we need to runO(g lnn)
instances ofA in parallel and the number of non-zero terms
in (18) and (16) is alsoO(g lnn) (here we exclude the trivial
case whereA has zero space complexity; also note that the
time-complexity ofA is at least linear inn since it has to
make a prediction at each time instant). Thus, in case of a
linear-time-complexity algorithmA, the overall complexity of
Algorithm 1 becomesO(gn lnn).

In order to construct the new weight function, at each time
instantt we force some segments to end. Then any path that
contains such a segment will start a new segment at timet
(and hence the corresponding vector of transitions contains
t). Specifically, any time instants can be uniquely written as
o2u with o being a positive odd number andu a nonnegative
integer (i.e.,2u is the largest power of2 that dividess). We
specify that a segment starting ats can “live” for at mostg2u

time instants, whereg > 0 is a parameter of the algorithm,
so that at times + g2u we force a switch in the path. More
precisely, given any switch probabilityp(t|t′) for all t′ < t,
we define a new switch probability

p̂(t|t′) = 1− ht(t
′)
(
1− p(t|t′)

)
(19)

where

ht(s) =

{
1 if s ≤ t < s+ g2u,

0 otherwise.

Thusht(s) = 1 if and only if a segment started ats is still
valid at timet. In terms of the Markov chain{Ut} introduced
in (11), the new switch probabilities in definition (19) mean
that if the chain is in statet′ at timet−1 such thatht(t

′) = 1,
then the chain switches to statet with the original switch
probabilityp(t|t′) and remains at statet′ with probability1−
p(t|t′); but if ht(t

′) = 0, then the chain switches to statet
with probability 1. In this way, given the switch probabilities
p(t|t′) and the associated weight function{wt}, we can define
a new weight function{ŵt} via the new switch probabilities
p̂(t|t′) and the procedure described in Section III-B. Note that
the definition of{ŵt} implies that for a transition pathT ∈ Tt
either

ŵt(T ) = 0 or ŵt(T ) ≥ wt(T ) . (20)

The above procedure is a common generalization of several
algorithms previously reported in the literature for pruning the
transition paths. Specifically,g = 1 yields the procedure of [9],
g = 3 yields our previous procedure [10],g = 4 yields the
method of [11], whileg = n yields the original weighting
{wt} without pruning. We will show that the time complexity
of the method with a constantg (i.e., wheng is independent
of the time horizonn) is, in each time instant, at most
O(lnn) times the complexity of one step ofA, while the time
complexity of the algorithm without pruning isO(n) times
the complexity ofA. Complexities that interpolate between
these two extremes can be achieved by settingg = o(n)
appropriately.

We say that a segment at time instantt is alive if it contains
t and is valid if there is a pathTt with ŵt(Tt) > 0 that
contains exactly that segment. In what follows we assume that
the original switch probabilitiesp(t|t′) associated with thewt

satisfyp(t|t′) ∈ (0, 1) for all 1 ≤ t′ < t. (Note that the weight
function examples introduced in Section III-B all satisfy this
condition.) The condition implies thatwt(Tt) > 0 for all Tt ∈
Tt. Furthermore, ifTt = (t1, . . . , tC) ∈ Tt satisfiesti+1−ti <
g2uti , i = 1, . . . , C, whereuti is the largest power of 2 divisor
of ti, then from (19) we get̂wt(T ) > 0.

The next lemma gives a characterization of whenht(s) = 1
and, as a consequence, bounds the number of valid segments
that are alive att.

Lemma 2:Let t =
∑m

i=1 2
ui be the binary form oft with

0 ≤ u1 < u2 < · · · < um, sk =
∑m

i=k 2
ui , andu0 = −1.

Thenht(s) = 1 if and only if s = sk − j2u for someuk−1 <
u ≤ uk and j ∈ {0, . . . , g − 1} such that2u is the largest2-
power divisor ofs; in particular,j is even ifu = uk for some
k ∈ {1, . . . ,m}, and odd otherwise. As a consequence, at any
time instantt there are at most⌈g/2⌉(⌊log t⌋ + 1) segments
that are valid and alive.

Proof: It is clear that for anys satisfying the conditions
of the lemma,ht(s) = 1 sinces+ g2u = sk − j2u + g2u ≥
sk + 2u > t ≥ s. To prove the other direction, consider an
s ∈ [1, t]; assumeht(s) = 1 and denote the largest2-power
divisor of s by 2u. By definition, ht(s) = 1 if and only if
s + j2u ≤ t < s + (j + 1)2u for somej ∈ {0, . . . , g − 1}.
After reordering we obtain

t− (j + 1)2u < s ≤ t− j2u. (21)

Let k ∈ {1, . . . ,m} be the unique index such thatuk−1 < u ≤
uk (note thatu ≤ um always holds). Then2u dividessk, and
sk ≤ t < sk + 2u. Combining this inequality with (21) gives
sk− (j+1)2u < s < sk− (j−1)2u. Taking into account that
both s and sk are divisible by2u, we obtains = sk − j2u.
Furthermore, since2u is the largest2-power divisor ofs, j
must be even whenu = uk for somek ∈ {1, . . . ,m}, and
odd otherwise.

Finally, for anyu ∈ {0, 1, . . . , um}, the set
{
s = sk − j2u : uk−1 < u ≤ uk, j = 0, . . . , g − 1,

2u is the largest2-power divisor ofs
}

has at most⌈g/2⌉ elements. Sinceum = ⌊log t⌋, the proof is
complete.

Note that forg = 1 the valid segments that are alive att
start exactly atsk, k = 1, . . . ,m, and so the number of valid
segments at timet is exactly the number of1’s in the binary
form of t [9]. The above lemma implies that Algorithm 1 can
be implemented efficiently with the proposed weight function
{ŵt}.

Theorem 1:Assume Algorithm 1 is run with weight func-
tion {ŵt} derived using anyg > 0 from any weight function
{wt} defined as in Section III-B. Ifηt = η for someη > 0
and all t = 1, . . . , n, then the time and space complexity of
Algorithm 1 isO(g lnn) times the time and space complexity
of A, respectively.

Proof: The result follows since Lemma 2 implies that the
number of non-zero terms in (18) and (16) is alwaysO(g ln t).
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D. Regret bounds

To bound the regret, we need the following lemma which
shows that any segment[t, t′) can be covered with at most⌈

log(t′−t)
⌊log(g+1)⌋

⌉
+ 1 valid segments.

