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Abstract—We study opportunistic interference management
when there is bursty interference in parallel 2-user linear
deterministic interference channels. A degraded message set
communication problem is formulated to exploit the burstiness
of interference in M subcarriers allocated to each user. We
focus on symmetric rate requirements based on the number of
interfered subcarriers rather than the exact set of interfered
subcarriers. Inner bounds are obtained using erasure coding,
signal-scale alignment and Han-Kobayashi coding strategy. Tight
outer bounds for a variety of regimes are obtained using the El
Gamal-Costa injective interference channel bounds and a sliding
window subset entropy inequality [7]. The result demonstrates
an application of techniques from multilevel diversity coding to
interference channels. We also conjecture outer bounds indicating
the sub-optimality of erasure coding across subcarriers in certain
regimes.

I. INTRODUCTION

In multicarrier systems like OFDM, subcarriers allocated to
a user may face interference due to a variety of reasons. These
include the activity of other users and allocation decisions of
neighbouring base stations in a cellular network. Predicting the
presence or absence of interference in a particular subcarrier
may not be feasible at a transmitter in such uncoordinated
networks. Nevertheless, it is practical to assume that a sub-
carrier allocated to a user does not face interference in every
channel instantiation. Thus, there is a scope for harnessing
such bursty interference in multicarrier systems and exploring
the possibility of opportunistic rate increments.

The following toy example, based on parallel linear deter-
ministic channels, captures the intuition behind our problem
formulation. Consider 2 transmitters (Tx1 and Tx2) and 2
receivers (Rx1 and Rx2). For i ∈ {1, 2}, Txi has messages
for Rxi and at discrete time index t ∈ {1, 2, . . . , N}, Txi
can transmit 2 bits [bi1(t) b

i
2(t)]. The 2 bits correspond to 2

subcarriers (parallel channels) allocated to each transmitter-
receiver pair. Depending on the interference channel realiza-
tion (stays constant for t ∈ {1, 2, . . . , N}), Rxi receives one
of the three possibilities: [bi1(t) b

i
2(t)], [b

i
1(t)+b

i′

1 (t) b
i
2(t)] and

[bi1(t) b
i
2(t) + bi

′

2 (t)] (shown in Figure 1), where i, i′ ∈ {1, 2}
and i′ 6= i. The first possibility corresponds to the interference
free case (for Rxi) and the remaining two possibilities corre-
spond to interference from Txi′ (only one of the subcarriers
of Rxi gets interfered). Hence, there are 3 × 3 = 9 distinct
possibilities for the pair of received values at Rx1 and Rx2
over time duration N . The crucial constraint in this setup is

Txi sends 3 possibilities
for Rx i[b1

i (t) b2
i (t )]

[b1
i (t) b2

i (t )]

[b1
i (t)+ b1

i' (t) b2
i (t )]

[b1
i (t) b2

i (t )+b2
i ' (t )]

Fig. 1. Channel realizations for Rxi in the toy example. The “+” operator
denotes modulo 2 addition and indicates the presence of interference. As
shown above, interference is not present in all channel realizations for Rxi
(hence bursty); but whenever it is present, it is limited to just 1 out of the 2
transmitted bits.

that the transmitters do not know a priori the interference
channel realization. The channel is used N times (time index
t ∈ {1, 2, . . . , N}) and we have the following (symmetric) rate
requirement: ensure base rate R1 at a receiver when any one of
the subcarriers (of the receiver) gets interfered and ensure rate
R0 +R1 at a receiver when both subcarriers (of the receiver)
are interference free (i.e., opportunistically deliver incremental
rate R0, in addition to R1, whenever a receiver is interference
free). In this setup, we are interested in characterizing the rate
region (R1, R0) as the performance metric. Clearly, R0 ≤ 2
(a maximum of 2 bits per time index can be sent by a
transmitter) and corner point (R1, R0) = (0, 2) is easily
achievable. Also, the corner point (R1, R0) = (1, 0) can
be easily achieved by using a repetition code across the 2
subcarriers (i.e., b11(t) = b12(t) and b21(t) = b22(t)). The
repetition code ensures decodability of the message (of rate
R1) irrespective of which subcarrier gets interfered. Using
time sharing between corner points (0, 2) and (1, 0), we
can achieve 2R1 + R0 ≤ 2. Intuitively this looks like the
best we can do, and indeed it can be shown to be tight
using entropy inequalities. The problem pursued in this paper
is a generalization of this example through parallel linear
deterministic interference channels (leading to a rate region
with more than two non-trivial corner points in most cases).

In [1] and [2], the problem of harnessing bursty interference
was studied for a single carrier scenario using a degraded
message set approach. This approach guarantees a base rate
when the carrier faces interference. In addition to the base
rate, an incremental rate is provided whenever the carrier is
interference free. In the multicarrier version considered in this
paper, every user (receiver) is allocated M subcarriers (parallel
channels) and we extend the degraded message set approach
for a rate tuple (R0, RL, RM ) as follows: (a) when all M

ar
X

iv
:1

30
5.

