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Abstract

Given an n-length input signal ~x, it is well known that its Discrete Fourier Transform (DFT), ~X , can be
computed from n samples in O(n log n) operations using a Fast Fourier Transform (FFT) algorithm. If the spectrum
~X is k-sparse (where k << n), can we do better? We show that asymptotically in k and n, when k is sub-linear in
n (precisely, k = O(nδ) where 0 < δ < 1), and the support of the non-zero DFT coefficients is uniformly random,
our proposed FFAST (Fast Fourier Aliasing-based Sparse Transform) algorithm computes the DFT ~X , from O(k)
samples in O(k log k) arithmetic operations, with high probability. Further, the constants in the big Oh notation for
both sample and computational cost are small, e.g., when δ < 0.99, which essentially covers almost all practical
cases of interest, the sample cost is less than 4k.

Our approach is based on filterless subsampling of the input signal ~x using a set of carefully chosen uniform
subsampling patterns guided by the Chinese Remainder Theorem (CRT). The idea is to cleverly exploit, rather
than avoid, the resulting aliasing artifacts induced by subsampling. Specifically, the subsampling operation on ~x
is designed to create aliasing patterns on the spectrum ~X that “look like” parity-check constraints of a good
erasure-correcting sparse-graph code. Next, we show that computing the sparse DFT ~X is equivalent to decoding
of sparse-graph codes. These codes further allow for fast peeling-style decoding. The resulting DFT computation is
low in both sample complexity and decoding complexity. We analytically connect our proposed CRT-based aliasing
framework to random sparse-graph codes, and analyze the performance of our algorithm using density evolution
techniques from coding theory. We also provide simulation results, that are in tight agreement with our theoretical
findings.

I. INTRODUCTION

Spectral analysis using the Discrete Fourier Transform (DFT) has been of universal importance in
engineering and scientific applications for a long time. The Fast Fourier Transform (FFT) is the fastest
known way to compute the DFT of an arbitrary n-length signal, and has a computational complexity
of O(n log n)1. Many applications of interest involve signals, e.g. audio, image, video data, biomedical
signals etc., which have a sparse Fourier spectrum. In such cases, a small subset of the spectral components
typically contain most or all of the signal energy, with most spectral components being either zero or
negligibly small. If the n-length DFT, ~X , is k-sparse, where k << n, can we do better in terms of
both sample and computational complexity of computing the sparse DFT? We answer this question
affirmatively. In particular, we show that asymptotically in k and n, when k is sub-linear in n (precisely,
k = O(nδ) where 0 < δ < 1), and the support of the non-zero DFT coefficients is uniformly random, our
proposed FFAST (Fast Fourier Aliasing-based Sparse Transform) algorithm computes the DFT ~X , from
judiciously chosen O(k) samples in O(k log k) arithmetic operations, with high probability. Further, the
constants in the big Oh notation for both sample and computational cost are small, e.g., when δ < 0.99,
which essentially covers almost all practical cases of interest, the sample cost is less than 4k.

The material in this paper was presented in part at the IEEE International Symposium on Information Theory, Istanbul, Turkey, 2013.
1Recall that a single variable function f(x) is said to be O(g(x)), if for a sufficiently large x the function |f(x)| is bounded above by
|g(x)|, i.e., limx→∞ |f(x)| < c|g(x)| for some constant c. Similarly, f(x) = Ω(g(x)) if limx→∞ |f(x)| > c|g(x)| and f(x) = o(g(x)) if
the growth rate of |f(x)| as x→∞, is negligible as compared to that of |g(x)|, i.e. limx→∞ |f(x)|/|g(x)| = 0.
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At a high level, our idea is to cleverly exploit rather than avoid the aliasing resulting from subsampling,
and to shape the induced spectral artifacts to look like parity constraints of “good” erasure-correcting codes,
e.g., Low-Density-Parity-Check (LDPC) codes [1] and fountain codes [2], that have both low computational
complexity and are near-capacity achieving. Towards our goal of shaping the spectral artifacts to look
like parity constraints of good erasure-correcting codes, we are challenged by not being able to design
any arbitrary spectral code at will, as we can control only the subsampling operation on the time-domain
signal. The key idea is to design subsampling patterns, guided by the Chinese-Remainder-Theorem (CRT)
[3], that create the desired code-like aliasing patterns. Based on the qualitative nature of the subsampling
patterns needed, our analysis is decomposed into two regimes (see Section VI and Section VII for more
details):
• The “very-sparse” regime, where k = O(nδ), 0 < δ ≤ 1/3. For the very sparse regime the subsam-

pling patterns are based on relatively co-prime numbers.
• The “less-sparse” regime, where k = O(nδ), 1/3 < δ < 1. The sub-sampling pattern, for the less-

sparse regime, comprise of “cyclically-shifted” overlapping co-prime integers.
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Fig. 1. Block diagram of the FFAST architecture. The n-length input signal ~x is uniformly subsampled, through d stages. Each stage
subsamples the input signal and its circularly shifted version by a carefully chosen (guided by the CRT as explained in Section VI and
Section VII) set of sampling periods, to generate O(k) samples per sub-sampling path. Next, the big n-length DFT ~X is synthesized, from
the short (length O(k)) DFTs, using the FFAST back-end decoder.

Our approach is summarized in Fig. 1. The n-length input signal ~x is uniformly subsampled, through a
small number2 of stages, say d. Each stage subsamples the input signal and its circularly shifted version
by a CRT guided set (see Sections VI and VII) of sampling periods, to generate fi = O(k) samples
per sub-sampling path, for i = 0, . . . , d − 1. Next, the large n-length DFT ~X is synthesized from much
smaller (length O(k)) DFTs, using the FFAST back-end peeling decoder. For the entire range of practical
interest of sub-linear sparsity, i.e., 0 < δ < 0.99, the FFAST algorithm computes n-length k-sparse DFT
~X in O(k log k) computations from less than 3.74k samples. It is gratifying to note that both the sample

2We show that the number of stages depend on the sparsity index δ, and is in the range of 3 to 8 for δ ≤ 0.99, as shown in Table II.
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complexity and the computational complexity depend only on the sparsity parameter k, which is sub-linear
in n.

We emphasize the following caveats. First, our analytical results are probabilistic, and hold for asymp-
totic values of k and n, with a success probability that approaches 1 asymptotically. This contrasts the
O(n log n) FFT algorithm which works deterministically for all values of k and n. Secondly, we assume
a uniformly random model for the support of the non-zero DFT coefficients. Lastly, we require the signal
length n to be a product of a few (typically 3 to 9) distinct primes3. In effect, our algorithm trades
off sample and computational complexity for asymptotically zero probability of failure guarantees, for a
uniformly random model of the support. The FFAST algorithm is applicable whenever k is sub-linear in
n (i.e. k is o(n)), but is obviously most attractive when k is much smaller than n. As a concrete example,
when k = 300, and n = 273553 ≈ 3.8 × 106, our algorithm achieves computational savings by a factor
of more than 6000, and savings in the number of input samples by a factor of more than 3900 over
the standard FFT (see [5] for computational complexity of a prime factor FFT algorithm). This can be
a significant advantage in many existing applications, as well as enable new classes of applications not
thought practical so far.

The focus of this paper is on signals having an exactly-sparse DFT. Our motivation for this focused
study is three-fold: (i) to provide conceptual clarity of our proposed approach in a noiseless setting; (ii)
to present our deterministic subsampling front-end measurement subsystem as a viable alternative to the
class of randomized measurement matrices popular in the compressive sensing literature [6, 7]; and (iii) to
explore the fundamental limits on both sample complexity and computational complexity for the exactly
sparse DFT problem, which is of intellectual interest. In addition, the key insights derived from analyzing
the exactly sparse signal model, apply more broadly to the noisy setting (see discussion in Section X),
i.e., where the observations are further corrupted by noise [4].

The rest of the paper is organized as follows. Section II states the problem and introduce important
notations. Section III presents our main results, and the related literature is reviewed in Section IV.
Section V exemplifies the mapping of the problem of computing a sparse DFT to decoding over an
appropriate sparse-graph code. In Section VI and Section VII we analyze the performance of the FFAST
algorithm for the very-sparse and the less-sparse regimes respectively. Section IX provides simulation
results that empirically corroborate our theoretical findings. The paper is concluded in Section X, with
few remarks about extending the FFAST framework for noise robustness and other applications.

II. PROBLEM FORMULATION, NOTATIONS AND PRELIMINARIES

A. Problem formulation
Consider an n-length discrete-time signal ~x that is sum of k << n complex exponentials, i.e., its

n-length discrete Fourier transform has k non-zero coefficients:

x[p] =
k−1∑
q=0

X[`q]e
2πı`qp/n, p = 0, 1, . . . , n− 1, (1)

where the discrete frequencies `q ∈ {0, 1, . . . , n−1} and the amplitudes X[`q] ∈ C, for q = 0, 1, . . . , k−1.
We further assume that the discrete frequencies `q are uniformly random in 0 to n− 1 and the amplitudes
X[`q] are drawn from some continuous distribution over complex numbers. Under these assumptions,
we consider the problem of identifying the k unknown frequencies `q and the corresponding complex
amplitudes X[`q] from the time domain samples ~x. A straightforward solution is to compute an n-length
DFT, ~X , using a standard FFT algorithm [3], and locate the k non-zero coefficients. Such an algorithm

3This is not a major restriction for two reasons. Firstly, in many problems of interest, the choice of n is available to the system designer,
and choosing n to be a power of 2 is often invoked only to take advantage of the readily-available radix-2 FFT algorithms. Secondly, by
truncating or zero-padding the given signal, by a constant number of samples, one can obtain a modified signal of a desired length n.
The DFT of the modified signal has dominant non-zero DFT coefficients at the same frequencies as the original signal but with additional
noise-like side-lobes, due to windowing effect, and can be decoded using a noise robust version of the FFAST algorithm [4].



4

requires n samples and O(n log n) computations. When the DFT ~X is known to be exactly k-sparse and
k << n, computing all the n DFT coefficients seems redundant.

In this paper, we address the problem of designing an algorithm, to compute the k-sparse n-length DFT
of ~x for the asymptotic regime of k and n. We would like the algorithm to have the following features:
• it takes as few input samples m of ~x as possible.
• it has a low computational cost, that is possibly a function of only the number of input samples m.
• it is applicable for the entire sub-linear regime, i.e., for all 0 < δ < 1, where k = O(nδ).
• it computes the DFT ~X with a probability of failure vanishing to 0 as m becomes large.
In Table I, we provide notations and definitions of the important parameters used in the rest of the

paper.

Notation Description
n Signal length.
k Number of non-zero coefficients in the DFT ~X .
δ Sparsity-index: k = O(nδ), 0 < δ < 1.
m Sample complexity: Number of samples of ~x input to the FFAST algorithm.

r = m/k Oversampling ratio: Input samples per non-zero DFT coefficient of the signal.
d Number of stages in the sub-sampling “front-end” architecture of the FFAST.
fi Number of output samples at each sub-sampling path of stage i of the FFAST front-end.

TABLE I
GLOSSARY OF IMPORTANT NOTATIONS AND DEFINITIONS USED IN THE REST OF THE PAPER. THE LAST TWO PARAMETERS ARE

RELATED TO THE FFAST “FRONT END” ARCHITECTURE (SEE FIGURE 1 FOR REFERENCE).

B. The Chinese-Remainder-Theorem (CRT)
The CRT plays an important role in our proposed FFAST architecture as well as in the FFAST decoder.

For integers a,N , we use (a)N to denote the operation, a mod N , i.e., (a)N , a mod N .

Theorem II.1 (Chinese-Remainder-Theorem [3]). Suppose n0, n1, . . . , nd−1 are pairwise co-prime positive
integers and N =

∏d−1
i=0 ni. Then, every integer ‘a’ between 0 and N − 1 is uniquely represented by the

sequence r0, r1, . . . , rd−1 of its remainders modulo n0, . . . , nd−1 respectively and vice-versa.

Further, given a sequence of remainders r0, r1, . . . , rd−1, where 0 ≤ ri < ni, one can find an integer
‘a’, such that,

(a)ni ≡ ri for i = 0, 1, . . . , d− 1. (2)

For example, consider the following pairwise co-prime integers n0 = 3, n1 = 4 and n2 = 5. Then,
given a sequence of remainders r0 = 2, r1 = 2, r2 = 3, there exists a unique integer ‘a’, such that,

2 ≡ a mod 3

2 ≡ a mod 4 (3)
3 ≡ a mod 5

It is easy to verify that a = 38 is a unique integer, between 0 and 59, that satisfies the congruencies in
(3).

