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Abstract—We propose an information-theoretic framework for
analog signal separation. Specifically, we consider the problem
of recovering two analog signals from a noiseless sum of linear
measurements of the signals. Our framework is inspired by
the groundbreaking work of Wu and Verdú (2010) on almost
lossless analog compression. The main results of the present
paper are a general achievability bound for the compressionrate
in the analog signal separation problem, an exact expression for
the optimal compression rate in the case of signals that have
mixed discrete-continuous distributions, and a new technique for
showing that the intersection of generic subspaces with subsets of
sufficiently small Minkowski dimension is empty. This technique
can also be applied to obtain a simplified proof of a key result
in Wu and Verdú (2010).

I. I NTRODUCTION

We consider the following signal separation problem: Re-
construct the vectorsy andz from the noiseless observation

w = Ay +Bz (1)

where A and B are (measurement) matrices. As detailed
in [1, Sec. 1] this problem has numerous applications such
as inpainting, super-resolution, and the recovery of clipped
signals and of signals that are corrupted by impulse noise or
narrowband interference.

The sparse signal recovery literature [1]–[10] provides sep-
aration guarantees under sparsity constraints on the vectors
y and z. The sparsity thresholds in [1], [5], [9], [10] are
functions of the coherence parameters [1] of the matricesA

andB and hold forall y andz meeting these thresholds, but
suffer from the square-root bottleneck [6]. For random signals,
the asymptotic results in [2], [3], [8] overcome the square-root
bottleneck, but hold “only” with overwhelming probability.
For B the identity matrix andA a random orthogonal matrix
it is shown in [7] that the probability of failure of a certainre-
construction procedure decays exponentially in the dimension
of the ambient space.

Contributions: Inspired by the recent work of Wu and
Verdú [11], we derive asymptotic recovery results for the
analog signal separation problem with the vectorsy and z

random, possibly dependent, and of general distributions.Our
results hold for deterministicB and for almost all (a.a.) matri-
cesA, but do not depend on coherence parameters. However,
since we assumey and z to be random, the statements are
in terms of probability of separation error with respect to
the source distributions, and hence do not provide worst-case
guarantees like the coherence-based results in [1], [5], [9],
[10].

Specifically, we study the asymptotic settingℓ, n → ∞
where the vectorsy ∈ R

n−ℓ and z ∈ R
ℓ are realizations

of random processes; for eachn, we let ℓ = ⌊λn⌋ and
k = ⌊Rn⌋ for parametersR, λ ∈ [0, 1] and measurement
matricesA ∈ R

k×(n−ℓ) and B ∈ R
k×ℓ, with k > ℓ.

We refer to the parameterR as the compression rate as
it equals (approximately) the ratio between the number of
measurements and the total number of parameters iny and
z. In Theorem 1, we show that for each (deterministic) full-
rank matrixB, recoveringy andz from the measurementw
is possible with arbitrarily small probability of separation error
for a.a. matricesA, provided thatn is sufficiently large and
the compression rateR is larger than the Minkowski dimen-
sion compression rate (see Definition 4) of the concatenated
random vector[yT zT]T. Since the technique used to prove
the related result [11, Thm. 18] in the context of almost
lossless analog compression can not be adapted to our setting,
we develop a new proof method. The foundation of our
approach, inspired by [12], is a new technique for showing
that the intersection of generic subspaces with subsets of
sufficiently small Minkowski dimension is empty (Proposi-
tion 1). A novel concentration of measure result, developed
in Lemma 3, turns out to be an essential ingredient of this
technique. Applying our method to the setting in [11] leads to
a significant simplification of the proof of [11, Thm. 18, 1)].

For y and z mixed discrete-continuously distributed with
mixing parametersρ1 and ρ2, respectively, we show that
the Minkowski dimension compression rate can be evaluated
explicitly to

(1 − λ)ρ1 + λρ2. (2)

What is more, this threshold is tight in the sense that there is
a converse if the compression rateR is smaller than (2).

