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Abstract—We address the problem of increasing the sum rate
in a multiple-access system from [1] for small number of users.
We suggest an improved signal-code construction in which in
case of a small number of users we give more resources to them.
For the resulting multiple-access system a lower bound on the
relative sum rate is derived. It is shown to be very close to the
maximal value of relative sum rate in [1] even for small number
of users. The bound is obtained for the case of decoding by
exhaustive search. We also suggest reduced-complexity decoding
and compare the maximal number of users in this case and in
case of decoding by exhaustive search.

I. I NTRODUCTION

In this paper we consider a noiseless multiuser vector dis-
junctive (logical OR) channel which is also called Z-channel.
This means that “1” is always transmitted correctly, and “0”
may be replaced by “1”. Let us denote the number of active
users byS, S ≥ 2. So for some timeτ the channel inputs are
binary vectorsx(τ)

i , i = 1, 2, . . . , S, and the channel output at
time τ is an elementwise disjunction of vectors at input

y(τ) =
S
∨

i=1

x
(τ)
i .

The motivation to consider the channel model is as follows.
Consider a communication scheme which usesM -ary pulse
position modulation (PPM). In this case the channel consists of
M subchannels which correspond to either frequencies [2], [3]
or time slots. To transmit theith element of anM -ary alphabet
the user needs to transmit energy (e.g., a short pulse) in theith

subchannel. We can say that theM -ary symbol is transmitted
as a binary vector of lengthM and weight one. The detector
at the receiver measures the energy in theith subchannel and
decides if “1” or “0” was transmitted by comparing the energy
with the threshold. In this case the probability of receiving “1”
as “0” is much smaller then the probability of receiving “0” as
“1” as we need to suppress the energy in the first case. Thus we
use a vector disjunctive channel model as an idealized model
for this or similar communication schemes.

The channel model is similar to the A channel [4], [5], [6],
[7], but in the present paper we remove the restriction on the
weight of the vectors transmitted by users (in the A channel
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model users are only allowed to transmit vectors of weight
one).

In [1], a signal-code construction for the multiple-access
system using the A channel was introduced. The construction
was based on Kautz–Singleton (KS) codes [8]. For the re-
sulting multiple-access system a lower bound on the relative
sum rate was derived and it was shown that the bound
coincides with an upper bound asymptotically. The signal-
code construction requires neither block synchronizationnor
feedback which are significant advantages of it. All the results
were obtained in case of decoding by exhaustive search. Sure,
the decoding algorithm is not applicable in case of codes with
large dimensions. In [9], a reduced-complexity decoding of
KS codes based on Reed–Solomon (RS) codes was suggested.
It was done by a modification of the Guruswami–Sudan list
decoder [10] or the soft-input Koetter–Vardy [11] decoder of
RS codes. Unfortunately the maximal number of active users
was much smaller in comparison to [1].

The major disadvantage of the multiple-access system from
[1] is as follows. In case of small (in comparison to the number
of subchannels) number of users the relative sum rate (or sum
rate per subchannel) is very close to zero. Our main goal
in the paper is to increase the relative sum rate for a small
number of users. To achive this we propose a new signal-
code construction in which in case of small number of users
we will give more resourses to them. Let the channel consist
of Q subchannels. We divide all the range of subchannels
into nonoverlapping subranges ofq subchannels and give
m = m(S) subranges to each user.

Our contribution is as follows. We propose a new signal-
code construction, which is an improvement of signal-code
construction from [1]. A lower bound on the relative sum rate
is obtained and shown to be very close to the maximal value
of sum rate in [1] even for small number of users. We find
the maximal number of active users in the system. Finally,
reduced-complexity decoding is suggested and the maximal
number of users is found in this case.

II. BASIC SIGNAL-CODE CONSTRUCTION

A. Kautz-Singleton Codes

The Kautz-Singleton code is a concatenation of an outer
(n, k)-code overFq and the following inner code. Let us
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enumerate the elements of the fieldFq in some order as follows

Fq =
{

α1, α2, . . . , αq

}

.

The inner code one-to-one maps every field elementαi ∈ Fq

to a binary column vector of lengthq having a single nonzero
element at theith position. The vector positions are counted
from 1 to q.

Example 1. Let c =
[

α2, α4, α6, α1, α2, α5

]

be a codeword
of RS(6, 2) overF7. The RS codewordc will be encoded into
a KS codewordC as follows

C =



























0 0 0 1 0 0

1 0 0 0 1 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 0 0 0



























.

