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Abstract—We investigate how to exploit intermittent feedback
for interference management. Focusing on the two-user linear
deterministic interference channel, we completely characterize
the capacity region. We find that the characterization only
depends on the forward channel parameters and the marginal
probability distribution of each feedback link. The scheme we
propose makes use of block Markov encoding and quantize-map-
and-forward at the transmitters, and backward decoding at the
receivers. Matching outer bounds are derived based on novel
genie-aided techniques. As a consequence, the perfect-feedback
capacity can be achieved once the two feedback links are active
with large enough probabilities.

I. INTRODUCTION

The simplest information theoretic model for studying in-
terference is the two-user Gaussian interference channel (IC).
It is shown that feedback can provide an unbounded gain in
capacity for two-user Gaussian interference channels [1], in
contrast to the bounded power gain provided by feedback
in point-to-point, multiple access, and broadcast channels.
This has been demonstrated when the feedback is unlimited,
perfect, and free of cost in [1]. This motivates the natural
question of whether feedback can provide similar gains under
more practical feedback models.

In this work, we investigate how to exploit intermittent
feedback for managing interference. Such intermittent feed-
back could occur in several situations. For example, one
could use a side-channel such as WiFi for feedback; in this
case since the WiFi channel is best effort, dropped packets
might cause intermittent feedback. In other situations, control
mechanisms in higher network layers could cause the feedback
resource to be available intermittently. We study the effect
of intermittent feedback using the linear deterministic model
[2] of the two-user Gaussian IC. For the feedback links,
Bernoulli processes {S1[t]} and {S2[t]} control the presence
of feedback for user 1 and 2, respectively. Although the joint
distribution p(S1[t], S2[t]) can be time-variant in general, for
simplicity, we focus on the case where it is i.i.d. over time.
Our results suggest that extension to the time-variant case is
straightforward. We assume that the receivers are passive: they
simply feedback their received signals back to the transmitters
without coding. In other words, each transmitter receives from
feedback a punctured version of the received sequence at
its own receiver with unit delay. We focus on the passive
feedback model as the intermittence of feedback is motivated
by the availability of feedback resources (either through use
of best-effort WiFi for feedback or through feedback resource

scheduling). Therefore, it might be that the time-variant statis-
tics of the intermittent feedback are not a priori available at
the receiver and therefore precluding active coding. Moreover,
the availability of the feedback resource may not be known
ahead of transmission, therefore motivating the causal state-
information at the transmitter.

In the literature, other practical feedback models are also
investigated. Rate-limited feedback for the two-user IC was
considered in [3], where the feedback from the receivers to
the transmitters is modeled by two finite-capacity noiseless
links. [3] characterized the capacity region for the linear
deterministic IC and the sum capacity to within a constant
gap for the symmetric Gaussian IC. If indeed the feedback
statistics is a priori known at the receiver, one can use active
feedback to code for these erasures thereby creating noiseless
finite capacity feedback links. In contrast to our model, the
receivers in [3] can actively code the feedback signals. On
the other hand, [4] considered feedback with additive white
Gaussian noise but the receivers are passive, that is, they
cannot encode the feedback signal. The capacity region is
characterized for the symmetric linear deterministic IC [4].
When feedback shares the same resource (spectrum) with the
forward channel and hence is not free of cost, it is shown
in [5] through the study on two-way interference channels
that feedback can provide net capacity gain even taking the
feedback cost into account.

Our main contribution is the characterization of the capacity
region of the linear deterministic IC with intermittent feed-
back, which only depends on the forward channel parameters
and the marginal distribution of S1 and S2, not on the joint
distribution. Interestingly, the full benefit obtained via perfect
feedback can be achieved once the “on” probabilities of the
two feedback links are large enough. Our result in the linear
deterministic model also suggests that in the Gaussian case, the
capacity gain from intermittent feedback remains unbounded.