III. MAIN RESULTS

We propose a novel FFAST architecture and algorithm to compute a k-sparse n-length DFT, ~X , of an
n-length signal ~x. In this paper, an n-length input signal ~x is said to have a k-sparse DFT ~X , if ~X has
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Fig. 2. The plot shows the relation between the oversampling ratio r = m/k, and the sparsity index δ, for 0 < δ < 0.99, where k = O(nδ).
The FFAST algorithm successfully computes the k-sparse n-length DFT ~X of the desired n-length signal ~x with high probability, as long
as the number of samples m is above the threshold given in the plot. Note that for nearly the entire sub-linear regime of practical interest,
e.g. k < n0.99, the oversampling ratio r < 4. The above plot is an achievable performance of the FFAST algorithm using the constructions
described in Section VI-D and Section VII-D. There are many other constructions of FFAST architecture that may achieve similar or better
performance for a specific sparsity index δ.

at most k non-zero coefficients, whose locations are uniformly randomly distributed in {0, 1, . . . , n− 1}.
The FFAST algorithm computes the k-sparse n-length DFT with high probability, using as few as O(k)
samples of ~x and O(k log k) computations. The following theorem states the main result of the paper.

Theorem III.1. For any 0 < δ < 1, and large enough n, the FFAST algorithm computes a k-sparse DFT
~X of an n-length input ~x, where k = O(nδ), with the following properties:
1) Sample complexity: The algorithm needs m = rk samples of ~x, where r > 1 is a small constant

and depends on the sparsity index δ;
2) Computational complexity: The FFAST algorithm computes DFT ~X using O(k log k), arithmetic

operations.
3) Probability of success: The probability that the algorithm correctly computes the k-sparse DFT ~X

is at least 1- O(1/m).

Proof: We prove the theorem in three parts. In Section VI, we analyze the performance of the FFAST
algorithm for the very-sparse regime of 0 < δ ≤ 1/3, and in Section VII we analyze the less-sparse regime
of 1/3 < δ < 1. Lastly, in Section VIII we analyze the sample and computational complexity of the FFAST
algorithm.

Remark III.2. [Oversampling ratio r] The achievable oversampling ratio r in the sample complexity
m = rk, depends on the number of stages d used in the FFAST architecture. The number of stages d,
in turn, is a function of the sparsity index δ (recall k = O(nδ)), and increases as δ → 1 (i.e., as the
number of the non-zero coefficients, k, approach the linear regime in n). In Sections VI and VII, we
provide constructions of the FFAST front-end architecture, that require increasing number of stages d as
δ increase from 0 to 1. In our proposed construction, the increase in d occurs over intervals of δ, resulting
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in a staircase plot as shown in Fig. 2. Note, that the plot in Fig. 2 is an achievable performance of the
FFAST algorithm using the constructions described in Section VI-D and Section VII-D. There are many
other constructions of FFAST architecture that may achieve similar or better performance for a specific
sparsity index δ. Table II provides some example values of r and d for different values of the sparsity
index δ.

δ 1/3 2/3 0.99 0.999 0.9999
d 3 6 8 11 14
r 2.45 3.14 3.74 4.64 5.51

TABLE II
THE TABLE SHOWS THE NUMBER OF SUBSAMPLING STAGES d USED IN THE FFAST ARCHITECTURE, AND THE CORRESPONDING

VALUES OF THE OVERSAMPLING RATIO r, FOR DIFFERENT VALUES OF THE SPARSITY INDEX δ.

IV. RELATED WORK

The problem of computing a sparse discrete Fourier transform of a signal is related to the rich literature
of frequency estimation [8, 9, 10, 11] in statistical signal processing as well as compressive-sensing [6, 7].
In frequency estimation, it is assumed that a signal consists of k complex exponentials embedded in
additive noise. The frequency estimation techniques are based on well-studied statistical methods like
MUSIC and ESPRIT [8, 9, 10, 11], where the focus is on ‘super-resolution’ spectral estimation from
initial few consecutive samples, i.e., extrapolation. In contrast, the algorithm proposed in this paper
combine tools from coding theory, number theory, graph theory and signal processing, to ‘interpolate’ the
signal from interspersed but significantly less number of samples. In compressive sensing, the objective
is to reliably reconstruct the sparse signal from as few measurements as possible, using a fast recovery
technique. The bulk of this literature concentrates on random linear measurements, followed by either
convex programming or greedy pursuit reconstruction algorithms [7, 12, 13]. An alternative approach,
in the context of sampling a continuous time signal with a finite rate of innovation is explored in
[14, 15, 16, 17]. Unlike the compressive sensing problem, where the resources to be optimized are the
number of measurements4 and the recovery cost, in our problem, we want to minimize the number of
input samples needed by the algorithm in addition to the recovery cost.

At a higher level though, despite some key differences in our approach to the problem of computing
a sparse DFT, our problem is indeed closely related to the spectral estimation and compressive sensing
literature, and our approach is naturally inspired by this, and draws from the rich set of tools offered by
this literature.

A number of previous works [18, 19, 20, 21, 22] have addressed the problem of computing a 1-D DFT of
a discrete-time signal that has a sparse Fourier spectrum, in sub-linear sample and time complexity. Most
of these algorithms achieve a sub-linear time performance by first isolating the non-zero DFT coefficients
into different bins, using specific filters or windows that have ‘good’ (concentrated) support in both, time
and frequency. The non-zero DFT coefficients are then recovered iteratively, one at a time. The filters or
windows used for the binning operation are typically of length O(k log(n)). As a result, the sample and
computational complexity is typically O(k log(n)) or more. Moreover the constants involved in the big-
Oh notation can be large, e.g., the empirical evaluation of [19] presented in [23] shows that for n = 222

and k = 7000, the number of samples required are m ≈ 221 = 300k which is 75 times more than the
sample complexity 4k of the FFAST algorithm5. The work of [20] provides an excellent tutorial on some

4Consider a compressive sensing problem with a measurement matrix A, i.e., y = A~x, where y is a measurement vector and ~x is the
input signal. Then, the sample complexity is equal to the number of non-zero columns of A and the measurement complexity is equal to
the number of non-zero rows of A.

5As mentioned earlier, the FFAST algorithm requires the length of the signal n to be a product of a few distinct primes. Hence, the
comparison is for an equivalent n ≈ 222 and k = 7000.
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of the key ideas used by most sub-linear time sparse FFT algorithms in the literature. While we were
writing this paper, we became aware of a recent work [24], in which the authors consider the problem of
computing a noisy as well as an exactly-sparse 2-D DFT of size

√
n×√n signal. For an exactly sparse

signal, and when k = O(
√
n), the algorithm in [24] uses O(k) samples to compute the 2-D DFT of

the signal in O(k log k) time with a constant probability of failure (that is controllable but that does not
appear go to zero asymptotically). In [25], the author proposes a sub-linear time algorithm with a sample
complexity of O(k log4 n) or O(k2 log4 n) and computational complexity of O(k log5 n) or O(k2 log4 n)
to compute a sparse DFT, with high probability or zero-error respectively. The algorithm in [25] exploits
the Chinese-Remainder-Theorem, along with O(poly(log n)) number of subsampling patterns to identify
the locations of the non-zero DFT coefficients. In contrast, the FFAST algorithm exploits the CRT to
induce ‘good’ sparse-graph codes using a small constant number of subsampling patterns and computes
the sparse DFT with a vanishing probability of failure.

V. COMPUTING DFT USING DECODING OF ALIAS-CODES

# 5

# 4 5 � DFT

4 � DFT

z

z

# 5

# 4 5 � DFT

4 � DFT

(Zs[0], . . . , Zs[4])

(Z̃s[0], . . . , Z̃s[4])

(X̃s[0], . . . , X̃s[3])

(Xs[0], . . . , Xs[3])

(x[0], x[4], x[8], x[12], x[16])

(x[1], x[5], x[9], x[13], x[17])

(x[1], x[6], x[11], x[16])

(x[0], x[5], x[10], x[15])

stage-0

stage-1

FFAST!
Peeling!
decoder!

FFAST front-end!
FFAST !

back-end!

~yb,0,0 ~yb,0,3

~yb,1,4~yb,1,0

(x[0], . . . , x[19])

~X

Fig. 3. An example FFAST architecture. The input to the FFAST architecture is a 20-length discrete-time signal ~x = (x[0], . . . , x[19]). The
input signal and its circularly shifted version are first subsampled by 5 to obtain two streams of sampled signal, also referred as delay-chains,
each of length f0 = 4. A 4-length DFT of the output of each dely-chain is then computed to obtain the observations (Xs[.], X̃s[.]). Similarly,
downsampling by 4 followed by a 5-length DFT provides the second set of f1 = 5 observations (Zs[.], Z̃s[.]). Note that the number of
output samples f0 and f1 in the two different stages are pairwise co-prime and are factors of n = 20. In general, the number of stages and
the choice of the subsampling factors depend on the sparsity index δ, as will be described in Section VI and Section VII.

In this section, we use a simple example to illustrate the working mechanics of the FFAST sub-sampling
“front-end” and the associated “back-end” peeling-decoder. Then we demonstrate, how the output of the
FFAST front-end sub-sampling can be viewed as a sparse graph code in the frequency domain, which we
refer to as “Alias-codes”, and computing the DFT is equivalent to decoding of this resulting alias-code.
Later, we also point out a connection between the FFAST and coding techniques for a packet erasure
channel.



8

Consider a 20-length discrete-time signal ~x = (x[0], . . . , x[19]), such that its 20-length DFT ~X , is 5-
sparse. Let the 5 non-zero DFT coefficients of the signal ~x be X[1] = 1, X[3] = 4, X[5] = 2, X[10] = 3
and X[13] = 7.

A. FFAST sub-sampling front-end
In general, the FFAST sub-sampling front-end architecture, as shown in Fig. 1, consists of multiple

sub-sampling stages d and each stage further has 2 sub-sampling paths, referred to as “delay-chains”.
The sampling periods used in both the delay-chains of a stage are identical. For example, consider a 2
stage FFAST sub-sampling front-end, shown in Fig. 3, that samples the 20-length input signal ~x and its
circularly shifted version6 by factors 5 and 4 respectively. In the sequel we use, fi to denote the number of
the output samples per delay-chain of stage i, e.g., f0 = 4 and f1 = 5 in Fig. 3. The FFAST front-end then
computes short DFT’s of appropriate lengths of the individual output data streams of the delay-chains.
Next, we group the output of short DFT’s into “bin-observation”.

1) Bin observation: A bin-observation is a 2-dimensional vector formed by collecting one scalar output
value from the DFT output of the signal from each of the 2 delay chains in a stage. For example, ~yb,0,1
is an observation vector of bin 1 in stage 0 and is given by,

~yb,0,1 =

(
Xs[1]

X̃s[1]

)
. (4)

The first index of the observation vector corresponds to the stage number, while the second index is the
bin number within a stage. Note that in the FFAST architecture of Fig. 3, there are total of 4 bins in stage
0 and 5 bins in stage 1.

Using basic Fourier transform properties, reviewed below, of sampling, aliasing and circular shift, one
can compute the relation between the original 20-length DFT ~X of the signal ~x and the output bin-
observations {~yb,i,j} of the FFAST front-end.
• Aliasing: If a signal is subsampled in the time-domain, its frequency components mix together, i.e.,

alias, in a pattern that depends on the sampling procedure. For example, consider the output of the
first delay-chain of the stage-0 in Fig. 3. The input signal ~x is uniformly sampled by a factor of 5 to
get ~xs = (x[0], x[5], x[10], x[15]). Then, the 4-length DFT of ~xs is related to the original 20-length
DFT ~X as:

Xs[0] = X[0] +X[4] +X[8] +X[12] +X[16] = 0

Xs[1] = X[1] +X[5] +X[9] +X[13] +X[17] = 10

Xs[2] = X[2] +X[6] +X[10] +X[14] +X[18] = 3

Xs[3] = X[3] +X[7] +X[11] +X[15] +X[19] = 4

More generally, if the sampling period is N (we assume that N divides n) then,

Xs[i] =
∑

j≡(i)n/N

X[j], (5)

where the notation j ≡ (i)n/N , denotes j ≡ i mod n/N .
• Circular Shift in time: A circular shift in the time-domain results in a phase shift in the frequency-

domain. Consider a circularly shifted signal ~x(1) obtained from ~x as x(1)[i] = x[(i+ 1)n]. The DFT
coefficients of the shifted signal ~x(1), are given as, X(1)[j] = ωjnX[j], where ωn = exp(2πı/n) is an
nth root of unity. In general a circular shift of n0 results in X(n0)[j] = ωjn0

n X[j].
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Fig. 4. A 2-left regular degree bi-partite graph representing relation between the unknown non-zero DFT coefficients, of the 20-length
example signal ~x, and the bin observations obtained through the FFAST front-end architecture shown in Fig. 3. Left nodes of the bi-partite
graph represent the 5 non-zero DFT coefficients of the input signal ~x, while the right nodes represent the “bins” ( also sometimes referred
in the sequel as “check nodes”) with vector observations. An edge connects a left node to a right node iff the corresponding non-zero DFT
coefficient contributes to the observation vector of that particular bin. The observation at each check node is a 2-dimensional complex-valued
vector, e.g., ~yb,0,0 = (Xs[0], X̃s[0]).

