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Abstract—In this paper, fast-decodable lattice code construc-
tions are designed for the nonorthogonal amplify-and-forvard
(NAF) multiple-input multiple-output (MIMO) channel. The con-
structions are based on different types of algebraic struatres, e.g.
quaternion division algebras. When satisfying certain prperties,
these algebras provide us with codes whose structure natuitg
reduces the decoding complexity. The complexity can be funer
reduced by shortening the block length,i.e., by considering
rectangular codes called less than minimum delay (LMD) code

MIMO codes in general, we impose further properties that
the algebras and the constructions should satisfy in oer t
reduce the complexity. Our study reveals a trade-off betwee
the coding gain and decoding complexity. Related work has
been carried out by, among others, Ragaral. (see e.g.[112]).
They considered fast-decodable distributed space-tindesco
arising from Clifford algebras. Our work differs from thgir

in that our codes achieve the NVD property and hence the
asymmetric DMT. The codes proposed in this paper moreover

|. INTRODUCTION

have a nice algebraic structure which makes analyzing the

codes easier.
The quality of wireless long distance communications can Ljst of contributions:

be significantly improved by using cooperative diversitghte
niques. Cooperating relays can be positioned between thé
source station and the destination to aid the transmission
by either amplifying and forwarding (AF) or decoding and *
forwarding (DF) the signal. Spatially separated termineils
allow an increment in the diversity in a distributed manner.
Depending on the application, a one-hop or multi-hop trans-*
mission is called for. Here, we consider multi-hop disttéal
space-time codes employing a half-duplex NAF protocol [1],
[2]. Itis known [2] that the NAF protocol outperforms all @h ~ *
AF protocols since, as opposed to orthogonal protocolsnit ¢
keep transmitting also during the transmission of the elay
In addition, the AF protocols are less complex than the DF
protocols. This type of low cost relay systems are called for *
in e.g.digital video broadcasting (DVB) [4].

In [3] and [5], Yanget al.and Hollantiet al. proposed block-
diagonal space-time code constructions for the asymmetric

Explicit fast-decodable space-time relay codes are pro-
posed.

All the codes have full diversity, some even NVD. To the
best of the authors’ knowledge, these are the first fast-
decodable distributed space-time codes with NVD.

The constructions arise from quaternion or other type of
algebras making it easy to determine the coding gain,
complexity and other properties of the codes.

Although our explicit examples are for the case when the
source and the relays each have only one antenna, the
constructions are easily generalizable to other numbers
of antennas and relays as well.

We demonstrate a performance-complexity tradeoff re-
sulting from the used method.

o Finally, we analyze the worst-case decoding complexity

of the proposed codes.

MIMO channel with or without relays. The constructions aris Let us finish this introductory section by giving a couple
from cyclic division algebras constructed over a higherrdeg essential definitions.

center. A nonvanishing determinant (NVD) is then achieved Definition 1.1: If the code C consisting of matricesX

by forming a block-diagonal matrix consisting of the lefsatisfies

regular representation of the algebra and its Galois catfisg
from the center to the base field. It was also shown [3] that

min_det(XTX) > x >0,
0£Xec

a block-diagonal structure together with the NVD property€ say thatC has thenonvanishing determinant property

is enough to achieve the diversity-multiplexing gain traffie (N

VD).

(DMT) also in the asymmetric case, where the number of In case of square matrices, we simply refetto(X') when
transmit antennas is strictly bigger than the number ofivece talking about NVD.

antennas, and hence the corresponding lattice is not full.There are multiple definitions of rate, but we will consis-
Motivated by this and the urge for complexity reduction ofently use the following.
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Definition 1.2: Let By, ..., Br € M,,x7(C) be the gener- so every received codeword can be represented as a real vecto

ator matrices (oveR) of a rankk codeC, so Bg, with g = (g1,...,9x)7 having coefficients in the real
& alphabetS in use.