We propose a block Markov encoding scheme to exploit
intermittent feedback at the transmitters along with backward
decoding at the receivers. For linear deterministic IC, the high-
level idea is to exploit the additional information provided
by intermittent feedback to refine the interfered signals or to
relay additional information. Due to the passive nature of the
receivers, not all the information contained in the feedback is
useful, in sharp contrast to the case of rate-limited feedback
[3]. Therefore, at the transmitters instead of the (partial)
decode-and-forward scheme employed in [1] and [3], we use
quantize-map-and-forward [2] to extract useful information
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from the intermittent feedback and send it to the receivers.
We also develop novel outer bounds that match the achiev-

able rate region. Remarkably, in our proof we do not make use
of the assumption that the states are known to the transmitters
causally, which proves that even when the realization of
(SN

1 , S
N
2 ) is known non-causally, the capacity region remains

the same.
The rest of this paper is organized as follows. We formulate

the problem in Section II and present our main result in Sec-
tion III. Achievability and converse are proved in Section IV
and Section V respectively. An extended version of this paper
that includes the proof details can be found in [?].

II. PROBLEM FORMULATION
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Fig. 1. Linear Deterministic IC with Intermittent Feedback

In this paper, we focus on the linear deterministic model [2]
of the two-user Gaussian IC. An illustration is given in Fig. 1.

The transmitted signal at transmitter i (Txi) is Xi ∈ Fq
2, for

i = 1, 2. Here F2 denotes the binary field {0, 1}. The received
signals at receiver 1 (Rx1) and receiver 2 (Rx2) are

Y1[t] = H11X1[t] +H12X2[t],

Y2[t] = H22X2[t] +H21X1[t],

where additions are modulo-two component-wise. Channel
transfer matrices Hij := Sq−nij for (i, j) ∈ {1, 2}2, where
q = max {n11, n12, n21, n22}, and S ∈ Fq×q

2 is the shift

matrix
[
0T 0
Iq−1 0

]
, where 0 is the zero vector in Fq−1

2 and

Iq−1 is the identity matrix in F(q−1)×(q−1)
2 . The transmit signal

from Txi at time t, Xi[t], is determined by the message
Wi, Ỹi[1 : t − 1], and (S1[1 : t − 1], S2[1 : t − 1]),
where Ỹi[t] := Si[t]Yi[t]. Let us use the notation A

f
=

B to denote that A is a function of B. Then, Xi[t]
f
=(

Wi, Ỹi[1 : t− 1], S1[1 : t− 1], S2[1 : t− 1]
)

.
The feedback state sequences have the joint distribution

p
(
SN
1 , S

N
2

)
=

N∏

t=1

p (S1[t], S2[t]) .

Let qi1i2 := p (S1 = i1, S2 = i2), i1, i2 ∈ {0, 1}. Marginally,
Si[t] ∼ Ber(pi), i.i.d. over time. In other words, the feedback

signal is erased with probability 1− pi, where

p1 := q10 + q11, p2 := q01 + q11.

For notational convenience, denote S := (S1, S2) and

V1 := H21X1, V2 := H12X2, Ṽ1 := S2V1, Ṽ2 := S1V2.

III. MAIN RESULT

The main result is summarized in the following theorem.
Theorem 3.1 (Capacity Region): The capacity region C for

the linear deterministic IC with intermittent feedback is the
collection of non-negative (R1, R2) satisfying (1) – (6).

Note that the rate region defined by (1) – (3) is the perfect-
feedback IC capacity region [1]. Therefore, once p1 and p2 are
so large that (4) – (6) become inactive, the perfect-feedback
performance can be attained even under intermittent feedback.
The thresholds on p1, p2 will depend on {nij , i, j ∈ {1, 2}}.

As an example, let us focus on the symmetric capacity Csym

under the symmetric setting n11 = n22 = n, n12 = n21 =
αn, p1 = p2 = p: (Csym := max(R,R)∈C R)

Csym

n
=





min {1− α/2, 1− (1− p)α} , α ≤ 1/2
min {1− α/2, p+ (1− p)α} , 1/2 ≤ α ≤ 1
min {α/2, (1− p) + pα} , α ≥ 1

,

where the first term in each minimization is the perfect-
feedback capacity. Hence, we find the threshold on p above
which perfect-feedback capacity can be achieved, as follows:

p∗ =





1/2, α ≤ 1/2
(2− 3α)+/(2− 2α), 1/2 ≤ α ≤ 1
(α− 2)+/(2α− 2), α ≥ 1

.