Lemma 3:For anyT ∈ Tn, there existsT̂ ∈ Tn such that
for any segment[t, t′) of T with 1 ≤ t < t′ ≤ n+ 1,

(i) ŵt′ (T̂ ) > 0, t andt′ are switch points of̂T (if t′ = n+1,
it is considered as a switch point), and̂T contains at most
l =

⌈
log(t′−t)
⌊log(g+1)⌋

⌉
+ 1 segments in[t, t′);

(ii) if the switch points ofT̂ in [t, t′) are t1 := t < t2 <
· · · < tl′ < tl′+1 := t′, then l′ ≤ l, and for any
nondecreasing functionf : [0,∞) → [0,∞),

l′∑

i=1

f(ti+1 − ti)

≤
l′−2∑

i=0

f

(
t′ − t

2i⌊log(g+1)⌋

)
+ f(t′ − t) (22)

≤
∫ log(t′−t)

⌊log(g+1)⌋

0

f

(
t′ − t

2x⌊log(g+1)⌋

)
dx+ 2f(t′ − t) (23)

where the second summation in (22) is empty ifl′ = 1.

Remark: Note that it is possible to obtain forl the less
compact and harder-to-handle formula

l =




log
t′−t+ 1

2⌊log(g+1)⌋−1

2⌊log(g+1)⌋−1+ 1

2⌊log(g+1)⌋−1

⌊log(g + 1)⌋



+ 1

by taking into account that the last segment[tl, tl+1) in the
construction of the proof can always be defined to be of length
at least⌊log(g+1)⌋2ul . Furthermore, forg = 1 it follows from
[9] that the last term is not needed in (22), and hence the latter
bound can be strengthened to

l′∑

i=1

f(ti+1 − ti) ≤
⌊log(t′−t)⌋∑

i=0

f(2i). (24)

Proof: Clearly, it is enough to definêT independently
in each segment[t, t′) of T . We construct the switch points
t1 < t2 < · · · < tl′ of T̂ in this interval, for somel′ ≤ l, and
an auxiliary variabletl′+1 ≥ t′ one by one such thatt1 = t,
tl′ < t′ and, defininguj as the largest2-power divisor oftj ,

uj+1 − uj ≥ ⌊log(g + 1)⌋ (25)

for j = 1, . . . , l′ − 1. Assume that we have already defined
t1, . . . , ti satisfying (25) forj = 1, . . . , i− 1. Then a segment
starting atti may be alive with positive probability at any
time instant in[ti, ti + g2ui). Defineui+1 to be the largest
nonnegative integer such that there is ans ∈ [ti + 1, ti +
g2ui ] such that2ui+1 dividess. Thens2−ui belongs to the set
Si = {ti2−ui , ti2

−ui+1, ti2
−ui+2, . . . , ti2

−ui+g} (although,
clearly,s2−ui 6= ti2

−ui). SinceSi is a set ofg+1 consecutive
integers, it has an elementa that is divisible by2⌊log(g+1)⌋,
and this element is not the odd numberti2

−ui . Thus2uia ∈

[ti+1, ti+g2ui] and since2uia is divisible by2ui+⌊log(g+1)⌋,
the maximal property of the2-power divisor2ui+1 of s implies
that ui+1 ≥ ui + ⌊log(g + 1)⌋. Therefore, definingti+1 = s,
its largest2-power divisor is2ui+1 , proving (25) forj = i
(note that it is easy to show that the choice ofs, and hence
that of ti+1, is unique).

Now let l′ be the smallest integer such thattl′+1 ≥ t′. To
prove part (i) of the lemma, it is sufficient to show thatl′ ≤ l
and the segments[t1, t2), [t2, t3), . . . , [tl′−1, tl′), [tl′ , t

′) cover
[t, t′), which is clearly true iftl+1 ≥ t′. From (25) and the
fact thatti+1 − ti is divisible by2ui , we have

tl+1 ≥ t+
l∑

i=1

2ui = t+
l∑

i=1

2u1+
∑i

j=2(uj−uj−1)

≥ t+

l∑

i=1

2u1+
∑i

j=2⌊log(g+1)⌋

= t+

l−1∑

i=0

2u1+i⌊log(g+1)⌋

= t+ 2u1
2l⌊log(g+1)⌋ − 1

2⌊log(g+1)⌋ − 1

≥ t+ 2(l−1)⌊log(g+1)⌋ ≥ t′

where in the last step we used the definition ofl. This finishes
the proof of (i).

To prove (ii), we first show that the transition patĥT
constructed above satisfies (22), where, with a slight abuse
of notation, we redefinetl′+1 from part (i) to bet′. First
notice that sincet+ g2ul′−1 ≤ tl′−1 + g2ul′−1 < t′, we have
ul′−1 ≤

⌊
log t′−t

g

⌋
. Repeated application of (25) implies, for

any i = 1, . . . , l′ − 1,

ui ≤
⌊
log

t′ − t

g

⌋
− (l′ − 1− i) ⌊log(g + 1)⌋

and

ti+1 − ti ≤ g2

⌊
log t′−t

g

⌋
−(l′−1−i)⌊log(g+1)⌋

≤ g2log
t′−t
g

−(l′−1−i)⌊log(g+1)⌋

= (t′ − t)2−(l′−1−i)⌊log(g+1)⌋.

Using the crude estimatet′ − tl ≤ t′ − t finishes the proof
of (22). The last inequality (23) holds trivially forl = 1, and
holds for l ≥ 2 since

l′−2∑

i=0

f

(
t′ − t

2i⌊log(g+1)⌋

)

= f(t′ − t) +
l′−2∑

i=1

f

(
t′ − t

2i⌊log(g+1)⌋

)

≤ f(t′ − t) +

∫ ⌈
log(t′−t)

⌊log(g+1)⌋

⌉
−1

0

f

(
t′ − t

2x⌊log(g+1)⌋

)
dx

≤ f(t′ − t) +

∫ log(t′−t)
⌊log(g+1)⌋

0

f

(
t′ − t

2x⌊log(g+1)⌋

)
dx.
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Taking into account thatC(Tn) ≤ C(T̂n) if T̂n coversTn,
Lemma 3 trivially implies the following bounds.

Lemma 4:For anyTn ∈ Tn there exists âTn ∈ Tn with
ŵn(T̂n) > 0 such thatT̂n coversTn and

C(Tn) ≤ C(T̂n) ≤ (C(Tn) + 1)LC(Tn),n − 1 (26)

where

LC,n =





⌈
logn

⌊log(g+1)⌋

⌉
+ 1 if C = 0,

log n
C+1

⌊log(g+1)⌋ + 2 if C ≥ 1.
(27)

Proof: The lower bound is trivial, and the upper bound
directly follows from Lemma 3 forC(Tn) = 0. ForC(Tn) ≥
1 the upper bounds follow since on each segment ofTn we
can defineT̂n as in the proof of Lemma 3. Hence, ifT =
(t1, . . . , tC ;n), then

C(T̂n) + 1 ≤
C+1∑

i=1

(⌈
log(ti − ti−1)

⌊log(g + 1)⌋

⌉
+ 1

)

≤
C+1∑

i=1

(
log(ti − ti−1)

⌊log(g + 1)⌋ + 2

)

≤ (C + 1)

(
log n

C+1

⌊log(g + 1)⌋ + 2

)

where in the last step we used Jensen’s inequality and the
concavity of the logarithm.