B. Transmission

Let us recall that the channel consists ofQ subchannels.
A time interval during which one vector of lengthQ is
transmitted will be called a tact. Assume that all the users use
the same alphabet: symbols ofFq. Assume also that each user
is givenm subranges ofq subchannels and the transmission
duration (in tacts) ist.

Each user encodes information to be transmitted with the
help of a(n = mt, k, d) codeC (all users use the same code).
Consider the process of sending a message by theith user.
We denote the codeword to be transmitted byci. Let Ci be a
KS codeword of sizeq ×mt corresponding toci. ThenCi is
splitted intom disjoint partsC(j)

i , j = 1, 2, . . . ,m, of sizeq×t
and each of the parts is sent in the corresponding subrange.

The subranges are allocated dynamically. For this purpose
permutations of lengthQ are used. Permutations used by a
current user are known to nobody except for a “transmitter-
receiver” pair.

So the transmission can be seen in such a way. The word
Ci is splitted intom parts

Ci =
[

C
(1)
i C

(2)
i . . . C

(m)
i

]

q×mt
.

Then a matrixTi is formed

Ti =





















C
(1)
i

C
(2)
i

...

C
(m)
i

0





















Q×t

.

Before sending a binary vector, a permutation of its ele-
ments is made (a new permutation is used for each vector).
In what follows we assume the permutations to be chosen
equiprobably and independently from the set of all theQ!
possible permutations.

C. Reception

The base station sequentially receives messages from all the
users. Let us consider the process of receiving a message from
the ith user. We assume that the base station is synchronized
with transmitters of all the users. This means thatt columns
that correspond to a codeword sent byith user are known at the
receiver. At receiving of each column the inverse permutation
is performed. Thus, we obtain a matrix

Yi = Ti ∨









∨

j=1,...,S
j 6=i

Xj









,

whereTi is a matrix corresponding to a KS codeword (Ci)
transmitted by theith user and matricesXj , j = 1, . . . , S, j 6=
i, are the results of another users activity. Note that matrices
Xj may not contain whole codewords sent by another users.

Example 2. Let m = 1, Q = q = 7. If, for example, the code
matrix C from Example 1was transmitted then we can receive
the following matrixYi

Yi =



























0 0 0 1 0 1

1 1 1 0 1 1

0 0 0 0 0 0

0 1 0 1 0 0

0 0 0 0 1 1

0 1 1 0 1 0

0 0 0 0 0 0



























.

We see that the channel does not touch the “1”s of the matrix
C but replaces 8 zeros by “1”.

The decoding problem is this case is equivalent to decoding
problem for KS code. For our basic signal-code construction
we use the decoding by exhaustive search. Consider the code-
word cl ∈ C. We need to construct a matrixTl corresponding
to cl in the manner described above. Since the described
multiple-access system uses a disjunctive channel all the
elements of the matrix at the channel output corresponding to
the codeword sent by theith user will be non-zero. Therefore,
the assumption that the codewordcl ∈ C was transmitted by
the ith user is true only if the condition follows

Tl ∧ Yi = Tl, (1)

where∧ is an element-wise conjunction of matrices.
To decode we need to check the condition (1) for all the

words of C. If the list of codewords satisfying the decoding
condition consists of only one word, then the decoder outputs
the word; if the list of codewords consists of several words
then the decoder outputs a decoding failure (decoding erroris
not possible in this case).

Remark 1. Note, that the presence of a block synchronization
is not need here like for the system from[1].



Remark 2. In a real system for permutations to be known
both on the transmitter and the receiver it is advisable to use
pseudorandom number generators, which are a part of any
system based on frequency hopping[12].

D. Probability of failure

Let us estimate the probabilityp∗ of decoding failure for

the ith user. Letβ = 1−
(

1− m
Q

)S−1

.

Theorem 1.

p∗ ≤
n
∑

W=d

[

A (W )βW
]

< qkβd,

whereA(W ) is the number of codewords of weightW in the
codeC.

Proof: Let theith user send a codewordci, let the matrix
Ti correspond to it. The existence of at least one codeword
c∗ 6= ci such that the decoding condition follows for a matrix
T∗ corresponding to it is sufficient for the decoder to output
a failure.

Consider some codewordc′ 6= ci and letD = d(ci, c
′).

The codewordc′ will be included in the list of codewords
satisfying the decoding condition if and only if a matrixT′ is
covered by “1”s in Yi.

We can state that al leastn − D of n positions to be
checked are non-zero as codewordsc′ andci coincide on these
positions. Thus a codewordc′ will be included in the list if
the remainingD positions are non-zero.

