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Abstract—We study the moderate-deviations (MD) setting for
lossy source coding of stationary memoryless sources. More
specifically, we derive fundamental compression limits of source
codes whose rates areR(D) ± ǫn, where R(D) is the rate-
distortion function and ǫn is a sequence that dominates

√

1/n.
This MD setting is complementary to the large-deviations and
central limit settings and was studied by Altug and Wagner for
the channel coding setting. We show, for finite alphabet and
Gaussian sources, that as in the central limit-type results, the
so-called dispersion for lossy source coding plays a fundamental
role in the MD setting for the lossy source coding problem.

Index Terms—Moderate-deviations, rate-distortion, dispersion.

I. I NTRODUCTION

Rate-distortion theory [1] consists in finding the optimal
compression rate for a sourceX ∼ P subject to the condition
that there exists a code which can reproduce the source to
within a distortion levelD. The optimal compression rate for
the distortion levelD is known as therate-distortion function
R(P,D). This function can be expressed as the minimization
of mutual information over test channels [1].

It is also of interest to study the excess distortion probability
for codes at rateR > R(P,D). This is the probability
that the average distortion betweenXn and its reconstruction
X̂n exceedsD. The exact exponential rate of decay of this
probability was derived by Marton [2] for discrete memoryless
sources (DMSs). This was extended to Gaussian [3] and
general sources [4]. These results belong to the theory oflarge-
deviations(LD) and are reviewed in Section II.

With the revival of interest in second-order coding rates
and dispersion analysis [5]–[7], various researchers havealso
studied the fundamental limit of lossy compression subject
to the condition that the probability of excess distortion is
no larger thanǫ > 0. In particular, it was shown in [8] and
independently in [9], [10] that

R(n,D, ǫ) ≈ R(P,D) +

√

V (P,D)

n
Q−1(ǫ), (1)

where R(n,D, ǫ) is the optimal rate of compression of a
memoryless source at blocklengthn and V (P,D) is known
as thedispersionof the source. Eq. (1) holds true for both
discrete and Gaussian sources and belongs to the realm of
central limit theorem(CLT)-style results.

In this paper, we operate in a moderate-deviations (MD)
regime [11, Section 3.7] that “interpolates between” the LD

and CLT regimes. In particular, we study the performance of
source codes of ratesRn = R(P,D) ± ǫn where ǫn is a
sequence that is asymptotically larger than

√

1/n (cf. (1)).
Our results apply to both finite alphabet and Gaussian sources
but do not reduce to the LD or CLT settings. Moreover, neither
the LD nor CLT results specialize to our setting. We show that
the dispersionV (P,D) also plays a fundamental role in this
MD setting. Besides studying the excess distortion probability,
we also study the complementary probability (also termed the
probability of correct decoding) for codes whose rates are
below the rate-distortion function. Similarly, the fundamental
nature of the dispersion is revealed.

This work is inspired by the work on MD in the context
of channel coding [12], [13]. It was shown in [12] that for
positivediscrete memoryless channels (i.e.,W (y|x) > 0 for
all x, y), the dispersion also governs the “MD exponent”

lim
n→∞

1

nǫ2n
log e(fn, ϕn,W ) = − 1

2V (W )
. (2)

The direct part was proved by considering the Taylor ex-
pansion of Gallager’s random coding exponent. We also use
this proof strategy. In [13], several assumptions in [12] were
relaxed and the relations between the MD and CLT were
clarified. Concurrent to this work, Sason [14] studied MD
for binary hypothesis testing. Finally, we mention that He et
al. [15] studied the redundancy of the Slepian-Wolf problem
which is also related to [8]–[10] and to the current problem.