We now apply the preceding construction and results to the
weight function{wt} = {wL1

t } to obtain our main theorem:

Theorem 2:Assume Algorithm 1 is run withg > 0 and
weight function{ŵL1

t } for some0 < ǫ < 1 (derived from
{wL1

t }), based on a prediction algorithm that satisfies (5) for
someρE . LetLC,n be defined by (27). Ifℓ is convex in its first
argument and takes values in the interval[0, 1] andηt+1 ≤ ηt
for t = 1, . . . , n− 1, then for alln ≥ 1 and anyT ∈ Tn, the
tracking regret satisfies

L̂n − Ln(T, a)

≤ LC(T ),n(C(T ) + 1)ρE

(
n

LC(T ),n(C(T ) + 1)

)

+

n∑

t=1

ηt
8

+
rn
(
LC(T ),n(C(T ) + 1)− 1

)

ηn
(28)

where the functionrn(C) is defined as

rn(C) = (C + ǫ) lnn+ ln(1 + ǫ)− C ln ǫ.

Furthermore, forǫ ≤ 1/2 andn ≥ 5, the adaptive regret of
the algorithm satisfies

Ra
n ≤ L0,nρE

(
n

L0,n

)
+

n∑

t=1

ηt
8

+
r′n (L0,n − 1)

ηn
(29)

where the functionr′n(C) is defined as

r′n(C) = (C + 1) lnn− (C + 1) ln ǫ.

On the other hand, ifℓ is exp-concave for someη > 0 and
we let ηt = η for t = 1, . . . , n in Algorithm 1, then for any
n ≥ 1 andT ∈ Tn the tracking regret satisfies

L̂n − Ln(T, a)

≤ LC(T ),n(C(T ) + 1)ρE

(
n

LC(T ),n(C(T ) + 1)

)

+
rn
(
LC(T ),n(C(T ) + 1)− 1

)

η
(30)

while for 0 < ǫ ≤ 1/2 andn ≥ 5, the adaptive regret can be
bounded as

Ra
n ≤ L0,nρE

(
n

L0,n

)
+

r′n (L0,n − 1)

η
. (31)

Proof: First we show the bounds for the tracking regret.
To prove the theorem, let̂Tn be defined as in Lemma 1, and we
bound the first and last terms on the right-hand side of (7) and
(8) (with ŵL1

n in place ofwn). Note that the conditions onρE
imply thatxρE(y/x) is a nondecreasing function ofx for any
fixed y > 0 (this follows sinceρE(z)/z = (ρE(z)−0)/(z−0)
is a nonincreasing function ofz > 0 by the concavity ofρE ,
and hencezρE(1/z) is nondecreasing). Combining this with
the bounds onC(Tn) in Lemma 4 implies

(C(T̂n) + 1)ρE

(
n

C(T̂n) + 1

)

≤ LC(T ),n(C(T ) + 1)ρE

(
n

LC(T ),n(C(T ) + 1)

)
.

The last term(1/ηn) ln(1/ŵ
L1
n (T̂n)) in (7) and (8) can be

bounded by noting that1/ŵL1
n (T̂n) ≤ 1/wL1

n (T̂n) by (20)
and the latter can be bounded using (15); this is given byrn.
This finishes the proof of the tracking regret bounds.

Next we prove the bounds for the adaptive regret. Assume
we want to bound the regret of our algorithm in a segment
[t, t′) with 1 ≤ t < t′ ≤ n + 1. By Lemma 3 there exists
a transition pathT̂t′−1 such that it has a switch point at
t, has at mostl =

⌈
log(t′−t)
⌊log(g+1)⌋

⌉
+ 1 ≤ L0,n segments in

[t, t′), and ŵn(T̂n) > 0. Let t̂1, t̂2, . . . , t̂Ĉ denote the switch
points of T̂n in [t + 1, t′) where Ĉ < l, and let t̂0 = t
and t̂Ĉ+1 = t′. Notice that, since we are interested in the
performance of the algorithm only in the interval[t, t′), a
modified version of Lemma 1 can be applied, where the
loss is considered only in the interval[t, t′) and the weight
of T̂n can be thought to be the sum of the weight of all
transition paths that agree witĥTn in [t, t′). Specifically, letting
Tt,t′(T̂t′−1) = {T ∈ Tt′−1 : T and T̂t′−1 agree on[t, t′)} and
ŵL1

t,t′(T̂n) =
∑

T∈Tt,t′
ŵL1

t′−1(T ), it can be shown similarly to
Lemma 1 that in the case of a loss function that is convex
in its first argument and takes values in[0, 1], for any expert
i ∈ E ,

t′−1∑

s=t

(ℓ(p̂s, ys)− ℓ(a, ys))
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≤ (Ĉ + 1)ρE

(
n

Ĉ + 1

)

+

t′−1∑

s=t

ηs
8

+
1

ηt′−1
ln

1

ŵt,t′(T̂t′−1)
. (32)

Now − ln ŵL1

t,t′(T̂t′−1) can be bounded in a similar way as
− ln ŵL1

n (Tn) in [3]: For t = 1 we can use (15). Fort ≥ 2 it
can be shown, following the proof of (15) in [3], that

ln
1

ŵL1

t,t′(T̂t′−1)
≤ (Ĉ + 1) ln(t′ − 1)− (Ĉ + 1) ln ǫ

≤ (Ĉ + 1) lnn− (Ĉ + 1) ln ǫ (33)

wheneverǫ ≤ 1/2. Indeed, letBt denote the event thatt is a
switch point and letAt1,...,tĈ

denote the event thatt1, . . . , tĈ
are the switch points in[t+1, t′). Since the switch probabilities
pL1(s|s′) are independent ofs′ and1−pL1(s|s′) = Z∞−Zs−1

Z∞−Zs−2
,

for ǫ ≤ 1/2, we have

ŵL1

t,t′(T̂t′−1)

= P(Bt)P(At1,...,tĈ
|Bt)

≥
Ĉ∏

c=0

π(tc − 1)

Z∞ − Ztc−2

( tc+1−1∏

τ=tc+1

Z∞ − Zτ−1

Z∞ − Zτ−2

)

=

t′−1∏

s=t

Z∞ − Zs−1

Z∞ − Zs−2
·

Ĉ∏

c=0

π(tc − 1)

Z∞ − Ztc−1

=
Z∞ − Zt′−2

Z∞ − Zt−2

Ĉ∏

c=0

π(tc − 1)

Z∞ − Ztc−1

≥ (t− 1)1+ǫ

(t′ − 1)ǫ(t− 1 + ǫ)
· ǫt1+ǫ

(t+ ǫ)(t− 1)1+ǫ
· ǫĈ

(t′ − 1)Ĉ

=
ǫĈ+1t1+ǫ

(t′ − 1)Ĉ+ǫ(t− 1 + ǫ)(t+ ǫ)

≥ ǫĈ+1

(t′ − 1)Ĉ+ǫ t1−ǫ
≥ ǫĈ+1

(t′ − 1)Ĉ+1

where the second inequality follows form inequalities (36)and
(38) in [3], and the third follows since(t− 1+ ǫ)(t+ ǫ) < t2.

