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Abstract—In this paper, fast-decodable lattice code construc-
tions are designed for the nonorthogonal amplify-and-forward
(NAF) multiple-input multiple-output (MIMO) channel. The con-
structions are based on different types of algebraic structures,e.g.
quaternion division algebras. When satisfying certain properties,
these algebras provide us with codes whose structure naturally
reduces the decoding complexity. The complexity can be further
reduced by shortening the block length, i.e., by considering
rectangular codes called less than minimum delay (LMD) codes.

I. I NTRODUCTION

The quality of wireless long distance communications can
be significantly improved by using cooperative diversity tech-
niques. Cooperating relays can be positioned between the
source station and the destination to aid the transmission
by either amplifying and forwarding (AF) or decoding and
forwarding (DF) the signal. Spatially separated terminalswill
allow an increment in the diversity in a distributed manner.
Depending on the application, a one-hop or multi-hop trans-
mission is called for. Here, we consider multi-hop distributed
space-time codes employing a half-duplex NAF protocol [1],
[2]. It is known [2] that the NAF protocol outperforms all other
AF protocols since, as opposed to orthogonal protocols, it can
keep transmitting also during the transmission of the relays.
In addition, the AF protocols are less complex than the DF
protocols. This type of low cost relay systems are called for
in e.g.digital video broadcasting (DVB) [4].

In [3] and [5], Yanget al.and Hollantiet al.proposed block-
diagonal space-time code constructions for the asymmetric
MIMO channel with or without relays. The constructions arise
from cyclic division algebras constructed over a higher degree
center. A nonvanishing determinant (NVD) is then achieved
by forming a block-diagonal matrix consisting of the left
regular representation of the algebra and its Galois conjugates
from the center to the base field. It was also shown [3] that
a block-diagonal structure together with the NVD property
is enough to achieve the diversity-multiplexing gain tradeoff
(DMT) also in the asymmetric case, where the number of
transmit antennas is strictly bigger than the number of receive
antennas, and hence the corresponding lattice is not full.
Motivated by this and the urge for complexity reduction of

MIMO codes in general, we impose further properties that
the algebras and the constructions should satisfy in order to
reduce the complexity. Our study reveals a trade-off between
the coding gain and decoding complexity. Related work has
been carried out by, among others, Rajanet al. (see e.g. [12]).
They considered fast-decodable distributed space-time codes
arising from Clifford algebras. Our work differs from theirs
in that our codes achieve the NVD property and hence the
asymmetric DMT. The codes proposed in this paper moreover
have a nice algebraic structure which makes analyzing the
codes easier.

List of contributions:

• Explicit fast-decodable space-time relay codes are pro-
posed.

• All the codes have full diversity, some even NVD. To the
best of the authors’ knowledge, these are the first fast-
decodable distributed space-time codes with NVD.

• The constructions arise from quaternion or other type of
algebras making it easy to determine the coding gain,
complexity and other properties of the codes.

• Although our explicit examples are for the case when the
source and the relays each have only one antenna, the
constructions are easily generalizable to other numbers
of antennas and relays as well.

• We demonstrate a performance-complexity tradeoff re-
sulting from the used method.

• Finally, we analyze the worst-case decoding complexity
of the proposed codes.

Let us finish this introductory section by giving a couple
essential definitions.

Definition 1.1: If the code C consisting of matricesX
satisfies

min
06=X∈C

det(X†X) > κ > 0,

we say thatC has thenonvanishing determinant property
(NVD).

In case of square matrices, we simply refer todet(X) when
talking about NVD.

There are multiple definitions of rate, but we will consis-
tently use the following.
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Definition 1.2: Let B1, . . . , Bk ∈ Mnt×T (C) be the gener-
ator matrices (overR) of a rankk codeC, so

C =
k

∑

i=1

Bigi,

wheregi ∈ Z, e.g. PAM symbols. Therate R of the code is
then

R = k/T

(real) dimensions per channel use (dpcu).
Note that the commonly used rate in complex dimensions

per channel use isR/2 when using the above notation.

