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Abstract—Mutually unbiased bases (MUBs) have been used in
several cryptographic and communications applications. There
has been much speculation regarding connections between MUBs
and finite geometries. Most of which has focused on a connection
with projective and affine planes. We propose a connection
with higher dimensional projective geometries and projective
Hjelmslev geometries. We show that this proposed geometric
structure is present in several constructions of MUBs.

I. I NTRODUCTION

Mutually unbiased bases (MUBs) are a structure first de-
fined in a quantum physics context in 1960 [22]. Since then
MUBs have been used in quantum key distribution protocols
[3], [21], and can be used to construct signal sets for commu-
nications systems [1], [7].

A basis for Cd is orthonormal if all basis vectors are
orthogonal and of unit length. Two orthonormal basesB0 and
B1 in Cd are calledmutually unbiasedif |〈φ|ψ〉|2 = 1/d for
all φ ∈ B0 andψ ∈ B1.

The maximum number of mutually unbiased bases inCd

is d + 1 [26]. A set of d + 1 MUBs is called complete,
it is complete sets of MUBs that are of most use in the
communications applications. While constructions of complete
sets of MUBs inCd are known whend is a prime power [26],
it is unknown if such complete sets exist in non-prime power
dimensions.

There has been much speculation regarding connections
between MUBs and finite geometries [2], [19], [20], [25]. Most
of this has focused on a connection with projective and affine
planes.

The evidence for connections between MUBs and finite
geometries falls into two categories: counting arguments [19],
[20], and structures which construct both MUBs and finite
geometries. These structures include planar functions [12],
[18], symplectic spreads [11] as well as specific affine planes
[8], [17].

We investigate higher dimensional projective geometries
and show that some sets of MUBs may be regarded as
subspaces. Note that in order for these higher order projective
geometries to exist, a projective plane of the appropriate size
must also exist. If all MUBs are subspaces of larger projective
geometries, then a connection between MUBs and projective
planes would be proven. Alas we do not go so far.

It has been shown that complete sets of MUBs are equiv-
alent to orthogonal decompositions of the Lie algebrasln(C)
[4], however finding orthogonal decompositions of Lie alge-
bras is as difficult a task as finding sets of MUBs. Some
work has been done classifying Lie Algebras using projective
geometry [15], but these results have as yet not been applied
to decompositions ofsln(C).

Some sets of MUBs have been show to have an Abelian
group structure [10], [13]. We go further by showing that some
complete sets of MUBs may be regarded as submodules of
the appropriate free module, and as subspaces of a projective
geometry over that module.

II. PRELIMINARIES

A. Constructions of MUBs

We investigate three non-equivalent constructions of MUBs.
This first construction is based on planar functions over a finite
field. For more on planar functions see for example [5]. Let
ωp = e

2iπ
p .

Theorem 1 (Planar function construction):[18, Thm 4.1]
Let Fq be a field of odd characteristicp. Let Π(x) be a planar
function onFq. Let Va = {vab : b ∈ Fq} be the set of vectors

~vab =
1√
q

(

ωtr(aΠ(x)+bx)
p

)

x∈Fq

(1)

with a, b ∈ Fq. The standard basisE along with the setsVa,
a ∈ Fq, form a complete set ofq + 1 MUBs in Cq.
The following construction has been shown to be equivalent
to the planar function construction when usingΠ(x) = x2

[9]. We highlight it as the submodule and subspaces structure
appear in a different way to the planar function construction.

Theorem 2 (Alltop Construction):[1] [12, Thm 1] LetFq

be a finite field of odd characteristicp ≥ 5. Let Va = {~vab :
b ∈ Fq} be the set of vectors

~vab =
1√
q

(

ωtr((x+a)3+b(x+a))
p

)

x∈Fq

(2)

with a, b ∈ Fq. The standard basisE along with the setsVa,
a ∈ Fq, form a complete set ofq + 1 MUBs in Cq.
The next construction stems from a symplectic spread.
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Theorem 3: [11, 3.5(b)] LetFpn be a field of odd char-
acteristicp, with n odd. Let s andn be coprime, such that
s < n/2. Let Va = {vab : b ∈ Fq} be the set of vectors

~vab =
1√
q

(

ωtr(ax+bxpn−s+1+bp
s
xps+1)

p

)

x∈Fq

(3)

with a, b ∈ Fq. The standard basisE along with the setsVa,
a ∈ Fq, form a complete set ofq + 1 MUBs in Cq.
The next construction uses Galois rings.