II. SYSTEM MODEL AND BASIC DEFINITIONS

Let P(X ) be the set of probability mass functions supported
on the finite alphabetX . Let Pn(X ) ⊂ P(X ) be the set ofn-
types. For a typeQ ∈ Pn(X ), let T n

Q be the set of sequences
xn of type Q, i.e., the type class. The reproduction alphabet
is denoted asX̂ . In addition, letd : X × X̂ → R

+ be a
distortion measure such that for everyx ∈ X , there exists an
x̂0 ∈ X̂ for which d(x, x̂0) = 0. The average distortion is
d(xn, x̂n) := 1

n

∑n
i=1 d(xi, x̂i). For a functionf : A → B,

the notation‖f‖ := |f(A)| denotes the cardinality of its range.
A DMS Xn ∼

∏n
i=1 P (xi) is described at rateR by an

encoder. The decoder receives the description index over a
noiseless link and generates a reconstruction sequenceX̂n ∈
X̂n. We now remind the reader of the rate-distortion problem.

Definition 1. A rate-distortion codeconsists of (i) an encoder
fn : Xn → Mn and (ii) a decoderϕn : Mn → X̂n. Therate
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of the code isRn := 1
n log |Mn|.

The rate-distortion functionR(P,D) is defined as the
infimum of all numbersR for which there exists codes
{(fn, ϕn)}n∈N for which theprobability of excess distortion

e(fn, ϕn, P,D) := P(d(Xn, ϕn(fn(X
n))) > D) (3)

is arbitrarily small for sufficiently large blocklengthsn. The
rate-distortion function [1] can be expressed as

R(P,D) = min
W :E[d(X,X̂)]≤D

I(P,W ), (4)

where E[d(X, X̂)] :=
∑

x,x̂ P (x)W (x̂|x)d(x, x̂). Another
fundamental quantity introduced by Ingber and Kochman [8]
is thedispersion for lossy source coding

V (P,D) := VarX [R′(X ;P,D)], (5)

whereR′(x;P,D) = ∂
∂P (x)R(P,D) for x ∈ X is the partial

derivative of the rate-distortion function w.r.t.P (x) (assuming
it exists). In (5), the variance is taken w.r.t. the distribution P
andR′(X ;P,D) is a function of the random variableX . In
fact, the termdispersionis usually an operational one but since
it was shown in [8] that the operational defintion coincides
with the one in (5), we will abuse terminology and use the
generic term dispersion for both quantities.

We analyzee(fn, ϕn, P,D) in the so-called MD regime
where the rate of the codeRn := 1

n log ‖fn‖ = R(P,D)+ ǫn
for some sequenceǫn. Clearly, if ǫn → 0, then Rn →
R(P,D). When the rate of the codeR is a constant strictly
aboveR(P,D), Marton [2] showed that

lim
n→∞

1

n
log e(fn, ϕn, P,D) = −F (P,R,D), (6)

whereMarton’s exponentis defined as

F (P,R,D) := min
Q∈P(X ):R(Q,D)≥R

D(Q ||P ). (7)

The exponent is positive forR > R(P,D). One can also con-
sider theprobability of correct decoding1− e(fn, ϕn, P,D).
In [16, pp. 156], it was shown that:

lim
n→∞

1

n
log (1− e(fn, ϕn, P,D)) = −G(P,R,D), (8)

where theexponent for correct decodingis

G(P,R,D) := min
Q∈P(X ):R(Q,D)≤R

D(Q ||P ). (9)

The exponent is positive forR < R(P,D). These limits
and exponents are Sanov-like LD results [11]. We present
MD versions of Marton’s and Iriyama’s results where the
normalizations in (6) and (8) need not be1n .

