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Abstract—Fault-tolerant quantum computation is a technique a practical implementation, simply relabeling of the plgsi
that is necessary to build a scalable quantum computer from qubits. While such operations cannpér segive rise to a
noisy physical building blocks. Key for the implementation of 4iyersal gate set for which additional techniques suchias s

fault-tolerant computations is the ability to perform a universal distillati tial tructi detimlead
set of quantum gates that act on the code space of an underlgn IStllation are essential, our construction can nev ea

quantum code. To implement such a universal gate set fault- 0 operations that can be performed at basically zero cost.
tolerantly is an expensive task in terms of physical operatins, This might lead to overhead reductions, in particular fadtfa
and any possible shortcut to save operations is potentially tolerant quantum computations on long block codes, pravide

beneficial and might lead to a reduction in overhead for fault they exhibit large automorphism groups or automorphism
tolerant computations. We show how the automorphism group . .
ngroups with suitable structure.

of a quantum code can be used to implement some operators o
the encoded quantum states in a fault-tolerant way by merely

permuting the physical qubits. We derive conditions that a cde II. CSS GODES AND THEIRAUTOMORPHISM GROUP
has to satisfy in order to have a large group of operations tha ) ) )
can be implemented transversally when combining transvees First we consider the special case of CSS codes based on a

CNOT with automorphisms. We give several examples for quan- classical lineaiC' = [n, k1, d;] which is contained in its dual
tum codes with large groups, including codes with parametes qge(CL = [n,n — k1, ds]. The (permutation) automorphism
[8,3,3], [15,7,3], [22,8,4], and [31, 11, 5]. . :
groupAut(C') of C is the set of all permutations € S,, that
|. INTRODUCTION preserve the code, i. e., (see alsal [10])

Quantum error-correcting codes (QECC) are essential in-
gredients for the realization of quantum computing devices
In addition to the mere error correction, it is also impottant turns out thatAut(C) = Aut(C*).
that quantum operations can be implemented in a faultgoter )
way, i. e., the operations preserve the code space and if-an bgmma 1. Let B = {b1,..., by ok, -, bu_r,} be a basis
eration fails, the errors remain local [1]) [2]. Severalattes ©f C* such thatBo = {b,_ok,, ..., bn—r, } is @ basis ofC.
are known for universal fault-tolerant quantum computindVith respect to the basig, the automorphism grouput(C)
including schemes that are based on distance-three coBi@g @ linear representation in the block-triangular form
[3] such as for instance the concatenated Steane c¢dde [4],
[5], concatenated error detecting codes$ [6], or the Bacon- Aut(C) = GL(n — k1, 2)

Shor codes[]7]. Quite recently, the surface code—a stabiliz 7 T(m) = ( Ty (m) | To(m) > _ @)
code that exhibits one of the highest reported thresholats th 0 | Ts(m)

exceedl% for a standard 2D lattice of physical qubits and .

independent depolarizing noise—has gained a lot of attenti Recall that the basis states of the CSS che [n. k. d],
[8l, [9]. So far, most of the schemes for fault-tolerant cpuizm wherek = n — 2k;, based on the cod€' are given by
computing encode very few qubits per code block; in the 1

case of concatenated codes, typically QECCs are chosen that [¥w) = ﬁ Z e+ ), 3)
encode only a single qubit per code block. ceC

_ In this paper we present a general method that allows [\}R/F\ere the vectors —
implementation of operations in a fault-tolerant manner f(?:osets ofC' in O+

