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Abstract—We study the moderate-deviations (MD) setting for and CLT regimes. In particular, we study the performance of
Iossy.f.soltljrce cc(;ding ?f Ztationar?/ memoryllessl.so.urcefs. Moresource codes of rateR,, = R(P,D) + ¢, wheree, is a
specifically, we derive fundamental compression limits ofaurce i ;
codes whose rates areR(D) + ¢,, where R(D) is the rate- éequenci that IIS tasg/n:r[])t?tl_(:[;all)/l Iﬁr%ert th%ﬁé_n (Cf.' @).
distortion function and e, is a sequence that dominates/1/n. ur results apply to both finite aiphabeét and f>aussian seurce
This MD setting is complementary to the large-deviations ad Put do not reduce to the LD or CLT settings. Moreover, neither
central limit settings and was studied by Altug and Wagner fo  the LD nor CLT results specialize to our setting. We show that
the channel coding setting. We show, for finite alphabet and the dispersiorl/ (P, D) also plays a fundamental role in this
Gaussian sources, that as in the central limit-type resultsthe \p setting. Besides studying the excess distortion prdiwgbi

so-called dispersion for lossy source coding plays a fundantal e
role in the MFI)D setting for th)é lossy sourcegcgdixg problem. we also study the complementary probability (also termed th

Index Terms—Moderate-deviations, rate-distortion, dispersion. probability of correct decoding) for codes whose rates are
belowthe rate-distortion function. Similarly, the fundamental

nature of the dispersion is revealed.
|. INTRODUCTION This work is inspired by the work on MD in the context
Rate-distortion theory [1] consists in finding the optimadf channel coding[[12],[[13]. It was shown in_[12] that for
compression rate for a souréé ~ P subject to the condition positivediscrete memoryless channels (i.8/,(y|x) > 0 for
that there exists a code which can reproduce the sourceatbz,y), the dispersion also governs the “MD exponent”
within a distortion levelD. The optimal compression rate for 1 1
the distortion levelD is known as theate-distortion function lim —loge(fn, on, W) = V) )

n—o0 nen
R(P, D). This function can be expressed as the minimizatior‘h i d b ideri h |
of mutual information over test channelg [1]. The direct part was proved by considering the Taylor ex-

It is also of interest to study the excess distortion proliigbi pansion of Gallager's random coding expoqent. _We also use
for codes at rateR > R(P,D). This is the probability this proof strategy. In _[13], several assumptionslin| [12}ave
that the average distortion betwedi' and its reconstruction '€/axed and the relations between the MD and CLT were
X" exceedsD. The exact exponential rate of decay of thigla”f!ed' Concurren_t to th's quk, Sason [14]_ studied MD
probability was derived by Martofi[2] for discrete memogge for binary hypothe3|s testing. Finally, we mgntlon that He e
sources (DMSs). This was extended to Gaussién [3] afh _[15]_ studied the redundancy of the Slepian-Wolf problem
general source5[4]. These results belong to the thedaygs- which is also related ta [8]=[10] and to the current problem.
deviations(LD) and are reviewed in Sectidn] II. 1. SYSTEM MODEL AND BASIC DEFINITIONS

With the revival of interest in second-order coding rates
and dispersion analysis|[5]2[7], various researchers latse
studied the fundamental limit of lossy compression subj
to the condition that the probability of excess distortien
no larger thare > 0. In particular, it was shown ir_[8] and
independently in[[9],[[10] that

Let P(X) be the set of probability mass functions supported
on the finite alphabet’. Let P,,(X) C P(X) be the set of.-
eﬁ}pes. For a typ&) € P, (&), let 75 be the set of sequences
'zn of type @, i.e., the type class. The reproduction alphabet
is denoted ast. In addition, letd : X x X — Rt be a
distortion measure such that for everye X, there exists an
. &9 € X for which d(z,zp) = 0. The average distortion is
Q™ (o), 1) d(z",&") = L 3" d(x;, &). For a functionf : A — B,

. : . the notation| f|| := | f(A)| denotes the cardinality of its range.
where R(n, D, ¢€) is the optimal rate of compression of a A DMS X" ~ []", P(x:) is described at rat& by an

memoryless source at blocklengthand V(P D) is known ncoder. The decoder receives the description index over a

: . e
as thedispersionof the source. Eq[{1) holds true for bOthnoi]seIess link and generates a reconstruction sequifice

dlscrete_and Gaussian sources and belongs to the realmy . We now remind the reader of the rate-distortion problem.
central limit theorem(CLT)-style results.