B. Alias-codes and its connection to computing sparse DFT from sub-sampled signal
In this section, we represent the relation between the original 20-length 5-sparse DFT ~X and the

FFAST front-end output, i.e., bin-observations, obtained using the Fourier properties, in a graphical form
and interpret it as a “channel-code”. In particular, since this code is a result of a sub-sampling and aliasing
operations, we refer to it as an “Alias-code”. We also establish that computing the sparse DFT ~X of the
signal ~x from its sub-sampled data is equivalent to decoding the alias-code resulting from processing the
input signal ~x through the FFAST front-end.

Suppose that the 20-length example input signal ~x is processed through a 2 stage FFAST front-end
architecture shown in Fig. 3, to obtain the bin-observation vectors (Xs[·], X̃s[·]) and (Zs[·], Z̃s[·]). Then,
the relation between the 9 bin-observation vectors and the 5 non-zero DFT coefficients of the signal ~x can
be computed using the signal processing properties. A graphical representation of this relation is shown
in Fig. 4. Left nodes of the bi-partite graph represent the 5 non-zero DFT coefficients of the input signal
~x, while the right nodes represent the “bins” ( also sometimes referred in the sequel as “check nodes”)
with vector observations. An edge connects a left node to a right node iff the corresponding non-zero
DFT coefficient contributes to the observation vector of that particular bin, e.g., after aliasing, due to
sub-sampling, the DFT coefficient X[10] contributes to the observation vector of bin 2 of stage 0 and bin
0 of stage 1. Thus, the problem of computing a 5-sparse 20-length DFT has been transformed into that
of decoding the values and the support of the left nodes of the bi-partite graph in Fig. 4, i.e., decoding
of alias-code. Next, we classify the observation bins based on its edge degree in the bi-partite graph, i.e.,
number of non-zero DFT coefficients contributing to a bin, which is then used to decode the alias-code.
• zero-ton: A bin that has no contribution from any of the non-zero DFT coefficients of the signal,

e.g., bin 0 of stage 0 in Fig. 4. A zero-ton bin can be trivially identified from its observations.

6Conventionally, in signal processing literature z is used to denote a time-delay. In this paper, for ease of exposition we use z to denote
a time-advancement (see Fig. 3 for an example).
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• single-ton: A bin that has contribution from exactly one non-zero DFT coefficient of the signal, e.g.,
bin 2 of stage 0. Using the signal processing properties, it is easy to verify that the observation vector
of bin 2 of stage 0 is given as,

~yb,0,2 =

(
X[10]

e2πı10/20X[10]

)
.

The observation vector of a single-ton bin can be used to determine the support and the value, of
the only non-zero DFT coefficient contributing to that bin, as follows:

– support: The support of the non-zero DFT coefficient contributing to a single-ton bin can be
computed as,

10 =
20

2π
∠~yb,0,2[1]y†b,0,2[0] (6)

– Value: The value of the non-zero DFT coefficient is given by the observation yb,0,2[0].
We refer to this procedure as a “ratio-test”, in the sequel. Thus, a simple ratio-test on the observations
of a single-ton bin correctly identifies the support and the value of the only non-zero DFT coefficient
connected to that bin. It is easy to verify that this property holds for all the single-ton bins.

• multi-ton: A bin that has a contribution from more than one non-zero DFT coefficients of the signal,
e.g., bin 1 of stage 0. The observation vector of bin 1 of stage 0 is,

~yb,0,1 = X[1]

(
1

eı2π/20

)
+X[5]

(
1

eı2π5/20

)
+X[13]

(
1

eı2π13/20

)
=

(
10

−3.1634− ı3.3541

)
Now, if we perform the “ratio-test” on these observations, we get, the support to be 12.59. Since, we
know that the support has to be an integer value between 0 to 19, we conclude that the observations
do not correspond to a single-ton bin. In Appendix B, we rigorously show that the ratio-test identifies
a multi-ton bin almost surely.

Hence, using the “ratio-test” on the bin-observations, the FFAST decoder can determine if a bin is a
zero-ton, a single-ton or a multi-ton, almost surely. Also, when a bin is single-ton the ratio-test provides
the support as well as the value of the non-zero DFT coefficient connected to that bin. In the following
Section V-C, we provide the FFAST peeling-decoder that computes the support and the values of all the
non-zero DFT coefficients of the signal ~x.

C. FFAST back-end peeling-decoder
In the previous section we have explained how the ratio-test can be used to determine if a bin is a

zero-ton, single-ton or a multi-ton bin almost surely. Also, in the case of a single-ton bin the ratio-test
also identifies the support and the value of the non-zero DFT coefficient connected to that bin.

FFAST peeling-decoder: The FFAST decoder repeats the following steps (the pseudocode is provided
in Algorithm 1 and Algorithm 2 in Appendix A):

1) Select all the edges in the graph with right degree 1 (edges connected to single-ton bins).
2) Remove these edges from the graph as well as the associated left and right nodes.
3) Remove all the other edges that were connected to the left nodes removed in step-2. When a

neighboring edge of any right node is removed, its contribution is subtracted from that check node.
Decoding is successful if, at the end, all the edges have been removed from the graph. It is easy to verify
that the FFAST peeling-decoder operated on the example graph of Fig. 4 results in successful decoding,
with the coefficients being uncovered in the following possible order: X[10], X[3], X[1], X[5], X[13].

Thus, the FFAST architecture has transformed the problem of computing the DFT of ~x into that of
decoding alias-code of Fig. 4. Clearly the success the FFAST decoder depends on the properties of the
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Fig. 5. Comparison between the bi-partite graphs corresponding to the parity check matrix of a sparse-graph code for an erasure channel
and a graph induced by the FFAST front-end subsampling architecture.

sparse bi-partite graph resulting from the sub-sampling operation of the FFAST front-end. In particular,
if the sub-sampling induced aliasing bi-partite graph is peeling-friendly, i.e., has few single-ton bins to
initiate the peeling procedure and creates new single-tons at each iteration, until all the DFT coefficients
are uncovered, the FFAST peeling-decoder succeeds in computing the DFT ~X .

D. Connection to coding for packet erasure channels
The problem of decoding sparse-graph codes for erasure channel has been well studied in the coding

theory literature. In this section we draw an analogy between decoding over sparse-graph codes for a
packet erasure channel and decoding over sparse bi-partite graphs induced by the FFAST architecture.

a) Sparse-graph code for a packet-erasure channel: Consider an (n, n − nb) packet erasure code.
Each n-length codeword consists of (n−nb) information packets and nb parity packets. The erasure code
is defined by a bi-partite graph as shown in Fig. 5(a). An n-length sequence of packets that satisfies the
constraints defined by the graph in Fig. 5(a), i.e., sum of the packets connected to a parity check node
equals zero, is a valid codeword. Suppose a codeword from the code, defined by the graph of Fig. 5(a),
is transmitted over an erasure channel that uniformly at random drops some k number of packets. In
Fig. 5(a), we use dotted circles to represent the correctly received packets (a cyclic redundancy check
can be used to verify the correctly received packets). Let {v[`0], . . . , v[`k−1]} be the k packets that are
dropped/erased by the channel. The dotted edges in the bi-partite graph of Fig. 5(a) denote the operation
of subtracting the contribution of all the correctly received packets from the corresponding check nodes.
A peeling-decoder can now iteratively unravel the erased packets that are connected to a check node with
exactly one erased packet. If the bipartite graph consisting only of the solid variable nodes and the solid
edges is such that the peeling-decoder successfully unravels all the erased packets, decoding is successful.

b) Decoding over a bipartite graph induced by the FFAST: Consider an n-length signal ~x that
has a k-sparse DFT ~X . Let the signal ~x be sub-sampled by some appropriately designed FFAST front-
end. The induced spectral-domain aliasing due to FFAST front-end sub-sampling operation is graphically
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Erasure Channel Sparse DFT
1. Explicitly designed sparse-graph
code.

1. Implicitly designed sparse-graph code
induced by sub-sampling.

2. n− k correctly received packets. 2. n− k zero DFT coefficients.
3. k-erased packets. 3. k unknown non-zero DFT coefficients
4. Peeling-decoder recovers the
values of the erased packets using
‘single-ton’ check nodes. The
identity (location) of the erased
packets is known.

4. Peeling-decoder recovers both the values
and the locations of the non-zero DFT
coefficients using ‘single-ton’ check nodes.
The locations of the non-zero DFT
coefficients are not known. This results in a
2× cost in the sample complexity.

5. Codes based on regular-degree
bipartite graphs are
near-capacity-achieving. More
efficient, capacity-achieving
irregular-degree bipartite graph
codes can be designed.

5. The FFAST architecture based on uniform
subsampling can induce only left-regular
degree bi-partite graphs.

TABLE III
COMPARISON BETWEEN DECODING OVER A SPARSE-GRAPH CODE FOR A PACKET ERASURE CHANNEL AND COMPUTING A SPARSE DFT

USING THE FFAST ARCHITECTURE.

represented by a bipartite graph shown in Fig. 5(b). The variable (left) nodes correspond to the n-length
DFT ~X and the check (right) nodes are the bins consisting of the aliased DFT coefficients. A variable node
is connected to a check node, iff after aliasing that particular DFT coefficient contributes to the observation
of the considered check node. Let {X[`0], X[`1], . . . , X[`k−1]} be the k non-zero DFT coefficients. The
zero DFT coefficients are represented by dotted circles. The dashed edges in Fig. 5(b) denotes that the
contribution to the bin-observation, due to this particular edge is zero. Using the ratio-test on the vector
observation at each check-node one can determine if the check node is a “single-ton”, i.e., has exactly
one solid edge. A peeling-decoder can now iteratively unravel the non-zero DFT coefficients connected
to single-ton check nodes. If the bipartite graph consisting only of the solid variable nodes and the solid
edges is such that peeling-decoder successfully unravels all the variable nodes, the algorithm succeeds in
computing the DFT ~X . In Table III we provide a comparison between decoding over bi-partite graphs of
Fig. 5(a) and Fig. 5(b).

Thus, the problem of decoding bi-partite graphs corresponding to sparse-graph codes designed for a
packet-erasure channel is closely related to decoding the sparse bi-partite graphs induced by the FFAST
architecture. We use this analogy: a) to design a sub-sampling front-end that induces a ‘good’ left-regular
degree sparse-graph codes; and b) to formally connect our proposed Chinese-Remainder-Theorem based
aliasing framework to a random sparse-graph code constructed using a balls-and-bins model (explained in
Section VI-A), and analyze the convergence behavior of our algorithm using well-studied density evolution
techniques from coding theory.

Next, we address the question of how to carefully design the sub-sampling parameters of the FFAST
front-end architecture so as to induce “good-graphs” or “alias-codes”. In Section VI and Section VII we
provide constructions of the FFAST front-end architecture and analyze the performance of the FFAST
peeling-decoder for the very-sparse, i.e., 0 < δ ≤ 1/3, and the less-sparse, i.e., 1/3 < δ < 1, regimes of
sparsity respectively.
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VI. FFAST CONSTRUCTION AND PERFORMANCE ANALYSIS FOR THE very-sparse
(k = O(nδ), 0 < δ ≤ 1/3) REGIME

In Section V, using an example, we illustrated that the problem of computing a k-sparse n-length DFT
of a signal can be transformed into a problem of decoding over sparse bipartite graphs using the FFAST
architecture. In this section, we provide a choice of parameters of the FFAST front-end architecture and
analyze the probability of success of the FFAST peeling-decoder for the very-sparse regime of 0 < δ <
1/3. As shown in Section V-D, the FFAST decoding process is closely related to the decoding procedure
on sparse-graph codes designed for erasure channels. From the coding theory literature, we know that
there exist several sparse-graph code constructions that are low-complexity and capacity-achieving for the
erasure channels. The catch for us is that we are not at liberty to use any arbitrary bi-partite graph, but can
choose only those graphs that correspond to the alias-codes, i.e., are induced via aliasing through our
proposed FFAST subsampling front-end. How do we go about choosing the right parameters and inducing
the good graphs?