C = Z Big:, Now finding argmin{||Y — HX||%}xec becomes equiv-

P alent to findingargmin{|ly — Bgl|%}ge|s» With respect to

Euclidean norm, wherg is the vectorization of the received

h i € 7, e.g.PAM bols. Therat f th de i . . )
wnereg: < &, €9 Symbo's @ate [t of the code is matrix Y. The latter search is performed using a real sphere

then R—k/T decoderl[6], with the complexity of exhaustive search antoun
ing to |S|¥, as the coefficients of run over all the values
(real) dimensions per channel use (dpcu). of S. The complexity of decoding can, however, be reduced
Note that the commonly used rate in complex dimensioifsthe code has additional structurgl [7]. Performing a QR
per channel use i&®/2 when using the above notation. decomposition o3, B = QR, with QQ = I, reduces finding
argmin{||ly — Bg||%}¢ to minimizing
Il. SYSTEM MODEL FOR THENAF RELAY CHANNEL
ly — QRell% = |Q"y — Rel[%, 2

For ease of notation, we only define the single-relay model,
the generalization to multi-hop is straightforward. Fallog whereR is an upper right triangular matrix. The number and
[3], let us denote byX; the signals transmitted from the sourcestructure of zeros of the matri® may improve thedecoding
and byY;. the signal received by the relay which the relay theeomplexity(formally defined|[8] to be the minimum number of
amplifies and forwards a®Y,. The number of relays and vectorsg over which the difference ifi{2) must be computed).
the number of antennas at the source, relays and destinatighen the structure of the code allows for the degies, the
are denoted byV, n,,n,,ng, respectively. We assume, is exponent of|S|) of decoding complexity to be less than the

the same for all relays = 1,...,N. To be realistic, we rank of the code, we say that the coddast-decodable
assumens > n,.. The destination is observing; and Y5 in More precisely, we have the following definitions from [7].
consecutive time instances, and we have Definition 3.1: A space-time code is said to bfast-

decodabléf its R matrix has the following form:

Yi = VmSNRFX,+W R:[A Bl]
Y, = JmpSNRHX, +W) 0 R

Y- /75 SNRG(BY,) + /73 SNR F Xy + Vb, where A is a diagonal matrix andk, is upper-triangular.
2 ’ ( ) ? ° ° The authors of([[7] give criteria when the zero structure of

R coincides with that of\/, where M is a matrix capturing
whereV;, W are the additive white gaussian noise matricéBformation about orthogonality relations of the basisyedats
and F, H, G are the Rayleigh distributed channel matrice®f B;:

The power allocationr; factors are chosen so th&NR
denotes the received SNR per receive antenna at the destina- My, = ||B} B, + B{ By||F. )
tion. We assume perfect channel state information (CShet t

. . . . In particular,[7, Lemma 2] shows thatifl has the structure
receivers, while the transmitters have none. For more ldetai A A B1:|

B, -
we refer to [3]. M = By BJ’ whereA is diagonal, therR = {O R
We could thus'rephrase Defnition B.1 in termsidt
Next we recall the class of codes which allows groups of
Maximum-likelihood decoding amounts to searching thgymbols to be decoded independently of one another.
code( for the codeword Definition 3.2: A space-time code of dimensidi is called
g-group decodablé there exists a partition of1, ..., K} into

IIl. ON FAST DECODABILITY

Z = argmin{[|Y" — HX||2F}X€C’ @) g nonempty subsets, ..., J,, so that the matrix\/; , = 0
closest to the received matriX with respect to the squaredwheni, k are in disjoint subsets;, J;.
Frobenius norm. In this case, as shown inl[7], the matriX has the form
Consider a cod& of Q-rank k, i.e., each codewordX By 00
is a linear combinatioanZlBigi of generating matrices £= |0 - 0
By,..., By, weighted by coefficientgy, ..., gx, which are 0 0 R

where eachR; is a square upper triangular matrix. Hence,
the symbolsz;, and x; can be decoded independently when
their corresponding basis matricd3;, and B; belong to
H'gsjoint subsets of the partition.

Remark 1:Note that a simple computation shows that the
zero structure of\/ is stable under premultiplication @; by
B = (by,ba,...,b;) € Moy, xik(R), a channel matrixt. In general, the same does not hold for

PAM information symbols. The matricds,, . .., By therefore
define our code. Each,. x T' matrix HB; corresponds, via
vectorization, to a vectds; € R?7"~ obtained by stacking the
columns followed by separating the real and imaginary pal
of HB;. We define the (generating) matrix



R.
Q

. . . =11, —1) g
By the above discussion, in order to demonstrate fast- ( Jx

decodability (resp. g-group decodability), it suffices todfi
an ordering on the basis elemen®s, which results in the 2
desired zero structure af/. We proceed to do that for the
proposed relay codes.

IV. MINIMUM DELAY CODES FORN =2AND N =3
RELAYS

We demonstrate that the codes we obtain are conditionally
4-group decodable. Recall fronh J11] that a code is called
conditionally g-group decodabléf there exists a partition of
the indices{1,..., K} of basis elements intg + 1 disjoint

subsets7i, ..., J,, J¢ such that

|BIB,, + B,Billr =0 VleJ;,¥me Jj,i#j.

