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Abstract—In this paper we study the optimality of particular
points in the capacity region of Gaussian multiple access chan-
nels (GMACs) with various power constraints. The points of
interest maximize general rate objectives that arise in practical
communication scenarios. Achieving these points constitutes the
task of jointly optimizing time-sharing parameters, input covari-
ance matrices and the order of decoding used by the successive
interference cancellation receiver. To approach this problem
Carathéodory’s theorem is invoked to represent time-sharing and
decoding orders jointly as a finite-dimensional matrix variable.
This variable enables us to use variational inequalities to extend
results pertaining to problems with linear objectives to more
general, potentially nonconvex, problems. In particular, it is
shown that for arbitrary objectives, if the power constraints are
convex, it suffices for each user to use only one covariance matrix
in all its allocated time slots. On the other hand, for arbitrary
power constraints, if the objective is linear no time-sharing is
necessary. These results significantly reduce the design complexity
and render optimal signalling over GMAC more amenable to
implementation in various practical scenarios.

I. INTRODUCTION

In a Gaussian multiple access channel (GMAC) multiple

users send independent signals to one destination. Such a

channel model arises in uplink communications of cellular

systems [1]. In addition to the relevance of the GMAC

to practical communication scenarios, the analysis of this

channel with a sum-power constraint is closely related to the

analysis of the, usually less understood, Gaussian broadcast

channel (GBC). This relationship was discovered in [2], was

further investigated in [3], and was used in [4] to facilitate the

evaluation of the capacity region of GBC.

The capacity region of general multiple access channels was

obtained in [5] and [6]. Particularizing these results to the

case of Gaussian channels, it was shown therein that corner

points on the boundary of the capacity region are achieved

when the signal of each user is Gaussian distributed with

an appropriate covariance and the receiver uses successive

interference cancellation (SIC) to decode the users’ signals

sequentially [7]. In SIC, the receiver decodes the signal of each

user while treating the signals of the set of users interfering

with it as noise. After decoding, the signal of each user is

stripped off from the signal interfering with the signal of

the remaining users. Other points on the boundary of the

capacity region can be obtained by time-sharing, whereby each

decoding order and collection of users’ covariance matrices are

used during a fraction of the signalling duration.

An alternate approach to communication over GMACs is

the so-called rate-splitting. This technique is shown in [8] to

achieve every point on the boundary of the GMAC capacity

region with single-user coding and without user synchroniza-

tion. Achieving particular points within the capacity region

of GMAC was considered in [9] and [10]. In [9], the input

covariances of all users are assumed fixed and the points of

interest are those that satisfy a certain fairness criterion and lie

on the sum-capacity facet of the capacity region. Two cases

are considered in [10]: the case of small number of users,

which gives rise to a scenario in which time-sharing is feasible,

and the case of large number of users, which gives rise to a

scenario in which time-sharing is infeasible. In [10], fairness is

not directly addressed. However, the points to be achieved are

those at which the weighted sum of the rates of a given subset

of users is maximized while the rates of the remaining users

are restricted to some prescribed values. A somewhat similar

philosophy was applied to scenarios involving broadcast chan-

nels. For instance, in [11] the GMAC-GBC duality in [2] is

used to develop an algorithm that maximizes a weighted sum

of the logarithms of the users’ rates. In [12], another instance

of a multiuser communication system is considered. Therein,

the investigated system represents an interference channel and

the goal is to determine the decoding order that achieves the

optimal max-min fairness.