We describe two ensembles of bi-partite graphs. The first ensemble is based on a “balls-and-bins”
model, while the second ensemble is based on the CRT. The balls-and-bins model based ensemble of
graphs is closer in spirit to the sparse-graph codes in the coding-theory literature. Hence, is amenable to
a rigorous analysis using coding-theoretic tools like density-evolution [26]. The bi-partite graphs induced
by the FFAST front-end sub-sampling operation belong to the CRT ensemble. Later, in Lemma VI.1, we
show that the two ensembles are equivalent. Hence, the analysis of the balls-and-bins construction carries
over to the FFAST. We start by setting up some notations and common parameters.

Consider a set F = {f0, . . . , fd−1} of pairwise co-prime integers. Let the signal length n = P∏d−1
i=0 fi,

for some positive integer P ≥ 1, and nb ,
∑d−1

i=0 fi. The integers fi’s are chosen such that they are
approximately equal and we use F to denote this value. More precisely, fi = F+O(1), for i = 0, . . . , d−1,
where F is an asymptotically large number. The O(1) perturbation term in each fi is used to obtain a set of
co-prime integers7 approximately equal to F. We construct a FFAST sub-sampling front-end architecture
with d stages. Each stage further has 2 delay-chains (see Fig. 1 for reference). The sub-sampling period
used in both delay-chains of stage i is n/fi and hence the number of output samples is fi. The total
number of input samples used by the FFAST algorithm is m = 2dF +O(1) (see Fig. 1). In this section,
we use F = ηk, for some constant η > 0. This results in a sparsity index 0 < δ ≤ 1/d, depending on the
value of the integer P .

A. Ensemble Ck1 (F , nb) of bi-partite graphs constructed using a “Balls-and-Bins” model
Bi-partite graphs in the ensemble Ck1 (F , nb), have k variable nodes on the left and nb check nodes on

the right. Further, each variable (left) node is connected to d right nodes, i.e., left-regular degree bi-partite
graphs. An example graph from an ensemble Ck1 (F , nb), for F = {4, 5}, d = 2, k = 5 and nb = 9 is
shown in Fig. 4. More generally, the ensemble Ck1 (F , nb) of d-left regular edge degree bipartite graphs
constructed using a “balls-and-bins” model is defined as follows. Set nb =

∑d−1
i=0 fi, where F = {fi}d−1i=0 .

Partition the set of nb check nodes into d subsets with the ith subset having fi check nodes. For each
variable node, choose one neighboring check node in each of the d subsets, uniformly at random. The
corresponding d-left regular degree bipartite graph is then defined by connecting the variable nodes with
their neighboring check nodes by an undirected edge.

An edge e in the graph is represented as a pair of nodes e = {v, c}, where v and c are the variable
and check nodes incident on the edge e. By a directed edge ~e we mean an ordered pair (v, c) or (c, v)
corresponding to the edge e = {v, c}. A path in the graph is a directed sequence of directed edges
~e1, . . . , ~et such that, if ~ei = (ui, u

′
i), then the u′i = ui+1 for i = 1, . . . , t− 1. The length of the path is the

number of directed edges in it, and we say that the path connecting u1 to ut starts from u1 and ends at
ut.

7An example construction of an approximately equal sized 3 co-prime integers can be obtained as follows. Let F = 2r03r15r2 for any
integers r0, r1, r2 greater than 1. Then, f0 = F + 2, f1 = F + 3 and f2 = F + 5 are co-prime integers.
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1) Directed Neighborhood: The directed neighborhood of depth ` of ~e = (v, c), denoted by N `
~e , is

defined as the induced subgraph containing all the edges and nodes on paths ~e1, . . . , ~e` starting at node
v such that ~e1 6= ~e. An example of a directed neighborhood of depth ` = 2 is given in Fig. 6. If the
induced sub-graph corresponding to the directed neighborhood N `

~e is a tree then we say that the depth-`
neighborhood of the edge ~e is tree-like.

B. Ensemble Ck2 (F , n, nb) of bipartite graphs constructed using the Chinese-Remainder-Theorem (CRT)
The ensemble Ck2 (F , n, nb) of d-left regular degree bipartite graphs, with k variable nodes and nb check

nodes, is defined as follows. Partition the set of nb check nodes into d subsets with the ith subset having
fi check nodes (see Fig. 4 for an example). Consider a set I of k integers, where each element of the set
I is between 0 and n − 1. Assign the k integers from the set I to the k variable nodes in an arbitrary
order. Label the check nodes in the set i from 0 to fi− 1 for all i = 0, . . . , d− 1. A d-left regular degree
bi-partite graph with k variable nodes and nb check nodes, is then obtained by connecting a variable
node with an associated integer v to a check node (v)fi in the set i, for i = 0, . . . , d− 1. The ensemble
Ck2 (F , n, nb) is a collection of all the d-left regular degree bipartite graphs induced by all possible sets I.

Lemma VI.1. The ensemble of bipartite graphs Ck1 (F , nb) is identical to the ensemble Ck2 (F , n, nb).
Proof: It is trivial to see that Ck2 (F , n, nb) ⊂ Ck1 (F , nb). Next we show the reverse. Consider a

graph G1 ∈ Ck1 (F , nb). Suppose, a variable node v ∈ G1 is connected to the check nodes numbered
{ri}d−1i=0 . Then, using the CRT, one can find P number of integer’s ‘q’ between 0 and n − 1 such that
(q)fi = ri ∀i = 0, . . . , d− 1. Thus, for every graph G1 ∈ Ck1 (F , nb), there exists a set I of k integers, that
will result in an identical graph using the CRT based construction. Hence, Ck1 (F , nb) = Ck2 (F , n, nb).

Note that the modulo rule used to generate a graph in the ensemble Ck2 (F , n, nb) is same as the one
used in equation (5) of Section V. Thus, the FFAST architecture of Fig. 1, generates graphs from the
CRT ensemble Ck2 (F , n, nb), where the indices I of the k variable nodes correspond to the locations (or
support) of the non-zero DFT coefficients8 of the signal ~x. Also, under the assumption that the support
of the non-zero DFT coefficients of the signal ~x is uniformly random, the resulting aliasing graph is
uniformly random choice from the ensemble Ck2 (F , n, nb).

Next, we analyze the performance of the FFAST peeling-decoder over a uniformly random choice of
a graph from the ensemble Ck1 (F , nb), which along with the Lemma VI.1, provides a lower bound on the
success performance of the FFAST decoder over graphs from the ensemble Ck2 (F , n, nb). Although the
construction and the results described in this section are applicable to any value of d, we are particularly
interested in the case when d = 3. For d = 3 and P = O(1), we achieve the sub-linear sparsity index
δ = 1/3, while other values of 0 < δ < 1/3, are achieved using larger values of P .

C. Performance analysis of the FFAST peeling-decoder on graphs from the ensemble Ck1 (F , nb)
In this section, we analyze the probability of success of the FFAST peeling-decoder, over a randomly

chosen graph from the ensemble Ck1 (F , nb), after a fixed number of peeling iterations `. Our analysis
follows exactly the arguments in [26] and [27]. Thus, one may be tempted to take the results from [26]
“off-the-shelf”. However, we choose here to provide a detailed analysis for two reasons. First, our graph
construction in the ensemble Ck1 (F , nb) is different from that used in [26], which results in some fairly
important differences in the analysis, such as the expansion properties of the graphs, thus warranting an
independent analysis. Secondly, we want to make the paper more self-contained and complete.

We now provide a brief outline of the proof elements highlighting the main technical components
needed to show that the FFAST peeling-decoder decodes all the non-zero DFT coefficients with high
probability.

8A set I with repeated elements corresponds to a signal with fewer than k non-zero DFT coefficients.
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Fig. 6. Directed neighborhood of depth 2 of an edge ~e = (v, c). The dashed lines correspond to nodes/edges removed at the end of iteration
j. The edge between v and c can be potentially removed at iteration j + 1 as one of the check nodes c′ is a single-ton (it has no more
variable nodes remaining at the end of iteration j).

• Density evolution: We analyze the performance of the message-passing algorithm, over a typical
graph from the ensemble, for ` iterations. First, we assume that a local neighborhood of depth 2` of
every edge in a typical graph in the ensemble is tree-like, i.e., cycle-free. Under this assumption, all
the messages between variable nodes and the check nodes, in the first ` rounds of the algorithm, are
independent. Using this independence assumption, we derive a recursive equation that represents the
expected evolution of the number of single-tons uncovered at each round for this typical graph.

• Convergence to the cycle-free, case: Using a Doob martingale as in [26], we show that a random
graph from the ensemble, chosen as per nature’s choice of the non-zero DFT coefficients, behaves
like a “typical” graph, i.e., 2`-depth neighborhood of most of the edges in the graph is cycle-free,
with high probability. This proves that for a random graph in Ck1 (F , nb), the FFAST peeling-decoder
decodes all but an arbitrarily small fraction of the variable nodes with high probability in a constant
number of iterations, `.

• Completing the decoding using the graph expansion property: We first show that if a graph is an
“expander” (as will be defined later in Section VI-C3), and the FFAST peeling-decoder successfully
decodes all but a small fraction of the non-zero DFT coefficients, then it decodes all the non-zero
DFT coefficients successfully. Next, we show that a random graph from the ensemble Ck1 (F , nb) is
an expander with high probability.

1) Density evolution for local tree-like view: In this section we assume that a local neighborhood of
depth 2` of every edge in a graph in the ensemble is tree-like. Next, we define the edge-degree distribution
polynomials of the bipartite graphs in the ensemble as λ(α) ,

∑∞
i=1 λiα

i−1 and ρ(α) ,
∑∞

i=1 ρiα
i−1,

where λi (resp. ρi) denotes the probability that an edge of the graph is connected to a left (resp. right) node
of degree i. Thus for the ensemble Ck1 (F , nb), constructed using the balls-and-bins procedure, λ(α) = αd−1

by construction. Further, as shown in Appendix C, the edge degree distribution ρ(α) = exp(−(1−α)/η).
Let pj denote the probability that an edge is present (or undecoded) after round j of the FFAST

peeling-decoder, then p0 = 1. Under the tree-like assumption, the probability pj+1, is given as,

pj+1 = λ(1− ρ(1− pj)) j = 0, 1, . . . , `− 1. (7)

Equation (7) can be understood as follows (also see Fig. 6): the tree-like assumption implies that, up to
iteration `, messages on different edges are independent. Thus, the total probability, that at iteration j+ 1,
a variable node v is decoded due to a particular check node is given by ρ(1− pj) =

∑∞
i=1 ρi(1− pj)i−1

and similarly the total probability that none of the neighboring check nodes decode the variable node v is
pj+1 = λ(1− ρ(1− pi)). Specializing equation (7) for the edge degree distributions of Ck1 (F , nb) we get,

pj+1 =
(

1− e−
pj
η

)d−1
, ∀ j = 0, 1, . . . , `− 1 (8)
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where p0 = 1. The evolution process of (8) asymptotically (in the number of iterations `) converges to 0,
for an appropriate choice of the parameter η, e.g., see Table IV.

d 2 3 4 5 6 7 8 9
η 1.0000 0.4073 0.3237 0.2850 0.2616 0.2456 0.2336 0.2244
dη 2.0000 1.2219 1.2948 1.4250 1.5696 1.7192 1.8688 2.0196

TABLE IV
MINIMUM VALUE OF η, REQUIRED FOR THE DENSITY EVOLUTION OF (8) TO CONVERGE ASYMPTOTICALLY. THE THRESHOLD VALUE OF

η DEPENDS ON THE NUMBER OF STAGES d.

2) Convergence to cycle-free case: In the following Lemma VI.2 we show; a) the expected behavior
over all the graphs in the ensemble Ck1 (F , nb) converges to that of a cycle-free case, and b) with
exponentially high probability, the proportion of the edges that are not decoded after ` iterations of
the FFAST peeling-decoder is tightly concentrated around p`, as defined in (8).

Lemma VI.2 (Convergence to Cycle-free case). Over the probability space of all graphs Ck1 (F , nb), let Z
be the total number of edges that are not decoded after ` (an arbitrarily large but fixed) iterations of the
FFAST peeling-decoder over a randomly chosen graph. Further, let p` be as given in the recursion (8).
Then there exist constants β and γ such that for any ε1 > 0 and sufficiently large k we have

(a) E[Z] < 2kdp`. (9)

(b) Pr (|Z − E[Z]| > kdε1) < e−βε
2
1k

1/(4`+1)

. (10)

Proof: Please see Appendix F.