29
85

v1
  [

cs
.I

T
] 

 1
4 

M
ay

 2
01

3



subcarriers of a user get interfered, the user achieves rate
RM (b) when any L out of M subcarriers get interfered, the
user achieves rate RM +RL and (c) when all M subcarriers
are interference free, the user achieves rate RM + RL + R0.
Thus, the user experiences opportunistic rate increments as the
number of interfered subcarriers decreases. Maintaining low
message complexity is the practical idea behind considering
the number of interfered subcarriers rather than the specific
set of subcarriers interfered. The problem formulation has
some similarity with symmetric multilevel diversity coding [3]
and our results demonstrate that similar tools (subset entropy
inequalities) as in [7] can be used in this context.

Our main contributions in this paper are:
• Inner bounds for (R0, RL, RM = 0) and (R0 =

0, RL, RM ) setups using erasure coding across subcar-
riers (employed for specific interfered levels in a subcar-
rier), signal-scale alignment [1], [5] and Han-Kobayashi
scheme.

• Develop outer bounds using techniques inspired by mul-
tilevel diversity codes.

• The inner and outer bounds coincide for several regimes.
The remainder of this paper is organized as follows. Section II
formalizes the setup and rate requirements. Section III states
the main results. Inner bounds and outer bounds are discussed
in Sections IV and V respectively. We conclude the paper with
a short discussion in Section VI.

II. NOTATION AND SETUP

We consider a system with two base stations (transmitters)
Tx1 and Tx2 and two users (receivers) Rx1 and Rx2. For
i ∈ {1, 2}, user Rxi is allocated M subcarriers si1, s

i
2, . . . s

i
M

by the base station Txi. The transmit signals of base stations
Tx1 and Tx2 are assumed to be independent.

A. Channel Model

The channel is modeled by a 2-user multicarrier (parallel)
linear deterministic interference channel [4] where, similar to
[1], interfering links in each subcarrier may or may not be
active (unknown to the transmitters). At discrete time index t ∈
{1, 2, . . . N}, the transmit signal on subcarrier sij is xij(t) ∈ Fq
where F is a finite field. The received signals on subcarrier sij
of Rxi when sij faces interference from si

′

j (corresponding
to user i′ 6= i) and when it is interference free are described
below as (1) and (2) respectively,

yij(t) = Gq−nxij(t) +Gq−kxi
′

j (t) (1)

yij(t) = Gq−nxij(t) (2)

where G is a q × q shift matrix in the terminology of deter-
ministic channel models [4] and xi

′

j (t) denotes the transmit
signal on subcarrier si

′

j for user i′. All operations above are
in Fq . Similar to [1], the transmitters are assumed to have
prior knowledge of parameters n and k (direct and interfering
channel strengths), and the presence (or absence) of interfer-
ence in a subcarrier is assumed to be constant throughout the
channel usage duration. Without loss of generality, we assume

q = max(n, k). Let α = k
n denote the normalized strength of

the interfering signal. Since interference free capacity for a
single carrier can be achieved when α ≥ 2 [8], we focus on
0 ≤ α ≤ 2. For every time instant, it is convenient to consider
a subcarrier as indexed levels of bit pipes. Each bit pipe can
carry a symbol from F.
Let vij(t) = Gq−kxi

′

j (t) denote the interfering signal for
Rxi on subcarrier sij . We use Xi

j = [xij(1) xij(2)...x
i
j(N)]

to denote the transmit signals sent during N time slots on
sij and Vi

j is defined similarly from vij(t). Also, we define
Xi
j1:j2

= [Xi
j1
Xi
j1+1, . . .X

i
j2
].

B. Rate Requirements
The rate requirements for both the users are constrained to

be symmetric. For Rxi, messages (W i
0,W

i
L,W

i
M ) correspond-

ing to rate tuple (Ri0, R
i
L, R

i
M ) = (R0, RL, RM ) are encoded

in Xi
1:M . Based on the number of interfered subcarriers for

Rxi, we have the following requirements for the desired
messages:

1) Rxi decodes W i
M when all M subcarriers of Rxi get

interfered.
2) Rxi decodes (W i

L,W
i
M ) when any L out of M subcar-

riers of Rxi get interfered.
3) Rxi decodes (W i

0,W
i
L,W

i
M ) when all M subcarriers of

Rxi are interference free.
A rate tuple is considered achievable if the probability of
decoding error is vanishingly small as N → ∞. To simplify
our analysis, we consider two setups: (R0, RL, 0)-setup and
(0, RL, RM )-setup. In the (R0, RL, 0)-setup, RM is assumed
to be zero and in the (0, RL, RM )-setup R0 is assumed to
be zero. The rate regions for these two setups are analyzed
separately in this paper.