It is easy to see that the bound in (33) is larger than (15) if
n ≥ 5. Thus, combining with (32) for the maximizing value
t = 1, t′ = n + 1 and usingĈ ≤ L0,n, we obtain the bound
(29) on the adaptive regret. A modified version of (32) (without
the
∑t′−1

s=t ηs/8 term) yields (31)

Remarks: (i) Note that the tracking regret can be trivially
bounded by(C(T ) + 1) times the adaptive regret (as sug-
gested by [11]). However, the direct bounds on the tracking
regret are somewhat better than this: The first term com-
ing from the adaptive regret bound would beL0,n(C(T ) +
1)ρE(n/L0,n), which is larger than the first termLC,n(C(T )+
1)ρE(

n
LC,n(C(T )+1) ) in the tracking regret bounds. This justi-

fies our claim for exp-concave loss functions, since the last
terms will be essentially the same, although the main term in
the bound is not affected. The difference is more pronounced
for the case of the convex and bounded loss function, where

the middle
∑

t ηt/8 term becomes multiplied by(C(T ) + 1)
if the tracking bound is computed from the adaptive regret
bound, resulting in an increased constant factor in the main
term.
(ii) The above theorem provides bounds on the tracking and
adaptive regrets in terms of the regret boundρE of algorithm
A. However, in many practical situations,A behaves much
better than suggested by its regret bound. This behavior is
also preserved in our tracking algorithms: Omitting step (9)
in Lemma 1 we can replace the first term in (28) and (30)
with Ln(A, T̂n) − Ln(T̂n, â), which is the actual regret of
algorithmA on the (extended) transition patĥTn. Reordering
the resulting inequality, we can see that the loss of our
algorithm is not much larger than that ofA run on T̂n, for
example, in the exp-concave case we have

L̂n − Ln(A, T̂n) ≤
rn
(
LC(T ),n(C(T ) + 1)− 1

)

η
.

E. Exponential weighting

We now apply Theorem 2 to the case whereA is the
exponentially weighted average forecaster and the set of base
experts is of sizeN , and discuss the obtained bounds (for
simplicity we assumeC(T ) ≥ 1, but C(T ) = 0 would just
slightly change the presented bounds). In this case, ifℓ is
convex and bounded, then by (3) the regret ofA is bounded
by ρE(n) =

√
n lnN . Settingηt ≡ φ lnn/

√
n for someφ > 0

(ηt is independent ofC(T ) but depends on the time horizon
n), the bound (28) becomes, forg = O(1),

L̂n − Ln(T, a)

≤
√
n(C(T ) + 1)

(
logn

⌊log(g + 1)⌋ + 2

)
lnN

+
φ
√
n lnn

8
+

(C(T ) + 1)
√
n

φ

(
log n

⌊log(g + 1)⌋ + 2

)

+O

(√
n

lnn

)
.

Furthermore, if an upper boundC on the complexity (number
of switches) of the meta experts in the reference class is known
in advance, thenηt can be set as a function ofC ≥ C(T ) as

well. Letting ηt ≡
√
8(C + 1) lnn

(
logn

⌊log(g+1)⌋ + 2
)
/n, the

bound (28) becomes

L̂n − Ln(T, a)

≤
√
n(C(T ) + 1)

(
logn

⌊log(g + 1)⌋ + 2

)
lnN

+

√√√√n(C + 1)
(

logn
⌊log(g+1)⌋ + 2

)
lnn

2

+O



√

n

(C + 1) lnn
(

logn
⌊log(g+1)⌋ + 2

)


 .

We note that these bounds are of order(C(T )+1)
√
n ln2 n,

respectively
√
(C + 1)n ln2 n, only a factor of O(

√
lnn)



11

larger than the ones of optimal order resulting from earlier
algorithms [4], [5], [24] which have complexityO(n2) (strictly
speaking, the complexity of [4] isO(nN), but, when combined
with efficient algorithms designed for the base-expert class,
only O(n2) complexity versions are known [24]). In some
applications, such as online quantization [24], the number
of base expertsN depends on the time horizonn in a
polynomial fashion, that is,N ∼ nβ for someβ > 0. In
such cases the order of the upper bound is not changed; it
remains stillO((C(T )+1)

√
n ln2 n) if the number of switches

is unknown, andO(
√
(C(T ) + 1)n ln2 n) if the maximum

number of switchesC(T ) is known in advance. This bound is
within a factor ofO(

√
lnn) of the best achievable regret for

this case.
Next we observe that at the price of a slight increase of

computational complexity, regret bounds of the optimal order
can be obtained. Indeed, settingg = 2nγ − 1 for someγ ∈
(0, 1) and ηt ≡ φ

√
(2+1/γ) lnn

n , φ > 0 independently of the
maximum number of switches,

L̂n − Ln(T, a)

≤
√
n(C(T ) + 1) lnN

(
1

γ
+ 2

)

+

(
φ

8
+

C + 1

φ

)√(
1

γ
+ 2

)
n lnn+O

(√
n

lnn

)
.

If ηt is optimized for an a priori known boundC ≥ C(T ),
then we get

L̂n − Ln(T, a)

≤
√
n(C(T ) + 1)

(
1

γ
+ 2

)(√
lnN +

√
lnn

2

)

+O

(√
n

(C + 1) lnn

)
.

These bounds are of the sameO((C(T ) + 1)
√
n lnn) and,

respectively,O(
√

(C + 1)n lnn) order as the ones achievable
with the quadratic complexity algorithms [21], [24], but the
complexity of our algorithm is onlyO(nγ lnn) times larger
than that of runningA (which is typically linear inn). Thus,
in a sense the complexity of our algorithm can get very close
to linear while guaranteeing a regret of optimal order. (Note
however, that a factor1/

√
γ appears in the regret bounds so

settingγ very small comes at a price.)
A similar behavior is observed for exp-concave loss func-

tions. Indeed, ifℓ is exp-concave andA is the exponentially
weighted average forecaster, then by (4) the regret ofA is
bounded byρE(n) = lnN

η . In this case, forg = O(1), the
bound (30) becomes

L̂n − Ln(T, a)

≤
(C(T ) + 1)

(
log n

C(T )+1

⌊log(g+1)⌋ + 2
)

η
(lnN + lnn) +O(1).

which is a factor ofO(lnn) larger than the existing opti-
mal bounds of orderO((C(T ) + 1) lnn) (see [2]–[4], [6],
[21]) valid for algorithms having complexityO(n2) (again,

concerning [4], we mean its combination with some efficient
algorithm designed for the base-expert class). Note that inthis
case the algorithm is strongly sequential as its parametrization
is independent of the time horizonn. For g = 2nγ − 1, we
obtain a bound of optimal orderO((C(T ) + 1) lnn):

L̂n − Ln(T, a)

≤
(C(T ) + 1)

(
1
γ + 2

)

η
(lnN + lnn) +O(1).