3) Successful Decoding using Expansion: In the previous section we have shown that with high
probability, the FFAST peeling-decoder decodes all but an arbitrarily small fraction of variable nodes.
In this section, we show how to complete the decoding if the graph is a “good-expander”. Our problem
requires the following definition of an “expander-graph”, which is somewhat different from conventional
notions of an expander-graph in literature, e.g., edge expander, vertex expander or spectral expander
graphs.

Definition VI.3 (Expander graph). A d-left regular degree bipartite graph from ensemble Ck1 (F , nb), is
called an (α, β, d) expander, if for all subsets S, of variable nodes, of size at most αk, there exists a right
neighborhood of S, i.e., Ni(S), that satisfies |Ni(S)| > β|S|, for some i = 0, . . . , d− 1.

In the following lemma, we show that if a graph is an expander, and if the FFAST peeling-decoder
successfully decodes all but a small fraction of the non-zero DFT coefficients, then it decodes all the
non-zero DFT coefficients successfully.

Lemma VI.4. Consider a graph from the ensemble Ck1 (F , nb), with |F| = d, that is an (α, 1/2, d) expander
for some α > 0. If the FFAST peeling-decoder over this graph succeeds in decoding all but at most αk
variable nodes, then it decodes all the variable nodes.

Proof: See Appendix D
In Lemma VI.5, we show that most of the graphs in the ensemble Ck1 (F , nb) are expanders.

Lemma VI.5. Consider a random graph from the ensemble Ck1 (F , nb), where d ≥ 3. Then, all the subsets
S of the variable nodes, of the graph, satisfy max{|Ni(S)|}d−1i=0 > |S|/2,

a) with probability at least 1 − e−εk log(nb/k), for sets of size |S| = αk, for small enough α > 0 and
some ε > 0.

b) with probability at least 1−O(1/nb), for sets of size |S| = o(k).
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Proof: See Appendix E
The condition d ≥ 3 is a necessary condition for part (b) of Lemma VI.5. This can be seen as follows.

Consider a random graph from the ensemble Ck1 (F , nb), where |F| = d. If any two variable nodes in the
graph have the same set of d neighboring check nodes, then the expander condition, for the set S consisting
of these two variable nodes, will not be satisfied. In a bi-partite graph from the ensemble Ck1 (F , nb), there
are a total of O(kd) distinct sets of d check nodes. Each of the k variable nodes chooses a set of d check
nodes, uniformly at random and with replacement, from the total of O(kd) sets. If we draw k integers
uniformly at random between 0 to n− 1, the probability Pr(k;n) that at least two numbers are the same
is given by,

Pr(k;n) ≈ 1− e−k2/2n. (11)

This is also known as the birthday paradox or the birthday problem in literature [28]. For a graph from
the ensemble Ck1 (F , nb), we have n = O(kd). Hence, if the number of stages d ≤ 2, there is a constant
probability that there exists a pair of variable nodes that share the same neighboring check nodes, in both
the stages, thus violating the expander condition.

Theorem VI.6. The FFAST peeling-decoder over a random graph from the ensemble Ck1 (F , nb), where
d ≥ 3 and F = ηk:

a) successfully uncovers all the variable nodes with probability at least 1−O(1/nb);
b) successfully uncovers all but a vanishingly small fraction, i.e., o(k), of the variable nodes with

probability at least 1− e−βε21k1/(4`+1)
for some constants β, ε1 > 0, and ` > 0.

for an appropriate choice of the constant η as per Table IV.
Proof: Consider a random graph from the ensemble Ck1 (F , nb). Let Z be the number of the edges

not decoded by the FFAST peeling-decoder in ` (large but fixed constant) iterations after processing this
graph. Then, from recursion (8) and Lemma VI.2, for an appropriate choice of the constant η (as per
Table IV), Z ≤ αk, for an arbitrarily small constant α > 0, with probability at least 1 − e−βε21k1/(4`+1)

.
The result then follows from Lemmas VI.5 and VI.4.

Corollary VI.7. The FFAST peeling-decoder over a random graph from the ensemble Ck2 (F , n, nb), where
d ≥ 3 and F = ηk:

a) successfully uncovers all the variable nodes with probability at least 1−O(1/nb);
b) successfully uncovers all but a vanishingly small fraction, i.e., o(k), of the variable nodes with

probability at least 1− e−βε21k1/(4`+1)
for some constants β, ε1 > 0, and ` > 0.

for an appropriate choice of the constant η as per Table IV.
Proof: Follows from equivalence of ensembles Lemma VI.1 and Theorem VI.6.

D. The FFAST front-end architecture parameters for achieving the sparsity index 0 < δ ≤ 1/3

Consider a set F = {f0, f1, f2} of a pairwise co-prime integers. The integers fi’s are such that they
are approximately equal, i.e, fi = F + O(1), for i = 0, 1, 2, where F = 0.4073k (see Table IV) is an
asymptotically large number. Set the signal length n = P∏2

i=0 fi, where, P = Fa, thus achieving the
sparsity index δ = 1/(3 + a), for any positive constant a > 0. We construct a FFAST sub-sampling
front-end with d = 3 stages, where each stage further has 2 delay-chains (see Fig. 1). The sub-sampling
period used in the both the delay-chains of the ith stage is n/fi. As a result, the number of samples at
the output of each delay-chain of the ith stage is fi for i = 0, 1, 2, i.e., the total number of samples m
used by the FFAST algorithm is m = 2(f0 + f1 + f2) < 2.45k.

VII. FFAST CONSTRUCTION AND PERFORMANCE ANALYSIS FOR THE less-sparse
(k = O(nδ), 1/3 < δ < 1) REGIME

In the FFAST front-end architecture for the less-sparse regime, the integers in the set F = {f0, . . . , fd−1},
unlike for the very-sparse regime of Section VI, are not pairwise co-prime. Instead, for the less-sparse
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f0 = P0P1

f1 = P1P2

f2 = P2P0

(r0, r1)

(r1, r2)

(r2, r0)

(r0, r1, r2)

P0

P1

P2

Fig. 7. A bi-partite graph with k variable nodes and nb =
∑2
i=0 fi check nodes, constructed using a balls-and-bins model. The check

nodes in each of the 3 sets are arranged in a matrix format, e.g., the f0 check nodes in the set 0 are arranged in P0 rows and P1 columns.
A check node in row r0 and column r1 in the set 0, is indexed by a pair (r0, r1) and so on and so forth for all the other check nodes. Each
variable node chooses a triplet (r0, r1, r2), where ri is between 0 and Pi − 1 uniformly at random. A 3-regular degree bi-partite graph is
then constructed by connecting a variable node with a triplet (r0, r1, r2) to check nodes (r0, r1), (r1, r2) and (r2, r0) in the three sets of
check nodes respectively.

regime (k = O(nδ), 1/3 < δ < 1) the relation between the integers fi’s is bit more involved. Hence, for
ease of exposition, we adhere to the following approach:
• First, we describe the FFAST front-end construction and analyze performance of the FFAST decoding

algorithm for a simple case of less-sparse regime of δ = 2/3.
• Then, in Section VII-B, we provide a brief sketch of how to generalize the FFAST architecture

of δ = 2/3, to δ = 1 − 1/d, for integer values of d ≥ 3. This covers the range of values of
δ = 2/3, 3/4, . . . etc.

• In Section VII-C, we show how to achieve the intermediate values of 1/3 < δ < 1.
• Finally, in Section VII-D, we use all the techniques learned in the previous sections to provide

an explicit choice of parameters for the FFAST front-end architecture that achieves all the sparsity
indices in the range 1/3 < δ < 1.

A. Less-sparse regime of δ = 2/3

1) FFAST front-end construction: Consider n =
∏2

i=0Pi, where the set {Pi}2i=0 consists of approx-
imately equal sized co-prime integers with each Pi = F + O(1) and F =

√
ηk. This results in δ = 2/3.

Choose the integers {fi}2i=0, such that {f0, f1, f2} = {P0P1,P1P2,P2P0}. Then, we construct a d = 3
stage FFAST front-end architecture, where stage i has two delay-chains each with a sub-sampling period
of n/fi and fi number of output samples.

2) Performance analysis of the FFAST decoding algorithm: In order to analyze the performance of
the FFAST decoding algorithm, we follow a similar approach as in Section VI for the very-sparse regime
of 0 < δ ≤ 1/3. We first provide an ensemble of bi-partite graphs constructed using a balls-and-bins
model. Then, we provide CRT based ensemble of bi-partite graphs, that are generated by the FFAST
front-end of Section VII-A1. We show by construction these two ensembles are equivalent and analyze
the performance of the FFAST peeling-decoder on a uniformly random graph from the balls-and-bins
ensemble.
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a) Balls-and-Bins construction: We construct a bi-partite graph with k variable nodes on the left
and nb =

∑2
i=0 fi, check nodes on the right (see Fig. 7) using balls-and-bins model as follows. Partition

the nb check nodes into 3 sets/stages containing f0, f1 and f2 check nodes respectively. The check nodes in
each of the 3 sets are arranged in a matrix format as shown in Fig. 7, e.g., f0 check nodes in the set 0 are
arranged as P0 rows and P1 columns. A check node in row r0 and column r1 in the set 0, is indexed by a
pair (r0, r1) and so on and so forth. Each variable node uniformly randomly chooses a triplet (r0, r1, r2),
where ri is between 0 and Pi − 1. The triplets are chosen with replacement and independently across all
the k variable nodes. A 3-regular degree bi-partite graph with k variable nodes and nb check nodes is then
constructed by connecting a variable node with a triplet (r0, r1, r2) to the check nodes (r0, r1), (r1, r2)
and (r2, r0) in the three sets on right respectively, as shown in Fig. 7.

b) CRT based bi-partite graphs induced by the FFAST architecture: Each variable node is associated
with an integer v between 0 and n− 1 (location of the DFT coefficient). As a result of the subsampling
and computing a smaller DFTs in the FFAST architecture (see Fig 1), a variable node with an index v
is connected to the check nodes (v)f0 , (v)f1 and (v)f2 in the 3 stages, in the resulting aliased bi-partite
graph. The CRT implies that v is uniquely represented by a triplet (r0, r1, r2), where ri = (v)Pi . Also,
((v)fi)Pi = (v)Pi = ri, for all i = 0, 1, 2. Thus, the FFAST architecture induces a 3-regular degree bi-
partite graph with k variable nodes and nb check nodes, where a variable node with an associated triplet
(r0, r1, r2) is connected to the check nodes (r0, r1), (r1, r2) and (r2, r0) in the three sets respectively.
Further, a uniformly random model for the support v of the non-zero DFT coefficients, corresponds to
choosing the triplet (r0, r1, r2) uniformly at random. Thus, by construction the ensemble of bi-partite
graphs generated by the FFAST front-end is equivalent to the balls-and-bins construction.

Following the outline of the proof of Theorem III.1 (provided in Section VI), we can show the following:
1) Density evolution for the cycle-free case: Assuming a local tree-like neighborhood derive a recursive

equation (similar to equation 8) representing the expected evolution of the number of single-tons
uncovered at each round for a “typical” graph from the ensemble.

2) Convergence to the cycle-free case: Using a Doob martingale show an equivalent of Lemma VI.2
for the less-sparse regime, where the number of check nodes in the 3 different stages f0, f1 and f2
are not pairwise co-prime.

3) Completing the decoding using the graph expansion property: A random graph from the ensemble
is a good expander with high probability. Hence, if the FFAST decoder successfully decodes all but
a constant fraction of variable nodes, it decodes all the variable nodes.