III. MAIN RESULTS

Depending on whether L ≤ M
2 or L ≥ M

2 , we have different
results for (R0, RL, 0)-setup and (0, RL, RM )-setup.

A. Results for (R0, RL, 0)-setup
1) L ≤ M

2 : We have a tight characterization of capacity
in this case.

Theorem 1: For L ≤ M
2 , the capacity region for

(R0, RL, 0)-setup is as follows.

MRL + (M − L)R0 ≤ M((M − 2L) + L(max(1, α)

+max(1− α, 0)))n (3)
RL +R0 ≤ Mn (4)

2) L ≥ M
2 : In this case, we have a tight characterization

in certain regimes.
Theorem 2: For L ≥ M

2 , consider the following rate in-
equalities:

MRL + (M − L)R0

≤ M((M − L)(max(1− α, 0) + max(1, α))

+(2L−M)max(α, 1− α))n (5)
RL +R0 ≤ Mn (6)
2RL +R0 ≤ M(max(1, α) + max(1− α, 0))n (7)



Inequalities (5), (6) and (7) are inner bounds; (5) and (6) are
outer bounds.

Corollary 1: We have a tight characterization for the regime
{L ≥ M

2 , 0 ≤ α ≤
1
2} in the (R0, RL, 0)-setup. This follows

from the observation that (7) is not active in presence of (5)
and (6) for {L ≥ M

2 , 0 ≤ α ≤
1
2} (see Appendix for detailed

proof).
Conjecture 1: For the (R0, RL, 0)-setup with L ≥ M

2 , (7)
is an outer bound.
If Conjecture 1 holds, we have a tight characterization for
(R0, RL, 0)-setup when L ≥ M

2 .

B. Results for (0, RL, RM )-setup

1) L ≤ M
2 : In this case, we have a tight characterization

in certain regimes.
Theorem 3: For L ≤ M

2 , consider the following rate in-
equalities:

RL +RM ≤ ((M − 2L) + L(max(1, α)

+ max(1− α, 0)))n (8)
RM ≤ M max(1− α, α)n (9)

MRL + 2(M − L)RM ≤ M(M − L)(max(1, α)

+ max(1− α, 0))n (10)

Inequalities (8), (9) and (10) are inner bounds; (8) and (9) are
outer bounds.

Corollary 2: We have a tight characterization for the regime
{L ≤ M

2 , 0 ≤ α ≤
1
2} in the (0, RL, RM )-setup. This follows

from the observation that (10) is not active in presence of (8)
and (9) for {L ≤ M

2 , 0 ≤ α ≤
1
2} (see Appendix for detailed

proof).
Conjecture 2: For the (0, RL, RM )-setup with L ≤ M

2 ,
(10) is an outer bound.
If Conjecture 2 holds, we have a tight characterization for
(0, RL, RM )-setup when L ≤ M

2 .
2) L ≥ M

2 : In this case, we have a tight characterization
in certain regimes.

Theorem 4: For L ≥ M
2 , consider the following rate in-

equalities:

RL +RM ≤ ((M − L)(max(1, α) + max(1− α, 0))
+(2L−M)max(1− α, α))n (11)

RM ≤ M max(1− α, α)n (12)

RL +RM ≤ M

2
(max(1, α)

+ max(1− α, 0))n (13)

Inequalities (11), (12) and (13) are inner bounds; (11) and (12)
are outer bounds.

Corollary 3: We have a tight characterization for the regime
{L ≥ M

2 , 0 ≤ α ≤
2
3} in the (0, RL, RM )-setup. This follows

from the observation that (13) is not active in presence of (11)
and (12) for {L ≥ M

2 , 0 ≤ α ≤
2
3} (see Appendix for detailed

proof).
Conjecture 3: We conjecture that (13) is an outer bound for

(0, RL, RM )-setup when L ≥ M
2 .

If Conjecture 3 holds, we have a tight characterization for
(0, RL, RM )-setup when L ≥ M

2 .

IV. INNER BOUNDS

Figure 3 summarizes the inner bounds for different regimes
depending on values of α, M and L. The inner bound rate
region is obtained from achievable corner points (shown in
Figure 3) using time-sharing. Achievability schemes for corner
points shown in Figure 3 can be described as follows.

A. Achievable corner points (RL, R0) in (R0, RL, 0)-setup

• (0,Mn): This appears in cases (1)-(5) in Figure 3. It
can be achieved by using the top n levels in all the M
subcarriers for message W i

0.
• (M(1− α)n,Mαn): This corner point is achievable for
α ≤ 1 and appears in cases (1)-(3) in Figure 3. To achieve
this, the top (1−α)n levels of each subcarrier are used for
W i
L and the bottom αn levels are used for W i

0. Since the
top (1−α)n levels of a subcarrier are always interference
free, using M subcarriers we achieve (M(1−α)n,Mαn).