III. D ISCRETEMEMORYLESSSOURCES(DMS)

Our main result for a DMS with bounded distortion measure
(i.e. d : X × X̂ → [0, dmax]) is stated as follows:

Theorem 1. Let ǫn be any positive sequence satisfying

lim
n→∞

ǫn = 0, lim
n→∞

nǫ2n
logn

= ∞. (10)

That is, ǫn = ω(( log n
n )1/2) ∩ o(1). Assume thatR(Q,D)

is twice differentiable w.r.t.Q in a neighborhood ofP
and V (P,D) > 0. There exists a rate-distortion code
{(fn, ϕn)}n∈N with rates 1

n log ‖fn‖ ≤ R(P,D) + ǫn such
that

lim sup
n→∞

1

nǫ2n
log e(fn, ϕn, P,D) ≤ − 1

2V (P,D)
. (11)

Furthermore, every rate-distortion code{(fn, ϕn)}n∈N with
rates 1

n log ‖fn‖ ≤ R(P,D) + ǫn must satisfy

lim inf
n→∞

1

nǫ2n
log e(fn, ϕn, P,D) ≥ − 1

2V (P,D)
. (12)

Though somewhat ungainly, the log factor in (10) appears to
be essential because the proof hinges on the method of types.
So our analysis does not completely close the gap between
the CLT and LD regimes. This log factor is unnecessary in
the Gaussian case as will be seen in Theorems 5 and 6.
Theorem 1 means that if the dispersionV (P,D) is small,
the “MD exponent” (2V (P,D))−1 is large, corresponding
to a faster decay in the excess distortion probability. This
has the same interpretation as in the CLT regime (1). As an
example, for the Bernoulli source with Hamming distortion,
the dispersion can be computed as

V (Bern(α), D) = α(1 − α) log2
(

1− α

α

)

. (13)

The parameter that maximizes (resp. minimizes)V (P,D) is
α ≈ 0.0832 (resp.α = 0, 0.5). Thus, the “MD exponent” is
maximized when the source is deterministic or has maximum
entropy. The proof uses the following lemma, whose proof
is essentially identical to that of [17, Theorem 8], where the
divergence and the constraint set in (7) are approximated by
a quadratic and an affine subspace respectively.

Lemma 2. If the limit exists, Marton’s exponent satisfies

lim
δ→0

F (P,R(P,D) + δ,D)

δ2
=

1

2V (P,D)
. (14)

In the sequel, we assume that the limit in (14) exists.
Otherwise, the results are modified accordingly by considering
the upper and lower limits in (14) and replacing the dispersion
by its upper and lower limit versions. We first prove the direct
part of Theorem 1 in (11) followed by the converse in (12).

Proof: The code construction proceeds along the lines of
that in [8]. Fix a sequenceǫn satisfying (10). From the refined
type covering lemma by Berger (stated in [18]), for every type
Q ∈ Pn(X ) there exists a setCQ that completelyD-covers
T n
Q (i.e., for everyxn ∈ T n

Q there exists an̂xn ∈ CQ such that
d(xn, x̂n) ≤ D) andCQ has rate

1

n
log |CQ| ≤ R(Q,D) + J(|X |, |X̂ |) log n

n
. (15)

whereJ is some function of the size of the alphabets. Consider
the setC that that is the union of all sets thatD-cover the types
Q ∈ Un(D, ǫn), defined as

Un(D, ǫn) :=
{

Q ∈Pn(X ) : R(Q,D) < R(P,D) + ǫ′n,

‖Q− P‖1 ≤ ǫn/
√

V (P,D)
}

. (16)



whereǫ′n := ǫn − J(|X |, |X̂ |) log n
n − |X | log(n+1)

n . The second
constraint on theℓ1 distance of the typeQ to the true
distributionP is to ensure thatR( · , D) is differentiable. This
is also done in [15, Theorem 4]. Note that ifǫn satisfies (10)
so doesǫ′n. Now, consider the size ofC:

|C| =
∑

Q∈Pn(X ):R(Q,D)<R(P,D)+ǫ′
n

|CQ|

≤ (n+ 1)|X | exp

[

n

(

R(Q∗, D) + J(|X |, |X̂ |) logn
n

)]

≤ exp [n (R(P,D) + ǫn)] (17)