Notation: For a relation# ∈ {<,>,6,>,=, 6=,∈,

/∈}, we write f(n)
.
# g(n) if there exists anN ∈ N such

that f(n) # g(n) holds for alln > N . Lebn denotes then-
dimensional Lebesgue measure andB⊗n the Borelσ-algebra
on R

n. We write ‖ · ‖ for the ℓ2-norm onRn. Matrices are
denoted by capital boldface and vectors by lowercase boldface
letters.Bn(x, ε) is the ball centered atx ∈ R

n of radiusε with
respect to‖ · ‖, and its volume isα(n, ε) = Lebn(Bn(x, ε)).
The closure of a setU ⊂ R

n is denoted byU . We use sans-serif
letters, e.g.x, for random quantities and roman letters, e.g.
x, for deterministic quantities. For a random variableX or a
random vectorx, µX andµx denote the respective distribution.
We write1X∈A for the characteristic function associated with
the eventX ∈ A.
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II. M AIN RESULT

We start by noting that (1) can be rewritten as

w = [A B]

[

y

z

]

which shows that, formally, the separation problem we con-
sider can be cast as an almost lossless analog compression
problem [11] with measurement matrixH = [A B] and
random source vector[yT zT]T, wherey and z are possibly
dependent. As we shall see below in Remark 3, the results
in [11] can, however, not be applied to our setting, asB is
deterministic here, whereas the results in [11] hold for a.a.
matricesH.

Definition 1: Let 0 6 λ 6 1. Suppose that(Yi)i∈N

and (Zi)i∈N are stochastic processes on(RN,B⊗N). Then,
for n ∈ N, the source vectorx of length n is given by
x = [X1 . . . Xn]

T with

Xi = Yi, for i ∈ {1, . . . , n− ℓ}

Xn−l+i = Zi, for i ∈ {1, . . . , ℓ}

whereℓ = ⌊λn⌋.
The rate Definitions 2 and 4 below are adapted from the

corresponding definitions in [11].
Definition 2: (Analog compression -linear measurements/

measurableseparator). Forx as in Definition 1 andε > 0, an
(n, k) code consists of

(i) linear measurements[A B] : Rn−ℓ × R
ℓ → R

k;
(ii) a separatorg : Rk → R

n−ℓ×R
ℓ that is measurable with

respect toB⊗k andB⊗n.

We callR with 0 6 R 6 1 anε-achievable rate if there exists
a sequence of(n, ⌊Rn⌋) codes such that

P[g([A B]x) 6= x]
.
< ε.

We define the optimal linear compression rateRL(ε) as the
infimum over all ε-achievable rates. Here, the name “lin-
ear” reflects the restriction to linear measurements, employed
throughout the paper.

Next, we define the Minkowski dimension. This quantity is
sometimes also referred to as box-counting dimension, which
is the origin for the subscript B in the notationdimB(·) used
below.

Definition 3: (Minkowski dimension, [13]). LetS be a
nonempty bounded set inRn. Define the lower and upper
Minkowski dimension ofS as

dimB(S) = lim inf
ε→0

logNS(ε)

log 1
ε

dimB(S) = lim sup
ε→0

logNS(ε)

log 1
ε

whereNS(ε) is the covering number ofS given by

NS(ε) = min
{

m ∈ N | S ⊂
⋃

i∈{1,...,m}

Bn(xi, ε), xi ∈ R
n
}

.

If dimB(S) = dimB(S), we simply writedimB(S).

Definition 4: (Minkowski dimension compression rate). For
x from Definition 1 andε > 0, we define the Minkowski
dimension compression rate as

RB(ε) = lim sup
n→∞

an(ε), where

an(ε) = inf
{dimB(S)

n

∣

∣

∣
S ⊂ R

n, P[x ∈ S] > 1− ε
}

.

(3)

Remark 1:Note that in (3) the infimum is taken with
respect to thelower Minkowski dimension, whereas the corre-
sponding definition in [11] is based on theupperMinkowski
dimension. Our main result, Theorem 1 below, when special-
ized to the setting of [11], i.e.,λ = 0, therefore constitutes an
improvement of the general achievability result in [11].

The following theorem states that foreveryfull-rank matrix
B ∈ R

k×ℓ, with k > ℓ, every rateR with R > RB(ε) is
ε-achievable for a.a.A.