Note that in the regime 2/3 ≤ α ≤ 2, feedback does
not increase the symmetric capacity of IC [1] and hence
p∗ = 0, that is, we do not need feedback at all. Also note
that p∗ ≤ 1/2 for all α. Therefore, once p ≥ 1/2, perfect-
feedback capacity can be achieved with intermittent feedback
regardless of channel parameters α and n. Note that the larger
p is, the larger the amount of additional information about the
past reception can be obtained through intermittent feedback
at the transmitters. If the amount of such information is larger
than a threshold, then sending it to the receivers will limit
the rate for delivering fresh information. The threshold p∗

represents the maximum limit at which the help of feedback
is not neutralized by this effect.

IV. ACHIEVABILITY PROOF

To prove the achievability part of Theorem 3.1, in this
section we provide a coding scheme to exploit intermittent
feedback in the interference channel. Since the feedback is
passive, one cannot code against the erasures in the feedback
links. This is the key difference with the active feedback
case [3]. In the active feedback case, a block Markov coding
scheme based on decode-and-forward at the transmitters is
employed, which is a natural extension of that in the perfect
feedback case [1]. Instead, we employ a block Markov coding
scheme based on quantize-map-and-forward, which can be
viewed as a non-trivial extension of the perfect feedback
scheme. Below we describe the scheme in detail.



R1 ≤ min
{
max(n11, n12), n11 + p2(n21 − n11)+

}
(1)

R2 ≤ min
{
max(n22, n21), n22 + p1(n12 − n22)+

}
(2)

R1 +R2 ≤ min
{
max(n11, n12) + (n22 − n12)+,max(n22, n21) + (n11 − n21)+

}
(3)

R1 +R2 ≤ max
{
n12, (n11 − n21)+

}
+max

{
n21, (n22 − n12)+

}

+ p1 min
{
n12, (n11 − n21)+

}
+ p2 min

{
n21, (n22 − n12)+

}
(4)

2R1 +R2 ≤ max(n11, n12) + max
{
n21, (n22 − n12)+

}
+ (n11 − n21)+ + p2 min

{
n21, (n22 − n12)+

}
(5)

R1 + 2R2 ≤ max(n22, n21) + max
{
n12, (n11 − n21)+

}
+ (n22 − n12)+ + p1 min

{
n12, (n11 − n21)+

}
(6)

A. High-level Description

For the two-user linear deterministic IC, Han-Kobayashi
coding scheme is a natural choice where we split the message
into common and private: Wi := (Wic,Wip) for i = 1, 2.
The total number of blocks to be transmitted is B, and the
length of each block is N . For block b ∈ [1 : B], the
messages {W1(b),W2(b)} are independent from the messages
of other blocks. In the following we describe the encoding and
decoding for a particular block b for user 1. Operations of user
2 are similar.

In the beginning of block b, from the punctured feedback
Ỹ N
1 (b− 1) and the state sequence SN (b− 1), Tx1 generates

Ṽ N
1 (b− 1) = SN

2 (b− 1)V N
1 (b− 1),

Ṽ N
2 (b− 1) = Ỹ N

1 (b− 1)− SN
1 (b− 1)XN

1 (b− 1).

Note that Tx2 can also generate
(
Ṽ N
1 (b− 1), Ṽ N

2 (b− 1)
)

.
The high-level idea is to use this common information to
cooperatively refine the previously received signals at the
receivers and/or relay additional information, as in the perfect
feedback case [1]. The only difference is that here we do not
decode at the transmitters. The reason is that the imperfect
feedback may lay additional constraints on the achievable rate
if we insist to decode. Decoding partially is not optimal since
the realization of erasures in the feedback links is not known
beforehand, and if we insist to decode at the transmitters some
pre-assigned sub-messages, this could harm the achievable rate
of other sub-messages.

Hence, we shall quantize Ṽ N
1 (b−1) and Ṽ N

2 (b−1), and map
the quantized outputs to a codeword XN

1e(b) which contains
the helping information for interference refinement or message
relaying regarding block b − 1. On top of it, we further
superpose fresh information of block b, the messages W1c(b)
and W1p(b), to generate the transmit codeword XN

1 (b).
For decoding, we employ backward decoding. At the end

of block b, assuming that quantized version of Ṽ N
1 (b) and

Ṽ N
2 (b) has been successfully decoded from the future block
b+ 1, Rx1 decodes W1c(b), W2c(b), and W1p(b) jointly with
the quantized version of Ṽ N

1 (b− 1) and Ṽ N
2 (b− 1).