Bounds of similar order can be obtained for exp-concave
loss functions in the more general case whenE is not of size
N , but is a bounded convex subset of anN dimensional linear
space. ThenρE(n) = O(lnn) for several algorithmsA under
different assumptions. This is the case for exp-concave loss
functions whenA performs exponential weighting over all
base experts. Using random-walk based sampling from log-
concave distributions (see [32]), efficient probabilisticapprox-
imations exist to perform this weighting in many cases. Exact
low complexity implementations, such as the Krichevsky-
Trofimov estimate for the logarithmic loss [13] (see Example1
below), are however, rare. When additional assumptions are
made, e.g., the gradient of the loss function is bounded, the
online Newton step algorithm of [12] can be applied to achieve
logarithmic (standard) regret against the base-expert class E .
We refer to [33] for a survey.

F. The weight functionwKT

In this section we analyze the performance of Algorithm 1
for the case when the “Krichevsky-Trofimov” weight function
wKT is used. Our analysis is based on part (ii) of Lemma 3,
following ideas of Willems and Krom [9] who only considered
the logarithmic loss. Applying the weight function̂wKT (de-
rived fromwKT ), this analysis improves the constants relative
to Theorem 2 for small values ofg, although the resulting
bound has a less compact form. Nevertheless, in some special
situations the bounds can be expressed in a simple form. This
is the case for the logarithmic loss, where, for the special
choice g = 1, applying (24), the new bound now achieves
that of [9] proved for the same algorithm. The idea is that in
the proof of Theorem 2 the concavity ofρE was used to get
simple bounds on sums which are sharp if the segments are
of (approximately) equal length. However, in our construction
the length of the sub-segments (corresponding to the same
segment of the original transition path), or more precisely,
their lower bounds, grow exponentially according to (25). This
makes it possible to improve the upper bounds in Theorem 2.
It is interesting to note that the weight functionswL1 andwL2

give better bounds forg = nγ , where the segment lengths are
approximately equal, while the large differences in the segment
lengths forg = O(1) can be exploited by the weight function
wKT .

To obtain “almost closed-form” regret bounds for a general
ρE , we need the following technical lemma.

Lemma 5:Assumef : [1,∞) → (0,∞) is a differentiable
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function andG ≥ 1. DefineF : [1,∞) → [0,∞) by

F (s) =

∫ log s
G

0

f
( s

2cG

)
dc

for all s ≥ 1. Then the second derivative ofF is given by

F ′′(s) =
f ′(s)

sG ln 2
− f(s)

s2G ln 2
.

Therefore,F is concave on[1,∞) if sf ′(s) ≤ f(s) for all
s ≥ 1.

Proof: First note that, since2cG = s for c = log s
G ,

Leibniz’s integral rule gives

F ′(s) =
f(1)

sG ln 2
+

∫ log s
G

0

f ′
( s

2cG

)
2−cG dc

=
f(1)− f(1) + f(s)

sG ln 2
=

f(s)

sG ln 2

since

− ∂

∂c

f
(
s2−cG

)

sG ln 2
= f ′

(
s2−cG

)
2−cG.

DifferentiatingF ′ gives the desired result.

Next we give an improvement of Theorem 2 for small values
of g. For simplicity, the bounds are only given for the tracking
regret. It is much more complicated to obtain sharp bounds for
the adaptive regret, since, similarly to the proof of Theorem 2,
it would require to lower bound the probability that a new
segment is started at some time instantt, but here the switch
probabilitiespKT (t|t′), defined in (13), depend both ont and
t′, unlike pL1(t|t′) which only depends ont.

Theorem 3:AssumeρE(x) is differentiable and satisfies
ρE(x) ≥ xρ′E(x) for all x ≥ 1, and Algorithm 1 is run with
weight function{ŵKT

t }. Let

S(C, n)

= (C + 1)

∫ log n
C+1

⌊log(g+1)⌋

0

ρE

(
n

C + 1
2−c⌊log(g+1)⌋

)
dc

+ 2(C + 1)ρE

(
n

C + 1

)

and

r̄n(C)

=
(C + 1) ln 2

4

(
log2 n

C+1

⌊log(g + 1)⌋

+

(
4 +

4

⌊log(g + 1)⌋

)
log

n

C + 1
+ ⌊log(g + 1)⌋+ 8

)
.

If ℓ is convex in its first argument and takes values in the
interval [0, 1], and ηt+1 ≤ ηt for t = 1, . . . , n − 1, then for
anyT ∈ Tn the tracking regret satisfies, for alln,

L̂n − Ln(T, a) ≤ S(C, n) +

n∑

t=1

ηt
8

+
r̄n(C)

ηn
. (34)

On the other hand, ifℓ is exp-concave for the value ofη and
ηt = η for t = 1, . . . , n in Algorithm 1, then for anyT ∈ Tn
the tracking regret satisfies

L̂n − Ln(T, a) ≤ S(C, n) +
r̄n(C)

ηn
. (35)

Proof: We proceed similarly to the proof of Theorem 2
by first applying Lemma 1. However, the resulting two terms
are now bounded using Lemma 3 (ii) instead of Jensen’s
inequality, which allows us to make use of the potentially
large differences in the segment lengths.

For any transition pathT = (t1, . . . , tC) ∈ Tn let
T̂ = (t̂1, . . . , t̂Ĉ) ∈ Tn denote the transition path defined by
Lemma 3 withŵKT

n (T̂ ) > 0. The first term of the first upper
bound given in Lemma 1 can be bounded as follows: for any
segment[tc, tc+1) = [t̂ĉ, t̂ĉ′) of T , Lemma 3 (i) and (23) yield

ĉ′−1∑

i=ĉ

ρE(t̂i+1 − t̂i)

≤
∫ log(tc+1−tc)

⌊log(g+1)⌋

0

ρE

(
tc+1 − tc
2c⌊log(g+1)⌋

)
dc+ 2ρE(tc+1 − tc).