• ((M−Lα)n, 0): This corner point is achievable for α ≤ 1
and appears in case (1) in Figure 3. Since any L out of
M subcarriers get interfered, an erasure code1 (across
M subcarriers) can recover symbols at rate (M − L)αn
from the bottom αn levels of M subcarriers. Also, an
additive rate of M(1 − α)n can be obtained by using
the top (1 − α)n levels of M subcarriers. Adding the
contributions from the bottom αn levels and top (1−α)n
levels of all M subcarriers, we achieve RL = (M −
L)αn+M(1− α)n = (M − Lα)n.

• (Mαn,M(2−3α)n) and ((Mα+(M−L)(2−3α))n, 0):
These appear in case (2) in Figure 3 and are achievable
for 1

2 ≤ α ≤
2
3 using the following signal-scale alignment

technique [5], [1]. The n levels in a subcarrier sij are
divided into 4 bands L1,L2,L3 and L4 as shown in Fig-
ure 2. For i 6= i′, when subcarrier sij faces interference,
only L1 of si

′

j interferes with L2 and L3 of sij . Also, only
L2 of si

′

j interferes with L4 of sij . Given this structure,
the trick will be to not transmit any information in band
L2. This keeps L4 interference free as shown in Figure 2.
Using L1 and L4 of M subcarriers for W i

L, we achieve
RL =Mαn. Using only L3 of M subcarriers for W i

0 we
achieve R0 =M(2−3α)n. Hence (Mαn,M(2−3α)n)
is achievable. For ((Mα + (M − L)(2 − 3α))n, 0), the
same signal-scale alignment trick is used in addition to a
rate M−L

M erasure code across M subcarriers for L3.
• (M(1− α

2 )n, 0): This appears in case (3) in Figure 3 and
is achievable for 2

3 ≤ α ≤ 1. Han-Kobayashi scheme [6]
can achieve rate (1−α

2 )n for a single interfered subcarrier
when 2

3 ≤ α ≤ 1. This scheme is used for each of the
M subcarriers to achieve this corner point.

• (M(α − 1)n,M(2 − α)n) and ((M − L(2 − α))n, 0):
These are achievable for 1 ≤ α ≤ 2. The corner point
(M(α − 1)n,M(2 − α)n) appears in cases (4) and (5)

1Interfered levels in the interfered subcarriers are treated as erasures.



(1−α)n

α n
(2α−1)n

(2α−1)n

L1

L2
L3

L4
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1
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2
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2
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2

Rx1 Rx2
s j
1 s j

2 s j
2s j

1

W L
1

Fig. 2. Signal-scale alignment technique to achieve (Mαn,M(2− 3α)n)

in Figure 3 and is achievable using the following signal-
scale alignment strategy. The top (2 − α)n levels of a
subcarrier are used for W i

0. The next (α − 1)n levels
are used for W i

L. This ensures that the levels used for
W i
L are always interference free. Using M subcarriers we

achieve, (M(α − 1)n,M(2 − α)n). To achieve ((M −
L(2 − α))n, 0) (which appears in case (4) in Figure 3),
a similar scheme is used with a rate M−L

M erasure code
(across M subcarriers) for the top (2 − α)n levels of a
subcarrier.

• (Mα
2 n, 0): This appears in case (5) in Figure 3 and is

achievable for 1 ≤ α ≤ 2. For the classical two user
interference channel (single carrier) with 1 ≤ α ≤ 2, rate
α
2 n is easily achievable. Using this single carrier scheme
for M subcarriers, we achieve (Mα

2 n, 0).

B. Achievable corner points (RM , RL) in (0, RL, RM )-setup

• (M(1−α)n, (M −L)αn): This appears in cases (6), (7)
and (9) in Figure 3 and is achievable for α ≤ 1. Using the
top (1−α)n levels of M subcarriers for W i

M , we achieve
RM = M(1 − α)n. For W i

L, a rate M−L
M erasure code

is used for the bottom αn levels across M subcarriers to
obtain RL = (M − L)αn.

• (0, (M − Lα)n): This appears in cases (6), (7) and (9)
in Figure 3 and is achievable for 0 ≤ α ≤ 1. The achiev-
ability is same as that of (RL, R0) = ((M −Lα)n, 0) in
the (R0, RL, 0)-setup.

• (Mαn, (M − L)(2 − 3α)n): This appears in cases (7)-
(8) in Figure 3 and is achievable for 1

2 ≤ α ≤ 2
3 . A

signal-scale alignment technique similar to the one in
Figure 2 is used to achieve RM = Mαn. Additionally,
a rate M−L

M erasure code across M subcarriers for L3 is
used to achieve RL = (M − L)(2− 3α)n.

• (0, (Mα + (M − L)(2 − 3α))n): This appears in case
(8) in Figure 3 and is achievable for 1

2 ≤ α ≤ 2
3 . The

achievability is same as that of (RL, R0) = ((Mα+(M−
L)(2− 3α))n, 0) in the (R0, RL, 0)-setup.