In the above scheme, we can see that Ṽ N
1 (b−1) and Ṽ N

2 (b−
1) will contain some information of block b−2, which contains
information about block b − 3, and so on. This dependency
across blocks hampers a single-letter characterization of the

achievable rates, since the mutual information terms obtained
will depend on all the signals sent in previous blocks. In order
to remove the dependency across more than two blocks, we
carry out the following operation before quantizing Ṽ N

1 (b−1)
and Ṽ N

2 (b− 1): generate

V
N

i (b− 1) := Ṽ N
i (b− 1)− Ṽ N

ie (b− 1)

where Ṽ N
ie (b − 1) := SN

j (b − 1)HjiX
N
ie (b − 1) for (i, j) =

(1, 2), (2, 1). The operation is feasible since both XN
1e(b −

1) and XN
2e(b − 1) are generated from shared information

V
N

1 (b−2) and V
N

2 (b−2), and hence (by induction) available
at both transmitters. In our proposed encoding architecture,
the quantization is performed on V

N

1 (b− 1) and V
N

2 (b− 1).
An illustration of the encoding architecture is given in Fig. 2.
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Fig. 2. Block Diagram of Encoder at Tx1

B. Codebook Generation and Detailed Coding Process

We describe the scheme for block b in detail below.

Codebook Generation and Encoding:
Based on p (Ui), generate 2Nri quantization codewords UN

i

i.i.d. over time, for i = 1, 2, to quantize V
N

i (b−1). Let q1(b−
1) and q2(b−1) denote the quantization indices. The quantiza-
tion is carried out by a joint typicality encoder as in standard
source coding. We then choose a symbol-by-symbol map
x1e(u1, u2) for mapping

(
UN
1 (q1(b− 1)), UN

2 (q2(b− 1))
)

into XN
1e(b). This completes the joint-source-channel coding

part of the encoder. Note that we shall use the same pair of
quantization codebooks at both transmitters.



Superposition encoding is done in a standard way. We
base on p (X1c|X1e) to generate 2NR1c common code-
words XN

1c(W1c(b), X
N
1e(b)) i.i.d. over time. Then based

on p (X1|X1c), we generate 2NR1p transmit codewords
XN

1 (W1p(b), X
N
1c(b)) i.i.d. over time.

Decoding:
At the end of block b, we assume that quantization indices

{q1(b), q2(b)} have been decoded from block b + 1. The
additional information carried by {UN

1 (q1(b)), U
N
2 (q2(b))}

can be used in conjunction with Y N
1 (b) to decode

(W1c(b),W1p(b), q1(b− 1), q2(b− 1)) = (i1, j, q1, q2). We
find such a unique (i1, j, q1, q2) and some W2c(b) = i2 such
that(

Y N
1 (b), UN

1 (q1(b)) , U
N
2 (q2(b)) , U

N
1 (q1), U

N
2 (q2) ,

XN
1c(i1, q1, q2), X

N
1 (j, i1, q1, q2), X

N
2c(i2, q1, q2)

)

(7)

is jointly ε-typical.

C. Analysis

The key to a single-letter rate characterization of the above
scheme is that, the actual quantization codewords are indepen-
dent across different blocks, that is,

(
UN
1 (q1(b)) , U

N
2 (q2(b))

)

and
(
UN
1 (q1(b− 1)) , UN

2 (q2(b− 1))
)

are independent. This
is due to the removal of Ṽ N

1e (b− 1) and Ṽ N
2e (b− 1) described

above. The error probability analysis is standard so we omit the
details here. Below we sketch the analysis of the error event
where j is decoded incorrectly but (i1, i2, q1, q2) is correct.
Note that the joint distribution of the random vectors in (7) is

p
(
yN1 , u

N
1 , u

N
2 |u′N1 , u′N2 , xN1 , x

N
2c

)
p
(
u′N1 , u′N2

)

· p
(
xN1 |xN1c

)
p
(
xN1c|u′N1 , u′N2

)
p
(
xN2c|u′N1 , u′N2

)

with a change of notations for the sake of simplicity:

Y N
1 (b)→ yN1 , U

N
1 (q1(b))→ uN1 , U

N
2 (q2(b))→ uN2 ,

UN
1 (q1)→ u′N1 , UN

2 (q2)→ u′N2 , XN
1c(i1, q1, q2)→ xN1c,

XN
1 (j, i1, q1, q2)→ xN1 , X

N
2c(i2, q1, q2)→ xN2c.