Theorem 1:Let x be as in Definition 1 withε > 0 and
let R >RB(ε). Then, for every full-rank matrixB ∈ R

k×ℓ,
with k > ℓ, and for a.a. (with respect toLebk(n−ℓ)) matrices
A ∈ R

k×(n−ℓ), wherek = ⌊Rn⌋, there exists a measurable
separatorg such that

P[g([A B]x) 6= x]
.
< ε. (4)

Proof: See Section V.
Remark 2:The proof of Theorem 1 reveals that the mini-

mum N ∈ N for (4) to hold for alln > N depends only on
the distribution ofx and is independent of the matricesA and
B.

Remark 3: In [11, Thm. 18, 1)] it was shown that every rate
R with R >RB(ε) is ε-achievable in almost lossless analog
compression for a.a. measurement matricesH ∈ R

k×n.
This result is generalized in Theorem 1 above to hold for
H = [A B] for a given full-rank matrixB, with k > ℓ, for
a.a. matricesA ∈ R

k×(n−ℓ). Since in a concrete separation
problem we often encounter a particular structure forB, for
example a certain dictionary under which the corresponding
signal is sparse, it is important to have the statement hold for
all matricesB, instead of only for a.a.H = [A B]. The
proof of [11, Thm. 18, 1)] relies on intricate properties of
measures on Grassmanian manifolds that are invariant under
the action of the orthogonal group. These arguments can not
be applied to our setting as the overall measurement matrix
H = [A B] has a deterministick × ℓ block B. This forced
us to find an alternative proof, which is based on two key
elements, a concentration of measure result stated in Lemma3,
and a dimension counting argument provided in Proposition 1.
The dimension counting argument says that the(n − k)-
dimensional nullspace ofH and the approximate support set
S in (3) of the source vectorx will not intersect, if the
Minkowski dimension ofS is smaller thank. Underlying this
argument is the basic idea that two objects whose dimensions
do not add up to at least the dimension of their ambient space,
in general, do not intersect. Our proof strategy also applies
to the compression problem [11] and leads to a significant



simplification of the proof of [11, Thm. 18, 1)], as detailed in
Section VI.

III. M IXED DISCRETE-CONTINUOUS DISTRIBUTIONS

In order to establish the connection to the traditional sparse
signal separation problem considered, e.g., in [1]–[3], [5],
[7]–[10], we next consider sourcesx with independent com-
ponents, where each component of the constituent processes
(Yi)i∈N and(Zi)i∈N has a mixed discrete-continuous distribu-
tion, with possibly different mixture parameters for(Yi) and
(Zi).

Definition 5: We say thatx from Definition 1 has a mixed
discrete-continuous distribution if for eachn ∈ N the random
variablesXi for i ∈ {1, . . . , n} are independent and distributed
according to

µXi
=

{

(1− ρ1)µd1 + ρ1µc1 , i ∈ {1, . . . , n− ℓ}

(1− ρ2)µd2 + ρ2µc2 , i ∈ {n− ℓ+ 1, . . . , n},

(5)

where 0 6 ρi 6 1, the µci are distributions on(R,B),
absolutely continuous with respect to Lebesgue measure, and
the µdi are discrete distributions.

Lemma 1:Suppose thatx is distributed according to Defi-
nition 5. Then

RB(ε) = λρ1 + (1 − λ)ρ2 (6)

for all ε satisfying0 < ε < 1.
Proof: The proof is largely similar to the proof of [11,

Thm. 15]. A sketch of the part that is different is provided in
Section VII.

Theorem 1 shows that the optimal linear compression rate
RL(ε) is lower-bounded by the Minkowski dimension com-
pression rateRB(ε). In the mixed discrete-continuous case we
can strengthen this result through the following converse.

Lemma 2:Suppose thatx is distributed according to Def-
inition 5 and letε > 0 andR >RB(ε). Then, for each full-
rank matrixB ∈ R

k×ℓ, with k > ℓ, and for Lebesgue a.a.
(with respect toLebk(n−ℓ)) matricesA ∈ R

k×(n−ℓ), where
k = ⌊Rn⌋, there exists a measurable separatorg such that

P[g([A B]x) 6= x]
.
< ε. (7)

Moreover, for everyε with 0 < ε < 1, R > RB(ε) is also a
necessary condition for (7) to hold, i.e.,RL(ε) = RB(ε).

Proof: Achievability:Follows from Theorem 1.
Converse:In the same spirit as the proof of the converse part
of [11, Thm. 6].

Finally, we combine Lemmata 1 and 2 to get an analytical
expression for the optimal linear compression rate.