Following previous efforts to efficiently obtain particular

points on the boundary of the capacity region of various

multiuser systems, in this paper we focus on the GMAC

scenario. In particular, we consider the joint optimization of

the set of input covariance matrices, time-sharing parameters

and user orderings that maximize various rate objectives with

various classes of power constraints. To approach this problem,

we invoke Carathéodory’s theorem to represent time-sharing

and decoding orders jointly as a finite-dimensional matrix

variable. This variable enables us to use variational inequalities

to extend results pertaining to problems with linear objectives

to more general, potentially nonconvex, problems. In partic-

ular, it is shown that for arbitrary objectives, if the power

constraints are convex, it suffices for each user to use only

one covariance matrix in all its allocated time slots. On the



other hand, for arbitrary power constraints, if the objective is

linear no time-sharing is necessary. These results significantly

reduce the design complexity and enable us to find solutions

for, otherwise daunting, GMAC-based optimization problems.

II. PRELIMINARIES

In this section, we provide background material necessary

for subsequent development.

Lemma 1 (Variational inequalities. Necessity). Let f : X →
R be a continuously differentiable function over the convex set

X ⊂ RN . If the vector xxx∗ is the minimum of f in X , then

xxx∗†∇f(xxx∗) ≤ xxx†∇f(xxx∗),

for all xxx ∈ X , where ∇f(xxx) is the gradient of f at xxx.

Proof: See Appendix B of [13].

An immediate application of Lemma 1 is

Proposition 1. Let xxx∗ be the optimum solution for

min
xxx∈X

f(xxx),

where X is a convex set, and f is continuously differentiable.

Then, for the constant vector aaa = ∇f(xxx∗), xxx∗ is optimum for

min
xxx∈X

xxx†aaa.

Proof: From Lemma 1, for all xxx ∈ X , we have that

xxx∗†aaa ≤ xxx†aaa. Thus, xxx∗ is the minimum of xxx†aaa in X .

Complementary to Lemma 1 is the following result.

Lemma 2 (Variational inequalities. Sufficiency). Let f : X →
R be a convex continuously differentiable function over the set

X ⊂ RN . If the vector xxx∗ satisfies

xxx∗†∇f(xxx∗) ≤ xxx†∇f(xxx∗),

for all xxx ∈ X , then, xxx∗ = argmin
xxx∈X

f(xxx).

Proof: See Appendix C of [13].

Remark. Notice that for Lemma 1 to hold, the set X must be

convex, but, apart from continuous differentiability, no restric-

tions are imposed on the function f . In contrast, for Lemma 2

to hold, the function f must be convex and continuously

differentiable, but no restrictions are imposed on the set X .

Lemma 2 yields a complementary result of Proposition 1.

Proposition 2. Let xxx∗ ∈ X , and let aaa = ∇f(xxx∗), where f is

convex and continuously differentiable. If xxx∗ = argmin
xxx∈X

xxx†aaa,

then xxx∗ is also optimum for

min
xxx∈X

f(xxx).

Proof: The optimality assumption implies that xxx∗†aaa ≤
xxx†aaa for all xxx ∈ X . Therefore, from Lemma 2, xxx∗ is the

minimum of f in X .

Propositions 1 and 2 will enable us to draw some relation-

ships between solutions of general problems and solutions of

problems with linear objectives. Combining these proposition

for cases in which X is convex and f is convex and continu-

ously differentiable yields the following corollary.

Corollary 1. Let f : X → R be convex and contin-

uously differentiable and let X ⊂ R
N be convex. Then

xxx∗ = argmin
xxx∈X

f(xxx) if and only if xxx∗ = argmin
xxx∈X

xxx†aaa, where

aaa = ∇f(xxx∗).

III. SYSTEM MODEL AND OPTIMIZATION

The GMAC is composed of K users transmitting to one

base station. The number of transmit antennas of the k-th user

is denoted by Nk, k = 1, . . . ,K , and the number of receive

antennas at the base station is denoted by NK+1. The received

signal is given by

yyy =

K
∑

k=1

HHHkxxxk + zzz,

where HHHk ∈ CNK+1×Nk is the channel matrix of the k-th user

and xxxk ∈ CNk is its transmitted signal. The Gaussian noise at

the base station is denoted by zzz ∈ CNK+1 , which is assumed

to satisfy E[zzzzzz†] = III .