• (0,M(1 − α
2 )n) and (M(1 − α

2 )n, 0): The corner point
(M(1 − α

2 )n, 0) appears in cases (9) and (10) while
(0,M(1 − α

2 )n) appears in case (10) in Figure 3. Both
corner points are achievable for 2

3 ≤ α ≤ 1. To
achieve (0,M(1− α

2 )n), we use the scheme for achieving
(RL, R0) = (M(1 − α

2 )n, 0) in the (R0, RL, 0)-setup

(i.e., Han-Kobayashi scheme is used for all the M sub-
carriers). Also, by using W i

M instead of W i
L, the above

scheme achieves corner point (M(1 − α
2 )n, 0) in the

(0, RL, RM )-setup.
• (M(α−1)n, (M−L)(2−α)n) and (0, (M−L(2−α))n):

These are achievable for 1 ≤ α ≤ 2. The corner point
(M(α − 1)n, (M − L)(2 − α)n) appears in case (11)
in Figure 3 and is achievable using the following signal-
scale alignment strategy. The top (2 − α)n levels of a
subcarrier are used for W i

L with a rate M−L
M erasure

code across M subcarriers. The next (α − 1)n levels
are used for W i

M . This ensures that the levels used for
W i
M are always interference free. Using M subcarriers

we achieve, (M(α− 1)n, (M −L)(2−α)n). To achieve
(0,M − L(2 − α))n, 0) (which appears in case (11) in
Figure 3), we use the same scheme as that for (RL, R0) =
((M − L(2− α))n, 0) in the (R0, RL, 0)-setup.

• (0, Mα
2 n) and (Mα

2 n, 0): The corner point (Mα
2 n, 0)

appears in cases (11) and (12) while (0, Mα
2 n) appears in

case (12) in Figure 3. Both corner points are achievable
for 1 ≤ α ≤ 2. To achieve (0, Mα

2 n), we use the scheme
for achieving (RL, R0) = (Mα

2 n, 0) in the (R0, RL, 0)-
setup (case(5) in Figure 3). Also, by using W i

M instead
of W i

L, the above scheme achieves the corner point
(Mα

2 n, 0) in the (0, RL, RM )-setup.

V. OUTER BOUNDS

In this section, we first define additional notation for outer
bound proofs. This is followed by outer bound proofs for
(R0, RL, 0)-setup (which use techniques [7] from multilevel
diversity coding) and outer bound proofs for (0, RL, RM )-
setup.

A. Receiver Configurations

There are
(
M
L

)
ways in which any L out of M subcarriers

get interfered. Every such choice is a receiver configuration
for a user. We use additional notation for a special set of
receiver configurations described below. Consider a circulant
matrix CM,L of dimension M with the first row consisting of
M −L consecutive ones followed by L zeros. The other rows
are cyclic right shifts of the first row. As an example, C3,1 is
shown below.

C3,1 =

 1 1 0
0 1 1
1 0 1


We use CM,L to list a specific set of receiver configurations
in the following manner. Each row corresponds to a receiver
configuration with M subcarriers indexed by the columns.
In each row, 1 denotes an interference free subcarrier and 0
denotes an interfered subcarrier. Hence, out of

(
M
L

)
choices,

CM,L lists only M receiver configurations. For example, the
third row in C3,1 shown above indicates a situation for Rxi
where only subcarrier si2 gets interfered. The structure of CM,L

corresponds to the choice of receiver configurations we use in



L≤M
2
, 0≤α≤1

RL RL RL

R0 R0 R0

(M α+(M−L)(2−3α) ,0)(M−Lα ,0)

(M (1−α) , M α)
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(0,M )
(0,M )

(0,M )

(M (1−α
2
) ,0)

(M (1−α) , M α)

(2) L≥M
2
,
1
2
≤α≤ 2

3
L≥M

2
, 0≤α≤ 1

2

(3) L≥M
2
,
2
3
≤α≤1

(R0,RL ,0)−setup

RM

RL

(M (1−α) ,0)

(M (1−α) ,(M−L)α)

(6) L<M , 0≤α≤ 1
2

(0,RL , RM )−setup

RM

RL

(M α ,0)

(M α ,(M−L)(2−3α))

(8) L≥M
2
,
1
2
≤α≤ 2

3

(0,M−Lα) (0,M α+(M−L)(2−3α))

RM

RL

(M α ,0)

(M α ,(M−L)(2−3α))

(7) L≤M
2
,
1
2
≤α≤ 2

3

(0,M−Lα)

(M (1−α) ,(M−L)α)
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(M (1−α
2
) ,0)

(M (1−α) ,(M−L)α)

(9) L≤M
2
,
2
3
≤α≤1

(0,M−Lα)

RM

RL

(M (1−α
2
) ,0)