The first inequality applies (15) and the type counting lemma.
Furthermore,Q∗ is the dominating type. The second inequality
applies the definitions ofUn andǫ′n. Takefn to be the function
that maps a sequencexn ∈ Xn with typePxn to a predefined
index in C = ∪Q∈Un

CQ and takeϕn to be the function that
maps the index to the reproduction sequence inCP

x
n

thatD-
coversxn. Now, we evaluate the error probability, which is
thePn-probability of the types not inUn(D, ǫn). Consider,

P(R(PXn , D) ≥ R(P,D) + ǫ′n)

≤
∑

Q∈Pn(X ):R(Q,D)≥R(P,D)+ǫ′
n

Pn
(

T n
Q

)

≤
∑

Q∈Pn(X ):R(Q,D)≥R(P,D)+ǫ′
n

exp(−nD(Q ||P ))

≤ (n+ 1)|X | exp[−nF (P,R(P,D) + ǫ′n, D)], (18)

where we applied the type counting lemma and the definition
of Marton’s exponent in the last line. Next, from [19],

P(‖PXn − P‖1 > ǫn/
√
V ) ≤ 2|X | exp

[

−nǫ2n/(2V )
]

. (19)

Combining (18) and (19) with the union bound,

e(fn, ϕn, P,D)

≤ 2 exp

[

−n

(

ǫ′2n
2V (P,D)

− o(ǫ′2n )−
|X | log(n+ 1)

n

)]

,

where we invoked Lemma 2 withǫ′n = o(1) in the role ofδ.
Now, we take the logarithm and normalize bynǫ2n to assert the
achievability part of the theorem in (11). Note that we used
the fact thatlogn

nǫ2
n

→ 0.
Now for the converse, we fix a code{(fn, ϕn)}n∈N of rate

Rn = 1
n log ‖fn‖ ≤ R(P,D) + ǫn and observe that

e(fn, ϕn, P,D) ≥ P(d(Xn, X̂n) > D|EΨn
)P(EΨn

). (20)

where the eventEΨn
:= {R(PXn , D) ≥ Rn +Ψn} andPXn

is the type ofXn. From the converse of the type covering
lemma [20, Lemma 3], for any typeQ ∈ Pn(X ) such that
R(Q,D) > R, the fraction ofT n

Q that is covered by any set
is no greater thanexp[−n(R(Q,D)−R+K(|X |, |X̂ |) logn

n )].
Hence, the first term above can be bounded as

P(d(Xn, X̂n) > D|EΨn
)

≥ 1− exp

[

−n

(

Ψn +K(|X |, |X̂ |) logn
n

)]

(21)

PutΨn := (K(|X |, |X̂ |) + 1) logn
n . Then, (21) yields

P(d(Xn, X̂n) > D|EΨn
) ≥ 1− 1

n
≥ 1

2
. (22)

Hence, it remains to bound the second term in (20). Letǫ′n :=
ǫn +Ψn and consider,

Pn(EΨn
) = P(R(PXn , D)−R(P,D) ≥ R−R(P,D)+Ψn)

≥ P(R(PXn , D)−R(P,D) ≥ ǫn +Ψn)

=
∑

Q∈Pn(X ):R(Q,D)≥R(P,D)+ǫ′
n

Pn(T n
Q )

≥
∑

Q∈Pn(X ):R(Q,D)≥R(P,D)+ǫ′
n

exp(−nD(Q ||P ))

(n+ 1)|X |

≥ (n+ 1)−|X | exp
[

−nD(Q(n) ||P )
]

(23)

where the first inequality is from the definition ofRn ≤
R(P,D) + ǫn and in the last inequality we defined the type
Q(n) := argminQ∈Pn(X ):R(Q,D)≥R(P,D)+ǫ′

n

D(Q ||P ). In the
appendix, we prove the following key continuity statement.