The analysis of the first two items for the less-sparse regime is similar in spirit to the one in Section VI,
and will be skipped here. However, the analysis of the third item will be described here as there are some
key differences, mainly arising due to fact that integers in the set {fi}2i=0 are not co-prime as in Section VI.
For the very-sparse regime we have shown (in Lemma VI.5) that the bottleneck failure event is; not being
able to decode all the DFT coefficients. Hence, in this section, we analyze this bottleneck failure event
for the case of the less-sparse regime. In particular, we show that if the FFAST decoder has successfully
decoded all but a small constant number of DFT coefficients, then it decodes all the DFT coefficients
successfully with high probability.

c) Decoding all the variable nodes using the expansion properties of the CRT construction: Consider
an alternative visualization of the bi-partite graph in Fig. 7, as shown in Fig. 8. A variable node associated
with a triplet (r0, r1, r2) is represented by a ball at the position (r0, r1, r2). The plane R0-R1 corresponds
to the check nodes in the stage f0, in a sense that all the variable nodes that have identical (r0, r1) but
distinct r2 are connected to the check node (r0, r1) and so on. Similarly the planes R1-R2 and R2-R0

correspond to the check nodes in stages f1 and f2 respectively. Thus, a variable node with co-ordinates
(r0, r1, r2) is connected to multi-ton check nodes, if and only if there exist variable nodes with co-ordinates
(r0, r1, r

′
2), (r′0, r1, r2) and (r0, r

′
1, r2) (see Fig. 8), i.e., one neighbor in each axis. The FFAST decoder

stops decoding if all the check nodes are multi-tons. Next, we find an upper bound on the probability of
this ‘bad’ event.
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R0

R1
R2

P0

P1

P2

b1

b2

Fig. 8. A 3D visualization of the bi-partite graph in Fig. 7, that belongs to the CRT ensemble corresponding to δ = 2/3. Recall that for
δ = 2/3, n =

∏2
i=0 Pi, where the set {Pi}2i=0 consists of approximately equal sized co-prime integers with each Pi = F + O(1) and

F =
√
ηk. The integers {fi}2i=0, are such that {f0, f1, f2} = {P0P1,P1P2,P2P0}. A variable node with an associated triplet (r0, r1, r2)

is represented by a ‘ball’ at the position (r0, r1, r2). The f0 check nodes in the stage-1 of the bi-partite graph are represented by ‘blue’
(checkered pattern) squares and likewise the ones in f1 are ‘green’ (dotted pattern) and the check nodes in stage f2 are ‘red’ (lines pattern).
All the neighboring check nodes of a variable node, e.g., b1, are multi-ton iff there is at least one more variable node along each of the
three directions R0, R1 and R2. The green (dotted pattern) and red (lines pattern) neighboring check nodes connected to the ball b2 are
multi-tons, while the blue (checkered pattern) neighboring check node is a single-ton since there are no other variable nodes along the R2

direction of b2.

Consider a set S of variable nodes such that |S| = s, where s is a small constant. Let ES be an event
that all the neighboring check nodes of all the variable nodes in the set S are multi-tons, i.e., the FFAST
decoder fails to decode the set S. Also, let E be an event that there exists such a set. We first compute
an upper bound on the probability of the event ES , and then apply a union bound over all

(
k
s

)
sets to get

an upper bound on the probability of the event E.
Each variable node in the set S chooses an integer triplet (r0, r1, r2) uniformly at random in a cube of

size P0 × P1 × P2. Let pmax denote the maximum number of distinct values taken by these s variable
nodes on any co-ordinate. The FFAST decoder fails to decode the set S if and only if all the variable
nodes have at least one neighbor along each of the 3 directions R0, R1, R2 (see Fig. 8). This implies that
s ≥ 4pmax. Also, pmax > 1, i.e., s ≥ 8, since by the CRT all the variable nodes s (with distinct associated
integers) cannot have an identical triplet (r0, r1, r2). An upper bound on the probability of the event ES
is then obtained as follows:

Pr(ES) <

2∏
i=0

(
s

4Pi

)s( Pi
s/4

)
≈

( s

4F

)3s( F

s/4

)3

(a)
<

( s

4F

)3s(4Fe

s

)3s/4

=

(
se1/3

4F

)9s/4

, (12)
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where in (a) we used
(
p
q

)
≤ (pq/q!) ≤ (pe/q)q. Then, using a union bound over all possible

(
k
s

)
sets, we

get:

Pr(E) < Pr(ES)

(
k

s

)
<

(
se1/3

4F

)9s/4(
ke

s

)s
= O(1/nb), (13)

where in the last inequality, we used s ≥ 8, k = O(F2) and nb = O(F2).
Thus, the FFAST decoder decodes all the variable nodes with probability at least 1−O(1/nb).

B. FFAST front-end architecture for δ = 1− 1/d, where d ≥ 3 is an integer
Consider n =

∏d−1
i=0 Pi, where the set {Pi}d−1i=0 consists of approximately equal sized co-prime integers

with each Pi = F + O(1), and Fd−1 = ηk, for a constant η chosen as per Table IV. This results in
δ = 1 − 1/d. Choose the integers {fi}d−1i=0 , such that fi = P(i)dP(i+1)d · · · P(i+d−2)d , for i = 0, . . . , d − 1.
Then, we construct a d stage FFAST front-end architecture, where stage i has two delay-chains each
with a sub-sampling period of n/fi and fi number of output samples. The performance of the back-end
FFAST peeling-decoder, for these constructions, can be analyzed following the outline of Section VI
and Section VII. For δ = 2/3, the FFAST front-end architecture had d = 3 stages and as shown in
Section VII-A, the bottleneck failure event was to decode a set S of size |S| = 8 = 23. For a general d
stage FFAST front-end construction, using induction, one can show that the worst case failure event is
when the FFAST decoder fails to decode a set of size |S| = 2d. The probability of this event is upper
bounded by 1/F2d−2d.

C. Achieving the intermediate values of δ
In this section, we show how to extend the scheme in Section VI, that was designed for k = O(n1/3), to

achieve a sparsity regime of k = O(n(1+a)/(3+a)) for some a > 0. This extension technique can essentially
be used in conjunction with any of the operating points described earlier. Thus covering the full range of
sparsity indices in 0 < δ < 1.

Consider n = P∏2
i=0Pi, where the set {Pi}2i=0 consists of approximately equal sized co-prime integers

with each Pi = F +O(1) and P = Fa for a constant a > 0. The parameter F1+a = ηk, for a constant η
chosen as per Table IV. This results in δ = (1 + a)/(3 + a). Further, choose the integers {f0, f1, f2} =
{PP0,PP1,PP2}. Then, we construct a d = 3 stage FFAST front-end architecture, where stage i has
two delay-chains each with a sub-sampling period of n/fi and fi number of output samples.

1) Union of Disjoint problems: The check nodes in each of the 3 sets are arranged so that a jth check
node in the set i, belongs to the row (j)Pi and the column bj/Pc (see Fig. 9).

A variable node with an associated integer v is uniquely represented by a quadruplet (r0, r1, r2, q),
where ri = (v)Pi , i = 0, 1, 2 and q = bv/Pc, and is connected to check node (ri, q), i.e., check node
in row ri and column q, of set i. The resulting bipartite graph is a union of P disjoint bi-partite graphs,
where each bi-partite subgraph behaves as an instance of the 3-stage perfect co-prime case discussed in
Section VI. Then, using a union bound over these disjoint graphs one can compute the probability of the
FFAST decoder successfully decoding all the variable nodes for asymptotic values of k, n.

D. FFAST architecture for achieving the sparsity index 1/3 < δ ≤ 1

In this section, we provide a sketch of the parameters used for the FFAST construction to achieve all
values of sparsity index δ in the less-sparse range, i.e., 1/3 < δ < 1. The proposed construction is built
based on the design principles illustrated in Sections VII-A,VII-B and Section VII-C and is an achievable
construction. There are many other construction parameters of FFAST that may achieve similar sparsity
index with equal or better performance.
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P0

P1
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P

(r0, r1, r2, q)

f0 = PP0

f1 = PP1

f2 = PP2

(r0, q)

(r1, q)

(r2, q)

Fig. 9. Bi-partite aliasing graph resulting from processing an n = P
∏2
i=0 Pi, length signal, using a d = 3 stage FFAST front-end. The

set {Pi}2i=0 consists of approximately equal sized co-prime integers with each Pi = F + O(1) and P = Fa for some constant a > 0.
Further, the integers {f0, f1, f2} = {PP0,PP1,PP2}. The check nodes in each of the 3 sets are arranged so that a jth check node in the
set i, belongs to the row (j)Pi and the column bj/Pc. A variable node with an associated integer v is uniquely represented by a quadruplet
(r0, r1, r2, q), where ri = (v)Pi , i = 0, 1, 2 and q = bv/Pc, and is connected to check node (ri, q), i.e., check node in row ri and column
q, of set i. The bipartite graph is a union of P disjoint bi-partite graphs.

1) 1/3 < δ < 0.73: Consider n = P∏5
i=0Pi, where the set {Pi}5i=0 consists of approximately equal

sized co-prime integers with each Pi = F+O(1), and P = Fa, for 0 < a ≤ 9. Further, choose F2+a = ηk,
where constant η is given as per Table IV. This results in 1/3 < δ < 0.73. We construct a d = 6 stage
FFAST construction such that stage i has two delay-chains each with a sub-sampling period of n/fi and fi
number of output samples. The integers {fi}5i=0 are such that {f0, f1, f2} = {PP0P1,PP1P2,PP2P0} and
{f3, f4, f5} = {PP3P4,PP4P5,PP5P3}. Note that for a = 0, this choice of parameters corresponds to two
disjoint designs of δ = 2/3 the FFAST construction described in Section VII-A. Using the analysis from
Section VII-A, along with a union bound over P sets of disjoint problems, as explained in Section VII-C,
it is easy to verify that all δ between 1/3 < δ < 0.73, can be achieved with probability of error bounded
above by O(1/nb), if η ≥ 0.2616. Thus, the total number of samples m used by the FFAST algorithm,
for this range of sparsity index δ, is m = 2× 6× ηk ≤ 3.14k.

2) 0.73 < δ < 0.875: For the sparsity index δ in the range 0.73 < δ < 0.875, one possible construction
is to use a d = 8 stage FFAST construction consisting of two disjoint designs for δ = 4/3, with 3 cyclically
shifted primes at a time. For example, consider a set {Pi}7i=0 sof 8 co-prime integers of approximately
equal size then, {f0, f1, f2, f3} = {PP0P1P2,PP1P2P3,PP2P3P0,PP3P0P1} and {f4, f5, f6, f7} =
{PP4P5P6,PP5P6P7,PP6P7P4,PP7P4P5}. For this construction, the parameter a in P = Fa, is set
between 10.5 < a < 32, to achieve an error performance that asymptotically approaches zero as O(1/n0.9

b ).
From Table IV, for a d = 8 stage FFAST architecture η = 0.2336. Thus, the total sample complexity for
this design is m = 2dηk < 3.74k.

3) 0.875 < δ < 1: The sparsity index δ in the range 0.875 < δ < 1, can be achieved by the combination
of designs proposed in Section VII-B and Section VII-C for increasing (but constant) values of d as dictated
by δ. For example, for 0.875 < δ < 0.99, a d = 8 stage FFAST front-end design as in Section VII-B
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along with approach of Section VII-C achieves an error performance that asymptotically approaches zero
with m < 3.74k as shown in Fig. 2.

VIII. SAMPLE AND COMPUTATIONAL COMPLEXITY OF THE FFAST ALGORITHM

The FFAST algorithm performs the following operations in order to compute the n-length DFT of an
n-length discrete-time signal ~x (see Algorithm 1 in Appendix A)

1) Sub-sampling: A FFAST architecture (see Fig. 1 in Section I) with d stages, has d distinct subsam-
pling patterns chosen as per the discussions in Sections VI and VII. These patterns are deterministic
and are pre-computed. We assume the presence of random-access-memory, with unit cost per I/O
operation, for reading the subsamples. For the very-sparse regime of 0 < δ ≤ 1/3, as shown in
Section VI-D, the FFAST architecture with d = 3 stages is sufficient to compute a k-sparse n-
length DFT using m = 2.44k samples. For the less-sparse regime of 1/3 < δ ≤ 0.99, as shown in
Section VII-D, we have three different FFAST architectures, with d = 6 and d = 8, for different
range of δ. The total samples used for these regions are m = 3.14k and m = 3.74k respectively.
In general for any fixed 0 < δ < 1, the sample complexity m can be as small as rk, where r is a
constant that depends on the sparsity index δ.

2) DFT: The FFAST algorithm then computes 2d DFT’s, each of length approximately equal to ηk, for
some constant η depending on the number of stages d of the FFAST front-end. Using a standard FFT
algorithm, e.g., prime-factor FFT or Winograd FFT algorithm [3], one can compute each of these
DFT’s in O(k log k) computations. Thus, the total computational cost of this step is O(k log k).

3) Peeling-decoder over sparse graph codes: It is well known [29], that the computational complexity
of the FFAST peeling-decoder over sparse graph codes is linear in the dimension of the graph, i.e.,
O(k).

Thus, the FFAST algorithm computes a k-sparse n-length DFT with O(k) samples using no more than
O(k log k) computations for all 0 < δ < 1.

IX. SIMULATION RESULTS

In this section we validate the empirical performance of the FFAST algorithm for computing the DFT
of signals having a sparse Fourier spectrum. We contrast the observed empirical performance, in terms of
sample complexity, computational complexity and probability of success, with the theoretical claims of
Theorem III.1.