Theorem 4 (Galois ring construction):[12, Thm 3] Let
GR(4, n) be Galois ring of characteristic4 and Teichmüller
setTn. Let i = ω4 =

√
−1. Let Va = {~vab : b ∈ Tr} be the

set of vectors

~vab =
1√
2n

(

itr [(a+2b)x]
)

x∈Tn

(4)

a, b ∈ Tn. The standard basisE along with the setsVa, a ∈ Tn,
form a complete set of2n + 1 MUBs in C2n .
These are not the only known constructions of complete sets
of MUBs [11], but are good starting point for an investigation.

B. Algebraic Structures

Let R be a ring with unity, a leftR-module is an Abelian
group,M , together with a productR×M 7→M which satisfies
the following: for all ri, r2 ∈ R andai, a2 ∈M

1a =a, (5)

(r1r2)a =r1(r2a) (6)

(r1 + r2)a =r1a+ r2a (7)

r(a1 + a2) =ra1 + ra2 (8)

This is familiar as the left axioms of a vector space. AllF-
modules whereF is a field are vector spaces. Theorem 4 uses
a ring to construct MUBs, hence we need the more general
object of a module. We are only concerned with commutative
rings, thus all modules in consideration are both left and
right modules. An (left and right)R module is free if it is
isomorphic toRd for somed.

The trace map, familiar from finite fields, may also be used
in Galois rings [24,§14]. Properties of trace map forGR(4, n)
have been well studied in a coding theory context [16].

Theorem 5: [24, Thms 7.12, 14.34, 14.37] The trace map,
tr : GR(ps, n) 7→ GR(ps, 1) has the following properties:

1) For all r ∈ GR(ps, 1) and x ∈ GR(ps, n), rtr(x) =
tr(rx).

2) tr(α) = 0 if an only if there existsβ ∈ R′ such that
α = β − φ(β).

whereφ is the generalized Frobenius automorphism. Note that
GR(p1, n) ∼= Fpn .
For further on Galois rings and fields we refer the reader to
[24].

C. Geometric Structures

The geometric structures we are investigating are projective
geometries,PG(d− 1, q), defined over a finite field and pro-
jective Hjelmslev geometriesPHG(d− 1, GR(4, 1)), defined
over a Galois ring.

Let M be anR module that is a submodule ofRd. If R
is a field, then any submodule is a subspace ofRd. If R is a
Galois ring then any free submodule is a subspace ofRd [14].

Definition 6: The projective geometry constructed fromFq,
PG(d− 1, q) is the set of subspaces ofFd

q . 〈~x〉 is a point of
PG(d − 1, q) and represents all vectorsρ~x in Fd

q such that
ρ ∈ F∗

q and at least one of the entries of~x is non-zero.
Definition 7: [23] The projective Hjelmslev geometry con-

structed fromGR(4, 1), PHG(d − 1, GR(4, 1)) is the set
of subspaces ofGR(4, 1)d. 〈~x〉 is a point of PHG(d −
1, GR(4, 1)) and represents all vectorsρ~x in GR(4, 1)d such
that ρ is a unit ofGR(4, 1) and at least one of the entries of
~x is a unit ofGR(4, 1).
Note thatPG(d− 1, q) ∼= PHG(d− 1,Fq).