Lemma 3. If ǫ′n satisfies(10), the typesQ(n) satisfy

lim
n→∞

D(Q(n) ||P )

F (P,R(P,D) + ǫ′n, D)
= 1. (24)

Let η > 0. For n large enough, the ratio in (24) is smaller
than1 + η. Uniting (20) – (24) yields

e(fn, ϕn, P,D)

≥ 1

2
(n+ 1)−|X | exp[−n(1 + η)F (P,R(P,D) + ǫ′n, D)]

≥ 1

2
(n+ 1)−|X | exp

[

−n(1 + η)

(

ǫ′2n
2V (P,D)

+ o(ǫ′2n )

)]

.

The last inequality is an application of Lemma 2 withǫ′n =
o(1) in the role ofδ. Now, we take the logarithm and normalize
by nǫ2n to establish the converse noting thatη is arbitrary,
Ψn = O( log n

n ) and logn
nǫ2

n

→ 0. The latter allows us to assert
that ǫ′n/ǫn → 1.

Note that themultiplicative nature of (24) is necessary to
establish Theorem 1. The analysis for the probability of correct
decoding1− e(fn, ϕn, P,D) in the MD regime is analogous
and is stated in the following:

Theorem 4. Let ǫn be any positive sequence satisfying(10).
Assume thatR(Q,D) is twice differentiable w.r.t.Q in a neigh-
borhood ofP andV (P,D) > 0 There exists a rate-distortion
code{(fn, ϕn)}n∈N with rates 1

n log ‖fn‖ ≥ R(P,D) − ǫn
such that

lim inf
n→∞

1

nǫ2n
log (1 − e(fn, ϕn, P,D)) ≥ − 1

2V (P,D)
. (25)

Furthermore, every rate-distortion code{(fn, ϕn)}n∈N with
rates 1

n log ‖fn‖ ≥ R(P,D)− ǫn must satisfy

lim sup
n→∞

1

nǫ2n
log (1 − e(fn, ϕn, P,D)) ≤ − 1

2V (P,D)
. (26)

Proof: Similar to Theorem 1.



IV. QUADRATIC GAUSSIAN SOURCE CODING

We now turn our attention to the quadratic Gaussian setting
whereXn is a length-n vector whose entries are identically
distributed as zero-mean Gaussians with varianceσ2. The
distortion measure isd(x, x̂) := (x − x̂)2. It is known [1]
that in this case, the rate-distortion function takes the form

R(σ2, D) =
1

2
logmax

{

1,
σ2

D

}

. (27)

Furthermore, Ihara and Kubo [3] showed that the analogue of
Marton’s exponent in (7) also holds in the Gaussian setting.
Indeed, it is shown that the excess distortion exponent is

F (σ2, R,D) =
1

2

[

D

σ2
e2R − 1− log

(

D

σ2
e2R
)]

. (28)

wheneverR > R(σ2, D) and zero otherwise. The exponent for
correct decodingG(σ2, R,D) takes the same form as in (28)
when R < R(σ2, D) and zero otherwise. In this case, it
is easy to show by direct differentiation ofF (σ2, R,D) (or
G(σ2, R,D)) that the dispersion for lossy source coding is

V (σ2, D) =
1

2
, (29)

for all σ2 and allD. In analogy to Theorem 1, we have the
following in the quadratic Gaussian setting:

Theorem 5. Let ǫn be any positive sequence satisfying

lim
n→∞

ǫn = 0, lim
n→∞

nǫ2n = ∞. (30)

There exists a rate-distortion code{(fn, ϕn)}n∈N with rates
1
n log ‖fn‖ ≤ R(σ2, D) + ǫn such that

lim sup
n→∞

1

nǫ2n
log e(fn, ϕn, σ

2, D) ≤ −1. (31)

Furthermore, every rate-distortion code{(fn, ϕn)}n∈N with
rates 1

n log ‖fn‖ ≤ R(P,D) + ǫn must satisfy

lim inf
n→∞

1

nǫ2n
log e(fn, ϕn, σ

2, D) ≥ −1. (32)

In contrast to the DMS case, the dispersion for the quadratic
Gaussian case (29) is constant. Hence, the exponents in (31)
and (32) are also constant. Also note from (30) that the
requirement onǫn is less stringent than in the DMS case (10).
In particular, the log factor is no longer required. This is
because the method of types is not used in the proof.