The limitation of the system is the available power. Let

QQQk = E[xxxkxxx
†
k] and let Q̄QQ =QQQ1⊕· · ·⊕QQQK , that is, Q̄QQ is block

diagonal with the matrices QQQ1, · · · ,QQQK along the diagonal.

We consider systems with L power constraints which can be

expressed as gl(diag(Q̄QQ)) ≤ 0, l = 1, . . . , L. Let

P = {Q̄QQ|Q̄QQ � 0, gl(diag(Q̄QQ)) ≤ 0, l = 1, . . . , L} (1)

be the set of all feasible Q̄QQ. For practical considerations, this

set can be assumed to be bounded.

Corner points of the GMAC capacity region can be achieved

by using an SIC receiver. To achieve a particular corner, the

receiver orders the users and decodes their signals sequentially.

Decoded signals are stripped off the signal used to decode

subsequent users. In other words, the amount of interference

observed in decoding the signal of a particular user depends

on the ordering. Hence, to maximize a given objective, the

receiver must determine the optimal user ordering. More

precisely, let π1, · · · , πK! be the set of all K! permutations,

where πi(j) refers to the user in the j-th position of the i-th

ordering. For this ordering, the k-th user is able to achieve:

rki
(

Q̄QQ
)

= log

∣

∣

∣
III+

∑

j≥π
−1

i
(k)HHHπi(j)QQQπi(j)

HHH
†

πi(j)

∣

∣

∣

∣

∣

∣
III+

∑

j>π
−1

i
(k)HHHπi(j)QQQπi(j)

HHH
†

πi(j)

∣

∣

∣

.

The GMAC capacity region is the convex hull of all rate

vectors that are achievable with all orderings and all covariance

matrices in P in (1). This implies that, in order to reach

certain rate vectors, we may need to use convex combinations

of M rate vectors with M collections of covariance matri-

ces {Q̄QQ(m)}Mm=1 and M permutations {πi(·)}. For notational

convenience, the collection of M permutations will be denoted

by ννν. Convex combinations can be implemented in practice by

time-sharing using M non-negative coefficients, a1, . . . , aM ,

where am ≥ 0, m = 1, . . . ,M and
∑M

m=1 am = 1. These



coefficients represent the percentage of time during which

each of the M rate vectors is used. Hence, with time-sharing

included, the k-th user is able to achieve the following rate

M
∑

m=1

am log

∣

∣

∣
III+

∑

j≥ν
−1
m (k)HHHνm(j)QQQ

(m)
νm(j)HHH

†

νm(j)

∣

∣

∣

∣

∣

∣
III+

∑

j>ν
−1
m (k)HHHνm(j)QQQ

(m)
νm(j)HHH

†

νm(j)

∣

∣

∣

, (2)

where νm(·) is the m-th permutation in ννν, and QQQ
(m)
k is the

covariance matrix of the signal of the k-th user in the m-th

collection. Fortunately, the maximum number of rate vectors

required to be combined is given by Carathéodory’s theorem,

which implies that it suffices to set M = K+1 to reach every

point in the GMAC capacity region.

Being explicit in permutations, the characterization in (2)

is not well-suited for finding collections of covariances, time-

sharing parameters and user-orderings that enable practically

important objectives to be optimized. To circumvent this

difficulty, the time-sharing parameters and user permutations

are combined in what we refer to as the time-sharing matrix

ααα ∈ R(K+1)×K!. The mi-th element of ααα, αmi, represents the

percentage of time where the m-th collection of covariance

matrices is used with the i-th ordering. Hence, this represen-

tation renders the elements of ααα, not only time-sharing weights

for generating convex combinations, but also indicators of

the used orderings. In particular, αmi = am > 0 if the

permutation νm = πi and αmi = 0, otherwise. Using this

notation, we express any achievable rate of the user k of the

form in (2) as
∑K+1

m=1

∑K!
i=1 αmirki

(

Q̄QQ
(m)