(10) L≥M
2
,
2
3
≤α≤1

(0,M (1−α
2
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(M α
2
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(M (α−1) ,(M−L)(2−α))

(11) L≤M
2
, 1≤α≤2
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(M α
2
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2
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(0, M α
2
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(0,M−L(2−α))

(M (α−1) , M (2−α))

(4) L≤M
2
, 1≤α≤2

(5) L≥M
2
, 1≤α≤2

RL

R0

(M α
2
,0)

(M (α−1) , M (2−α))
(0,M )

(0,M )

(M−L (2−α) ,0)

(1)

Fig. 3. Inner bound rate regions for (0, RL, RM )-setup and (R0, RL, 0)-setup in different regimes. The achievable corner points have been normalized
with respect to n and are indicated by blue dots. Lines corresponding to tight outer bounds are colored green and the conjectured outer bounds are colored
red.

some of our outer bound proofs. This structure enables the use
of sliding window subset inequality [7] in such proofs.

We now describe additional notation related to receiver
configurations of a user. When Rxi is in receiver configuration
indicated by row j of CM,L, we use YiM,L,j to denote the
received signal on M subcarriers (over N time slots). In
the same spirit, we define ViM,L,j as the interfering signal
over all M subcarriers for Rxi in this receiver configuration.
The received signal in interference free subcarriers in YiM,L,j

is denoted by X iM,L,j and the received signal in interfered
subcarriers in YiM,L,j is denoted by ỸiM,L,j . When all M
subcarriers of Rxi are interference free, the received signal
is denoted by X iM,0 = X iM,0,j .

Now, a direct consequence of the sliding window subset

inequality [7] in our setting can be stated as follows.

M∑
j=1

H(X iM,M−1,j) ≥ 1

2

M∑
j=1

H(X iM,M−2,j) . . .

. . . ≥ 1

M

M∑
j=1

H(X iM,0,j) (14)

B. Outer bounds for (R0, RL, 0)-setup

1) Proof of outer bound (3): We prove outer bound (3)
using a careful choice of receiver configurations represented
by rows of CM,L. The high level idea is to divide the received
signal into interfered and interference free terms followed by
the use of (14) on the interference free terms. The proof can
be described as follows.

Using Fano’s inequality for Rxi i ∈ {1, 2}, for any ε > 0



there exists a large enough N such that,

N(MRL + (M − L)R0 − (2M − L)ε)
≤ (M − L)I(W i

0;X iM,0|W i
L)

+

M∑
j=1

I(W i
L;X iM,L,jỸiM,L,j)

= (M − L)H(X iM,0|W i
L)−

M∑
j=1

H(X iM,L,j |W i
L)

+

M∑
j=1

H(X iM,L,j) +

M∑
j=1

I(W i
L; ỸiM,L,j |X iM,L,j)

(a)

≤
M∑
j=1

H(X iM,L,j) +

M∑
j=1

I(W i
L; ỸiM,L,j |X iM,L,j) (15)

≤
M∑
j=1

H(X iM,L,j) +

M∑
j=1

H(ỸiM,L,j)

−
M∑
j=1

H(ỸiM,L,j |X iM,L,jW
i
LW

i
0)

=

M∑
j=1

H(X iM,L,j)

+

M∑
j=1

H(ỸiM,L,j)−
M∑
j=1

H(ViM,L,j) (16)

(b)

≤ M − L
L

M∑
j=1

H(X iM,M−L,j)

+

M∑
j=1

H(ỸiM,L,j)−
M∑
j=1

H(ViM,L,j) (17)

(a) follows from (14) and (b) follows from M − L ≥ L and
(14). Substituting i = 1 and i = 2 in (17), we can obtain two
inequalities corresponding to different users. On adding these
two inequalities,

2N(MRL + (M − L)R0 − (2M − L)ε)

≤ (M − 2L)

L

M∑
j=1

H(X 1
M,M−L,j) +

M∑
j=1

H(Ỹ1
M,L,j)

+
(M − 2L)

L

M∑
j=1

H(X 2
M,M−L,j) +

M∑
j=1

H(Ỹ2
M,L,j)

+(

M∑
j=1

H(X 1
M,M−L,j)−

M∑
j=1

H(V2
M,L,j))

+(

M∑
j=1

H(X 2
M,M−L,j)−

M∑
j=1

H(V1
M,L,j))

(a)

≤ 2N(M(M − 2L)

+MLmax(1, α) +MLmax(1− α, 0))n (18)

where (a) follows from the structure of CM,L.