Proof: Fix the sequenceǫn. For the direct part, let us
consider the set of “empirical variances”

Un(D, ǫn) :=
{

σ̂2 : |R(σ̂2, D)−R(σ2, D)| < ǫ′n
}

, (33)

where ǫ′n := ǫn − 5 logn
2n − log 6

n . By using the definition of
R(σ2, D) in (27), it is easy to see that̂σ2 ∈ Un if and only
if e−2ǫ′

n < σ̂2/σ2 < e2ǫ
′

n . We now use a result by Verger-
Gaugry [21, Theorem 1.2], which in our context, says that
6n5/2(σ2e2ǫ

′

n/D)n/2 reconstruction points suffice toD-cover
length-n vectorsxn whose empirical variance1n

∑

i x
2
i ∈ Un.

Hence, the size of the code is bounded as

|C| ≤ 6n5/2(σ2e2ǫ
′

n/D)n/2 ≤ exp(n(R(σ2, D) + ǫn)), (34)

where we used the definition ofǫ′n. Hence, the rateRn ≤
R(σ2, D) + ǫn as required. For the probability of excess
distortion, we have

e(fn, ϕn, σ
2, D) = P

(

1

n

n
∑

i=1

X2
i /∈ Un

)

≤ P

(

1

n

n
∑

i=1

X2
i > σ2e2ǫ

′

n)

)

+ P

(

1

n

n
∑

i=1

X2
i < σ2e−2ǫ′

n

)

≤ 4 exp
[

−n

2

(

e2ǫ
′

n − 1− 2ǫ′n

)]

. (35)

The first inequality is by the definition ofUn and the union
bound. The second is an application of the upper bound of
Cramér’s theorem [11] applied to theχ2

1-random variables
X2

i /σ
2. Now note from Taylor’s theorem thate2ǫ

′

n−1−2ǫ′n =
2ǫ′2n + o(ǫ′2n ). Taking the logarithm, normalizing bynǫ2n and
taking the upper limit of (35) yields the desired result in (31).

We now turn our attention to the converse. The gist of the
proof follows from the converse in [3] but, as we shall see,
the error probability analysis is more intricate. Fix codesof
ratesRn = 1

n log ‖fn‖ ≤ R(σ2, D) + ǫn. Let the repro-
duction sequences be denoted asx̂n(m),m ∈ Mn. Also,
let An := ∪m∈Mn

Bn(x̂
n(m),

√
D) whereBn(c

n, r) is the
n-dimensional ball centered atcn with radius r. Now, let
γn > 0 be such thatVol(Bn(0, γn)) = Vol(An). Clearly,
Vol(An) ≤ |Mn|Vol(Bn(0,

√
D)). SinceRn = 1

n log |Mn|,

enRn ≥ Vol(An)

Vol(Bn(0,
√
D))

=
Vol(Bn(0, γn))

Vol(Bn(0,
√
D))

=

(

γn√
D

)n

.

Hence, we haveR(σ2, D) + ǫn ≥ Rn ≥ 1
2 log

γ2

n

D , i.e.,

γn ≤ σ2e2ǫn . (36)

The probability of excess distortion can be lower bounded as:

e(fn, ϕn, σ
2, D) = P(Xn /∈ An) ≥ P(Xn /∈ Bn(0, γn)).

Now define the random variablesYi := X2
i /σ

2 and note that
theYi’s areχ2

1-distributed. With this notation, and using (36),

e(fn, ϕn, σ
2, D)≥P

(

1

n

n
∑

i=1

Yi>
γn
σ2

)

≥P

(

1

n

n
∑

i=1

Yi>e2ǫn

)

.