Corollary 1: Suppose that x has a mixed discrete-
continuous distribution accodring to Definition 5 and let
0 < ε < 1. Then, we have

RL(ε) = (1− λ)ρ1 + λρ2. (8)

Corollary 1 essentially states that the optimal linear com-
pression rate is determined by the fraction of continuously
distributed components in the concatenated source vector.

Interestingly,RL(ε) does not depend on coherence quantities
of the measurement matricesA andB, which usually arise in
recovery thresholds in the sparse signal separation problem,
see, e.g., [1], [8]. In this respect, under the rate constraint
R > RB(ε), a.a. matricesA are “incoherent” to a given
matrixB. When the distribution of one of the signals is purely
discrete, the optimal linear compression rate is determined
solely by the distribution of the other signal. Finally, if the
dimension of one of the signals is much larger than the
dimension of the other, i.e.,λ ≈ 0 or λ ≈ 1, then the
characteristics of the higher-dimensional signal dominate the
threshold in Corollary 1.

IV. T ECHNICAL RESULTS

In this section, we collect the main technical results referred
to earlier in the paper. These results are important ingredients
of the proof of Theorem 1, detailed in Section V, and the
simplification of the proof of [11, Thm. 18, 1)], described in
Section VI. First, we present a concentration result that bounds
the probability that the norm of the image of a deterministic
vector under a random affine mapping is small.

Lemma 3:Let A = [a1 . . . ak]
T be a random matrix in

R
k×n where theai are i.i.d. uniform on the setBn(0, r). Then,

for eachu ∈ R
n\{0}, eachv ∈ R

k, andδ > 0, we have

P[‖Au+ v‖ < δ] 6 C(n, k, r)
δk

‖u‖k
,

whereC(n, k, r) is a constant that depends onn, k, and r
only.

Proof:

α(n, r)k P[‖Au+ v‖ < δ]

= Lebkn{A ∈ Bn(0, r)× . . .×Bn(0, r) | ‖Au+ v‖ < δ}

6

k
∏

i=1

Lebn{ai ∈ Bn(0, r) | |aT
i u+ vi| < δ}

(a)
=

k
∏

i=1

Lebn

{

ai ∈ Bn(0, r) |
∣

∣

∣
a
T
i e1 +

vi
‖u‖

∣

∣

∣
<

δ

‖u‖

}

(b)

6 (2r)k(n−1)
k
∏

i=1

Leb1
{

ai ∈ R |
∣

∣

∣
ai +

vi
‖u‖

∣

∣

∣
<

δ

‖u‖

}

=
(2r)k(n−1)(2δ)k

‖u‖k
,

where(a) follows from the fact thatLebn is invariant under
rotations and we consider a rotation that takesu/‖u‖ into
e1 = [1 0 . . . 0]T, and in (b) we denote byai the first com-
ponent of the vectorai and use the fact that the magnitudes
of the remaining components ofai are less than or equal to
r.

Proposition 1: Let S ⊂ R
n be such thatd := dimB(S) <

k. Then

{u ∈ S\{0} | Au = 0} = ∅, (9)

for Lebesgue a.a.A ∈ R
k×n.

Proof: Suppose thatA is distributed as specified in
Lemma 3. In order to show that the Lebesgue measure of



matricesA for which (9) does not hold is zero, it suffices to
prove that

P[∃u ∈ S\{0} : Au = 0] = 0, (10)

for r > 0. We employ a union bound argument to lower-bound
the norm of vectors inS\{0}:

P[∃u ∈ S\{0} : Au = 0]

6

∞
∑

j=1

P[∃u ∈ S\Bn(0, 1/j) : Au = 0]. (11)

This allows us to conclude that it suffices to prove (10) for
setsS ′ ⊂ S with min{‖u‖ | u ∈ S ′} > 0, as this would
show that each term in the series in (11) is zero. Using the
definition of the Minkowski dimension (Definition 3) and the
fact thatS ′ ⊂ S implies d′ := dimB(S

′) 6 d, we can find a
sequenceεm tending to zero such that

logNS′(εm)

log 1
εm

m→∞
−−−−→ d′.