By packing lemma [6], the probability of this error event
vanishes as N →∞ if

R1p ≤ I (X1;Y1, U1, U2|X1c, X2c, U
′
1, U

′
2) .

Analysis of the other error events follows similarly. For the
joint-typicality encoding to be successful with high probability,
we need ri ≥ I

(
Ui;V i

)
for i = 1, 2, due to covering lemma

[6]. Hence, decoding is guaranteed to be successful with high
probability if the following holds: for (i, j) = (1, 2) and (2, 1),

Rip ≤ I
(
Xi;Yi, Ui, Uj |Xic, Xjc, U

′
i , U

′
j

)

Rjc +Rip ≤ I
(
Xjc, Xi;Yi, Ui, Uj |Xic, U

′
i , U

′
j

)

Ri ≤ I
(
Xi;Yi, Ui, Uj |Xjc, U

′
i , U

′
j

)

Rjc +Ri ≤ I
(
Xjc, Xi;Yi, Ui, Uj |U ′i , U ′j

)

ri + rj +Rjc +Ri ≤ I
(
U ′i , U

′
j , Xjc, Xi;Yi, Ui, Uj

)

ri ≥ I
(
Ui;V i

)
.

for some mapping functions {x1e(u1, u2), x2e(u1, u2)} and
input distribution

p (U1, U2) p (U
′
1, U

′
2) p (X1c|U ′1, U ′2) p (X1|X1c)

· p (X2c|U ′1, U ′2) p (X2|X2c) .

Here Ri = Rip+Ric is the achievable rate for user i, i = 1, 2.
V i := Ṽi− Ṽie as defined previously. (U ′1, U

′
2) corresponds to

the (UN
1 (b−1), UN

2 (b−1)) while (U1, U2) corresponds to the
(UN

1 (b), UN
2 (b)). Hence, p (U ′1, U

′
2) and p (U1, U2) should be

the same, since we use the same distribution to generate the
quantization codebooks in all the blocks.

D. Rate Region Evaluation

To achieve the capacity region, we choose the input dis-
tribution and the mapping function as follows. For the input
distribution, we pick

Ui = V i := Ṽi − Ṽie, U ′i , Ui : i.i.d.
Xic = Xie +Ber1/2[suppVi]

Xi = Xic +Ber1/2[suppXi \ suppVi]

and xie(u1, u2) is a linear map such that the random linear
combinations of all levels of u1 and u2 is put uniformly at
random on all the levels of suppXi. The support suppXi

and suppVi denote the levels of Xi and Vi respectively,
and Ber1/2(A) denotes a random vector with i.i.d. Ber(1/2)
random variables on all the levels of A.

With the above choice, we have

r1 ≥ I
(
U1;V 1

)
= H

(
V 1

)
= p2n21

r2 ≥ I
(
U2;V 2

)
= H

(
V 2

)
= p1n12

We choose r1 = p2n21 and r2 = p1n12, and obtain the
following rate region after eliminating r1, r2 and redundant
terms (see Appendix A for details):

R1p ≤ p1 := (n11 − n21)+
R2c +R1p ≤ s1 := max

{
(n11 − n21)+, n12

}

+ p1 min
{
(n11 − n21)+, n12

}

R1 ≤ t1 := n11 + p2(n21 − n11)+
R2c +R1 ≤ n1 := max(n11, n12)

R2p ≤ p2 := (n22 − n12)+
R1c +R2p ≤ s2 := max

{
(n22 − n12)+, n21

}

+ p2 min
{
(n22 − n12)+, n21

}

R2 ≤ t2 := n22 + p1(n12 − n22)+
R1c +R2 ≤ n2 := max(n22, n21)

After Fourier Motzkin elimination, (R1, R2) satisfying

R1 ≤ min {t1, n1, p1 + s2}
R2 ≤ min {t2, n2, p2 + s1}

R1 +R2 ≤ min {p1 + n2, p2 + n1}
R1 +R2 ≤ s1 + s2

2R1 +R2 ≤ p1 + n1 + s2



R1 + 2R2 ≤ p2 + n2 + s1

is achievable, which coincides with the capacity region (1) –
(6) except the terms p1 + s2 and p2 + s1 in the individual
rate constraints. We complete the achievability proof by the
following fact.

Fact 4.1: t1 ≤ p1 + s2, t2 ≤ p2 + s1.
Proof: See Appendix B.