Recall that for theχ2
1-distribution, the cumulant generating

function isΛ(θ) = − 1
2 log(1 − 2θ) and the rate function is

I(y) = maxθ{θy−Λ(θ)} = 1
2 (y− 1)− 1

2 log y. Furthermore,
θ∗(y) := 1

2 (1− 1
y ) is the maximizer. Using the standard change

of measure technique for the lower bound in Cramér’s theorem
(see proof of [11, Theorem 2.2.3]),

e(fn, ϕn, σ
2, D) ≥ βn exp

[

−nI(e2ǫn)− n

2
(1− e−2ǫn)τn

]

,

whereβn := P( 1n
∑n

i=1 Ỹi ∈ (e2ǫn , e2ǫn + τn)) and τn is a
sequence to be chosen. The random variablesỸi have (tilted)
distributionq(ỹ) := exp[θ∗(e2ǫn)ỹ − Λ(θ∗(e2ǫn))]p(ỹ) where



p( · ) is theχ2
1 distribution of theYi’s. By the choice ofq( · ),

Eq[Ỹi] = e2ǫn . Put τn := ζǫn for someζ > 0. Then,

1− βn ≤ P

(

1

n

n
∑

i=1

Ỹi ≤ e2ǫn

)

+P

(

1

n

n
∑

i=1

Ỹi ≥ e2ǫn + τn

)

≤ 1

2
+

32√
n
+

2

nτ2n
=

1

2
+

32√
n
+

2

nζ2ǫ2n
,

where in the second inequality, we applied the Berry-Esséen
theorem to the first term (the third moment ofỸi is 15e−7ǫn)
and Chebyshev’s inequality to the second. By (30),βn → 1

2
from below. With this choice ofτn, for n sufficiently large,

e(fn, ϕn, σ
2, D) ≥ 1

4
exp

[

−nǫ2n(1 + ζ + o(1))
]

, (37)

where applied the factsI(e2ǫn) = ǫ2n+o(ǫ2n) and1−e−2ǫn =
2ǫn + o(ǫn). The converse in (32) follows by taking the
logarithm, normalizing bynǫ2n, taking n → ∞, and finally
taking ζ → 0.

The MD setting for the probability of correct decoding of
Gaussian sources can also analyzed analogously:

Theorem 6. Let ǫn be any positive sequence satisfying(30).
There exists a rate-distortion code{(fn, ϕn)}n∈N with rates
1
n log ‖fn‖ ≥ R(σ2, D)− ǫn such that

lim inf
n→∞

1

nǫ2n
log (1− e(fn, ϕn, σ

2, D)) ≥ −1. (38)

Furthermore, every rate-distortion code{(fn, ϕn)}n∈N with
rates 1

n log ‖fn‖ ≥ R(σ2, D)− ǫn must satisfy

lim sup
n→∞

1

nǫ2n
log (1− e(fn, ϕn, σ

2, D)) ≤ −1. (39)

Proof: Similar to Theorem 5 and uses ideas in [3].

V. CONCLUSION

In this paper, we analyzed the MD regime for lossy source
coding. In analogy to (2), we showed for discrete sources that

lim
n→∞

1

nǫ2n
log e(fn, ϕn, P,D) = − 1

2V (P,D)
(40)

and for Gaussian sources the RHS of (40) is equal to−1
independent of the varianceσ2 and the distortion levelD.
As in [8]–[10], this reveals that the fundamental nature of the
dispersion in the lossy source coding context. There are at
least three avenues for future research: (i) Can the resultsbe
applied to, for instance, general sources as in [4]? (ii) Can
similar analysis of the MD setting be applied to lossy source
coding problems withside information, e.g., the Wyner-Ziv
problem? (iii) What is the exact relationship between the MD
and CLT regimes cf. [13]?

