arXiv:1206.0531v1l [math.CO] 4 Jun 2012

Mutually unbiased bases as submodules and
subspaces

Joanne L. Hafl and JarStovicek
Department of Algebra
Charles University in Prague
186 75 Praha 8, Sokolovska 83, Czech Republic
*Email: hall@karlin.mff.cuni.cz
YEmail: stovicek@karlin.mff.cuni.cz

Abstract—Mutually unbiased bases (MUBs) have been used in It has been shown that complete sets of MUBs are equiv-
several cryptographic and communications applications. Tiere  glent to orthogonal decompositions of the Lie algekirgC)
has been much speculation regarding connections between NBg [@], however finding orthogonal decompositions of Lie alge-

and finite geometries. Most of which has focused on a connegti . o .
with projective and affine planes. We propose a connection bras is as difficult a task as finding sets of MUBs. Some

with higher dimensional projective geometries and projedve WOrk has been done classifying Lie Algebras using projectiv
Hjelmslev geometries. We show that this proposed geometric geometry[[15], but these results have as yet not been applied
structure is present in several constructions of MUBs. to decompositions ofi,,(C).
Some sets of MUBs have been show to have an Abelian
group structure [10][[13]. We go further by showing that gom
Mutually unbiased bases (MUBs) are a structure first deomplete sets of MUBs may be regarded as submodules of

fined in a quantum physics context in 19601[22]. Since thaRe appropriate free module, and as subspaces of a prajectiv
MUBs have been used in quantum key distribution protocalgometry over that module.
[3], [21], and can be used to construct signal sets for commu-
nications systems [1]. [7]. Il. PRELIMINARIES
A basis for C? is orthonormal if all basis vectors are )
orthogonal and of unit length. Two orthonormal baggsand A Constructions of MUBs
By in C* are calledmutually unbiasedf |(¢|¢)|* = 1/d for We investigate three non-equivalent constructions of MUBs
all ¢ € By and) € B;. This first construction is based on planar functions overitefin
The maximum number of mutually unbiased base<th field. For more on planar functions see for example [5]. Let

i

is d+ 1 [26]. A set ofd + 1 MUBs is called complete wy=er.

it is complete sets of MUBs that are of most use in the Theorem 1 (Planar function construction)fI8, Thm 4.1]
communications applications. While constructions of ctat® | et F, be a field of odd characteristic Let I1(z) be a planar

sets of MUBs inC are known whenl is a prime power [26], function onF,. Let V, = {va : b € F,} be the set of vectors

it is unknown if such complete sets exist in non-prime power

dimensions. Ty = 1 (wtr(an(m)+bm)) (1)
There has been much speculation regarding connections b z€ly

between MUBs and finite geometriés [2], [19], [20], [25]. Mos . . .

of this has focused on a connection with projective and aﬁiH‘(—:!th a,b € F,. The standard basi& along V.V'th the setd,

planes. a € Iy, form a complete set of + 1 MUBs in CY.

The evidence for connections between MUBs and finit-ghe following construction has been shown to be equivalent

X X ) T,
geometries falls into two categories: counting argumet$, [ to the planar function construction when usififz) = «

[20], and structures which construct both MUBs and finitLgJ' We highlight it as the submodule and subspaces strectur

geometries. These structures include planar functiong, [1%ppear in a different way 1o the planar function consiructio

[18], symplectic spread$s [11] as well as specific affine ptane The_or_em _2 (Alltop Construction):_[l] [12, Thm 1] Lequ
8], [L7] be a finite field of odd characteristic> 5. Let V, = {t,, :

F,} be the set of vectors

I. INTRODUCTION

We investigate higher dimensional projective geometrit@s6

and show that some sets of MUBs may be regarded as 1 3
R . p Tor = wtr((w-f-a) +b(z+a)) (2)

subspaces. Note that in order for these higher order piagect ab VAN ocF
geometries to exist, a projective plane of the appropriae s !
must also exist. If all MUBs are subspaces of larger projectiwith a,b € F,. The standard basi8 along with the setd/,,
geometries, then a connection between MUBs and projectives Iy, form a complete set of + 1 MUBs in C4.
planes would be proven. Alas we do not go so far. The next construction stems from a symplectic spread.
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Theorem 3: [11, 3.5(b)] LetF,~ be a field of odd char- C. Geometric Structures
acteristicp, with n odd. Lets andn be coprime, such that  The geometric structures we are investigating are prejecti