III. MUB S AS SUBMODULES AND SUBSPACES

A. Conjecture

Proposal 8: Let X be a complete set of MUBs which
contains the standard basis inCd. LetN be the set containing
all the vectors fromX , except the standard basis vectors. Let
the vectors inN be of the formαω~x

q whereα ∈ R, ωq is aqth

root of unity, and~x ∈ Zd
q . Let ⊙ represent component wise

multiplication, let

~v⊙̂~u =
~v ⊙ ~u

|~v ⊙ ~u| (9)

and letN ′ = {~u⊙̂~v∗ : ~u,~v ∈ N}, M = {~x : αω~x
q ∈ N}, and

M ′ = {~x−~y : ~x, ~y ∈M}. Let U ′ ⊂M ′ be the set containing
the vectors fromM ′ for which every entry is a non-unit, then

1) N ′ is aZq-module.
2) M ′ \U ′ is the set of vectors representing a subspace of

a projective geometry overZq.

We show this proposal is true for each of the constructions of
MUBs mentioned in section II-A. This proposal says nothing
about the existence of MUBs which are not constructed from
a ring. All projective geometries and projective Hjelmslev
geometries of dimension greater than 2 have an algebraic
structure [6,§1.4], [14]. It may be the same for complete sets
of MUBs.

MUBs for which the set of vectors forms a group under
point-wise multiplication have been studied [9]. Our construc-
tion is more general in that the algebraic structure is in theset
of vectors generated by point-wise multiplication.

B. Counting

Much of the evidence for connections between MUBs and
geometric structures stems from similarities in cardinality.
We show that Proposal 8 is plausible in general by using
cardinalities.

Lemma 9:Let q = pn, with p odd, each point inPG(q −
1, p) is represented byp − 1 vectors. The number of vectors



represented by the points in a(2n− 1)-dimensional subspace
of PG(q − 1, q), with the addition of~0 is the same as the
number of vectors in a complete set of MUBs inCq minus
the standard basis.

Proof: LetX be anm dimensional subspace ofPG(pn−
1, p) then there arep

m+1−1
p−1 points, each of which may be

represented byp− 1 different vectors. Add the vector~0. (p−
1)p

m+1−1
p−1 + 1 = pm+1. The number of vectors in a complete

set of MUBs inC
q, minus the standard basis isp2n. Thus

if we require every vector in the set of MUBs to represent a
point in the subspace, we need a2n−1 dimensional subspace
of PG(pn − 1, p).

Lemma 10:Each point inPHG(2n − 1, GR(4, 1)) is rep-
resented by2 vectors. The number of vectors represented by
the points in a2n−1 dimensional subspace ofPHG(2n −
1, GR(4, 1)), with the addition of2n vectors containing no
unit elements is the same as the number of vectors in a
complete set of MUBs inC2n without the standard basis.

Proof: Let X be an m dimensional subspace of
PHG(2n − 1, GR(4, 1)) then there are2m points in each of
2m+1− 1 neighbourhoods, each of which may be represented
by 2 different vectors.2.2m(2m+1 − 1) = 22(m+1) − 2m+1,
which, when we add2m vectors which are generated by non
units, is the number of vectors in a complete set of MUBs in
C2m+1

, minus the standard basis.

C. Odd dimensions

We now show that for specific families of MUBs proposal
8 is true.

Theorem 11:Let X be the complete set of MUBs inCpn

generated by the planar function construction (Thm 1). Let
N ⊂ X be the set of vectors~X = 1√

d
ω~x
p where~x ∈ Fpr

p . Let

M = {~x : ω~x
p ∈ N}, then

1) 〈N, ⊙̂〉 is anFp-module.
2) M is a 2n− 1 dimensional subspace ofPG(pn − 1, p).

Proof: 1. Let ~vab and~vcd be given as in equation (1).