In this paper, we operate in a moderate-deviations (M)efinition 1. A rate-distortion codeonsists of (i) an encoder
regime [11, Section 3.7] that “interpolates between” the LD, : X" — M, and (ii) a decoderp,, : M,, — X™. Therate

P,D
R(n,D,e€) =~ R(P,D) + %
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of the code isR,, := 1 log |M,,|. That is, ¢, = w((1%2)/2) N o(1). Assume thatR(Q, D)
The rate-distortion function R(P, D) is defined as the is twice differentiable w.rt.Q in a neighborhood ofP

infimum of all numbersR for which there exists codesand V(P,D) > 0. There exists a rate-distortion code

i 1
{(fn,¥n)}nen for which theprobability of excess distortion t{ég’%)}"m with rates 7 log |lfull < R(P, D) + €, such

e(fn, on, P, D) :=P(d(X", on(fu(X™))) > D) (3) 1

limsup — log e(fu, ¢n, P, D) < —so. (1)
is arbitrarily small for sufficiently large blocklengths The noyoo M€, 2V(P, D)
rate-distortion function [1] can be expressed as Furthermore, every rate-distortion codf,, ¢n)}nen With
) rates X log || f»|| < R(P, D) + ¢, must satisfy
R(P,D) = min (P, W), (4) " ) )
) W A)ISD hnni)io%f e loge(fn, n, P, D) > —m- (12)
where E[d(X, X)] = >, P(x)W(&|z)d(z,z). Another n ) ’
fundamental quantity introduced by Ingber and Kochnian [g] Though somewnhat ungainly, the log factorlin(10) appears to
is the dispersion for lossy source coding be essential bgcause the proof hinges on the method of types.
So our analysis does not completely close the gap between
V(P, D) := Varx[R'(X; P, D)], (5) the CLT and LD regimes. This log factor is unnecessary in

where R/ (z; P, D) = 5-2—R(P, D) for z € X is the partial the Gaussian case as will be seen in Theoréins 5[and 6.
Theorem[dl means that if the dispersidf(P, D) is small,

the “MD exponent” (2V (P, D))~! is large, corresponding

to a faster decay in the excess distortion probability. This

fact, the terndispersionis usually an operational one but sinCLIlas th? s?mer:nt%rpretat:l(_)n as in th_ehCHLT reg_lmed(_l). AS an
it was shown in[[8] that the operational defintion coincide arg_p e, for the %rnou ! sourc;:e with Hamming distortion,
with the one in[(b), we will abuse terminology and use th e dispersion can be computed as
generic term dispersion for both quantities. _ _ 2 (l-«

We analyzee(f,, ¢n, P, D) in the so-called MD regime V(Bern(a), D) = a(l —a)log « ' (13)

1 _ - _ .

where the rate of the cod,, := 7 log || fu[| = R(P, D) +€n  The parameter that maximizes (resp. minimiz€$)P, D) is
for some sequence,. Clearly, if ¢, — 0, then R, — , ~ .0832 (resp.a = 0,0.5). Thus, the “MD exponent” is
R(P, D). When the rate of the cod& is a constant strictly ayimized when the source is deterministic or has maximum

derivative of the rate-distortion function w.r®(z) (assuming
it exists). In [3), the variance is taken w.r.t. the disttibn P
and R'(X; P, D) is a function of the random variabl&. In

aboveR(P, D), Marton [2] showed that entropy. The proof uses the following lemma, whose proof
.1 B is essentially identical to that of [17, Theorem 8], where th
nlggo n log e(fn, ¢n, P, D) = —F (P, R, D), ©6) divergence and the constraint set i (7) are approximated by
whereMarton’s exponents defined as a quadratic and an affine subspace respectively.
F(P,R,D) := min D(Q|| P). (7) Lemma 2. If the limit exists, Marton’s exponent satisfies
QEP(V)R(@.D)2R iy FR(P.D)+6,D) 1 14
The exponent is positive fakR > R(P, D). One can also con- s 52 T 2v(P,D) (14)

sider theprobability of correct decodind — e( f,., @n, P, D).