APPENDIX: PROOF OFLEMMA 3

Proof: The rate-distortion function is uniformly continu-
ous. Specifically,R(Q,D)−R(P,D) = O(‖Q−P‖1 log ‖Q−
P‖1) [22]. Also, minQ∈Pn(X ) ‖Q − P‖1 ≤ |X |/n for any
P ∈ P(X ) [11, Lemma 2.1.2] sominQ∈Pn(X )R(Q,D) −
R(P,D) = O( log n

n ) which is asymptotically dominated by

ǫ′n = ω(( logn
n )1/2). Thus, there existn-types in the regular-

closed set{Q ∈ P(X ) : R(Q,D) − R(P,D) ≥ ǫ′n}
for n large. Let Marton’s exponent beD(Q

(n)
M ||P ) =

F (P,R(P,D) + ǫ′n, D). Then, notice that

D(Q(n) ||P )

D(Q
(n)
M ||P )

=
D(Q(n) ||P )−D(Q

(n)
M ||P )

D(Q
(n)
M ||P )

+ 1. (41)

The numerator of the first term on the RHS in (41) isO( 1
n )

because|D(Q(n) ||P )−D(Q
(n)
M ||P )| = O(‖Q(n) −Q

(n)
M ‖1)

and‖Q(n)−Q
(n)
M ‖1 = O( 1n ). From Lemma 2, the denominator

(Marton’s exponent) scales asǫ′2n /(2V (P,D)) = ω( logn
n ).

Thus, the first term in (41) tends to zero and the ratio of the
divergence in (23) and Marton’s exponent tends to one.
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[13] Y. Polyanskiy and S. Verdú, “Channel dispersion and moderate devia-
tions limits for memoryless channels,” inAllerton Conference, 2010.

[14] I. Sason, “On Refined Versions of the Azuma-Hoeffding Inequality with
Applications in Information Theory,”arXiv:1111.1977, Nov 2011.

[15] D.-K. He, L. A. Lastras-Montaño, E.-H. Yang, A. Jagmohan, and
J. Chen, “On the redundancy of Slepian-Wolf coding,”IEEE Trans. on
Inf. Th., vol. 55, no. 12, pp. 5607–27, Dec 2009.

[16] I. Csiszár and J. Korner,Information Theory: Coding Theorems for
Discrete Memoryless Systems. Akademiai Kiado, 1997.

[17] V. Y. F. Tan, A. Anandkumar, L. Tong, and A. S. Willsky, “Alarge-
deviation analysis for the maximum likelihood learning of Markov tree
structures,”IEEE Trans. on Inf. Th., vol. 57, no. 3, pp. 1714–35, Mar
2011.

[18] B. Yu and T. P. Speed, “A rate of convergence result for a universal d-
semifaithful code,”IEEE Trans. on Inf. Th., vol. 39, no. 3, pp. 813–820,
Mar 1997.

[19] T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu, and M. L. Wein-
berger, “Inequalities for thel1 deviation of the empirical distribution,”
Hewlett-Packard Labs, Tech. Rep., 2003.

[20] Z. Zhang, E.-H. Yang, and V. K. Wei, “The redundancy of source coding
with a fidelity criterion: Known statistics,”IEEE Trans. on Inf. Th.,
vol. 43, no. 1, pp. 71–91, Jan 1997.

[21] J. L. Verger-Gaugry, “Covering a ball with smaller equal balls in R
n,”

Disc. and Comp. Geom., vol. 33, no. 1, pp. 143–155, 2005.
[22] H. Palaiyanur and A. Sahai, “On the uniform continuity of the rate-

distortion function,” inInt. Symp. Inf. Th., 2008.


	I Introduction
	II System Model and Basic Definitions
	III Discrete Memoryless Sources (DMS)
	IV Quadratic Gaussian Source Coding
	V Conclusion
	References