Vee C: c™ = (cx1),---»Cr(n)) € C. Q)
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Zle B;b; are representatives of the
. If we apply a permutatiomr € Aut(C)

codes encoding several qubits. Like in the single-qubiepa% the qudits of a basis state of the CSS code, from[&qg. (2) it
CSS codes appear to be well suited for our methods, t?Uﬁows that

they can be applied to any stabilizer code. The basic idea ) )

is that code automorphisms can give rise to non-trivialdabi T _ ™ ™) = et ') = o
operations on the encoded gquantum information that can |t1)/)ev> |C| CEZC| ) VIC| CEZC| )= v
executed by merely permuting, or what arguably is simpler in (4)
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where i.e., the transversal CNOT corresponds to the lirBax 2k
matrix

k k
v' =) Bbi and B = Z(Tl(ﬂ'))ijﬁj. (5) <%’i> _ 9)
i=1 j=1

Note that the basis staté,,) corresponds to the encoding ofin the following we assume that the CNOT-gates can not only
the computational basis stdi8). Hence we can label the baside applied to the corresponding pairs of qudits in each code

states of the CSS code by the vector3 = (31,...,6:)T. block, but between any pair of qudits. Then we can combine
Then we have the operations on the code arising from the automorphism
1B)™ = |Ty(7)B), (6) group of the underlying classical code and the transversal

CNOT.

i.e., the automorphism of the classical cod€” gives rise . )
to a permutation of the basis states of the CSS c6de Theorem 3. Given a CSS cod€ = [n, k, d| derived from a

. . . i L i H
corresponding to the linear transformatid(=). In summary linear codeC’ < C with automorphism groupiut(C), one
we have: can realize the following groupr:» of linear transformations

on 2k encoded qudits in a fault-tolerant manner:
Theorem 1. LetC be a CSS code based on the classical code

C < C*. Then the automorphism € Aut(C) corresponds I | 0 1 | 1
to the linear operatior} (7) defined in eq.[{2) on the IogicaIG12 - 7 | 7 )\ 0 | F
basis states of.

(10)

In the general situation, a CSS codds based on nested T(m) | 0 c oy, T € Aut(C) ).
classical codeg’; C €, and the basis states 6fcorrespond 0 | Ty ()

to the cosets of’; in Cy. In general, the automorphism groups The first two generators of!;» are the transversal CNOT
Aut(C1) and Aut(C) need not be equal. However, when W&yith all controls in the first or second code block, respatfiv
consider their intersection, we obtain the following résul  \yhijle we cannot make a general statement about the relation

Theorem 2. LetC be a CSS code based on nested classidaftween the automorphism groémt(C’) and the groug s,
codesC, < C;. Then a joint automorphism € Aut(C;)n We have the following observation.

Aut(Cy) corresponds to a linear operatioffi () on the | emma 2. The groupG;.» contains all matrices of the form
logical basis states of, defined analogously to ed. (2).
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Note that these operations can be implemented by permuting (T’T) and <T’T> 5 (11)
the qubits or just by relabeling them. Below we will show
that by a similar argument, the (permutation) automorphiswhere A is an arbitrary element of th&-algebra generated
group of an additive code corresponding to a stabilizer cotdg the matrices’ (), i.e.,
gives rise to symplectic operations on the logical opesatdr
the stabilizer code. We would also like to point out that whil A= Z arTi(m), or €7Z. (12)
automorphism groups of additive codes have been investigat mEAut(C)
before, see e. g/ [11], [12], [13], the idea to leveragemat®e Hence we can in particular realize transformations of thexfo
phisms to perform large sets of encoded logical operations
does not seem to have been investigated ruch. 181)[82) = |B1)|ABL + Bz2). (13)

Proof: First, note that
I1l. COMBINING AUTOMORPHISMS ANDTRANSVERSAL

-1
OPERATIONS Ti(n) | 0 11 Ti(r) | 0 (19)
For CSS codes, applying the controlled-NOT (CNOT) op- 0 | I 0 | I 0 | I

eration transversally is an operation preserving the spéce
two copies of the code. More precisely, we have _ ( I'| Tu(m) ) '