) In the sequel, we assume that the limit [n](14) exists.
In [16, pp. 156], it was shown that:

Otherwise, the results are modified accordingly by congider

lim 1 log (1 — e(fu, on, P, D)) = —G(P,R,D),  (8) the upper and lower limits if_.(14) and replacing the dismarsi

n=oo N by its upper and lower limit versions. We first prove the direc
where theexponent for correct decodirig part of Theoreni]1 in((11) followed by the converse[inl(12).
) Proof: The code construction proceeds along the lines of
G(P R, D)= QGP(X)IH%?Q,D)SRD(Q 1P). () thatin [8]. Fix a sequence, satisfying [ID). From the refined

) N .. type covering lemma by Berger (stated[in][18]), for everyetyp
The exponent is positive foR < R(P,D). These limits Q € P,(X) there exists a sef that completelyD-covers

and exponents are Sanov-like LD results|[11]. We preseji. (i.e., for everyz™ € T there exists an” € Co such that
H 3 . ’ Q 1 Q Q
MD versions of Marton’s and Iriyama’s results where th%(xn #") < D) andCq, has rate

normalizations in[{6) and18) need not Be )
ogmn

1 N
I1l. DISCRETEMEMORYLESSSOURCES(DMS) —log|Cql < R(Q, D) + J(|¥], | X)) — (15)
Our main result for a DMS with bounded distortion measunehere.J is some function of the size of the alphabets. Consider
(ile.d: X x X = [0,dmax]) is stated as follows: the sefC that that is the union of all sets thBtcover the types
Theorem 1. Let ¢,, be any positive sequence satisfying @ € Un(D, €n), defined as
2 Z/{n(Daen) = {Q Epn(X) R(QvD) <R(P7D)+€:w

ne;

dm en =0, lim g0 = oo (10) |Q - Pl < e/y/V(PD)}.  (16)




wheree), == e, — J(|X|,|X]) & — | x| et The second PutW,, := (K(|X|,|X]) + 1)%62. Then, [21) yields
constraint on thel; distance of the type? to the true A 1 1
distribution P is to ensure thaR( -, D) is differentiable. This P(d(X",X™) > D|ly,) > 1— - > 7 (22)

is also done in[[15, Theorem 4]. Note thatijf satisfies[(T0) ) _
so does. . Now, consider the size af: Hence, it remains to bound the second terniid (20).el et=

e, + ¥, and consider,

c| = > Cal P"(Ey,) = P(R(Px~,D) — R(P,D) > R — R(P,D)+¥
B O (éw,) = P(R(Px~, D) = R(P,D) > R = R(P, D)+ ¥y)

. logn > P(R(Pxn,D) — R(P,D) > €, + V)
<(n+1)*e [ (R * D)+ J(|Xx]|,|X ﬂ
< (n+ 1) exp |n | R(Q", D) + J(1&], |¥])—> _ P13
<exp[n(R(P,D) + )] 17) QEP,(X):R(Q.D)>R(P,D)+¢,,
The first inequality applie$ (15) and the type counting lemma > Z eXp(_"D(C‘?X': P))
Furthermore@* is the dominating type. The second inequality QEP.(X):R(Q,D)>R(P,D)+¢, (n+1)
applies the definitions @f,, ande,,. Take f,, to be the function pY )
that maps a sequena# € X" with type P, to a predefined 2 (n+1)""exp {_"D(Q 1P) (23)

index inC = Ugeu, Co and takep, to be the function that \yhere the first inequality is from the definition dt, <
maps the index to the reproduction sequencesn, that D-  p(p D) + ¢, and in the last inequality we defined the type
coversz™. Now, we evaluate the error probability, which isp() .— ALgMilGep, (xv):1(Q.0)>R(P.D)+e. D(Q | P). Inthe

the P"-probability of the types not i, (D, €, ). Consider,  appendix, we prove the following key continuity statement.