~vab⊙̂~vcd =
1√
q

(

ωtr[(a+c)Π(x)+(b+d)x]
p

)

x∈Fq

(10)

with a, b, c, d ∈ Fq. Hence(~vab⊙̂~vcd) ∈ N , ~v00 acts as an
identity element, with~vab⊙̂~v((−a)(−b) = ~v00 ensuring every
element has an inverse; commutativity comes fromFq. Thus
we have shown that〈N, ⊙̂〉 is an Abelian group (See also [10,
Lem 2.84]). To show that it is a moduleFp × N 7→ N , let
r ∈ Fp, Let ⋆ be an operation on the setN which corresponds
to scalar multiplication on the setM .

r ⋆ ~vab =
1√
q

(

ω
rtr(aΠ(x)+bx)
p

)

x∈Fq

(11)

with a, b ∈ Fq. By Theorem 5

r ⋆ ~vab =
1√
q

(

ω
tr(raΠ(x)+rbx)
p

)

x∈Fq

(12)

with a, b ∈ Fq. Hence for allr ∈ Fp and~vab ∈ N , r ⋆ ~vab ∈
N . The properties ofFp ensure that the module axioms are
satisfied.

2. Part 1. shows thatM is a submodule, and thus forms a
subspace ofFpn

p . The counting results of Lemma 10 show the
size of the subspace.
For all a, b, c, d ∈ Fq, any element in~vef ∈ N can be
constructed as~vef = ~vab⊙̂~v∗cd for some~vab, ~vcd ∈ N . Thus
in the definition of Proposal 8,N = N ′ andM =M ′. Hence
Proposal 8 holds for planar function MUBs.

Theorem 12:Let X be the complete set of MUBs inCpn

generated by the Alltop construction (Thm 2). LetS ⊂ X be
the set of vectors~X = 1√

d
ω~x
p where~x ∈ Fpr

p . Let T = {~x :

ω~x
p ∈ N}, S′ = {~v⊙̂~u : ~v, ~u ∈ S} andT ′ = {~x + ~y : ~x, ~y ∈
T }, then

1) 〈S′, ⊙̂〉 is anFp-module.
2) T ′ is a 2n− 1 dimensional subspace ofPG(pn − 1, p).

Proof: Let ~vab, ~vcd be as defined in equation (2). We now
show thatS′ = N andT ′ = M , with M,N from Theorem
11.

~vab⊙̂~v∗cd =

1

q

(

ω3(a−c)x2+(3a2−3c2+b−d)x+(a3−c3+ba−dc)
p

)

x∈Fq

(13)

which is a quadratic inx, and hence a planar function.
Theorem 11 may be used.
This highlights that structures which are not present in sets
of vectors, may be present in another way, see also [17]. We
use essentially the same proof for the MUBs generated by
Theorem 3.

Theorem 13:Let X be the complete set of MUBs inCpn

generated by the construction of Theorem 3. LetN ⊂ X be
the set of vectors~X = 1√

d
ω~x
p where~x ∈ Fpr

p . Let M = {~x :

ω~x
p ∈ N} then

1) 〈N, ⊙̂〉 is a Fp-module.
2) M is a 2n− 1 dimensional subspace ofPG(pn − 1, p).

Proof: 1. We use the operationŝ⊙ and⋆ as in Theorem
11. From equation 3,

~vab⊙̂~v∗cd =

1√
q

(

ωtr((a−c)x+(b−d)xpn−s+1+(bp
s
−dps)xps+1)

p

)

x∈Fq

(14)

with a, b, c, d ∈ Fq. Let φ(b) = bp be the Frobenius
automorphism [24,§7.1], then bp

s

= φp
s−1

(b) and hence
φp

s−1

(b − d) = φp
s−1

(b) − φp
s−1

(d). Using this fact we can
rearrange equation (14)

~vab⊙̂~v∗cd =

1√
q

(

ωtr((a−c)x+(b−d)xpn−s+1+(b−d)p
s
xps+1)

p

)

x∈Fq

(15)

with a, b ∈ Fq. Showing that~vab⊙̂~v∗cd ∈ N . As with Theorem
11, we use the operation⋆ and see thatN is anFp module.

2. The proof is the same as for Theorem 11.
As with Theorem 11, we find thatM =M ′ andN ′ = N for
M,M ′, N,N ′ as in Proposal 8.

These three structures based on finite fields all conform to
the structure of Proposal 8.