In this case, the sphere decoding complexity order reducesqw note that(—11, — 1) =

to |17 Hmaxi<izy 191,

A. Virtual 6 x 2 MIMO channel withN = 3,ns, = n, =
1, ng = 2

First we note that the algebra-11, —1)q,) is division.
This follows from techniques of [13]: we apply [13, Theorem
7.1] while noting thatF,;s contains no element of order,
i.e,—1 is not a square i3, which is the residue field of
the primell in Q({7).

(—1,—11)k/, so let@ =
(—1,—11) k. After conjugation that does not affect the deter-
minant but does aid energy balance and decoding complexity,
it has the followingK’-basis:

fn=lo el 2
w2 V= [ )

This means that) is generated ovek = Q(v/—7) by the
following 12 matrices

We proceed to show the rate four (4 PAM symbols per

channel use) relay construction consistingsof 6 matrices.
Proposition 4.1: Define the code

X 0 0
C={a, (X)) = { [0 H(X) 0
0 0

where X is a matrix of the form

(5

with ¢, d € Z(i,(7), 0 : i — —i.

Then the codé€ is of rank 24 and (real) decoding complex

ity |S|'%, and has the NVD property.

Lin=qiTip=q(C+¢ ") Tizg=aq(?+(7?)
fori =1,...,4. Extend this to aQ-basis by lettingl’; ; =
V—=Tl—4 fori=25,...,8. Then aZ-basis ofC can be given
by

{ar(Tij)bics <3 (4)

and is of size 24. Indeed, the rank®fs 24, since each code-
word X is an element of quaternion algelfral, —11) k-, and
hence encodes 4 symbols froRY = Q((7), or equivalently
24 real symbols.

_ Now let7: (7 — (7 be a generator offal(K’/K). When

the coefficients of codewords are algebraic integers, the
NVD. This follows from the fact that the determinant of each

Proof: Define K = Q(v/—7), K/ = Q(¢7). Let ¢ denote codeword is fixed by both and o, hence it is an element

Cr, thenK' = K(¢C+¢7Y).

of Q(~/—7) = K. Moreover it is nonzero wheneveX is



nonzero, sinc&) was shown to be division. We use the image of these generators undeto generate
We show thatC is conditionally 4-group decodable with the codeC overZ. To check fast decodability, we verify the
complexity |S|*?; conditioned on decoding symbols correrelations

sponding to{Ts1,...,I's3}, the complexity of decoding o (X) s (V) + s (V) o (X) = 0

symbols corresponding t¢I'; 1,...,T43} is at most|S|3,
where S is the underlying alphabet. For that, note that whey — [;;,Y =Ty, wherel <i+#i <4andl < j,j' <3.
A=T;;,B=Ty ,forall j,j" and fori # ', we have The orderinga, (T11), ..., a-(iT11),...,a-(iT42) gives
AB' + BAT — 0. the matrix M/ with the same zero structure as in Equatidn (5)
only now each coefficient is 2x 2 matrix. Hence the code is
Same follows fora., (A), o, (B), i.e., we have: conditionally4-group decodable with complexity|'°. More

precisely, conditioned on decoding symbols corresponting

T T
ar(A)ar(B)! + ar(Ba-(4) = 0. {a;(iT'11),...,a:(il'42)}, the complexity of decoding the

LetT = [a,(T11),...,a,(T's3)] be the list of24 genera- rest of the symbols is at mos§|?.
tors of C from (4) in lexicographical order. Then the matrix [ ]
M = M, ; from Equation[(B) capturing orthogonality relations Remark 2:Here we have concentrated on a real sphere de-
on I" has the following structure: coding process. Note, however, that;, 'y 2,..., T4 1,40
- - gives aZ(i)-basis ofC. We can verify the relations
* 0 0 0 % % x x
0 « 0 0 * x * = ar (X)), (Y) 4+ ar (V) o (X) =0,
8 8 3 2 : : I I X =Ti;Y = Ty, wherel < i # i < 4. Hence the
M= e s s w w w w (5) obtalned_ code igl-group decodable, of complexity degree
when using a complex decoder.
* * * * * * * ES
R R R V. LESS THAN MINIMUM DELAY CODES FORN = 2
_>I< * * * * * * *_ RELAYS

where each coefficient of the matrix above i8 & 3 matrix,

which is 0 when the coefficient i§. In order to further reduce the complexity, we will shorten

the block length. Sucless than minimum delagodes have
been considered in][9]. To this end, let us start by constrgct
B. Virtual 4 x 2 MIMO channel withN = 2,n, = n,, = 1, a code with dimension rat® = 2, i.e., the lattice is of rank
ng =2 4 and the code matrix transmits two real dimensions (e.g. two