)

. By introducing

the matrix ααα, we obtained a form that is more convenient

for subsequent optimization, but at the expense of increasing

the dimensionality from combining K + 1 rate vectors to

combining (K + 1)! ones. However, since it suffices to time-

share no more than K +1 rate vectors, any rate vector of the

capacity region can be achieved with a time-sharing matrix

with, at most, K + 1 non zero elements. The entries of the

time-sharing matrix must belong to the unit simplex

S ,

{

ααα
∣

∣

∣

K+1
∑

m=1

K!
∑

i=1

αmi = 1, αmi ≥ 0, ∀m, i
}

.

Let Q = {Q̄QQ(m)}K+1
m=1. Then, the GMAC capacity region

can be expressed as the union of rate vectors ρρρ (ααα,Q) with

the k-th entry given by

ρk (ααα,Q) =

K+1
∑

m=1

K!
∑

i=1

αmirki

(

Q̄QQ
(m)

)

, k = 1, . . . ,K.

With notation established, our goal now is to consider ob-

jectives f : RK → R with relevance to practical applications

and to characterize the solution of problems of the form:

min
ααα,Q

f (ρρρ (ααα,Q)) , (3a)

subject to ααα ∈ S, (3b)

Q̄QQ
(m) ∈ P , m = 1, . . . ,K + 1. (3c)

The number of variables in this problem is (K + 1)! + (K +
1)

∑

k N
2
k , where the first term is the number of variables in

ααα, and the second term is the number of variables in Q. We

will later present results that will enable us to significantly

reduce this number.

IV. PROBLEMS WITH LINEAR OBJECTIVES

In this section we will derive results for problems with linear

objectives. These results will be used in the following section

with Propositions 1 and 2 and Corollary 1 to draw valuable

insight into problems with nonlinear objectives.

When the objective is linear, (3) can be cast as

max
ααα,Q

K
∑

k=1

wkρk (ααα,Q) , (4a)

subject to (3b) and (3c), (4b)

where {wk}Kk=1 are constant, not necessarily positive, weights.

The purpose for considering potentially non-positive weights

will become clear when we discuss nonlinear objectives.

With {wk}Kk=1 given, the optimum user ordering is known

and is given in the following lemma.

Lemma 3. For problems with linear objectives and arbitrary

power constraints, the optimum decoding order is the increas-

ing order of weights, that is, if w1 ≤ · · · ≤ wK , it is optimal

to decode user 1 first, followed by user 2, and so on.

Proof: See Appendix E of [13] for details, and a similar

proof in [14].

Remark. 1) Lemma 3 implies that if maximizing the

(linear) objective requires time-sharing of multiple rate

vectors, each of these vectors can be achieved with the

same decoding order.

2) When the weights are distinct, the decoding order is

unique, unless the received signals of a subset of users

are either zero or orthogonal to each other. The unique-

ness proof is omitted for brevity. These cases result in

trivial consequences and will be ignored throughout.

3) For multiple equal weights, the decoding of the respec-

tive users can be interchanged without loss of optimality.

From Lemma 3, the optimization can focus on just one

ordering, whereupon the number of variables is reduced to

(K + 1) + (K + 1)
∑

k N
2
k .

To complete the characterization of the optimal solution

of (4) we have the following result.

Lemma 4. For problems with linear objectives and arbitrary

power constraints, the objective is maximized with one collec-

tion of covariance matrices.

Proof: The proof begins by assuming that the optimum

is reached using two collections of covariance matrices, and

proceeds to show that one of these collections suffices to reach

the optimum. See Appendix F of [13].

Combining Lemmas 3 and 4, it can be seen that for prob-

lems with linear objectives and arbitrary power constraints,



time-sharing is not necessary to solve (4). In addition, the

number of variables is now reduced to just
∑

k N
2
k . In Sec-

tion V these lemmas will be used to facilitate the solution of

a wide class of problems with nonlinear objectives.