P(R(Px», D) > R(P, D) + ¢,) Lemma 3. If ¢, satisfies(I0), the typesQ(™) satisfy
< > P (75) , D™ || P)
QEPn(X):R(Q D)2 R(P.D)ve, A R R(P.D) + e D) " @4
< Z exp(—nD(Q [ P)) Let n > 0. Forn large enough, the ratio ifi_(24) is smaller
QEP“(XI);(}T(Q"D)ZR(P*D)“% than1 + 7. Uniting (20) — [22) yields
< (n+1)"*lexp[-nF (P, R(P,D) +¢,,D)],  (18)
. i Lo e(fn,QOn,P,D)
where we applied the type counting lemma and the definition 1 il ,
of Marton’s exponent in the last line. Next, from [19], 2 5(n+ 1)~ exp[—n(l+n)F(P, R(P, D) + ¢, D)]

P(||[Px» = Plli > ea/VV) < 2% exp [-nep /(2V)] . (19) > %(n +1) ¥lexp [_n(l +1) <2v(61;;2 D) " O(Eg))} '
Combining [I8) and[{19) with the union bound, ’

The last inequality is an application of Lemmh 2 with =

e(fnspn, P, D) o(1) in the role ofs. Now, we take the logarithm and normalize
€? . |X|log(n + 1) by ne? to establish the converse noting thatis arbitrary,

< 2exp {—n (m —o(e) — ?)} ’ U, = O(1%") and &2 — 0. The latter allows us to assert
thate/ /e, — 1. " [ |

where we invoked Lemnid 2 witl, = o(1) in the role ofé.
Now, we take the logarithm and normalize hy? to assert the
achievability part of the theorem if_(11). Note that we us
the fact that'% — 0.

Now for the converse, we fix a codéf,, pn)}nen Of rate

R, = %1og |l fnll < R(P,D) + ¢, and observe that Theorem 4. Let ¢, be any positive sequence satisfyifig]).
Assume thaR (@, D) is twice differentiable w.r.1Q in a neigh-

e(fn, n, P,D) > P(d(X", X™) > DIy, )P(€w,). (20) borhood ofP and V(P, D) > 0 There exists a rate-distortion
P 1
where the evenfy, := {R(Px», D) > R, +¥,} and Px. ©0U€{(fn,¢¥n)inen With rates ;i log || full = R(P. D) — €,
is the type of X™. From the converse of the type coveringuch that
lemma [20, Lemma 3], for any typ& < P,(X) such that 1iminfilo 1—e P D)) > —
R(Q, D) > R, the fraction of77 that is covered by any set n—oc nej, B( (frr P> D)) 2 2V(P, D)

is no greater thanxp[—n(R(Q, D) — R+ K (|X|, |X[)*22)].  Furthermore, every rate-distortion codg f,, o) }nex With
Hence, the first term above can be bounded as rates - log || f»|| > R(P, D) — ¢, must satisfy

P(d(X™, X™) > D|&y,)

Note that themultiplicative nature of [[24) is necessary to
establish Theoref 1. The analysis for the probability of ectr
e&fecodingl — e(fn, on, P, D) in the MD regime is analogous

and is stated in the following:

(25)

limsup — 10g (1 — ¢(fn, gn, P, D)) < — o (26)

10gn)] (21) n—oo ME2 2V (P, D)
n Proof: Similar to Theorenf1. ]

> 1—exp [—n (w +K(X], |1 2))



IV. QUADRATIC GAUSSIAN SOURCE CODING where we used the definition ef,. Hence, the rateR,, <
We now turn our attention to the quadratic Gaussian settiﬁﬁaQa_D) + en as required. For the probability of excess
where X™ is a lengthn vector whose entries are identicallydistortion, we have
distributed as zero-mean Gaussians with varianée The

distortion measure igl(x, ) := (z — #)2. It is known [1] e(fn, on,02, D) =P lzxf ¢ U,
that in this case, the rate-distortion function takes thenfo ne =

1 2 1 & , 1« :
R(UQ’D):Elogmax{l,%}. (27) SP(E;XZ? >02€2en)> +P<E;Xi2<0'262€">
Furthermore, Ihara and Kubbl[3] showed that the analogue of< [_Q (e%% 9 )} (35)
Marton’s exponent in[{7) also holds in the Gaussian setting=™ “n

Indeed, it is shown that the excess distortion exponent is The first inequality is by the definition df, and the union

1{D D bound. The second is an application of the upper bound of
F(02,R,D) =~ | =e*F _1_log [ =eR)|. (28 Ny pper t
(0", B, D) 2 [026 o8 (026 (28) Cramér’s theorem[[11] applied to the?-random variables