V. CONVERSE PROOF

The converse proof is a novel modification of those in the
perfect feedback case [1] and the rate-limited feedback case
[3]. Due to space constraints, below we outline the main proof
and leave the details of the four useful facts to Appendix C.

Fact 5.1: For (i, j) = (1, 2), (2, 1),

Xi[t]
f
=
(
Wi, Ṽ

t−1
j , St−1

)
f
=
(
Wi, V

t−1
j , St−1) .

Fact 5.2: For (i, j) = (1, 2), (2, 1),

H
(
Y N
i |Wi, S

N
)
= H

(
V N
j , Ṽ N

i |Wi, S
N
)
.

Fact 5.3: For (i, j) = (1, 2), (2, 1),

I
(
Wi;V

N
j , Ṽ N

i |SN
)
≤ Npjnji.

Fact 5.4: For (i, j) = (1, 2), (2, 1),

N−1H
(
Y N
i |V N

i , Ṽ N
j , SN

)

≤ pi(nii − nji)+ + (1− pi)max
{
nij , (nii − nji)+

}
,

N−1H
(
Y N
i |V N

j , Ṽ N
i , SN

)

≤ pj(nii − nji)+ + (1− pj)nii,

A. Bounds on R1 and R2

We focus on the bounds on R1. The first term in the
minimization is a cut-set bound and the proof is in [1].

The second term is obtained as follows:

N (R1 − εN ) ≤ I
(
W1;Y

N
1 |SN

)

≤ I
(
W1;Y

N
1 |V N

2 , Ṽ N
1 , SN

)
+ I

(
W1;V

N
2 , Ṽ N

1 |SN
)

(a)

≤ H
(
Y N
1 |V N

2 , Ṽ N
1 , SN

)
+Np2n21

≤ N
{
p2(n11 − n21)+ + (1− p2)n11 + p2n21

}

= N
{
n11 + p2(n21 − n11)+

}
.

Here εN → 0 as N → ∞. (a) is due to Fact 5.3. Hence, (1)
holds. Similarly, so does (2).

B. Bounds on R1 +R2

The first bound (3) is the bound when feedback is perfect,
and the proof can be found in [1]. The second bound (4) is
non-trivial and is proved as follows. If (R1, R2) is achievable,

N (R1 +R2 − εN ) ≤ I
(
W1;Y

N
1 |SN

)
+ I

(
W2;Y

N
2 |SN

)

(a)
= H

(
Y N
1 |SN

)
−H

(
V N
1 , Ṽ N

2 |W2, S
N
)
+H

(
Y N
2 |SN

)

−H
(
V N
2 , Ṽ N

1 |W1, S
N
)

≤ H
(
Y N
1 |V N

1 , Ṽ N
2 , SN

)
+ I

(
W2;V

N
1 , Ṽ N

2 |SN
)

+H
(
Y N
2 |V N

2 , Ṽ N
1 , SN

)
+ I

(
W1;V

N
2 , Ṽ N

1 |SN
)

(b)

≤ N {Right-Hand Side of (4)} .

Here εN → 0 as N →∞. (a) is due to Fact 5.2. (b) is due to
Fact 5.3 and 5.4. Hence (4) holds.

C. Bounds on 2R1 +R2 and R1 + 2R2

We focus on the bound in (5). If (R1, R2) is achievable,

N (2R1 +R2 − εN )

≤ I
(
W1;Y

N
1 |SN

)
+ I

(
W2;Y

N
2 |SN

)
+ I

(
W1;Y

N
1 |SN

)

(a)

≤ H
(
Y N
1 |SN

)
−H

(
V N
2 , Ṽ N

1 |W1, S
N
)
+H

(
Y N
2 |SN

)

−H
(
V N
1 , Ṽ N

2 |W2, S
N
)
+ I

(
W1;Y

N
1 |W2, S

N
)

= H
(
Y N
1 |SN

)
−H

(
V N
2 , Ṽ N

1 |SN
)
+H

(
Y N
2 |SN

)

+ I
(
W1;V

N
2 , Ṽ N

1 |SN
)
−H

(
V N
1 , Ṽ N

2 |W2, S
N
)

+H
(
Y N
1 |W2, S

N
)

≤ H
(
Y N
1 |SN

)
+H

(
Y N
2 |V N

2 , Ṽ N
1 , SN

)

+ I
(
W1;V

N
2 , Ṽ N

1 |SN
)
+H

(
Y N
1 |V N

1 , Ṽ N
2 ,W2, S

N
)

(b)

≤ N

{
max(n11, n12) + max {n21, (n22 − n12)+}
+(n11 − n21)+ + p2 min {n21, (n22 − n12)+}

}
.