II. SYSTEM MODEL FOR THENAF RELAY CHANNEL

For ease of notation, we only define the single-relay model,
the generalization to multi-hop is straightforward. Following
[3], let us denote byXi the signals transmitted from the source,
and byYr the signal received by the relay which the relay then
amplifies and forwards asBYr. The number of relays and
the number of antennas at the source, relays and destination
are denoted byN,ns, nr, nd, respectively. We assumenr is
the same for all relaysr = 1, . . . , N . To be realistic, we
assumens ≥ nr. The destination is observingY1 andY2 in
consecutive time instances, and we have

Y1 =
√

π1 SNRFX1 + V1

Yr =
√

π1ρ SNRHX1 +W1

Y2 =
√

π3 SNRG(BYr) +
√

π2 SNRFX2 + V2,

whereVi, W are the additive white gaussian noise matrices
and F, H, G are the Rayleigh distributed channel matrices.
The power allocationπi factors are chosen so thatSNR
denotes the received SNR per receive antenna at the destina-
tion. We assume perfect channel state information (CSI) at the
receivers, while the transmitters have none. For more details,
we refer to [3].

III. O N FAST DECODABILITY

Maximum-likelihood decoding amounts to searching the
codeC for the codeword

Z = argmin{||Y −HX ||2F}X∈C, (1)

closest to the received matrixY with respect to the squared
Frobenius norm.

Consider a codeC of Q-rank k, i.e., each codewordX
is a linear combination

∑k

i=1 Bigi of generating matrices
B1, . . . , Bk, weighted by coefficientsg1, . . . , gk, which are
PAM information symbols. The matricesB1, . . . , Bk therefore
define our code. Eachnr × T matrix HBi corresponds, via
vectorization, to a vectorbi ∈ R2Tnr obtained by stacking the
columns followed by separating the real and imaginary parts
of HBi. We define the (generating) matrix

B = (b1,b2, . . . ,bk) ∈ M2Tnr×k(R),

so every received codeword can be represented as a real vector
Bg, with g = (g1, . . . , gk)

T having coefficients in the real
alphabetS in use.

Now finding argmin{||Y − HX ||2F}X∈C becomes equiv-
alent to findingargmin{||y − Bg||2E}g∈|S|k with respect to
Euclidean norm, wherey is the vectorization of the received
matrix Y . The latter search is performed using a real sphere
decoder [6], with the complexity of exhaustive search amount-
ing to |S|k, as the coefficients ofg run over all the values
of S. The complexity of decoding can, however, be reduced
if the code has additional structure [7]. Performing a QR
decomposition ofB, B = QR, with Q†Q = I, reduces finding
argmin{||y−Bg||2E}g to minimizing

||y −QRg||2E = ||Q†y −Rg||2E , (2)

whereR is an upper right triangular matrix. The number and
structure of zeros of the matrixR may improve thedecoding
complexity(formally defined [8] to be the minimum number of
vectorsg over which the difference in (2) must be computed).
When the structure of the code allows for the degree (i.e., the
exponent of|S|) of decoding complexity to be less than the
rank of the code, we say that the code isfast-decodable.

More precisely, we have the following definitions from [7].
Definition 3.1: A space-time code is said to befast-

decodableif its R matrix has the following form:

R =

[

∆ B1

0 R2

]

,

where∆ is a diagonal matrix andR2 is upper-triangular.
The authors of [7] give criteria when the zero structure of

R coincides with that ofM , whereM is a matrix capturing
information about orthogonality relations of the basis elements
of Bi:

Mk,l = ||B†
kBl +B†

l Bk||F . (3)

In particular, [7, Lemma 2] shows that ifM has the structure

M =

[

∆ B1

B2 B3

]

, where∆ is diagonal, thenR =

[

∆ B1

0 R1

]

.

We could thus rephrase Defnition 3.1 in terms ofM .
Next we recall the class of codes which allows groups of

symbols to be decoded independently of one another.
Definition 3.2: A space-time code of dimensionK is called

g-group decodableif there exists a partition of{1, . . . ,K} into
g nonempty subsetsJ1, . . . ,Jg, so that the matrixMl,k = 0
when l, k are in disjoint subsetsJi,Jj .

In this case, as shown in [7], the matrixR has the form

R =





R1 0 0
0 · · · 0
0 0 Rg





where eachRi is a square upper triangular matrix. Hence,
the symbolsxk and xl can be decoded independently when
their corresponding basis matricesBk and Bl belong to
disjoint subsets of the partition.