A. FFAST architecture and signal generation
• Very sparse regime: The input signal ~x is of length n = 511× 512× 513 ≈ 134× 106. The number

of non-zero DFT coefficients k is varied from 400 to 1300, this corresponds to the very-sparse regime
of k = O(n1/3). We use an FFAST architecture with d = 3 stages and 2 delay-chains per stage. The
uniform sampling periods for the 3 stages are 512 × 513, 511 × 513 and 511 × 512 respectively.
This results in the number of output samples, per delay-chain, for the three stages to be f0 = 511,
f1 = 512 and f2 = 513 respectively. Note that the number of samples in the three different stages,
i.e., fi’s, are pairwise co-prime. The total number of samples used by the FFAST algorithm for this
simulation is9 m < 2(f0 + f1 + f2) = 3072.

• Less sparse regime: The input signal ~x is of length n = 16×17×19×21 ≈ 0.1×106. The number of
non-zero DFT coefficients k is varied from 5000 to 19000, this corresponds to the less-sparse regime
of n0.73 < k < n0.85. We use an FFAST architecture with d = 4 stages. The uniform sampling periods
for the 4 stages are 21, 16, 17 and 19 respectively. This results in the number of output samples,
per delay-chain, for the four stages to be f0 = 16 × 17 × 19 = 5168, f1 = 17 × 19 × 21 = 6783,

9The samples used by the different sub-streams in the three different stages overlap, e.g., x[0] is common to all the zero delay sub-streams
in each stage. Hence, m < 2(f0 + f1 + f2) and not equal.
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Fig. 10. The probability of success of the FFAST algorithm as a function of η, the average number of samples per delay-chain, normalized
by the number of non-zero DFT coefficients. The plot is obtained for two different sparsity regimes: 1) Very-sparse regime: k = O(n1/3).
For this regime, a d = 3 stage FFAST architecture is chosen. The number of samples per sub-stream in each of the 3 stages are perfectly
co-prime: f0 = 511, f1 = 512 and f2 = 513 respectively, and 2) Less-sparse regime: n0.73 < k < n0.85. For this regime, a d = 4 stage
FFAST architecture is chosen. The number of samples per sub-stream in each of the 4 stages are not co-prime but have “cyclically-shifted”
overlapping co-prime factors: f0 = 16×17×19 = 5168, f1 = 17×19×21 = 6783, f2 = 19×21×16 = 6384 and f3 = 21×16×17 = 5712
respectively. Each point on the plot is obtained by averaging over 10000 runs. The ambient signal dimension n and the number of samples
m are fixed, while the number of non-zero coefficients k is varied to get different values of η. We note that the FFAST algorithm exhibits a
threshold behavior with η1 = 0.427 being the threshold for the very-sparse regime, and η2 = 0.354 for the less-sparse regime respectively.
From Table IV in Section VI-C1, we see that the optimal threshold values are η∗1 = 0.4073 and η∗2 = 0.3237, which are in close agreement
with our simulation results.

f2 = 19 × 21 × 16 = 6384 and f3 = 21 × 16 × 17 = 5712 respectively. Note that the number
of samples in the four stages are composed of “cyclically-shifted” co-prime numbers and are not
pairwise co-prime. The total number of samples used by the FFAST algorithm for this simulation is
m < 2(f0 + f1 + f2 + f3) = 48094.

• For each run, an n-dimensional k-sparse signal ~X is generated with non-zero values Xi ∈ {±10} at
uniformly random positions in {0, 1 . . . , n− 1}. The time domain signal ~x is then generated from ~X
using an IDFT operation. This discrete-time signal ~x is then given as an input to FFAST.

• Each sample point in the Fig. 10, is generated by averaging over 10000 runs.
• Decoding is successful if all the DFT coefficients are recovered perfectly.

B. Observations and conclusions
We observe the following aspects of the simulations in detail and contrast it with the claims of

Theorem III.1
Density Evolution: The density evolution recursion (8) in Section VI-C1, implies a threshold

behavior: if the average number of samples per delay-chain normalized by k, i.e., η, is above a certain
threshold (as specified in Section VI-C1 Table IV), then the recursion (8) converges to 0 as ` → ∞
otherwise p` is strictly bounded away from 0. In Fig. 10, we plot the probability of success of the FFAST
algorithm averaged over 10000 independent runs, as a function of η, i.e., varying k for a fixed number of
samples m. We note that the FFAST algorithm also exhibits a threshold behavior with η1 = 0.427, being
the threshold for the very-sparse regime with d = 3, and η2 = 0.354 for the less-sparse regime with d = 4
respectively. From Table IV in Section VI-C1, we see that the optimal threshold values are η∗1 = 0.4073
and η∗2 = 0.3237, which are in close agreement with our simulation results of Fig. 10.
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Regime Signal length Sparsity δ stages m ≈ 2dηk
` failures

n k d m η

Very-sparse
511*512*513 900 0.363

3

3072 0.569 6 1/104

1000 0.369 3072 0.512 9 0/104

≈ 134× 106 1100 0.374 3072 0.465 13 1/104

1200 0.378 3072 0.427 18 99/104

Less-sparse
16*17*19*21 13000 0.81

4

48094 0.462 6 0/104

15000 0.83 48094 0.401 8 0/104

≈ 0.1× 106 17000 0.84 48094 0.354 13 2/104

19000 0.85 48094 0.316 29 104/104

TABLE V
PERFORMANCE OF THE FFAST ALGORITHM FOR TWO DIFFERENT SPARSITY REGIMES: 1) VERY-SPARSE REGIME: k = O(n1/3). FOR

THIS REGIME, A d = 3 STAGE FFAST ARCHITECTURE IS CHOSEN. THE NUMBER OF SAMPLES PER SUB-STREAM IN EACH OF THE 3
STAGES ARE PERFECTLY CO-PRIME: f0 = 511, f1 = 512 AND f2 = 513 RESPECTIVELY, AND 2) LESS-SPARSE REGIME:

n0.73 < k < n0.85 . FOR THIS REGIME, A d = 4 STAGE FFAST ARCHITECTURE IS CHOSEN. THE NUMBER OF SAMPLES PER SUB-STREAM
IN EACH OF THE 4 STAGES ARE not CO-PRIME BUT HAVE “CYCLICALLY-SHIFTED” OVERLAPPING CO-PRIME FACTORS:

f0 = 16× 17× 19 = 5168, f1 = 17× 19× 21 = 6783, f2 = 19× 21× 16 = 6384 AND f3 = 21× 16× 17 = 5712 RESPECTIVELY. WE
NOTE THAT WHEN η1 ≥ 0.427 AND η2 ≥ 0.354, FOR THE VERY-SPARSE AND THE LESS-SPARSE REGIMES RESPECTIVELY, THE FFAST
ALGORITHM SUCCESSFULLY COMPUTES ALL THE NON-ZERO DFT COEFFICIENTS FOR ALMOST ALL THE RUNS. FURTHER, IN ONE OR
TWO INSTANCES WHEN IT FAILED TO RECOVER ALL THE NON-ZERO DFT COEFFICIENTS, IT HAS RECOVERED ALL BUT 8 (FOR d = 3)

OR 16 (FOR d = 4) NON-ZERO DFT COEFFICIENTS. THIS VALIDATES OUR THEORETICAL FINDINGS. FROM TABLE IV IN
SECTION VI-C1, WE SEE THAT THE OPTIMAL THRESHOLD VALUES FOR THE VERY-SPARSE AND LESS-SPARSE REGIMES ARE

η∗1 = 0.4073 AND η∗2 = 0.3237 RESP., WHICH ARE IN CLOSE AGREEMENT WITH THE SIMULATION RESULTS. THE TABLE ALSO SHOWS
THAT THE AVERAGE NUMBER OF ITERATIONS `, REQUIRED FOR THE FFAST ALGORITHM TO SUCCESSFULLY COMPUTE THE DFT FOR

BOTH THE REGIMES, ARE QUITE MODEST.

Iterations: In the theoretical analysis of Section VI-C2, we have shown that the FFAST algorithm,
if successful, decodes all the DFT coefficients in ` iterations, where, ` is a large but a fixed constant. In
Table V, we observe that when successful, the FFAST peeling-decoder completes decoding in few (≤ 13
in this case) number of iterations.

Probability of success: The empirical probability of success of the FFAST algorithm for the very-
sparse as well as the less-sparse regimes is shown in Table V. We observe, as long as the parameter η
is above the minimum threshold η∗ dictated by Table IV, in Section VI-C1, the FFAST algorithm indeed
computes all the non-zero DFT coefficients successfully with high probability. Further, in one or two
instances when it failed to recover all the non-zero DFT coefficients, it has recovered all but 8 (for d = 3)
or 16 (for d = 4) non-zero DFT coefficients. Thus, confirming our theoretical analysis of the worst case
error event, of being trapped in a cycle of size 2d.

X. CONCLUSION

In this paper, we addressed the problem of computing an n-length DFT of signals that have k-sparse
Fourier transform, where k << n. We proposed a novel FFAST algorithm that cleverly exploits filterless
subsampling operation to induce aliasing artifacts, similar to parity-check constraints of good erasure-
correcting sparse-graph codes, on the spectral coefficients. Then, we formally connected the problem
of computing sparse DFT to that of decoding of appropriate sparse-graph codes. This connection was
further exploited to design a sub-linear complexity FFAST peeling-style back-end decoder. Further, we
analyzed the performance of the FFAST algorithm, using well known density evolution techniques from
coding theory, to show that our proposed algorithm computes the k-sparse n-length DFT using only O(k)
samples in O(k log k) arithmetic operations, with high probability. The constants in the big Oh notation
for both sample and computational cost are small, e.g., when δ < 0.99, which essentially covers almost
all practical cases of interest, the sample cost is less than 4k. We also provide simulation results, that are
in tight agreement with our theoretical findings.
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Although, the focus of this paper is on signals having an exactly-sparse DFT, the key insights derived
from analyzing the exactly sparse signal model apply more broadly to the noisy setting, i.e., where the
observations are further corrupted by noise [4]. In particular, in [4], we show that the robustness against
sample noise is achieved by an elegant modification of the noiseless FFAST framework. Specifically, the
noiseless FFAST framework shown in Fig. 1 has multiple sub-sampling stages, where each stage has
2 delay-chains. In contrast, for the case of noise robust FFAST framework, we use O(log n) number
of delay-chains per sub-sampling stage, further the input signal to each delay-chain is circularly shifted
by a random amount prior to sub-sampling, i.e., random delays. In [4], we show that a random choice
of the circular shifts endows the effective “measurement matrix” with a good mutual incoherence and
Restricted-Isometry-Property [30], thus resulting in a stable recovery.
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Fig. 11. The plot shows the scaling of the number of samples m required by the noise robust FFAST algorithm to successfully reconstruct
a k = 40 sparse DFT ~X , for increasing signal length n. For a fixed support recovery probability of 0.99, sparsity k and SNR of 5dB, we
note that m scales logarithmically with increasing n.

As an example, we provide here an empirical evaluation of the scaling of the number of samples m,
required by a noise robust FFAST algorithm [4], to successfully compute the DFT ~X from noise-corrupted
samples, as a function of the signal length n. A noise-corrupted signal ~y = ~x+~z, where ~z is Gaussian, of
length n is generated such that the effective signal-to-noise ratio is 5dB and the DFT of ~x has k = 40 non-
zero coefficients. The signal n is varied from n = 49∗50∗51 ≈ 0.1 million to n = 49∗50∗51∗15 ≈ 1.87
million. The noise-corrupted samples ~y are processed using a d = 3 stage FFAST architecture with D
delay-chains per stage. As the signal length n increases the number of delays D per stage are increases
to achieve at least 0.99 probability of successful support recovery. From the plot in Fig. 11, we note that
m scales logarithmically with increasing n. For further details about this simulation see [4].
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The FFAST framework in this paper, has inspired the works of [31] and [32], where the authors have
proposed novel algorithms for computing high dimensional sparse “Walsh Hadamard Transform” (WHT),
for the noiseless and noisy observed samples respectively. The framework has also been successfully
applied for blind acquisition of signals with sparse spectra using sub-Nyquist sampling [33] and to a
variant of a phase-retrieval-problem as in [34]. We are hopeful that many more applications will follow.
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APPENDIX

A. FFAST Algorithm Pseudocode

Algorithm 1 FFAST Algorithm
1: Inputs:

- A discrete time signal ~x of length n, whose n-length DFT ~X has at most k non-zero coefficients.
- The subsampling parameters of the FFAST architecture (see Fig. 1): 1) number of stages d. and
2) number of samples per sub-stream in each of the d stages F = {f0, f1, . . . , fd−1}, chosen as per
discussion in Sections VI and VII.

2: Output: An estimate of the k-sparse n-length DFT ~X .

3: FFAST Decoding: Set the initial estimate of the n-length DFT ~X = 0. Let ` denote the number of
iterations performed by the FFAST decoder.