2) Proof of outer bound (5): The inequality (15) in the
proof of outer bound (3) also holds for L ≥ M

2 . Hence,

N(MRL + (M − L)R0 − (2M − L)ε)

≤
M∑
j=1

H(X iM,L,j) +

M∑
j=1

I(W i
L; ỸiM,L,j |X iM,L,j)

≤
M∑
j=1

H(X iM,L,jỸiM,L,j)−
M∑
j=1

H(ViM,L,j) (19)

Substituting i = 1 and i = 2 in (19), we can obtain two
inequalities corresponding to different users. On adding these
two inequalities,

2N(MRL + (M − L)R0 − (2M − L)ε)

≤
M∑
j=1

H(X 1
M,L,jỸ1

M,L,j)−
M∑
j=1

H(V2
M,L,j)

+

M∑
j=1

H(X 2
M,L,jỸ2

M,L,j)−
M∑
j=1

H(V1
M,L,j)

(a)

≤ 2N(M(M − L)(max(1− α, 0) + max(1, α))

+M(2L−M)max(α, 1− α))n (20)

where (a) follows from L ≥ M
2 and the structure of CM,L.

C. Outer bounds for (0, RL, RM )-setup

Outer bounds (8), (9), (11) and (12) can be shown by using
the El Gamal-Costa injective interference channel bounds [6]
as follows.

1) Proof of outer bound (8): For this outer bound proof,
we consider two receiver configurations with no interfered
subcarriers in common and apply the injective channel bound
[6] as shown below.

For any ε > 0 there exists a large enough N such that,

N(2(RM +RL)− 2ε)
(a)

≤ H(Y1
M,L,1|V2

M,L,L+1) +H(Y2
M,L,L+1|V1

M,L,1)

≤ 2N(L(max(1, α)

+max(1− α, 0)) +M − 2L)n (21)

where (a) follows from the injective channel bound [6].
2) Proof of outer bounds (9) and (12): Outer bounds (9)

and (12) have the same proof. For the proof, we consider the
receiver configuration with all M subcarriers interfered and
apply the injective channel bound [6] as shown below.

For any ε > 0 there exists a large enough N such that,

N(2RM − 2ε)
(a)

≤ H(Y1
M,M,j |V2

M,M,j) +H(Y2
M,M,j |V1

M,M,j)

≤ 2NM max(1− α, α)n (22)

where YiM,M,j corresponds to the receiver configuration with
all M subcarriers interfered and (a) follows from the injective
channel bound [6].



3) Proof of outer bound (11): For this outer bound proof,
we consider two receiver configurations with minimum num-
ber of interfered subcarriers (i.e., 2L −M ) in common and
apply the injective channel bound [6] as shown below.

For any ε > 0 there exists a large enough N such that,

N(2(RM +RL)− 2ε)
(a)

≤ H(Y1
M,L,1|V2

M,L,L+1) +H(Y2
M,L,L+1|V1

M,L,1)

≤ 2N((M − L)(max(1, α) + max(1− α, 0))
+ (2L−M)max(1− α, α))n (23)

where (a) follows from the injective channel bound [6].

VI. DISCUSSION

It is optimal to treat interference as noise in the regimes
where erasure coding across subcarriers leads to tight inner
bounds. However, outer bound conjectures on (7) and (13)
(i.e., Conjectures 1 and 3) suggest that this may not be the
case for all regimes. For α = 1 (and L > M

2 ), both imply
RL ≤ M

2 n; this can be simply achieved by dividing the M
subcarriers between the two users. An erasure coding scheme
in this case will lead to RL = (M − L)n < M

2 n. Hence,
erasure coding across subcarriers may not be optimal in all
regimes.

ACKNOWLEDGMENT

The work of S. Mishra and S. Diggavi was supported in part
by NSF award 1136174 and MURI award AFOSR FA9550-
09-064. The work of I.-H. Wang was supported by EU project
CONECT FP7-ICT-2009-257616.

REFERENCES

[1] N. Khude, V. Prabhakaran and P. Viswanath, “Opportunistic interference
management,” In Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2009.

[2] N. Khude, V. Prabhakaran and P. Viswanath, “Harnessing Bursty Inter-
ference,” In Proc. Information Theory Workshop (ITW), 2009.

[3] J. R. Roche, R. W. Yeung and K. P. Hau, “Symmetrical multilevel
diversity coding,” IEEE Trans. Inf. Theory 43, pp. 1059-1064, May 1997.

[4] A. S. Avestimehr, S. Diggavi and D. Tse, “Wireless Network Information
Flow,” Allerton Conf. On Comm., Control, and Computing, 2007.

[5] G. Bresler, A. Parekh and D. Tse, “The approximate capacity of the many-
to-one and one-to-many Gaussian interference channels,” IEEE Trans. Inf.
Theory 56(9), pp. 4566-4592, 2010.

[6] A. E. Gamal and Y. Kim, “Network Information Theory,” Cambridge
University Press, 2011.

[7] J. Jiang, N. Marukala and T. Liu, “Symmetrical multilevel diversity
coding with an all-access encoder,” In Proc. IEEE Int. Symp. Inf. Theory
(ISIT), pp. 1662-1666, 2012.