2 2 ’ e; 19/ _
wheneverR > R(o2, D) and zero otherwise. The exponent for\i /¢ - Now note from Taylor's theorem that® —1-2¢, =

2 2 i i iz 2
correct decoding? (o2, R, D) takes the same form as in{28)2¢» + ©(€x). Taking the logarithm, normalizing by, and
when R < R(c2,D) and zero otherwise. In this case, itaking the upper limit of((35) yields the desired result[id)3

is easy to show by direct differentiation @#(c, R, D) (or We now turn our attention to the converse. The gist of the

G(o?, R, D)) that the dispersion for lossy source coding is proof follows from the converse in [3]_bu_t, as we shall see,
1 the error probability analysis is more intricate. Fix codds

=, (29) ratesR, = Lllog|f.| < R(c% D) + €,. Let the repro-
2 duction sequences be denoted &#Ym),m € M,. Also,
for all o> and all D. In analogy to Theorell 1, we have theet A, := U,,cr, B, (2" (m), VD) where B, (c",r) is the
following in the quadratic Gaussian setting: n-dimensional ball centered af* with radiusr. Now, let
vn > 0 be such thatVol(B,,(0,v,)) = Vol(A,). Clearly,
Vol(A,) < |M,|Vol(B,(0,VD)). SinceR,, = % log | M./,

V(o?, D)

Theorem 5. Let ¢,, be any positive sequence satisfying

lim €, =0, lim ne? = oo. (30)
Here exists a rate-distortion cod " niy o _ YOl(Aw)  Vol(Bn(0,7n)) _ ( I >
There exists a rate-distortion codg f,,, ©n) }nen With rates Z Nol(B,(0.vD)) _ Vol(B,(0.vD)) 75)

Llog || full € R(0?, D) + €, such that

1 2 Lloo Yo i
lim sup — log e(fn,on,0%, D) < —1. (31) Hence, we havéi(o”, D) + €, > Ry, > 5log 3, i.e.,
n

n—oo n
2 2€n
Furthermore, every rate-distortion codf f,., on)}nen With Tn S 0TeT (36)
1 X
rates , log||ful| < R(P, D) + en must satisfy The probability of excess distortion can be lower bounded as

NP |
hm1nf—2 loge(fn,ggm(;?’D) 2 —1. (32) e(fn,<,0n,0'2,D) — P(Xn ¢ »An) Z ]P(Xn ¢ Bn(077n))

n—r oo ’]’Len

In contrast to the DMS case, the dispersion for the quadrafig,y define the random variablé$ := X2/o2 and note that
Gaussian casé (R9) is constant. Hence, the exponerifslin (@L)y:-s are x?-distributed. With this notation, and usirig {36),
and [32) are also constant. Also note from](30) that the
requirement on,, is less stringent than in the DMS cakel(10). 13 Y 13
In particular, the log factor is no longer required. This i§(fn:@n,0°, D)>P <ﬁ ZYi>§> 2P (ﬁ ZYi>€2€">-
because the method of types is not used in the proof. =1 i=1

Proof: Fix the sequence,,. For the direct part, let us Recall that for they?

: - . -distribution, the cumulant generating
consider the set of “empirical variances”

function is A(§) = —311log(1 — 26) and the rate function is
Un(D,en) = {6%: |R(6*,D) — R(c*>,D)| < ¢,}, (33) I(y) =maxp{fly—A(f)} = 3(y — 1) — 5logy. Furthermore,

6" (y) := 3(1—) is the maximizer. Using the standard change
of measure technique for the lower bound in Cramér’s theore
(see proof of[[111, Theorem 2.2.3]),

wheree!, := ¢, — 298 _ 1986 By ysing the definition of
R(c%,D) in (20), it is easy to see that? € U, if and only
if e72n < 62/02 < e2n. We now use a result by Verger-

Gaugry [21, Theorem 1.2], which in our context, says thaé(f ¢n,02,D) > By exp |—nI(e) — 2(1 p—
s s bl - n 2

’ € Tn7

6n°/2(02e2» / D)™/? reconstruction points suffice tB-cover
length vectorsz” whose empirical variancé Y, 22 € U,,.