Let us consider one column and let the column containl
of D positions (which should be checked) of a codewordc′.
Let us enumerate these positions. We are interested in the
probability P

(

⋃l
j=1 Aj

)

, where Aj is an event consisting
in the fact that the position with numberj is covered. The
probability can be calculated as follows

P





l
⋃

j=1

Aj



 = P(A1)P(A2|A1) · . . . · P(Al|A1 . . . Al−1) .

Note that as random independent equiprobable permutations
are used

P(A1) = β,

and

P(Ab|A1 . . . Ab−1) 6 β, b = 2 . . . l.

Thus, we obtain

P





l
⋃

j=1

Aj



 6 βl.

As a result the probability of a codewordc′ to be included
in a list is less or equal toβD. After getting a sum over all
the codewords (exceptci) we obtain the needed result.

E. Minimal number of tacts

In this paragraph we estimate the minimal number of
tacts t needed to transmitk information symbols with given
probability of failure (pr). Let Q, q, S, m, k andpr be fixed.

From Theorem 1 we see that if

d ≥ klog2q − log2pr
−log2β

, (2)

thenp∗ < pr. We choose the smallestd satisfying (2), i.e.

d =

⌈

klog2q − log2pr
−log2β

⌉

.

In accordance to the Gilbert–Varshamov bound ifn, d and
k satisfy the inequality

n ≥ k + logq

[

d−2
∑

i=0

(

n− 1

i

)

(q − 1)
i

]

,

then there exist a code with such parameters. Thus, we choose
n in such a way

n =

⌈

log2q

log2q − 1
(k + d− 1)

⌉

.

Now we obtain the estimate on the minimal number of tacts
needed in this case:

t =
⌈ n

m

⌉

=

⌈

log2q

log2q − 1

(

k (log2q − log2β)− log2pr
m (−log2β)

)⌉

.

F. Maximal number of users

Let Q, q, m, t, k, d andpr be fixed. In this paragraph we
estimate the maximal number of users for whichp∗ < pr.
Directly from Theorem 1 we obtain

S ≤
−ln

(

1− d
√
pr

qR/δ

)

−ln
(

1− m
Q

) + 1,

whereδ = d/n, R = k/n.
And thus

Smax ≥









−ln
(

1− d
√
pr

qR/δ

)

−ln
(

1− m
Q

)







+ 1. (3)

Remark 3. Using the inequalities for logarithm

|x| ≤ − ln (1− |x|) ≤ |x|
1− |x| ,

we obtain

Smax≥
⌊(

Q

m
− 1

)

d
√
pr

qR/δ

⌋

+ 1.



G. Sum rate

Let us introduce some notions. Therate for one user(in
bits per tact)

Ri (Q, q, S,m, k, pr) =
k

t
log2q.

By analogy with the rate of a single user, we define thesum
rate of all active users as the amount of information (in bits)
transmitted in a system during one tact. Since users transmit
information independently, this value can be computed as
follows:

RΣ (Q, q, S,m, k, pr) = S
k

t
log2q.

Relative sum rate(the rate per subchannel)

ρ (Q, q, S,m, k, pr) =
RΣ

Q
.

In Fig. 1 the dependency ofρ on m is shown. The param-
eters are chosen as follows:Q = 4096, q = 64, pr = 10−10,
k = 120. We see that there is a maximum of relative sum rate
at somem.

0 10 20 30 40 50 60 70
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

m

ρ

Fig. 1. Dependency ofρ on m

Now define

ρ∗ (Q, q, S, k, pr) = max
1≤m≤Q/q

[ρ (Q, q, S,m, k, pr)] .

In Fig. 2 the dependency ofρ∗ on S is shown. The
parameters are chosen as follows:Q = 4096, pr = 10−10,
k is chosen so thatk log2 q = 720 (bits).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S

ρ*

 

 
q=64
q=256
q=1024

Fig. 2. Dependency ofρ∗ on S

Now we derive an asymptotic estimate of a sum rate.
Requiring p∗ to decrease exponentially withn (in other

words, assumingpr = 2−cn, c > 0) and assuming thatk
is chosen such thatkm → ∞, k

m = o(Q), we obtain

t ∼
(

log2q

log2q − 1

)

k

m

(

log2q − log2β

−log2β − c′

)

, (4)

wherec′ = c
log2 q

log2(q−1) .

Remark 4. Note, that the transmission timet here is much
better than in[1]. Also note, that unlike[1] k should be chosen
large.