Since the right-hand side of the above inequality is a concave
function of s = tc+1 − tc by Lemma 5 and the conditions on
ρE , Jensen’s inequality implies

Ĉ∑

i=0

ρE(t̂i+1− t̂i)

=

C∑

c=0

ĉ′−1∑

i=ĉ

ρE(t̂i+1− t̂i)

≤
C∑

c=0



∫ log(tc+1−tc)

⌊log(g+1)⌋

0

ρE

(
tc+1− tc

2c⌊log(g+1)⌋

)
dc+ 2ρE(tc+1− tc)




≤ (C + 1)

∫ log n
C+1

⌊log(g+1)⌋

0

ρE

(
n

C + 1
· 2−c⌊log(g+1)⌋

)
dc

+ 2(C + 1)ρE

(
n

C + 1

)
. (36)

The weight function can be bounded in a similar way. By
the standard bound (14) on the Krichevsky-Trofimov estimate
[14], we have

ln
1

ŵKT
n (T̂ )

≤ ln
1

wKT
n (T̂ )

≤
Ĉ∑

c=0

(
1

2
ln(t̂c+1 − t̂c) + ln 2

)
. (37)

Applying (22) for a segment[tc, tc+1) = [t̂ĉ, t̂ĉ′) of T yields

ĉ′−1∑

i=ĉ

(
1

2
ln(t̂i+1 − t̂i) + ln 2

)

≤

⌈
log(tc+1−tc)

⌊log(g+1)⌋

⌉
−1∑

i=0

(
1

2
ln

(
tc+1 − tc
2i⌊log(g+1)⌋

)
+ ln 2

)

+
1

2
ln(tc+1 − tc) + ln 2
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=
ln 2

2

⌈
log(tc+1 − tc)

⌊log(g + 1)⌋

⌉
×

×


log(tc+1 − tc)−

⌈
log(tc+1−tc)
⌊log(g+1)⌋

⌉
− 1

2
⌊log(g + 1)⌋+ 2




+
1

2
ln(tc+1 − tc) + ln 2

≤ ln 2

4

(
log2(tc+1 − tc)

⌊log(g + 1)⌋ + ⌊log(g + 1)⌋+ 8

+

(
4 +

4

⌊log(g + 1)⌋

)
log(tc+1 − tc)

)

where in the last step we bounded the ceiling function from
above and from below, as appropriate. Furthermore, it is easy
to check that the last expression above is concave ins =
tc+1−tc. Therefore, combining it with (37), applying Jensen’s
inequality, we obtain

ln
1

ŵKT
n (T̂ )

≤ r̄n(C).

Applying this bound and (36) in Lemma 1 yields the state-
ments of the theorem.

We now apply Theorem 3 to the exponentially weighted
average predictor. For bounded convex loss functions we
have ρE(n) =

√
n lnN . Assuming g = O(1), if ηt ≡

φ
√

2 ln 2
n⌊log(g+1)⌋ log n, φ > 0 (i.e., ηt is independent of the

number of switchesC(T )), we obtain

L̂n − Ln(T, a)

≤ 2
√
(C(T ) + 1)n lnN


1 +

1−
√

C+1
n

⌊log(g + 1)⌋ ln 2




+
φ+ C+1

φ

4
logn

√
n ln 2

2 ⌊log(g + 1)⌋ + o
(
(C + 1)

√
n
)
.

Optimizing ηt as a function of an upper boundC on the
number of switches yields

L̂n − Ln(T, a)

≤ 2
√
(C(T ) + 1)n lnN


1 +

1−
√

C+1
n

⌊log(g + 1)⌋ ln 2




+

√
(C + 1)n log2 n

C+1 ln 2

8 ⌊log(g + 1)⌋ + o
(√

(C + 1)n
)
.

Note that if N = O(nβ) for someβ > 0, the first term is
asymptotically negligible compared to the second in the above
bounds. For example, ifη is set independently ofC, we obtain

L̂n − Ln(T, a)

≤
φ+ C+1

φ

4
logn

√
n ln 2

2 ⌊log(g + 1)⌋ + o
(
(C + 1)

√
n
)
.

On the other hand, ifg = 2nγ − 1, the bound becomes

L̂n − Ln(T, a)

≤ 2
√
(C(T ) + 1)n lnN


1 +

1−
√

C+1
n

γ lnn




+
φ+ C+1

φ

8

√
2n lnn

(
4 + γ +

1

γ

)
+O

(√
n

lnn

)

whenη is set independently ofC.
For exp-concave loss functions we have, forg = O(1),

L̂n − Ln(T, a)

≤ C + 1

4η

(
log n

C+1

⌊log(g + 1)⌋ + 2

)(
4 lnN + ln

n

C + 1

)

+O(C lnn)

while if g = 2nγ − 1 we get

L̂n − Ln(T, a)

≤ C + 1

4η

(
4

(
1

γ
+ 2

)
lnN +

(
4 + γ +

1

γ

)
lnn

)

+O(C).

Note that for both types of loss functions we have a clear
improvement relative to Theorem 2, where we used the weight
functionwL1 , for the case wheng = O(1). However, no such
distinction can be made forg = 2nγ − 1. Indeed, for convex
loss functions constant multiplicative changes inη vary the
exact form of the factor(C + a)/b, with constantsa, b > 0 in
the second term, and, consequently, the order of the bounds
depends on the relative size ofC, while, for example, the value
of η determines the order of the bounds for exp-concave losses,
e.g., constructing the weigh function̂w from wL1 is better for
γ ≥ 1/3. Also note that the above bounds forg = 3 and
g = 4 have improved leading constant compared to [10] and
[31], respectively.

IV. RANDOMIZED PREDICTION

The results of the previous section may be adapted to
the closely related model of randomized prediction. In this
framework, the decision maker plays a repeated game against
an adversary as follows: at each time instantt = 1, . . . , n,
the decision maker chooses an actionIt from a finite set,
say {1, . . . , N} and, independently, the adversary assigns
lossesℓi,t ∈ [0, 1] to each actioni = 1, . . . , n. The goal
of the decision maker is to minimize the cumulative loss
L̂n =

∑n
t=1 ℓIt,t.

Similarly to the previous section, the decision maker may try
to compete with the best sequence of actions that can change
actions a limited number of times. More precisely, the set
of base experts isE = {1, . . . , N} and as before, we may
define a meta expert that changes base expertsC times by
a transition pathT = (t1, . . . , tC ;n) and a vector of actions
a = (i0, . . . , iC), wheret0 := 1 < t1 < . . . < tC < tC+1 :=
n+ 1 and ij ∈ {1, . . . , N}. The total loss of the meta expert
indexed by(T, a), accumulated duringn rounds, is

Ln(T, a) =

C∑

c=0

Lic(tc, tc+1)
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with

Lic(tc, tc+1) =

tc+1−1∑

t=tc

ℓic,t .

There are two differences relative to the setup considered
earlier. First, we do not assume that the loss function satisfies
special properties such as convexity in the first argument
(although we do require that it be bounded). Second, we do not
assume in the current setup that the action space is convex,
and so a convex combination of the experts’ advice is not
possible. On the other hand, similar results as before can be
achieved if the decision maker may randomize its decisions,
and in this section we deal with this situation.

In randomized prediction, before taking an action, the
decision maker chooses a probability distributionpt over
{1, . . . , N} (a vector in the probability simplex∆N in R

N ),
and chooses an actionIt distributed according topt (condi-
tionally, given the past actions of the decision maker and the
losses assigned by the adversary).