D. Even dimensions

Theorem 14:Let X be the complete set of MUBs in
dimensiond = 2n generated by the Galois ring construction
[12]. Let N ⊂ X be the set of vectors~X = 1√

d
i~x where

~x ∈ GR(4, 1)2
n

. Let M = {~x : i~x ∈ N}, then

1) N is aGR(4, 1)-module.
2) M is a 2n−1 dimensional subspace ofPHG(2n −

1, GR(4, 1)).

Proof: 1. Let α = a + 2b, and β = c + 2d where
a, b, c, d ∈ Tn the Teichmuller set ofGR(4, n). Then equation
(4) becomes

~vα =
1√
2r

(

itr [αx]
)

x∈Tn

(16)

α ∈ GR(4, n). Let ⊙̂ be as in Proposal 8

~vα⊙̂~vβ = 1√
2r

(

itr [α+βx]
)

x∈Tr
(17)

~vα⊙̂~vβ ∈ M . ~v0 is the identity,~vα⊙̂~v−α = ~v0 showing
inverses, and commutativity is given by the properties of
Galois rings.

Let ⋆ be the operationGR(4, 1) × N that corresponds to
scalar multiplication onM .

r ⋆ ~vα =
1√
2n

(

irtr [αx]
)

x∈Tr

=
1√
2n

(

itr [rαx]
)

x∈Tr

(18)

and hencer ⋆ ~vα ∈ M , for all r ∈ GR(4, 1). HenceM is a
submodule.

2. Part 1. shows thatM is a module. To showM is free
we need that for every~v such that2~v = 0, there exists~u such
that 2~u = ~v. Thus we require that ifα is such that

2tr(αx) = tr(2αx) = 0 (19)

for all x ∈ Tn, then there existsβ ∈ M such thatα = 2β.
Reverting to the p-adic notation, letα = a+2b andβ = c+2d,
then2α = 0 + 2a and2β = 0 + 2c. Hence we need to show
that if tr(2ax) = 0 for all x ∈ Tn, thena = 0.

Using Theorem 5.2, we see that this is equivalent to showing
that for allx ∈ Tn, there existsγ = (e+2f) ∈ GR(4, n) such
that

2ax = e+ 2f − φ(e+ 2f) (20)

2ax = e+ 2f − e2 − 2f2 (21)

wherea, x, e, f ∈ Tn. This simplifies to

ax = f − f2 (22)

If a = 0, then we have solved our problem. Assumea 6= 0,
then there existsx ∈ Tn such thatax = 1. Thus we require a
solution to

0 = f2 − f + 1 (23)

This is a monic irreducible polynomial of degree2, and hence
has possible solution only inGR(4, 2). Let h(f) = f2−f+1,

thenGR(4, 2) = Z4[f ]/(h(f)), and henceT2 = {0, 1, ξ, ξ+3}
whereξ is a root ofh(f). From equation (22)

ξ − ξ2 =ξ − ξ − 3 = 1, (24)

ξ2 − ξ4 =ξ2 − ξ = 3. (25)

Hence ifax ∈ {ξ, ξ + 3} then equation (22) has no solution.
We require that equation (22) holds for fixeda and all x ∈
Tn, hence we require thata = 0, which shows thatM is a
free submodule. And thus by construction forms a subspace
of PHG(2n − 1, GR(4, 1)). The counting results of Lemma
10 show the size of the subspace.
Note that GR(ps, 1) ∼= Zps , and as with Theorem 11,
M = M ′ andN = N ′, thus the conditions of Proposal 8
are satisfied.

IV. CONCLUSION

We have shown that several sets of MUBs display the
algebraic structure of a module and the geometric structureof
a subspace of a projective Hjelmslev geometry. There are also
counting results to show that this geometric structure may be
true in general. Of particular note is that these structuresmay
not arise from the sets of vectors which define the MUBs,
but from the sets of vectors derived from component wise
multiplication.

We have not covered all possible constructions of MUBs,
but have shown sufficient evidence that this is a structure
worthy of more thorough investigation.
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