Here εN → 0 as N →∞. (a) is due to Fact 5.2. (b) is due to
Fact 5.3 and 5.4, and

H
(
Y N
1 |V N

1 , Ṽ N
2 ,W2, S

N
)

= H
(
Y N
1 |V N

1 , Ṽ N
2 ,W2, S

N , XN
2

)

= H
(
H11X

N
1 |V N

1 , Ṽ N
2 ,W2, S

N , XN
2

)
≤ H

(
H11X

N
1 |V N

1

)

≤ N(n11 − n21)+

due to Fact 5.1. Hence, (5) holds.
Remark 5.1: In the above proof, we do not make use of

the assumption that the realization of the feedback states
(SN

1 , S
N
2 ) is known to the transmitters causally. In other

words, even if we allow some genie to provide the whole
state sequence (SN

1 , S
N
2 ) to all four terminals beforehand, the

capacity region remains the same.
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APPENDIX A
ACHIEVABLE RATE EVALUATION

Let us evaluate the rate constraints corresponding to the
decoding at Rx1:

R1p ≤ I (X1;Y1, U1, U2 | X1c, X2c, U
′
1, U

′
2)

= H (Y1, U1, U2 | X1c, X2c, U
′
1, U

′
2)

= H (X1 | X1c, X1e, U
′
1, U

′
2)

= (n11 − n21)+
R2c +R1p ≤ I (X2c, X1;Y1, U1, U2 | X1c, U

′
1, U

′
2)

= H (Y1, U1, U2 | X1c, U
′
1, U

′
2)

= H (Y1, U2 | X1c, X1e, X2e, U
′
1, U

′
2)

= max
{
(n11 − n21)+, n12

}

+ p1 min
{
(n11 − n21)+, n12

}

R1 ≤ I (X1;Y1, U1, U2 | X2c, U
′
1, U

′
2)

= H (Y1, U1, U2 | X2c, U
′
1, U

′
2)

= H (X1, U1 | X2c, X1e, X2e, U
′
1, U

′
2)

= n11 + p2(n21 − n11)+
R2c +R1 ≤ I (X2c, X1;Y1, U1, U2 | U ′1, U ′2)

= H (Y1, U1, U2 | U ′1, U ′2)
= H (Y1, U1, U2 | X1e, X2e, U

′
1, U

′
2)

=





q00 max(n11, n12)
+q01 max(n11, n12 + n21)
+q10(n11 + n12)
+q11(max(n11, n21) + n12)





r1 + r2 +R2c +R1 ≤ I (U ′1, U ′2, X2c, X1;Y1, U1, U2)

= H (Y1, U1, U2)

= max(n11, n12) + p2n21 + p1n12

Plug in r1 = p2n21, r2 = p1n12 we obtain

R1p ≤ (n11 − n21)+
R2c +R1p ≤ max

{
(n11 − n21)+, n12

}

+ p1 min
{
(n11 − n21)+, n12

}

R1 ≤ n11 + p2(n21 − n11)+

R2c +R1 ≤





q00 max(n11, n12)
+q01 max(n11, n12 + n21)
+q10(n11 + n12)
+q11(max(n11, n21) + n12)





R2c +R1 ≤ max(n11, n12)

Below we show that the second bound on R2c+R1 always
dominates the first term. First note that q00+q01+q10+q11 =
1. Hence, we separate right hand side of the second bound
into four parts, and show each of them is not smaller than the
corresponding ones in the first bound.
• q00-term: max(n11, n12) = max(n11, n12).
• q01-term: max(n11, n12 + n21) ≥ max(n11, n12).
• q10-term: n11 + n12 ≥ max(n11, n12).
• q11-term: (max(n11, n21) + n12) ≥ max(n11, n12).

Hence, we obtain the rate region.

APPENDIX B
PROOF OF FACT 4.1

Note that both t1 and p1 + s2 are affine in p2. Plugging in
p2 = 0, we see that

t1 = n11

≤ p1 + s2 = max
{
(n22 − n12)+ + (n11 − n21)+, n21, n11

}
.