We use a similar idea as in tifiex 6 case to construct fast- PAM symbols) per channel use.

decodable rate four relay codes consistingtof 4 matrices. .
A. Virtual 4 x 1 MIMO channel withN = 2,n, = n, =

Proposition 4.2:Let the codeC consist of matrices L, ng=1
X 0 ¢ —v2o(d) Let us consider the 8th cyclotomic extensiQi(s)/Q, and
{ [O T(X):| ‘X = [\/gd o(c) }} denote its Galois group byl, 7 : v2 — —/2,*,7*}, where

. _ . * denotes complex conjugation. Our code will simply consist
with ¢,d € Ok, o : v/a —» —/a. Again we have conjugated of matrices

the original matrix in order to aid decodability and energy

balance. The minimum determinant is invariant under such I* 8
conjugation. X(a1,a9) = “TO () ,

Each matrixX represents an element from the quaternion 0 ()
algebra(a, v)x over a biquadratic field< = Q(i, \/p). Then
for valuesa = 5,7y = —2,p = 31 the resulting code is a wherex = a; + a2(s anda,; € Z[i]. Due to the fact that the
fully diverse NVD code of rank 16. It is conditionalitgroup code matrix only contains two QAM symbols, the complexity
decodable with (real) decoding complexity|*°. will automatically be at mostS|*, whereS is the underlying

Proof: We use similar techniques to the previous proagkal alphabet. However, if we do a smart ordering of the basis
to establish thafa, ) i is division. First we establish that theelements a$B; = X (1,0), X (4,0), X (0,1), X(0,4)},thedx
prime ideal5Z splits completely ink. Using the fact that its 4 matrix R will have the form described in Definitidn 3.1 with
residue field is isomorphic té's, we conclude thaty is not a2 x 2 matrix A. This is due to the fact that whenever we
a square modul® in the integers ofK. Hence using[[13, have a totally real basis elemeRt; and a totally imaginary
Theorem 7.1], we conclude th@t = (a, ) is division. The one B;, this will result in RTr[(H B;)"HB;] = 0. Thus, we
generators of) overQ(i) are have reduced the worst case complexity|$4°, that is, by

62.5% compared to the complexit§|® of a general square
Fii=q¢.Tie=qypli=1,...,4. code with the same rate.



Proposition 5.1: The matricesX'X, X # 0, have the for further complexity reductions. One efficient way to redu
NVD property. the complexity is to employ less than minimum delay codes

Proof: The proof is straightforward. Namely,that by construction already halve the complexity compared
det(XTX) = dar(z)z*r(z)* = 4Ngeolr) € 4Z, togeneral minimum delay codes. It remains to be investitjate
and hencelet(XTX) > 4. m how the codes perform compared to other distributed codes

Next, we extend the above construction to the cagse- 2
ideally calling for a rate four code.

that either have higher complexity or lack NVD. Related
results [1#4] will be posted to arXiv in near future.
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(and diversity) the code matrix can achieve when compared

to a square code matrix. Hence, we observe a performance-

complexity tradeoff implying that while we can indeed reduc

the decoding complexity by reducing the code length, we are

likely to face slightly worse performance caused by the cedu

tion in diversity. Increasing the rate (performance) wika

here require dropping the NVD requirement, again indigatin

a tradeoff type behavior.

VI. CONCLUSIONS AND FUTURE WORK

We proposed explicit relay codes with a fast-decodable
structure and NVD for different number of antennas
and relays. It was shown that the method used implies
a performance-complexity tradeoff. In other words, fast-
decodable codes with NVD were proposed, while at the same
time it was noted that relaxing on the NVD property allows



	I Introduction
	II System model for the NAF relay channel
	III On fast decodability
	IV Minimum delay codes for N=2 and N=3 relays
	IV-A Virtual 62  MIMO channel with N=3, ns=nr=1,  nd=2
	IV-B Virtual 42 MIMO channel with N=2, ns=nr=1, nd=2

	V Less than minimum delay codes for N=2 relays
	V-A Virtual 41  MIMO channel with N=2, ns=nr=1,  nd=1
	V-B Virtual 42  MIMO channel with N=2, ns=nr=1,  nd=2

	VI Conclusions and future work
	References