Remark 1:Note that a simple computation shows that the
zero structure ofM is stable under premultiplication ofBi by
a channel matrixH . In general, the same does not hold for



R.

By the above discussion, in order to demonstrate fast-
decodability (resp. g-group decodability), it suffices to find
an ordering on the basis elementsBi, which results in the
desired zero structure ofM . We proceed to do that for the
proposed relay codes.

IV. M INIMUM DELAY CODES FOR N = 2 AND N = 3
RELAYS

We demonstrate that the codes we obtain are conditionally
4-group decodable. Recall from [11] that a code is called
conditionallyg-group decodableif there exists a partition of
the indices{1, . . . ,K} of basis elements intog + 1 disjoint
subsetsJ1, . . . , Jg, J C such that

‖B†
l Bm +B†

mBl‖F = 0 ∀l ∈ Ji, ∀m ∈ Jj , i 6= j.

In this case, the sphere decoding complexity order reduces
to |S||JC |+max1≤i≤g |Ji|.

A. Virtual 6 × 2 MIMO channel withN = 3, ns = nr =
1, nd = 2

We proceed to show the rate four (4 PAM symbols per
channel use) relay construction consisting of6× 6 matrices.

Proposition 4.1:Define the code

C = {ατ (X)} =











X 0 0
0 τ(X) 0
0 0 τ2(X)











whereX is a matrix of the form

X =

(

c −
√
11σ(d)√

11d σ(c)

)

with c, d ∈ Z(i, ζ7), σ : i 7→ −i.

Then the codeC is of rank 24 and (real) decoding complex-
ity |S|15, and has the NVD property.

Proof: DefineK = Q(
√
−7), K ′ = Q(ζ7). Let ζ denote

ζ7, thenK ′ = K(ζ + ζ−1).

Q = (−11,−1)K′

Q(i, ζ7) = L′

Q(i) Q(ζ7) = K ′

Q

✻
2

�
�
�
��✒

6

✻
2

✻
2

�
�
�
��✒

6

First we note that the algebra(−11,−1)Q(ζ7) is division.
This follows from techniques of [13]: we apply [13, Theorem
7.1] while noting thatF113 contains no element of order4,
i.e.,−1 is not a square inF113 , which is the residue field of
the prime11 in Q(ζ7).

Now note that(−11,−1)K′ ∼= (−1,−11)K′ , so letQ =
(−1,−11)K′ . After conjugation that does not affect the deter-
minant but does aid energy balance and decoding complexity,
it has the followingK ′-basis:

{

q1 =

[

1 0
0 1

]

, q2 =

[

i 0
0 −i

]

,

q3 =

[

0
√
11i√

11i 0

]

, q4 =

[

0 −
√
11√

11 0

]}

.

This means thatQ is generated overK = Q(
√
−7) by the

following 12 matrices

Γi,1 = qi,Γi,2 = qi(ζ + ζ−1),Γi,3 = qi(ζ
2 + ζ−2)

for i = 1, . . . , 4. Extend this to aQ-basis by lettingΓi,j =√
−7Γi−4,j for i = 5, . . . , 8. Then aZ-basis ofC can be given

by

{ατ (Γi,j)}i≤8,j≤3 (4)

and is of size 24. Indeed, the rank ofC is 24, since each code-
wordX is an element of quaternion algebra(−1,−11)K′ , and
hence encodes 4 symbols fromK ′ = Q(ζ7), or equivalently
24 real symbols.

Now let τ : ζ7 7→ ζ27 be a generator ofGal(K ′/K). When
the coefficients of codewords are algebraic integers, the code is
NVD. This follows from the fact that the determinant of each
codeword is fixed by bothτ and σ, hence it is an element
of Q(

√
−7) = K. Moreover it is nonzero wheneverX is



nonzero, sinceQ was shown to be division.
We show thatC is conditionally 4-group decodable with

complexity |S|15; conditioned on decoding symbols corre-
sponding to {Γ5,1, . . . ,Γ8,3}, the complexity of decoding
symbols corresponding to{Γ1,1, . . . ,Γ4,3} is at most |S|3,
whereS is the underlying alphabet. For that, note that when
A = Γi,j , B = Γi′,j′ , for all j, j′ and for i 6= i′, we have

AB† +BA† = 0.