4: for each iteration do
5: for each stage i = 0 to d− 1 do
6: for each bin j = 0 to fi − 1 do
7: if ||~yb,i,j||2 == 0 then
8: bin j of stage i is a zero-ton.
9: else

10: (single-ton, vp, p) = Singleton-Estimator (~yb,i,j).
11: if single-ton = ‘true’ then

12: Peeling: ~yb,s,q = ~yb,s,q − vp

(
1

eı2πp/n

)
, for all stages s and bins q ≡ p mod fs.

13: Set X[p] = vp.
14: else
15: bin j of stage i is a multi-ton.
16: end if
17: end if
18: end for
19: end for
20: end for

Algorithm 2 Singleton-Estimator
1: Input: The bin observation ~yb,i,j .

2: Outputs: 1) A boolean flag ‘single-ton’, 2) Estimated value vp of the non-zero DFT coefficient at
position p.

3: Singleton-Estimator: Set the single-ton = ‘false’.
4: if (n/2π)∠yb,i,j[1]yb,i,j[0]† ∈ {0, 1, . . . , (n− 1)} then
5: single-ton = ‘true’.
6: vp = yb,i,j[0].
7: p = (n/2π)∠yb,i,j[1]yb,i,j[0]†.
8: end if
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B. Ratio-test for a multi-ton bin
Consider a multi-ton-bin ` with L − 1 non-zero components where L > 2. Let i0, i1, · · · , iL−2 be the

indices of the non-zero components of ~X contributing to the observation of the multi-ton bin `. Then, we
have

~yb,` =
[
~vi0 ~vi1 · · · ~viL−3

~viL−2

]


X[i0]
X[i1]

...
X[iL−3]
X[iL−2]

 , (14)

where vector ~vi0 =

(
1

eı2πio/n

)
consists of the first two entries of the ith0 column of the n × n IDFT

matrix. The multi-ton bin ` will be identified as a single-ton bin with location j and value X[j] for some
0 ≤ j < n iff

~yb,` = ~vjX[j]

i.e.,
[
~vi0 ~vi1 · · · ~viL−3

] 
X[i0]
X[i1]

...
X[iL−3]

 =
[
~viL−2

~vj
] [ −X[iL−2]

X[j]

]

~u =
[
~viL−2

~vj
] [ −X[iL−2]

X[j]

]
. (15)

where ~u ∈ C2 is some resultant vector. The matrix consisting of the first two rows of an IDFT matrix is
a Vandermonde matrix and hence equation (15) has a unique solution. The complex coefficient X[j] is
free to choose but X[iL−2] is drawn from a continuous distribution. As a result probability of satisfying
equation (15) is essentially zero even after applying union bound over all j. Hence a multi-ton bin is
identified correctly almost surely.

C. Check node edge degree-distribution polynomial of the graphs in the balls-and-bins ensemble Ck1 (F , nb)
The check node edge-degree distribution polynomial of a bi-partite graph is defined as ρ(α) =

∑∞
i=1 ρiα

i−1,
where ρi denotes the probability of an edge (or fraction of edges) of the graph is connected to a check
node of degree i. Recall that in the randomized construction based on a balls-and-bins model described
in Section VI-A, every variable node is connected to d check nodes, one uniformly random check node
in each of the d sets. Thus, the number of edges connected to a check node, in the subset with f0 check
nodes, is a binomial B(1/f0, k) random variable. For large k and f0 = ηk+O(1), the binomial distribution
B(1/f0, k) is well approximated by a Poisson random variable with mean 1/η. Thus,

Pr(check node in set 0 has edge degree = i) ≈ (1/η)ie−1/η

i!
. (16)

Let ρ0,i be the fraction of the edges, that are connected to a check node of degree i in set 0. Then, we
have,

ρ0,i =
if0
k
Pr(check node has edge degree = i)

(a)≈ if0
k

(1/η)ie−1/η

i!
(b)≈ (1/η)i−1e−1/η

(i− 1)!
, (17)
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where (a) follows from Poisson approximation of the Binomial random variable and (b) from f0 =
ηk +O(1). Since, fi = ηk +O(1) for all i = 0, 1 . . . , d− 1. We have,

ρi ≈
(1/η)i−1e−1/η

(i− 1)!
(18)

and

ρ(α) = e−(1−α)/η (19)

D. Proof of Lemma VI.4
Proof: We provide a proof using a contradiction argument. If possible let S be the set of the variable

nodes that the FFAST peeling-decoder fails to decode. We have |S| ≤ αk. Without loss of generality let
|N1(S)| ≥ |Ni(S)|, ∀i ∈ {0, . . . , d− 1}. Then, by the hypothesis of the Theorem |N1(S)| > |S|/2.

Note that the FFAST peeling-decoder fails to decode the set S if and only if there are no more single-
ton check nodes in the neighborhood of S and in particular in N1(S). For all the check nodes in N1(S)
to be a multi-ton, the number of edges connecting to the check nodes in the set N1(S) have to be at
least 2|N1(S)| > |S|. This is a contradiction since there are only |S| edges going from set S to N1(S)
by construction.

E. Proof of Lemma VI.5
Proof: Consider a set S of variable (left) nodes in a random graph from the ensemble Ck1 (F , nb),

where |F| = d ≥ 3. Let Ni(S) be the right neighborhood of the set S in the ith subset of check nodes,
for i = 0, 1, . . . , d − 1. Also, let ES denote the event that the all the d right neighborhoods of S are of
size |S|/2 or less, i.e., max{|Ni(S)|}d−1i=0 ≤ |S|/2. First, we compute an upper bound on the probability
of the event ES as follows:

Pr(ES) <
d−1∏
i=0

( |S|
2fi

)|S|(
fi
|S|/2

)
(a)≈

( |S|
2F

)d|S|(
F

|S|/2

)d
<

( |S|
2F

)d|S|(
2Fe

|S|

)d|S|/2
=

( |S|e
2F

)d|S|/2
(20)

where the approximation (a) uses fi = F+O(1) for all i = 0, . . . , d− 1. Consider an event E, that there
exists some set of variable nodes of size |S|, whose all the d right neighborhoods are of size |S|/2 or
less. Applying a union bound we get,

Pr(E) < Pr(ES)

(
k

|S|

)
<

( |S|e
2F

)d|S|/2(
ke

|S|

)|S|
(b)
<

[( |S|
F

)d−2 (e
2

)d(e
η

)2
]|S|/2

< O
(
(|S|/nb)|S|/2

)
(21)
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where in (b) we used F = ηk and in the last inequality we have used d ≥ 3 and nb = O(F). Then,
specializing the bound in (21) for |S| = αk, for small enough α > 0, and |S| = o(k) we get,
• For |S| = αk, for small enough α > 0:

Pr(E) < e−εk log(nb/k), for some ε > 0 (22)

• For |S| = o(k):

Pr(E) < O (1/nb) (23)

F. Proof of Lemma VI.2
Proof: a) [Expected behavior] Consider decoding on a random graph from the ensemble Ck1 (F , nb).

Let Zi, i = 0, . . . , kd−1, be an indicator random variable that takes value 1 if the edge ~ei is not decoded
after ` iterations of the FFAST peeling-decoder and 0 otherwise. Then, by symmetry E[Z] = kdE[Z1].
Next, we compute E[Z1] as,

E[Z1] = E[Z1 | N 2`
~e1

is tree-like]Pr(N 2`
~e1

is tree-like)

+E[Z1 | N 2`
~e1

is not tree-like]Pr(N 2`
~e1

is not tree-like)

≤ E[Z1 | N 2`
~e1

is tree-like] + Pr(N 2`
~e1

is not tree-like).

In Appendix G, we show that Pr(N 2`
~e1

is not tree-like) ≤ O((log k)2`/k). Also we have E[Z1 | N 2`
~e1

is tree-like] =
p` by definition. Thus,

E[Z] < 2kdp`. (24)

b) [Concentration] In this part, we want to show that the number of edges Z, that are not decoded at the
end of ` iterations of the FFAST peeling-decoder, is highly concentrated around E[Z]. We use the standard
martingale argument, of exposing an edge of the graph at a time, along with the Azuma’s inequality as
in [27], with slight modification to account for the irregular edge degree of the right nodes. The bi-partite
graphs in the ensemble Ck1 (F , nb), unlike the ones in [27], have left nodes with d-regular edge degree,s
while the right nodes edge degree is a Poisson random variable with a constant mean. In particular, let
Yi = E[Z|~ei] be the expected value of Z after exposing i edges. Then, Y0 = E[Z] and Ykd = Z, and the
sequence Yi forms a Doob martingale. If |Yi − Yi−1| < ci then, using Azuma’s inequality we have for all
reals t,

Pr(|Z − E[Z]| > t) ≤ 2 exp

(
−t2

2
∑kd

i=1 c
2
i

)
. (25)

In [27], the authors have shown that for bi-partite graphs with edge degrees dv for left nodes and dc for
right nodes, ci < 8(dcdv)

`, when the peeling-decoder performs message passing over ` iterations. The
graphs considered in this paper have constant left degree, but the edge degree of the right nodes is a
Poisson random variable with a constant mean, hence we probabilistically bound the value of dc. Let B
be an event that all the right nodes of a random graph from the considered ensemble have edge degrees
less than or equal to O(k1/(2`+0.5)). Then, using a bound on the Poisson distribution and a union bound
over all the O(k) check nodes, we get,

Pr(B̄) < O(ke−β1k
1

2`+0.5
). (26)

Conditioned on the event B, one can upper bound ci by O(k`/(2`+0.5)). Now putting (25) and (26) together,
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we have,

Pr(|Z − E[Z]| > kdε1) ≤ Pr(|Z − E[Z]| > kdε1|B) + Pr(B̄)

≤ 2 exp

(
−k2d2ε21
2
∑kd

i=1 c
2
i

)
+O(ke−β1k

1
2`+0.5

)

≤ e−βε
2
1k

1/(4`+1)

. (27)

G. Probability of Tree-like Neighborhood
Consider an edge ~e in a randomly chosen graph G ∈ Ck1 (F , nb). Next, we show that a 2`∗ depth

neighborhood N 2`∗

~e of the edge ~e is tree-like with high probability, for any fixed `∗. Towards that end, we
first assume that the neighborhood N 2`

~e of depth 2`, where ` < `∗, is tree-like and show that it remains
to be tree-like when extended to depth 2`+ 1 with probability approaching 1. Let C`,i be the number of
check nodes, from set i, and M` be the number of variable nodes, present in N 2`

~e . Also assume that t
more edges from the leaf variable nodes in N 2`

~e to the check nodes in set i at depth 2`+ 1 are revealed
without creating a loop. Then, the probability that the next revealed edge from a leaf variable node to a
check node (say in set i) does not create a loop is fi−C`,i−t

fi−C`,i
≥ 1− C`∗,i

fi−C`∗,i
. Thus, the probability that N 2`+1

~e

is tree-like, given N 2`
~e is tree-like, is lower bounded by mini(1− C`∗,i

fi−C`∗,i
)C`+1,i−C`,i . Similarly assume that

N 2`+1
~e is tree-like and s more edges from check nodes to the variable nodes at depth 2`+ 2 are revealed

without creating a loop. Conditioned on the event that a check node has an outgoing edge it has equal
chance of connecting to any of the edges of the variable nodes that are not yet connected to any check
node. Thus, the probability of revealing a loop creating edge from a check node to a variable node at
depth 2`+ 2 is upper bounded by, (1− (k−M`−s)d

kd−M`d−s
) ≤ M`∗

(k−M`∗ )
. Thus, the probability that N 2`+2

~e is tree-like
given N 2`+1

~e is tree-like is lower bounded by (1− M`∗
(k−M`∗ )

)M`+1−M` .
It now follows that the probability that N 2`∗

~e is tree-like is lower bounded by

min
i

(
1− M`∗

(k −M`∗)

)M`∗
(

1− C`∗,i
fi − C`∗,i

)C`∗,i
Hence, for k sufficiently large and fixed `∗,

Pr
(
N 2`∗

~e not tree-like
)
≤ max

i

M2
`∗

k
+
C2
`∗,i

fi

Recall, the number of edges connected to a check node in set i is a binomial B(1/fi, k) random variable,
which asymptotically can be approximated by a Poisson random variable with mean 1/η, where fi =
ηk + O(1), for a constant η. Hence, for any fixed value of `∗, maxi{C`∗,i} and M`∗ are upper bounded
by O((log k)`

∗
) with probability 1/kc for any constant c. Thus,

Pr
(
N 2`∗

~e not tree-like
)
≤ O

(
(log k)2`

∗

k

)
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