V. PROBLEMS WITH NONLINEAR OBJECTIVES

We will now use the preliminaries in Section II and the

results of Section IV to gain insight into problems with general

objectives. Moreover, in Section V-A, we will consider a class

of problems for which the optimization can be significantly

simplified. All these results are applied to an example in

Section V-B. We begin by recalling that our notation implies

that the mi-th entry of the optimal time-sharing matrix is non-

zero if and only if the i-th decoding order, πi(·), and the m-th

collection of the covariance matrices, Q̄QQ
(m)

, are optimal. Next,

we present our first result of this section.

Proposition 3. Let ααα∗ and Q∗ be optimum for the general

problem in (3). Let w0 = 0 and {wk}Kk=1 be given by

wk = −∂f(xxx)

∂xk

∣

∣

∣

∣

xxx=ρρρ(ααα∗,Q∗)

k = 1, . . . ,K. (5)

Let the users be labelled so that w1 ≤ · · · ≤ wK . Then, for

each strictly positive α∗
mi ∈ ααα∗

1) πi(·) is ordered as w1, . . . , wK (multiple values of i will

satisfy this condition if multiple weights are equal), and

2) the collection Q̄QQ
∗(m)

solves

max
Q̄QQ

K
∑

k=1

(wk − wk−1) log
∣

∣

∣
III +

∑

j≥k

HHHjQQQjHHH
†
j

∣

∣

∣
, (6a)

subject to Q̄QQ ∈ P . (6b)

Proof: The proof hinges on the convexity of the GMAC

capacity region. See Appendix G of [13] for details.

Apart from implicit differentiability, no other assumptions

on f are imposed in deriving the necessary conditions of

Proposition 3. However, if the objective f is also convex, the

conditions of Proposition 3 are also sufficient for optimality.

This statement is formalized in the next theorem.

Theorem 1. For the optimization problem (3), if the objective

f is convex and continuously differentiable, then the time-

sharing matrix ααα∗ and the collection of covariance matrices in

Q∗ are optimum if and only if they satisfy conditions 1 and 2

of Proposition 3.

Proof: The proof of necessity follows from Proposition 3,

whereas the proof of sufficiency follows from applying Propo-

sition 2. See Appendix H of [13] for details.

A. Convex and nondecreasing power constraints

We now restrict our attention to a class of problems in which

the power constraints, gl in (1), l = 1, . . . , L, are convex and

nondecreasing in each component. It is shown that, for this

class of problems, any rate vector in the capacity region can

be achieved using only one collection of covariance matrices.

In some sense, this result generalizes Lemma 4, particularly

when power constraints are convex and nondecreasing. The

main result of this section is given in the following theorem.

Theorem 2. For the optimization problem in (3), let the power

constraint functions, gl, l = 1, . . . , L that generate the feasible

set P in (1) be convex and nondecreasing in each component.

Then, any achievable rate vector in the corresponding GMAC

can be achieved with one collection of covariance matrices.

Proof: To prove this theorem, we assume that a feasible

time-sharing matrix and a feasible collection of covariance ma-

trices are given. Using these, a certain collection of covariance

matrices is synthesized and is shown to achieve higher rates

than the given matrices. See details in Appendix I of [13].

When gl, l = 1, . . . , L are convex and nondecreasing,

Theorem 2 significantly reduces the complexity of solving and

analyzing the problem in (3). In particular, in such cases, the

time sharing matrix ααα can be replaced with a time-sharing

vector βββ ∈ R
K!, where βββ lies in the unit K!-dimensional

simplex, S = {βββ|βββ ≥ 0,
∑

i βi = 1}. Using this notation,

achievable rate vectors can be expressed as ρρρ
(

βββ,Q̄QQ
)

, where

ρk
(

βββ,Q̄QQ
)

=

K!
∑

i=1

βirki
(

Q̄QQ
)

, k = 1, . . . ,K. (7)

Using this result, the number of variables is reduced to

K! +
∑

k N
2
k , which is significantly less than the number of

variables in (3). For simplicity, this formulation will be used

in the next section.