Note that now botĥLn andLn(T, a) are random variables
not only because the decision takes randomized decisions but
also because the losses set by the adversary may depend on
past randomized choices of the decision maker. (This model
is known as the “non-oblivious adversary”.) We may define
the expected lossof the decision maker by

ℓt(pt) =
N∑

i=1

pi,tℓi,t

wherepi,t denotes thei-th component ofpt.
For details and discussion of this standard model we refer

to [1, Section 4.1]. In particular, since the results presented
in Section I can be extended to time-varying loss functions
and sinceℓt is a linear (convex) function, it can be shown
that regret bounds of any forecaster in the model of Section
I can be extended to the sequence of loss functionsℓt. That
is, the bounds can be converted into bounds for the expected
regret of a randomized forecaster. Furthermore, it is shown
in [1, Lemma 4.1] how such bounds in expectation can be
converted to bounds that hold with high probability.

For example, a straightforward combination of [1, Lemma
4.1] and Theorem 2 implies the following. Consider a pre-
diction algorithmA defined in the model of Section III-A,
that chooses an action in the decision spaceD = ∆N

and suppose that it satisfies a regret bound of the form (5)
under the loss functionℓt(pt). Algorithm 2 below, which
is a variant of Algorithm 1, convertsA into a forecaster
under the randomized model. At each time instantt, the
algorithm chooses, in a randomized way, a transition path
T = (t1, . . . , tC ; t) ∈ Tt, and uses the distributionpA,t(τt(T ))
that A would choose, had it been started at timeτt(T ), the
time of the last change in the pathT up to time t. In the
definition of the algorithm

Lt(A, T ) =

C∑

c=0

LA(tc, tc+1)

denotes the cumulative expected loss of algorithmA, where

we definet0 = 1 and tc+1 = t+ 1, and

LA(tc, tc+1) =

tc+1−1∑

s=tc

ℓs(pA,s(tc))

is the cumulative expected loss suffered byA in the time
interval [tc, tc+1) with respect toℓs for s ∈ [tc, tc+1).

Algorithm 2 Randomized tracking algorithm.

Input: Prediction algorithmA, weight function {wt; t =
1, . . . , n}, learning parametersηt > 0, t = 1, . . . , n.
For t = 1, . . . , n chooseT ∈ Tt according to the distribution

qt(T ) =
wt(T )e

−ηtLt−1(A,Tt−1)

∑
T ′∈Tt

wt(T ′)e−ηtLt−1(A,T ′
t−1)

,

choosept = pA,t(τt(T )), and pickIt ∼ pt.

Corollary 1: Supposeℓi,t ∈ [0, 1] for all i = 1, . . . , N and
t = 1, . . . , n, and A satisfies (5) with respect to the loss
function{ℓt}. Assume Algorithm 2 is run with weight function
{ŵL1} for someǫ > 0. Let δ ∈ (0, 1). For anyT ∈ Tn, the
regret of the algorithm satisfies, with probability at least1−δ,

L̂n − Ln(T, a)

≤ LC(T ),n(C(T ) + 1)ρE

(
n

LC(T ),n(C(T ) + 1)

)
+

n∑

t=1

ηt
8

+
rn
(
LC(T ),n(C(T ) + 1)− 1

)

ηn
+

√
n

2
ln

1

δ
.

wherern(C) andLC,n are defined as in Theorem 2.

Proof: First note that Theorem 2 can easily be extended
to time-varying loss functions (in fact, Lemma 1, and con-
sequently Theorem 2, uses the bound (2) which allows time-
varying loss functions). Combining the obtained bound for the
expected loss with [1, Lemma 4.1] proves the corollary.

V. EXAMPLES

In this section we apply the results of the paper for a few
specific examples.

Example 1 (Krichevsky-Trofimov mixtures):AssumeD =
E = (0, 1) andY = {0, 1}, and consider the logarithmic loss
defined asℓ(p, y) = −Iy=1 ln p−Iy=0 ln(1−p). As mentioned
before, the logarithmic loss is exp-concave withη ≤ 1, and
hence we chooseη = 1. This loss plays a central role in data
compression. In particular, if a prediction method achieves,
on a particular binary sequenceyn = (y1, . . . , yn), a lossL̂n,
then using arithmetic coding the sequence can be described
with at mostL̂n + 2 bits [34]. We note that the choice of the
expert classE = (0, 1) corresponds to the situation where the
sequenceyn is encoded using an i.i.d. coding distribution.
Competing against the expert classE = (0, 1) also has a
probabilistic interpretation: it is equivalent to minimizing the
worst case maximum coding redundancy relative to the class
of i.i.d. source distributions on{0, 1}n.
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Let n0(t) =
∑t

s=1 Iys=0 andn1(t) =
∑t

s=1 Iys=1 denote
the number of0s and1s in yt, respectively. Then the loss of
an expertθ ∈ (0, 1) at time t is

Lθ,t = − ln
(
(1− θ)n0(t)θn1(t)

)

= − n0(t) ln(1− θ)− n1(t) ln θ

which is the negative log-probability assigned toyt by a mem-
oryless binary Bernoulli source generating1s with probability
θ. The Krichevsky-Trofimov forecaster is an exponentially
weighted average forecaster over all expertsθ ∈ E using initial
weights1/(π

√
θ(1− θ)) (i.e., the Beta(1/2, 1/2) distribution)

defined as

pKT
t (yt−1) =

∫ 1

0

e−Lθ,t−1

π
√
θ(1 − θ)

dθ

=

∫ 1

0

(1− θ)n0(t−1)θn1(t−1)

π
√
θ(1− θ)

dθ.

It is well known that pKT
t can be computed efficiently as

pKT
t (1|yt−1) = 1−pKT

t (0|yt−1) = n1(t−1)+1/2
t . By [14], the

performance of the Krichevsky-Trofimov mixture forecaster
can be bounded as

Rn ≤ 1

2
lnn+ ln 2.

In this framework, a meta expert based on the base expert
class E is allowed to changeθ ∈ E a certain number of
times. In the probabilistic interpretation, this corresponds to
the problem of coding a piecewise i.i.d. source [2], [3], [7]–
[9]. If we apply Algorithm 1 to this problem witĥwKT , we can
improve upon Theorem 3 by usinḡrn(C) instead ofS(C, n)
in the bound (note that̄rn(C) was obtained by calculating the
Krichevsky-Trofimov bound for the transition probabilities),
and obtain, for any transition pathT ∈ Tn and meta expert
(T, a)

L̂n − Ln(T, a)

≤ 2r̄n(C(T ))

=
(C(T ) + 1) ln 2

2

log2 n
C(T )+1

⌊log(g + 1)⌋ +O((C(T ) + 1) lnn).

For g = 1, this bound recovers that of [9] (at least in the
leading term), and improves the leading constant forg = 3
andg = 4 when compared to [10] and [11], respectively.