Let x1, . . . ,xNS′ (εm) be the centers of the balls of radiusεm
that coverS ′ (cf. Definition 3). Sincemin{‖u‖ | u ∈ S ′} > 0,
we can assumem to be sufficiently large formin{‖xi‖ | 1 6

i 6 NS′(εm)} > 0 to hold. As the norm of each row ofA
is bounded, all realizations ofA have a common Lipschitz
constant, sayL. Putting things together, we find that

P[∃u ∈ S ′ : Au = 0]

(a)

6

N
S′ (εm)
∑

i=1

P[∃u ∈ Bn(xi, εm) : Au = 0]

6

NS′ (εm)
∑

i=1

P[∃u ∈ Bn(xi, εm) : ‖Au‖ < εm]

(b)

6

NS′ (εm)
∑

i=1

P[‖Axi‖ < (L+ 1)εm]

(c)

6 C(n, k, r, L)NS′(εm) εkm
m→∞
−−−−→

(d)
0,

where(a) follows from a union bound argument,(b) is a con-
sequence of‖Axi‖ 6 ‖A(xi −u)‖+ ‖Au‖ 6 Lεm + ‖Au‖,
(c) is by application of Lemma 3, and(d) is a consequence
of

logNS′(εm)

log 1
εm

− k =
log

(

NS′(εm)εkm
)

log 1
εm

m→∞
−−−−→ d′ − k < 0.

We have therefore shown thatP[∃u ∈ S ′ : Au = 0] = 0.
Remark 4:The result in Proposition 1 is very intuitive

as it says that a generic(n − k)-dimensional subspace will
intersect ad-dimensional object withd < k at most trivially.
A statement similar to Proposition 1 was proven in [12,
Lem. 4.3]. The result in [12, Lem. 4.3] applies to linear
combinations of Lipschitz mappings, and also gives an upper
bound on the lower Minkowski dimension of the set on the
left hand side of (9) whend > k. The proof of [12, Lem. 4.3]
is based on the singular-value decomposition ofA. Our proof

above is more direct, but applies tod < k only, the case
relevant here.

Next, we provide a generalization of Proposition 1, which
will be needed in the proof of Theorem 1.

Proposition 2: Let S ⊂ R
n be such thatd := dimB(S) <

k, and letB ∈ R
k×ℓ be a matrix withrank(B) = ℓ. Then,

{u ∈ S\{0} | [A B]u = 0} = ∅,

for Lebesgue a.a.A ∈ R
k×(n−ℓ).

The proof of Proposition 2 is similar to that of Proposition 1
above, and will therefore be omitted.

V. PROOF OFTHEOREM 1

SinceR > RB(ε) andk = ⌊Rn⌋, we have

an(ε)
.
<

k

n
, (12)

which, together with the definition ofan(ε), implies that there
exists a sequence1 U := Un ⊂ R

n such that

dimB(U)
.
< k (13)

P[x ∈ U ]
.
> 1− ε. (14)

For the remainder of the proof we choosen to be suffi-
ciently large for (13) and (14) to hold in the#-sense. For
A ∈ R

k×(n−ℓ) andB ∈ R
k×ℓ define the separator2

g(v) =

{

x, if {u | [A B]u = v} ∩ U = {x}

error, else.
(15)

Then

P[g([A B]x) 6= x]

= P[g([A B]x) 6= x, x ∈ U ]

+ P[g([A B]x) 6= x, x /∈ U ] (16)
(a)

6 P[g([A B]x) = error, x ∈ U ] + ε
(b)

6 P[∃u ∈ Ux\{0} : [A B]u = 0, x ∈ U ] + ε,

whereUx = U − {x} = {u − x | u ∈ U}, (a) follows from
the definition of the separator (15) and from (14), and(b)
again is by definition of the separator (15). SincedimB(U) =
dimB(Ux), we find, through application of Proposition 2, that

Lebk(n−ℓ){A | ∃u ∈ Ux\{0} : [A B]u = 0} = 0, (17)

for all x. Therefore, the integral of (17) with respect toµx(dx)
is zero, and, noting that (17) can be written as an integral with
respect todA, we can apply Fubini’s Theorem to interchange
the two integrals and obtain
∫

Rk×(n−ℓ)

P[∃u ∈ Ux\{0} : [A B]u = 0, x ∈ U ]dA = 0. (18)

1The definition ofU is to be understood in the sense that the sequence
index n is dropped for simplicity of exposition.