Plugging in p2 = 1, we see that

t1 = max(n11, n21)

≤ p1 + s2 = (n11 − n21)+ + n21 + (n22 − n12)+.
Hence, t1 ≤ p1 + s2 for all p2. Similarly, t2 ≤ p2 + s1.

APPENDIX C
PROOF OF FACT 5.1 – 5.4

A. Proof of Fact 5.1
By definition, we have

X1[t]
f
=
(
W1, Ỹ

t−1
1 , St−1

)
f
=
(
W1, X

t−1
1 , Ṽ t−1

2 , St−1
)

f
=
(
W1, Ṽ

t−1
2 , St−1

)
f
=
(
W1, V

t−1
2 , St−1) .

Similarly, the other functional relationship holds.

B. Proof of Fact 5.2
Let us focus on the first equality.

H
(
Y N
1 |W1, S

N
)
=

N∑

t=1

H
(
Y1[t]|W1, S

N , Y t−1
1

)

(a)
=

N∑

t=1

H
(
Y1[t]|W1, S

N , Y t−1
1 , Xt

1

)

=

N∑

t=1

H
(
V2[t]|W1, S

N , V t−1
2 , Xt

1

)

(b)
=

N∑

t=1

H
(
V2[t]|W1, S

N , V t−1
2

)

= H
(
V N
2 , Ṽ N

1 |W1, S
N
)
,

where (a) is by definition, (b) is due to Fact 5.1. The other
holds similarly.



C. Proof of Fact 5.3

Below we shall prove the inequality for (i, j) = (1, 2). The
second one follows in a similar way.

I
(
W1;V

N
2 , Ṽ N

1 |SN
)

(a)

≤ I
(
W1;W2, Ṽ

N
1 |SN

)
= I

(
W1; Ṽ

N
1 |SN ,W2

)

= H
(
Ṽ N
1 |SN ,W2

)
≤ H

(
Ṽ N
1 |SN

2

)

= ESN
2

[
H
(
(s2V1)

N
) ∣∣SN

2 = sN2
]

≤ ESN
2

[
N∑

t=1

H (s2[t]V1[t])

∣∣∣∣∣S
N
2 = sN2

]

≤ ESN
2

[
N1

(
sN2
)
n21

∣∣∣SN
2 = sN2

]

= Np2n21.

Here N1(·) denotes the number of 1’s in the sequence. (a)
follows because V N

2
f
=
(
W2, Ṽ

N
1 , SN

)
.

D. Proof of Fact 5.4

We focus on (i, j) = (1, 2) below. For the first inequality,

H
(
Y N
1 |V N

1 , Ṽ N
2 , SN

)
≤ H

(
Y N
1 |V N

1 , Ṽ N
2 , SN

1

)

= ESN
1

[
H
(
Y N
1 |V N

1 , (s1V2)
N
) ∣∣SN

1 = sN1
]

≤ ESN
1

[
N∑

t=1

H (Y1[t]|V1[t], s1[t]V2[t])
∣∣∣∣∣S

N
1 = sN1

]

≤ ESN
1

[
N1

(
sN1
)
(n11 − n21)+

+N0

(
sN1
)
max {n12, (n11 − n21)+}

∣∣∣∣SN
1 = sN1

]

= Np1(n11 − n21)+ +N(1− p1)max
{
n12, (n11 − n21)+

}
.

Here N1(·) and N0(·) denote the number of 1’s and 0’s
respectively in the sequence.

For the second inequality,

H
(
Y N
1 |V N

2 , Ṽ N
1 , SN

)
≤ H

(
Y N
1 |V N

2 , Ṽ N
1 , SN

2

)

= ESN
2

[
H
(
Y N
1 |V N

2 , (s2V1)
N
) ∣∣SN

2 = sN2
]

≤ ESN
2

[
N∑

t=1

H (Y1[t]|V2[t], s2[t]V1[t])
∣∣∣∣∣S

N
2 = sN2

]

≤ ESN
2

[
N1

(
sN2
)
(n11 − n21)+ +N0

(
sN2
)
n11

∣∣∣SN
2 = sN2

]

= Np2(n11 − n21)+ +N(1− p2)n11.
The other cases when (i, j) = (2, 1) follow similarly.
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