B. Algorithm and Application

1) Algorithm: In this section, we develop an algorithm that

uses the necessary and sufficient conditions of Theorem 1 to

solve a class of nonconvex GMAC optimization problems that

might, otherwise, be considered intractable. To apply Theo-

rem 1, the objective must be convex in {ρk
(

βββ,Q̄QQ
)

}Kk=1, but

not necessarily convex in the input covariance matrices or the

time-sharing parameters. The power constraints are assumed to

be convex nondecreasing functions of the covariance matrices.

With the step-size sufficiently small, the developed algorithm

is guaranteed to converge to the optimal solution. The main

steps of the algorithm are given below. Assuming that an initial

time-sharing vector and collection of covariances are given, at

each iteration t, the algorithm

1) uses (5) to compute a vector of weights;

2) searches for the optimum covariance matrices that solves

the problem with a linear objective corresponding to

these weights; and

3) with the obtained covariance matrices fixed, searches for

the time-sharing vector that optimizes the objective of

the original problem.

Algorithm details and convergence analysis are provided in

Appendix K of [13].

2) Application: We now provide an instance in which

the developed algorithm is used to solve a two-user GMAC

optimization problem with a nonconvex objective and convex
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nondecreasing power constraints. In this instance, the objective

is to minimize the total completion time [15], that is, the time

required to transmit the data stored in the buffers of the two

users. Each user has two transmit antennas and a power budget

of P = 10 dB. The destination has two receive antennas and

the channel matrices are given by

HHH1 =

(

0.32 −0.06
−0.72 −0.88

)

+
√
−1

(

−0.15 −1.38
−1.34 −0.01

)

,

HHH2 =

(

−0.21 0.29
−0.08 0.91

)

+
√
−1

(

−0.65 0.15
0.13 1.39

)

.

Using these matrices and assuming that the users have in-

dependent power constraints, the GMAC capacity region can

be readily obtained; cf. Figure 1. Let b1 = 5 and b2 = 10
represent the amount of data stored in the buffers of user 1

and 2, respectively. In this case, the optimization problem that

yields the smallest completion time can be expressed as

min
βββ,Q̄QQ

b1

ρ1
(

βββ,Q̄QQ
) +

b2

ρ2
(

βββ,Q̄QQ
) , (8a)

subject to β1 + β2 = 1, βi ≥ 0, i = 1, 2, (8b)

QQQk � 0, tr (QQQk) ≤ P, k = 1, 2. (8c)

The contour lines of this objective are depicted in Figure 1.

The optimum rate vector is marked by the symbol ‘+’.

The time-sharing weights, the decoding order, and covariance

matrices required to achieve this vector are generated by the

algorithm developed in Section V-B1.

VI. CONCLUSION

We considered a GMAC scenario in which the goal is

to maximize a general non-linear objective, provided that

multiple power constraints are satisfied. The variables that

underlie this optimization are the input covariance matrices

of the users, their time-sharing parameters and their decoding

order. As such, the considered problems fall under the category

of mixed-integer optimization problems, which are generally

difficult to solve. To circumvent this difficulty, we invoked

Carathéodory’s theorem and variational inequalities to analyze

problems with general possibly non-convex objectives. This

analysis enabled us to derive: 1) necessary optimality condi-

tions for general problems; and 2) necessary and sufficient

optimality conditions for problems with objectives that are

convex in the rates, but not in the optimization variables.

Drawing insight into these conditions, we designed an al-

gorithm for solving a broad class of practical, but generally

difficult to solve, GMAC optimization problems. We suspect

that, using the GMAC-GBC duality, our results can be utilized

to determine the optimal transmission parameters of the dirty-

paper coding scheme.
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