On the other hand, forg = 2nγ −1, γ > 0, using withŵL1

in Algorithm 1, Theorem 3 implies

L̂n − Ln(T, a) ≤
3(C(T ) + 1)

2

(
1

γ
+ 2

)
lnn+O(1).

This bound achieves the optimalO(lnn) order for anyγ > 0;
however, with increased leading constant. On the negative side,
for specific choices ofγ our algorithm does not recover the
best leading constants known in the literature (partly due to the
common bounding technique for allγ): If γ = 1/2, our bound
is a constant factor worse than those of [7] and [8] which
have the sameO(n3/2) complexity (disregarding logarithmic
factors); on the other hand, in caseγ = 1 our algorithm is
identical to theO(n2) complexity algorithm of Shamir and
Merhav [3], and hence an optimal bound can be proved for

ŵL1 (and for ŵL2 ), as done in [3] achieving Merhav’s lower
bound [30].

Example 2 (Tracking structured classes of base experts):
In recent years a significant body of research has been devoted
to prediction problems in which the forecaster competes with
a large but structured class of experts. We refer to [1], [16],
[17], [24], [35]–[38] for an incomplete but representative
list of papers. A quite general framework that has been
investigated is the following: a base expert is representedby a
d-dimensional binary vectorv ∈ {0, 1}d. Let E ⊂ {0, 1}d be
the class of experts. The decision spaceD is the convex hull of
E , so the forecaster chooses, at each time instantt = 1, . . . , n,
a convex combination̂pt =

∑
v∈E πv,tv ∈ D ⊂ [0, 1]d. The

outcome space isY = [0, 1]d and if the outcome isyt ∈ Y,
then the loss of expertv is ℓ(v, yt) = vT yt, the standard
inner product of v and yt. The loss of the forecaster
equalsℓ(p̂t, yt) =

∑
v∈E πv,tv

T yt. [36] introduces a general
prediction algorithm, called “Component Hedge,” that
achieves a regret

n∑

t=1

ℓ(p̂t, yy)−min
v∈E

n∑

t=1

ℓ(v, yt)

≤ d
√
2Kn ln(d/K) + dK ln(d/K)

whereK = maxv∈E ‖v‖1. What makes Component Hedge
interesting, apart from its good regret guarantee, is that for
many interesting classes of base experts it can be calculated in
time that is polynomial ind, even whenE has exponentially
many experts. We refer to [36] for a list of such examples.
The results of this paper show that we may obtain efficiently
computable algorithms for tracking such structured classes of
base experts. For example, (28) of Theorem 2 applies in this
case, withρE(n) = d

√
2Kn ln(d/K) + dK ln(d/K). The

calculations of Section III-E may be easily modified for this
case in a straightforward manner.

Example 3 (Tracking the best quantizers):The problem of
limited-delay adaptive universal lossy source coding of in-
dividual sequences has recently been investigated in detail
[18]–[20], [24], [39]–[41]. In the widely used model of fixed-
rate lossy source coding at rateR, an infinite sequence of
[0, 1]-valued source symbolsx1, x2, . . . is transformed into a
sequence of channel symbolsy1, y2, . . . which take values
from the finite channel alphabet{1, 2, . . . ,M}, M = 2R,
and these channel symbols are then used to produce the
([0, 1]-valued) reproduction sequencêx1, x̂2, . . .. The quality
of the reproduction is measured by the average distortion∑n

t=1 d(xt, x̂t), whered is some nonnegative bounded dis-
tortion measure. The squared errord(x, x′) = (x − x′)2 is
perhaps the most popular example.

The scheme is said to have overall delay at mostδ if there
exist nonnegative integersδ1 andδ2 with δ1+δ2 ≤ δ such that
each channel symbolyn depends only on the source symbols
x1, . . . , xn+δ1 and the reproduction̂xn for the source symbol
xn depends only on the channel symbolsy1, . . . , yn+δ2 . When
δ = 0, the scheme is said to have zero delay. In this case,yn
depends only onx1, . . . , xn, andx̂n on y1, . . . , yn, so that the
encoder producesyn as soon asxn becomes available, and
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the decoder can producêxn whenyn is received. The natural
reference class of codes (experts) in this case is the set of
M -level scalar quantizers

Q = {Q : [0, 1] → {c1, . . . , cM}, {c1, . . . , cM} ⊂ [0, 1]} .

The relative loss with respect to the reference classQ is
known in this context as the distortion redundancy. For the
squared error distortion, the best randomized coding methods
[20], [39], [41], with linear computational complexity with
respect to the setQ, yield a distortion redundancy of order
O(n−1/4

√
lnn).

The problem of competing with the best time-variant quan-
tizer that can change the employed quantizer several times
(i.e., tracking the best quantizer), was analyzed in [24],
based on a combination of [20] and the tracking algorithm
of [4]. There the best linear-complexity scheme achieves
O((C + 1) lnn/n1/6) distortion redundancy when an up-
per boundC on the number of switches in the reference
class is known in advance. On the other hand, applying our
scheme withg = O(1) in the method of [24] and using the
bounds in Section III-E, gives a linear-complexity algorithm
with distortion redundancyO((C + 1)1/2 ln3/4(n)/n1/4) +
O((C + 1)/(ln1/2(n)/n1/2)) if C is known in advance and
only slightly worseO((C + 1)1/2 ln3/4(n)/n1/4) + O((C +
1) ln(n)/n1/2) distortion redundancy ifC is unknown. When
g = 2nγ − 1, the distortion redundancy for linear complexity
becomes somewhat worse, proportional ton− 1

2(2+γ) up to
logarithmic factors.

VI. CONCLUSION

We examined the problem of efficiently tracking large expert
classes where the goal of the predictor is to perform as
well as a given reference class. We considered prediction
strategies that compete with the class of switching strategies
that can segment a given sequence into several blocks, and
follow the advice of a different base expert in each block.
We derived a family of efficient tracking algorithms that, for
any prediction algorithmA designed for the base class, can
be implemented with time and space complexityO(nγ lnn)
times larger than that ofA, wheren is the time horizon and
γ ≥ 0 is a parameter of the algorithm. WithA properly chosen,
our algorithm achieves a regret bound of optimal order for
γ > 0, and onlyO(lnn) times larger than the optimal order
for γ = 0 for all typical regret bound types we examined.
For example, for predicting binary sequences with switching
parameters, our method achieves the optimalO(lnn) regret
rate with time complexityO(n1+γ lnn) for any γ ∈ (0, 1).
Linear complexity algorithms that achieve optimal regret rate
for small base expert classes have been shown to exist in [4]
and [6]. Our results show that the optimal rate is achievable
with the slightly largerO(n1+γ lnn), γ > 0, complexity even
if the number of switches is not known in advance and the base
expert class is large. It remains, however, an open question
whether the optimal rate is achievable with a linear complexity
algorithm in this case.
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