[8] A. B. Carleial, “A case where interference does not reduce capacity,”
IEEE Trans. Inf. Theory 21(5), pp. 569-570, Sep. 1975.

APPENDIX

A. Proof of Corollary 1

For {L ≥ M
2 , 0 ≤ α ≤ 1

2}, inequality (7) is not active
in presence of inequalities (5) and (6). This can be proved as
follows.

In this regime, inequalities (5), (6) and (7) can be rewritten
(shown below) as (24), (25) and (26) respectively.

MRL + (M − L)R0 ≤ M(M − Lα)n (24)
RL +R0 ≤ Mn (25)

2RL +R0 ≤ M(2− α)n (26)

Figure 4 shows the situation in this regime2; it is clear that
(26) (dashed red line in Figure 4) is not active in presence of
(24) and (25) (solid green lines in Figure 4). Since inequalities
(24) and (25) are inner bounds as well as outer bounds in this
regime, we have a tight characterization.

RL

R0

(M−Lα ,0)

(M (1−α) , M α)

(0,M )

L≥M
2
, 0≤α≤ 1

2

(M (1−α
2
) ,0)

(0,M (2−α))

Fig. 4. Rate inequalities (normalized with respect to n) for the regime
{L ≥ M

2
, 0 ≤ α ≤ 1

2
} in the (R0, RL, 0)-setup. Inequality (26) (dashed

red line) is not active in presence of (24) and (25) (solid green lines).

B. Proof of Corollary 2

For {L ≤ M
2 , 0 ≤ α ≤ 1

2}, inequality (10) is not active
in presence of inequalities (8) and (9). This can be proved as
follows.

In this regime, inequalities (8), (9) and (10) can be rewritten
(shown below) as (27), (28) and (29) respectively.

RL +RM ≤ (M − Lα)n (27)
RM ≤ M(1− α)n (28)

MRL + 2(M − L)RM ≤ M(M − L)(2− α)n (29)

Figure 5 shows the situation in this regime; it is clear that
(29) (dashed red line in Figure 5) is not active in presence of
(27) and (28) (solid green lines in Figure 5). Since inequalities
(27) and (28) are inner bounds as well as outer bounds in this
regime, we have a tight characterization.

C. Proof of Corollary 3

In the regime {L ≥ M
2 , 0 ≤ α ≤

2
3}, inequality (13) is not

active in presence of inequalities (11) and (12). This can be
shown as follows.

2For L ≥ M
2

, M − Lα =M(1− α
2
) + (M

2
− L)α ≤M(1− α

2
)



RM

RL

(M (1−α) ,0)

(M (1−α) ,(M−L)α)

L≤M
2
, 0≤α≤ 1

2

(0,M−Lα)

(0,(M−L)(2−α))

(M (1−α
2
) ,0)

Fig. 5. Rate inequalities (normalized with respect to n) for the regime
{L ≤ M

2
, 0 ≤ α ≤ 1

2
} in the (0, RL, RM )-setup. Inequality (29) (dashed

red line) is not active in presence of (27) and (28) (solid green lines).

For this regime, inequalities (11), (12) and (13) can be
rewritten (shown below) as (30), (31) and (32) respectively.

RL +RM ≤ ((M − L)(2− α)
+(2L−M)max(1− α, α))n (30)

RM ≤ M max(1− α, α)n (31)

RL +RM ≤ M

2
(2− α)n (32)

To show (32) is not active in presence of (30) and (31), it
is sufficient to prove (30) dominates3 (32) in this regime. We
prove this in two steps as shown below (analysis for 0 ≤ α ≤
1
2 followed by analysis for 1

2 ≤ α ≤
2
3 ).

For 0 ≤ α ≤ 1
2 , (30) can be simplified to

RL +RM ≤ (M − Lα)n

Since L ≥ M
2 ; (M −Lα) ≤ M

2 (2−α). Thus, (30) dominates
(32) for {L ≥ M

2 , 0 ≤ α ≤
1
2}.

For 1
2 ≤ α ≤

2
3 , (30) can be simplified to

RL +RM ≤ (M(2− 2α)− L(2− 3α))n

= (
M

2
(2− α) + (

M

2
− L)(2− 3α))n

Since α ≤ 2
3 and M

2 ≤ L, M
2 (2− α) + (M2 − L)(2− 3α) ≤

M
2 (2−α). Thus, (30) dominates (32) for {L ≥ M

2 ,
1
2 ≤ α ≤

2
3}.

As shown above, (30) dominates (32) for both {L ≥
M
2 , 0 ≤ α ≤ 1

2} and {L ≥ M
2 ,

1
2 ≤ α ≤ 2

3}.
Since inequalities (30) and (31) are inner bounds as well as
outer bounds, we have a tight characterization in the regime
{L ≥ M

2 , 0 ≤ α ≤
2
3}.

3gives a smaller bound for RL +RM
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