s <n/2. LetV, = {va : b€ F,} be the set of vectors geometriesPG(d — 1, ¢), defined over a finite field and pro-
jective Hjelmslev geometrieRHG(d — 1, GR(4,1)), defined
Ty = e <wtr(am+bzp"5+1+bpszps+l>) (3) over a Galois ring.
va\"’ z€F, Let M be anR module that is a submodule d@t?. If R

is a field, then any submodule is a subspac&éfIf R is a
with a,b € F,. The standard basig along with the setd%,, Galois ring then any free submodule is a subspacg?fl4].
a € F,, form a complete set of + 1 MUBs in C?. Definition 6: The projective geometry constructed frdip,
The next construction uses Galois rings. PG(d —1,q) is the set of subspaces Bf. (Z) is a point of
Theorem 4 (Galois ring construction):[12, Thm 3] Let PG(d — 1,q) and represents all vectogs in Fg such that
GR(4,n) be Galois ring of characteristi¢ and Teichmiller p € F; and at least one of the entries Bfis non-zero.
setT,. Leti = wy = /1. Let V, = {t, : b € T,.} be the Definition 7: [23] The projective Hjelmslev geometry con-

set of vectors structed fromGR(4,1), PHG(d — 1,GR(4,1)) is the set
of subspaces of7R(4,1)%. (%) is a point of PHG(d —
- 1 (itf[(a+2b)zl) (4) 1,GR(4,1)) and represents all vectops in GR(4,1)¢ such
V2 2€Tn that p is a unit of GR(4,1) and at least one of the entries of

Zis a unit of GR(4,1).

a,b € T,. The standard basis along with the set¥,, a € T,,, Note thatPG(d — 1,q) = PHG(d — 1,F,).

form a complete set a” + 1 MUBs in C".
These are not the only known constructions of complete sets  I1ll. MUB S AS SUBMODULES AND SUBSPACES
of MUBs [11], but are good starting point for an investigatio A, Conjecture

Proposal 8:Let X be a complete set of MUBs which
B. Algebraic Structures contains the standard basis@{. Let N be the set containing
all the vectors fromX, except the standard basis vectors. Let
the vectors inV be of the formaw? wherea € R, w, is ag™"
root of unity, and¥ € Zj. Let ©® represent component wise
multiplication, let

Let R be a ring with unity, a leftR-module is an Abelian
group,M, together with a produd® x M — M which satisfies
the following: for allr;, 7o € R anda;,az € M

TOU

la =a, (5) O Foa @)
(mr2)a =ri(rza) ©)  and letn’ = {abv* @, 5 € N}, M = {: aw? € N}, and
(r1 +7r2)a =ria+raa () M’ ={#—ij:% §<c M} LetU C M be the set containing
r(a1 + a2) =raj + ras (8) the vectors from\/’ for which every entry is a non-unit, then
1) N’ is aZ,-module.
This is familiar as the left axioms of a vector space. Bl 2) M’\ U’ is the set of vectors representing a subspace of

modules wherd is a field are vector spaces. Theoriem 4 uses  a projective geometry oveZ,,.

a ring to construct MUBs, hence we need the more gene{gh show this proposal is true for each of the constructions of

quect of a module. We are only qoncerned with commutatif@ s mentioned in sectiof T=A. This proposal says nothing

rings, thus all modules in consideration are both left anghout the existence of MUBSs which are not constructed from

right modules. An (left and rightiz module isfree if it is 5 ring. All projective geometries and projective Hjelmslev

isomorphic toR? for somed. geometries of dimension greater than 2 have an algebraic
The trace map, familiar from finite fields, may also be useglructure[[6,§1.4], [14]. It may be the same for complete sets

in Galois rings([24§14]. Properties of trace map f6fR(4,n) of MUBs.

have been well studied in a coding theory contéxi [16]. MUBs for which the set of vectors forms a group under
Theorem 5: [24, Thms 7.12, 14.34, 14.37] The trace magpoint-wise multiplication have been studiéd [9]. Our const

tr : GR(p®,n) — GR(p*, 1) has the following properties: tion is more general in that the algebraic structure is inste

1) For allr € GR(p*,1) andz € GR(p®,n), rtr(z) = of vectors generated by point-wise multiplication.
tr(rz). _ _ / B. Counting
2) g(f)ﬁ:_ (;E;)an only if there exists3 € ' such that Much of the evidence for connections between MUBs and

geometric structures stems from similarities in cardigali
where¢ is the generalized Frobenius automorphism. Note thafe show that Proposdll 8 is plausible in general by using
GR(p*,n) = Fpn. cardinalities.