Let µ = m/Q, 1/Q ≤ µ ≤ 1/q. Let us introduce an
asymptotic quantity

ρ∞(q, S, µ, k, c) = lim
Q→∞

ρ (Q, q, S,m, k, pr) . (5)

After substituting (4) into (5) we obtain

ρ∞ (q, S, µ, k, c) ≥ ρ∞ (q, S, µ, c)

= Sµ (−log2β − c′)
log2q − 1

log2q − log2β
.

Let us introduce one more quantity

ρ∗∞(q, S, c) = max
0<µ≤1/q

{

ρ∞(q, S, µ, c)
}

.

Let ε be an arbitrarily small positive value, the dependency
of ρ∗∞(q, S, ε) is shown in Fig. 3.
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Fig. 3. Dependency ofρ∗
∞

on S

Let µ̂ = 1−S−1

√

1
2 , then

ρ∗∞(q, S, c) ≥
{

ρ∞(q, S, µ̂, c), µ̂ < 1
q

ρ∞(q, S, 1/q, c), otherwise

Remark 5. Note, that the condition̂µ < 1
q holds when

S >
1

−log2 (1− 1/q)
+ 1,

so after strengthening it we obtain

S > q ln 2 + 1.

Remark 6. Note, that

ρ∞(q, S, µ̂, ε) ≥ (1− ε′)
log2q − 1

log2q + 1
ln 2,

whereε′ = Sε.



III. R EDUCED-COMPLEXITY DECODING

As in the proposed schemek should be chosen large, then
the exhaustive search overqk codewords is not applicable
in practice. In this section we propose a reduced-complexity
decoding for the signal-code construction.

Let us choose the codeC of lengthn = mt to be concate-
nated, i.e.,C = CO♦CI , whereCO is an outer(m, kO, dO)-
code overGF (qkI ), CI is an inner (t, kI , dI)-code over
GF (q).

We will decode the code in such a way. First we will
decode all the inner codes independently by exhaustive search
(as described above). We choosekI to be small to have
small number of words. Then we will correct the erasures by
the outer code. In what follows we assume that the erasure
correction is done by means of gaussian elimination (the
complexity isO(m3)) to get theoretical results, but in practise
it is better to use codes with simple decoding algorithms (e.g.,
low-density parity-check (LDPC) codes).

Let us denote byp(I)∗ the probability of failure for one inner
code. Then in accordance to the Chernoff bound

p∗ ≤ min
s>0

{

e−sdO

[

1 + p
(I)
∗ (es − 1)

]m}

.

Thus the largest value ofp(I)∗ for which the requirenment
p∗ < pr is satisfied can be calculated as follows

p̂
(I)
∗ = max

s>0

{

m
√
pre

sδO − 1

es − 1

}

,

whereδO is the relative minimum distance ofCO, i.e., δO =
dO/m.

After substituting ofp̂(I)∗ to (3) we obtain the lower bound
on the maximal number of users in case of reduced-complexity
decoding

Smax ≥













−ln

(

1−
dI
√

p̂
(I)
∗

qRI/δI

)

−ln
(

1− m
Q

)













+ 1.

In Fig. 4 the dependency of the maximal number of users
on the rate of concatenated code is shown forQ = 218, pr =
10−10, m = 200, t = 50, q = 64, kI = {1, 2, 3, 4}. The
comparison with the decoding by exhaustive search is made.
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Fig. 4. Comparison with the decoding by exhaustive search

We see that the number of users in case of concatenated
construction is smaller in comparison with the decoding by
exhaustive search. But at the same time we significantly gain
in the complexity of decoding.

IV. CONCLUSION

In the present paper, a novel signal-code construction for
a multiple-access system using a disjunctive vector channel
is proposed. The construction is an improvement of signal-
code construction from [1] and it also requires neither block
synchronization nor feedback. The main advantage of the
signal-code construction in comparison to the construction
from [1] is that the sum rate in case of small (in comparison
to the number of subchannels) number of users is increased.
To achive this we divide all the range of subchannels into
nonoverlapping subranges of subchannels and givem = m(S)
subranges to each user, whereS is the number of users. A
lower bound on the relative sum rate for the resulting multiple-
access system is obtained and shown to be very close to the
maximal value of sum rate in [1] even for small number of
users. A lower bound on the maximal number of active users in
the system is derrived. These two bounds are obtained for the
case of decoding by exhaustive search. Reduced-complexity
decoding is suggested. The maximal number of users for
reduced-complexity decoding is calculated and compared with
the maximal number of users in the case of decoding by
exhaustive search.
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