Same follows forατ (A), ατ (B), i.e., we have:

ατ (A)ατ (B)† + ατ (B)ατ (A)
† = 0.

Let Γ = [ατ (Γ1,1), . . . , ατ (Γ8,3)] be the list of24 genera-
tors of C from (4) in lexicographical order. Then the matrix
M = Mi,j from Equation (3) capturing orthogonality relations
on Γ has the following structure:

M =

























∗ 0 0 0 ∗ ∗ ∗ ∗
0 ∗ 0 0 ∗ ∗ ∗ ∗
0 0 ∗ 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

























(5)

where each coefficient of the matrix above is a3× 3 matrix,
which is 0 when the coefficient is0.

B. Virtual 4 × 2 MIMO channel withN = 2, ns = nr = 1,
nd = 2

We use a similar idea as in the6× 6 case to construct fast-
decodable rate four relay codes consisting of4 × 4 matrices.

Proposition 4.2:Let the codeC consist of matrices
{[

X 0
0 τ(X)

] ∣

∣

∣

∣

X =

[

c −

√

2σ(d)
√

2d σ(c)

]}

with c, d ∈ OK , σ :
√
a 7→ −√

a. Again we have conjugated
the original matrix in order to aid decodability and energy
balance. The minimum determinant is invariant under such
conjugation.

Each matrixX represents an element from the quaternion
algebra(a, γ)K over a biquadratic fieldK = Q(i,

√
p). Then

for valuesa = 5, γ = −2, p = 31 the resulting code is a
fully diverse NVD code of rank 16. It is conditionally4-group
decodable with (real) decoding complexity|S|10.

Proof: We use similar techniques to the previous proof
to establish that(a, γ)K is division. First we establish that the
prime ideal5Z splits completely inK. Using the fact that its
residue field is isomorphic toF5, we conclude thatγ is not
a square modulo5 in the integers ofK. Hence using [13,
Theorem 7.1], we conclude thatQ = (a, γ)K is division. The
generators ofQ overQ(i) are

Γi,1 = qi,Γi,2 = qi
√
p | i = 1, . . . , 4.

We use the image of these generators underατ to generate
the codeC overZ. To check fast decodability, we verify the
relations

ατ (X)†ατ (Y ) + ατ (Y )†ατ (X) = 0,

X = Γi,j , Y = Γi′,j′ , where1 ≤ i 6= i′ ≤ 4 and1 ≤ j, j′ ≤ 3.
The orderingατ (Γ1,1), . . . , ατ (iΓ1,1), . . . , ατ (iΓ4,2) gives

the matrixM with the same zero structure as in Equation (5)
only now each coefficient is a2×2 matrix. Hence the code is
conditionally4-group decodable with complexity|S|10. More
precisely, conditioned on decoding symbols correspondingto
{ατ (iΓ1,1), . . . , ατ (iΓ4,2)}, the complexity of decoding the
rest of the symbols is at most|S|2.

Remark 2:Here we have concentrated on a real sphere de-
coding process. Note, however, thatΓ1,1,Γ1,2, . . . ,Γ4,1,Γ4,2

gives aZ(i)-basis ofC. We can verify the relations

ατ (X)†ατ (Y ) + ατ (Y )†ατ (X) = 0,

X = Γi,j , Y = Γi′,j′ , where 1 ≤ i 6= i′ ≤ 4. Hence the
obtained code is4-group decodable, of complexity degree2
when using a complex decoder.

V. L ESS THAN MINIMUM DELAY CODES FORN = 2
RELAYS

In order to further reduce the complexity, we will shorten
the block length. Suchless than minimum delaycodes have
been considered in [9]. To this end, let us start by constructing
a code with dimension rateR = 2, i.e., the lattice is of rank
4 and the code matrix transmits two real dimensions (e.g. two
PAM symbols) per channel use.