For further on Galois rings and fields we refer the reader toLemma 9:Let ¢ = p”, with p odd, each point iIlPG(q —
[24]. 1,p) is represented by — 1 vectors. The number of vectors



represented by the points in(an — 1)-dimensional subspace 2. Part 1. shows that/ is a submodule, and thus forms a
of PG(q — 1,q), with the addition of0 is the same as the subspace o]Fg". The counting results of Lemma 10 show the
number of vectors in a complete set of MUBs @ minus size of the subspace. [ ]
the standard basis. For all a,b,c,d € [y, any element inv.y € N can be
Proof: Let X be anm dimensional subspace &G (p" — constructed ag.; = 17ab©17‘gd for somev,y, U.qg € N. Thus
1,p) then there are% points, each of which may bein the definition of Proposall8Y = N’ andM = M’. Hence

represented by — 1 different vectors. Add the vectdr. (p — ProposalB holds for planar function MUBS. -
m—+41 .
)2 + 1_1 +1 = p™+L, The number of vectors in a complete Theorem 12:Let X be the complete set of MUBs i@

set 0? MUBs inC¢?, minus the standard basis ig€". Thus generated by the Alltoplcogstructiog (Tmt] 2). e X Pe
. : : the set of vectorsX = —=w? whereZ e F? . Let T = {Z:
if we require every vector in the set of MUBs to represent a_ . YdP po--- v
point in the subspace, we nee@a— 1 dimensional subspace¥y € NV}, 5" = {v0u: v, i e S} andT’ = {Z+¢: 7§ €
of PG(p" — 1,p). m I} then A
Lemma 10:Each point inPHG(2" — 1,GR(4,1)) isrep- 1) (5, ©) is anF,-module.

resented by vectors. The number of vectors represented by 2) 7" is a2n — 1 dimensional subspace &G (p" — 1, p).
the points in a2”~! dimensional subspace aPHG(2" — Proof: Let 4, U.q be as defined in equation] (2). We now
1,GR(4,1)), with the addition of2™ vectors containing no show thatS’ = N andT’ = M, with M, N from Theorem
unit elements is the same as the number of vectors if14.
complete set of MUBs irC" without the standard basis.

Proof: Let X be an m dimensional subspace of
PHG(2" —1,GR(4,1)) then there ar@™ points in each of 1 (w3(a—c)wz+(3a2—3c2+b—d)w+(a3—c3+ba—dc)) (13)
2m+1 _ 1 neighbourhoods, each of which may be represented ¢ z€F,
by 2 different vectors2.2m(2m+1 — 1) = 22(m+1) _9m+1 = which is a quadratic inz, and hence a planar function.

B

ﬁab@ﬁzd =

which, when we ad@™ vectors which are generated by nomheoren{_IlL may be used. ]

units, is the number of vectors in a complete set of MUBs ifhis highlights that structures which are not present irs set

2™, minus the standard basis. m of vectors, may be present in another way, see alsb [17]. We

C. 0dd dimensions 'Lll'ieeoerZ?re‘[%t,la"y the same proof for the MUBs generated by
We now show that for specific families of MUBs proposal Theorem 13:Let X be the complete set of MUBs i@?"

is true. generated by the construction of Theoriem 3. Detc X be

Theorem 11:Let X be the complete set of MUBs ii*"  the set of vectorst — iwﬁ where? e Fg- Let M = {7 :
generated by the planar function construction (TAm 1). Letr o N} then vd
¥ — L7 7 e P X
N C X be the set of vectorX w, Wherei € F . Let 1) (N,6) is aF,-module.

. Vd
M ={Z:w, € N}, then 2) M is a2n — 1 dimensional subspace &G (p" — 1, p).

1) (N,®) is anF,-module. Proof: 1. We use the operations and as in Theorem
2) M is a2n— 1 dimensional subspace ¢fG(p" —1,p). [I1. From equatiofl3

Proof: 1. Let ¥,;, andv.4 be given as in equatiof](1).