2Taking “error” to be an arbitrary element ofRn\U we obtain a measurable
mapg : Rk → Rn−ℓ × Rℓ as required in Definition 2.



Therefore, we haveP[∃u ∈ Ux\{0} : [A B]u = 0, x ∈ U ] = 0

for a.a.A ∈ R
k×(n−ℓ). In summary, we have shown that

P[g([A B]x) 6= x] 6 ε,

for a.a.A, which completes the proof.

VI. SIMPLIFYING THE PROOF OF[11, THM . 18, 1)]

In this section, we sketch how the technique developed
in the proof of Proposition 1 can be applied to devise a
simplified and elementary proof of [11, Thm. 18, 1)]. The
framework of almost lossless analog compression in [11] for
the case of linear measurements and a measurable decoder
considers a general stochastic source processx. The problem
is to reconstructx from Hx, whereH is the measurement
matrix. The result in [11, Thm. 18, 1)] says that forR >RB(ε),
for a.a.H ∈ R

k×n, there exists a measurable decoderg such
that

P[g(Hx) 6= x]
.
< ε,

wherek = ⌊Rn⌋.
Using Proposition 1, we can give an alternative, simplified

proof of this result as follows. We choose a setU ⊂ R
n such

that (13) and (14) hold, and define the decoder according to

g(v) =

{

x, if {u | Hu = v} ∩ U = {x}

error, else.
(19)

The probability of a decoding error is then decomposed as
in (16). Applying Proposition 1 we find that a.a. matricesH

are injective onU . Finally, invoking Fubini’s Theorem as in
the argument leading to (18) allows us to conclude that the
probability of decoding error is zero whenx ∈ U , leaving the
total probability of decoding error to be smaller thanε and
thus finishing the proof.

VII. SKETCH OF THEPROOF OFLEMMA 1

Recall the role ofλ in Definition 1. The casesλ ∈ {0, 1}
are equivalent to the caseλ = 1/2, ρ1 = ρ2, µd1 = µd2 , and
µc1 = µc2 . Hence, we can assume, without loss of generality,

that 0 < λ < 1. This implies that we can takeℓ = ⌊λn⌋
.
/∈

{0, n}.
Let Ai be the set of atoms ofµdi . Then

E[1Xj /∈Ai
] = µXj

(Ac
i )

=

{

ρ1, for i = 1, j ∈ {1, . . . , n− ℓ}

ρ2, for i = 2, j ∈ {n− ℓ+ 1, . . . , n}.

By the weak law of large numbers,

1

n− ℓ

n−ℓ
∑

j=1

1Xj /∈A1

P
→ ρ1

1

ℓ

n
∑

j=n−ℓ+1

1Xj /∈A2

P
→ ρ2,

which yields

| spt(x)|

n
=

n− ℓ

n

1

n− ℓ

n−ℓ
∑

j=1

1Xj /∈A1
+

ℓ

n

1

ℓ

n
∑

j=n−ℓ+1

1Xj /∈A2

P
→ (1− λ)ρ1 + λρ2 (20)

with the generalized support

spt(x) = {i ∈ {1, . . . , n− ℓ} | xi /∈ A1}

∪ {i ∈ {n− ℓ+ 1, . . . , n} | xi /∈ A2}.

Let κ > 0 be arbitrary and set

C := {x | | spt(x)| < ((1 − λ)ρ1 + λρ2 + κ)n}

D := {x | | spt(x)| > ((1 − λ)ρ1 + λρ2 − κ)n}.

Then, by convergence in probability in (20), we have

P[x ∈ C]
.
> 1− ε (21)

P[x ∈ D]
.
> 1− ε. (22)

The remaining steps of the proof are almost identical to the
proof of [11, Thm. 15] and are therefore omitted. The idea
is to decomposeC andD into basic subsets, whose elements
have certain components equal elements of the atomic sets
A1,A2, and the remaining components arbitrary. This allows
us to bound the Minkowski dimension ofC and T ∩ D, for
arbitraryT with P[x ∈ T ] > 1− ε, and thus to sandwich the
Minkowski dimension compression rate according to

(1− λ)ρ1 + λρ2 − κ 6 RB(ε) 6 (1− λ)ρ1 + λρ2 + κ,

which yields the claim, sinceκ is arbitrary.
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