A. Virtual 4 × 1 MIMO channel withN = 2, ns = nr =
1, nd = 1

Let us consider the 8th cyclotomic extensionQ(ζ8)/Q, and
denote its Galois group by{1, τ :

√
2 7→ −

√
2,∗ , τ∗}, where

∗ denotes complex conjugation. Our code will simply consist
of matrices

X(a1, a2) =









x 0
x∗ 0
0 τ(x)
0 τ(x)∗









,

wherex = a1 + a2ζ8 andai ∈ Z[i]. Due to the fact that the
code matrix only contains two QAM symbols, the complexity
will automatically be at most|S|4, whereS is the underlying
real alphabet. However, if we do a smart ordering of the basis
elements as{B1 = X(1, 0), X(i, 0), X(0, 1), X(0, i)}, the4×
4 matrixR will have the form described in Definition 3.1 with
a 2 × 2 matrix ∆. This is due to the fact that whenever we
have a totally real basis elementBi and a totally imaginary
oneBj , this will result in ℜTr[(HBi)

†HBj ] = 0. Thus, we
have reduced the worst case complexity to|S|3, that is, by
62.5% compared to the complexity|S|8 of a general square
code with the same rate.



Proposition 5.1:The matricesX†X, X 6= 0, have the
NVD property.

Proof: The proof is straightforward. Namely,
det(X†X) = 4xτ(x)x∗τ(x)∗ = 4NQ(ζ8)Q(x) ∈ 4Z,
and hencedet(X†X) ≥ 4.

Next, we extend the above construction to the casend = 2
ideally calling for a rate four code.

B. Virtual 4 × 2 MIMO channel withN = 2, ns = nr =
1, nd = 2

Let us next construct a rank 8 lattice in order to have higher
multiplexing of 4 real dimensions per channel use. We start
by adjoining

√
5 to the above extension,i.e., we consider

Q(ζ8,
√
5)/Q and denote the corresponding maps fixingQ(i)

by {1, τ :
√
2 7→ −

√
2, r :

√
5 7→ −

√
5, τr}.

The code matrix now looks like

X(a1, a2, a3, a4) =









νx 0
r(νx) 0
0 τ(νx)
0 τr(νx)









,

wherex = a1 + a2ζ8 + a3θ + a4ζ8θ, θ = 1+
√
5

2 , ai ∈ Z[i],
and ν = 1 + i − iθ generates a principal ideal that will
make the code lattice orthogonal. This field extension is the
same as the one used for the extended golden algebra in [3].
The complexity of the code is at most|S|8. Similarly to the
nd = 1 case, this can be further reduced to|S|7 by ordering
the basis as{B1 = X(1, 0, 0, 0), B2 = X(i, 0, 0, 0), . . .}. We
have reduced the complexity by 56.25% compared to a general
square code with the same rate and complexity|S|16.

Proposition 5.2:The matricesX†X, X 6= 0, have full
rank,i.e., a code consisting of the matricesX has full diversity.

Proof: Again, the proof is very simple. We have
det(X†X) = (|νx|2 + |r(νx)|2)(|τ(νx)|2 + |τr(νx)|2) > 0.

Remark 3:We want to point out that, unfortunately, there
is no free lunch. Namely with the above construction method
increasing the code rate causes a degradation in the coding
gain. At the same time, reducing the delay from four to
two channel uses will naturally lower the maximum rank
(and diversity) the code matrix can achieve when compared
to a square code matrix. Hence, we observe a performance-
complexity tradeoff implying that while we can indeed reduce
the decoding complexity by reducing the code length, we are
likely to face slightly worse performance caused by the reduc-
tion in diversity. Increasing the rate (performance) will also
here require dropping the NVD requirement, again indicating
a tradeoff type behavior.

VI. CONCLUSIONS AND FUTURE WORK

We proposed explicit relay codes with a fast-decodable
structure and NVD for different number of antennas
and relays. It was shown that the method used implies
a performance-complexity tradeoff. In other words, fast-
decodable codes with NVD were proposed, while at the same
time it was noted that relaxing on the NVD property allows

for further complexity reductions. One efficient way to reduce
the complexity is to employ less than minimum delay codes
that by construction already halve the complexity compared
to general minimum delay codes. It remains to be investigated
how the codes perform compared to other distributed codes
that either have higher complexity or lack NVD. Related
results [14] will be posted to arXiv in near future.
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