0 1
CNOT@”(|¢”1>|’¢)U2>) = |¢v1>|¢v1+v2>7 (7) i L .
_ The products of these matrices and their inverses yield ar-
where CNOT®" should be understood as applyi@NOT-  pitrary integer linear combinations of the matricBgr;) in
gates to the corresponding qudits in both code blocks. mgerthe upper right block. The result for lower-triangular oc

of the encoded basis states, we have matrices follows analogously. m
CNOT®"(|B1)|B2)) = |B1)|B1 + Bz2), (8) Theorem 4. Assume that the grouf;» contains all matrices
of the form

IHowever, we would like to point out that the automorphismugrof the IlA
quantum Hamming code of lengits was used to aid fault-tolerant quantum cAeM (IF ) and (15)
computation in a talk given by J. Harrington at the QEC 201dfe@nce. 0|1 )° nxnitd



IV. EXAMPLES

((418) e}

whereA, B € M,,«,(F,) are arbitrary matrices of the algebra
of n x n matrices over the fiel#,. ThenGi2 = SLo, (F,).

Good candidates for this construction are codes with large
automorphism group or automorphism groups for which the
representation given b{? (x) is irreducible or has only a

Proof: Let E;; denote then x n matrix which has few irreducible components of large dimension. Among those
the entry1 in row 7 and columnj, and is zero elsewhere.Reed-Muller codes and cyclic codes are promising candidate
By assumption, the groug;» contains the following two

I OéEi,j

matrices:
M, = ( 0 7 ) and My = ( ) (16)

with i # k. We compute
(17)

A. CSS codé15,7, 3]
I 0
BE;k | 1 The 4th-order binary Hamming code has parameters
[15,11,3] and contains its dual codé' = [15,4,8]. The
automorphism group of” is isomorphic to the alternating
group Ag of order21600.
) ) The linear action on thé& logical qubits is given by the

group

By symmetry, we also get the same type of matrices in the

I+ afL; | 0
0 |I

My P MMM = (

lower right block, and in summary all elementary trans\@tdi 1001101 1010010
o . . . 1100100 1111100
with identity on the diagonal and a single non-zero off-
diagonal entry. Furthermore, for£ 0 we obtain the followin PLrotti 0110110
fac?orizationsy;)f diagonal m,atriceS' ° G :< L1000107,10101011 > (20)
g ' 0100101 1001000
t 0100 0001101 0100110
0 1/t|o 0 | 1100110 0111101
0 010 o _
0 001 Combining the groupz; x G; with the transversal CNOTS,
we get the groupGie = SL(12,2) x SL(2,2) with more
1 0 00 10]0 1 4 : .
than 2*** elements. What is even more, the block-diagonal
0 1 00 0 1]0 -1 = -
0 5 10 010 subgroupG; of G, that acts trivially on the second code
block is isomorphic to the groufL(6, 2).
0 (t—1)/t|0 1 00/0 1 ) _ _ .
A closer inspection shows that the Hamming code contains
1 0 ‘ 00 10 ‘ 0 —t the all-one vector which corresponds to the logical operato
« 0 110 0 0 1/0 0 X®15 on the code. Both are invariant under permutations.
0 0 ‘ 10 00 ‘ 10 Hence on the subcodg5, 6, 3] of the original code, which is
(1=8)/t 0]0 1 000 1 obtained by removing the all-one vector from the Hamming
1 0 00 1 0/0 0 code, we can realize the full linear grol.(6,2) on the
» 0 1 00 0 1(0 1 (18) encoded states as well as the full linear gréig12,2) on
0 0 10 0 010 pairs of encoded states.
(t—1)/t2 (1-t)/t|0 1 0 0/0 1
and B. CSS codg31, 11, 5]
t 0‘ 0 0 1 0jt=10 10 ‘ 00 The BCH code with paramete[31, 21, 5] contains its dual
0110 0 _[0O01] 0 0 0 1/00 C = [31,10,12]. The resulting CSS code has parameters
001/t 0 00 1 0 1010 C = [31,11,5]. The automorphism group of' is a group
0 0[O0 1 00 0 1 0 0/]01 G, of order 155 isomorphic toC3; x Cs. However, when
1 0|l(@=t)/t 0 1 0|0 o combiningG; x G with the transversal CNOTs, we obtain
01 0 0 0 1/0 0 the groupG;2 isomorphic toSL(10, 2) x SL(10, 2) x SL(2, 2)
1700 1 0 7 0l1 0 (19)  with more than2'% elements. Restricted to one code block,
00 0 1 0 olo 1 we get the grougs; = SL(5, 2) x SL(5, 2). Similar as for the