; : where 3, := P(£ 5" Y; 2en_e2¢n 4 7.9) and 7, is a
Hence, the size of the code is bounded as p (" 2iz1 Yi € (€57, 7 + 7)) i

) sequence to be chosen. The random variabldsave (tilted)
IC| < 6n°/2(c%e?*n /D)2 < exp(n(R(c2, D) +€,)), (34) distributiong(7) := exp[0* (2 )j — A(6* (e2))]p(7) where



p(-) is thex? distribution of theY;'s. By the choice ofy(-), €], = w((l‘)g")l/Q) Thus, there exish-types in the regular-
E,[Y;] = e?*". Putr, := (e, for some¢ > 0. Then,

closed set{Q € P(X) : R(Q,D) — R(P,D) > €}
Lo Lo for n large. Let Marton’s exponent bé)(Ql(\’f)HP) =
Y 2en Yd 2ep,

F(P,R(P,D) + €, D). Then, notice that

- D™ || P)  D@Q™ || P)—DQYI|P)
1 32 2 _1 32 2 — = —~ + 1. (41)
RNV AT R RV ACh D(Qy; |1 P) DY I P)

where in the second inequality, we applied the Berry-Bsse&he numerator of the first term on the RHS inl(41)3¢;,)
theorem to the first term (the third moment¥%fis 15¢~7») becauseD(Q™ || P) — D(Q\" || P)| = O(| Q™ — (")|| )
and Chebyshev's inequality to the second. Byl (39),— 3 andHQ(")—Q(" [+ = O(). From Lemma&R, the denominator

from below. With this choice of,,, for n sufficiently large,  (Marton’s exponent) scales a&’/(2V (P, D)) = w(*&™2).
1 Thus, the first term in[{41) tends to zero and the ratio of the
e(fasn, 0%, D) > 1 P [—”Ei(l +C+oL)], (37 divergence in[(23) and Marton’s exponent tends to onem
o= 26n — REFERENCES

where applied the fact(e?n) = €2 +o(e2) and1 —
2¢, + o(e,). The converse |n[:(32) follows by taking the [1l
logarithm, normalizing byne2, takingn — oo, and finally 2]
taking ¢ — 0. ]

The MD setting for the probability of correct decoding of [3]
Gaussian sources can also analyzed analogously:

Theorem 6. Let ¢, be any positive sequence satisfyi@gl). 4

There exists a rate-distortion cod€ f,,, ) }nen With rates

Llog || full > R(0?, D) — €, such that (5]

(6]

1
lim inf —log (1 — e(fn, n,0°, D)) > —1.

n—oo TE€;

(38)

[7]
[8]
[€]

Furthermore, every rate-distortion codf f,, ©n)}nen With
rates X log|| fn|| > R(c?, D) — €, must satisfy

1
limsup—zlog(l e(fn,¢n702aD)) <-L
n

n—o0 €n

Proof: Similar to Theoreni 5 and uses ideas/in [3].m

(39)

[20]

V. CONCLUSION [11]

In this paper, we analyzed the MD regime for lossy sourgey

coding. In analogy td(2), we showed for discrete sourcess tI‘E?S]
1

- 2V(P,D)
and for Gaussuan sources the RHS [of] (40) is equal-fo [15]
independent of the variancg® and the distortion leveD.

As in [8]-[10], this reveals that the fundamental naturehaf t [1¢)
dispersion in the lossy source coding context. There are at
least three avenues for future research: (i) Can the realts!]
applied to, for instance, general sources as_in [4]? (i) Can
similar analysis of the MD setting be applied to lossy source

coding problems withside information e.g., the Wyner-Ziv [18]
problem? (iii) What is the exact relationship between the MD

and CLT regimes cf[[13]? [19]

lim — log e(fn,on, P,D) =

n—o0 NE

40 g

APPENDIX.: PROOF OFLEMMA

Proof: The rate-distortion function is uniformly continu—[zo]
ous. SpecificallyR(Q, D)—R(P, D) = O(||Q—P)||1log || Q—
P|1) [22]. Also, mingep, (x) |Q — Pl1 < |X]|/n for any
P e P(X) [1L, Lemma 2.1.2] saningep, (x) R(Q, D) —
R(P,D) = 0(105") which is asymptotically dominated by
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