1 17ab©17:d =
IS S tf[(a+c)H(w)+(b+d)w}) -
VabOUeq = (w (10) 1 a—c)x —d)x? +1 PT_dP )gP 1
NN <cF, 7 “;t)r(( )z+(b—d) ) ) (14)
zclFy

with a,b,c,d € F,. Hence (U,,®v.q) € N, Upo acts as an _
identity element, Witht,, O (_a)(_s) = Too €Nsuring every with a,b,c,d € F,. Let ¢(b) = b be the Frobenius
element has an inverse; commutativity comes fin Thus automorphism[[24§7.1], thent” = ¢P (b) and hence
we have shown thatV, &) is an Abelian group (See also [10,%" (b —d) = ¢” (b) —¢” (d). Using this fact we can
Lem 2.84]). To show that it is a modulg, x N — N, let fearrange equatiof (114)

r € Fp, Letx be an operation on the sat which corresponds 5 &5 —
to scalar multiplication on the séi/. 1 Ct S e
- I'((a—c)z+(b—d)z? +(b—d)?" zP” )) (15)
T a x X w
Y, S ﬁ (wptr( (z)+b )) . (11) \/a ( P ocF,
TClyq
with a,b € F,. By Theoreni® with a,b € F,. Showing thati,, 0%, € N..As with Theorem
[11, we use the operationand see thafV is anF, module.
PRty = 2 (w})r(mn(m)”bw)) (12) 2. The proof is the same as for TheorEm 11. m
v€Fq As with TheoreniIll, we find that/ = M’ and N’ = N for

with a,b € F,. Hence for allr € F,, and vy, € N, r U € M, M’,N, N’ as in Proposdll8.
N. The properties off, ensure that the module axioms are These three structures based on finite fields all conform to
satisfied. the structure of Proposal 8.



D. Even dimensions thenGR(4,2) = Z4[f]/(h(f)), and hencdz = {0,1,£,£+3}

Theorem 14:Let X be the complete set of MUBs in'Where¢ is a root ofh(f). From equation((22)
dimensiond = 2" generated by the Galois ring C9nstructi0n - =¢t—¢t-3=1, (24)
[12]. Let N C X be the set of vector& = -Li? where

- ° Vi 2= -£=3 (25)

7€ GR(4,1)%". Let M = {7 :i® € N}, then _ _ _
1) N is aGR(4,1)-module. \I;|vence Iqu teh {tg,§+ 3t} thenzeqhuallgor}[@?_) st go ﬁolutlon.

2) M is a 2"~! dimensional subspace aPHG(2" — € require that equa iof(22) ho S Jof fixedand alr <

1,GR(4,1)). T., hence we require that = 0, which shows thatV/ is a

free submodule. And thus by construction forms a subspace

Proof: 1. Leta = a +2b, andf = c + 2d where PHG(2" — 1,GR(4,1)). The counting results of Lemma
a,b,c,d € T, the Teichmuller set offR(4,n). Then equation [0 show the size of the subspace.

u
@) becomes 1 Note that GR(p*,1) = Z,., and as with Theoreni11,
Ty = (z’tr[w]) (16) M = M’ and N = N’, thus the conditions of Proposal 8
\/2_T €Ty

are satisfied.
a € GR(4,n). Let ® be as in Proposél 8

17(1@17/3 _ \/% (itr[a+ﬂw])

IV. CONCLUSION

a7) We have shown that several sets of MUBs display the
. . algebraic structure of a module and the geometric strucitire

a0l € M. ¥ is the identity, 7,©07_, = o showing a subspace of a projective Hjelmslev geometry. There ace als
inverses, and commutativity is given by the properties @bunting results to show that this geometric structure may b

€T,

Galois rings. _ true in general. Of particular note is that these structurag
Let « be the operatiortz/2(4,1) x N that corresponds to not arise from the sets of vectors which define the MUBSs,
scalar multiplication on\/. but from the sets of vectors derived from component wise
1 f as] multiplication.
b d -7 axr . -
T % Ug :\/2—n (2 )weT We have not covered all possible constructions of MUBS,
1 — " but have shown sufficient evidence that this is a structure
=— (1 m””) 18) worthy of more thorough investigation.
VoD ( e (18) y 9 9
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