CSS cod€[15, 7, 3], we find that the spaces of dimensidn

The matrices of the forni(18) and (19) generate all diagonaland1 stabilized by the code correspond to cyclic subcodes
matrices with unit determinant. Together with the transieds lying between the cod€ andC. On each of the subspaces,
in (I8) and [(1F), they generate the full special linear groupe can realize the full linear group, despite the fact that th
SLa(Fy). B automorphism grougrut(C') is relatively small.



C. CSS codd22,8, 4] representation oAut(C):

The classical self-orthogonal codée= [22, 7, 8] generated 010000 10 0/0 00

by 001/000 010[000
1000100001100010101010 G1=< 1011000 0011000 >

100(01 0]’ 0O1O0|1O00O0

0100100001101001010111 0111101 100l010
0010100001010011011000 010100 00o0loo0 1

G=10001000100100001101011
0000010101011111100010 Note that with this choice of logical operators, the space
0000001100100110101100 corresponding to the logical -operators is preserved.
0oo00000O11111111111111 Unlike the situation for CSS codes, the transversal CNOT-

_ _ o (21)_ gate does not preserve stabilizer codes in general. So vee hav
is contained in its duaC" = [22,15,4]. Hence we obtain to look for stabilizer codes which have a larger symmetry

a CSS codeC = [22,8,4]. The automorphism group of  group. Additionally, we may consider the automorphism grou
has order 336 and is isomorphic to a semi-direct product igicluding local Clifford operations as well.

PSL(2,7) and Z,. Although the group is relatively small, the

action on the space @flogical qubits is an irreducible matrix V. CODE FAMILIES
group We briefly discuss the situation for CSS codes based on
11010110 11100001 Reed-Muller codes or cyclic codes.
01111100 01011010
01101101 01001011 A. Reed-Muller codes
G — 11100000 10101001 Recall that ther-th order binary Reed-Muller code
1= 10101100(f’J]11000011 : RM(r,m) of lengthn = 2™, for 0 < r < m is obtained
11011101 11101101 by the evaluation of all Boolean functions im variables
00100100 00000010 of maximal degreer (see, e.g.,[110]). The automorphism
10100110 10110000 group of RM(r,m) contains the groupAGL(m,2) of all

(22) affine transformations ofiy*. As affine transformations pre-
The matrices irGG; span the full space of binaBx 8 matrices. serve the degree of Boolean functions, it follows that the
Hence by Theoreril4, combining the grotfy x G; with automorphism group also preserves the cosetRNif(r,m)
the transversal CNOTs we get the maximal possible group RM(r + 1,m). Hence, if a CSS code is based on the

SL(16,2). nested codeRM(r,m) C RM(r + s,m), the action of
AGL(m, 2) on the CSS code will not mix the blocks of logical
D. Stabilizer codds, 3, 3] qubits corresponding to homogeneous Boolean functions of

fixed degree. Additional automorphisms or other techniques

There is a stabilizer codé= [3, 3, 3] whose five generators are needed to implement operations between the blocks.

of the stabilizer, the three logica&{ -operators, and the three
logical Z-operators correspond to the following vectors (tog Cyclic codes

to down, respectively) over F'(4): . ) .
P Y) ) Recall that every linear binary cyclic code of odd length

1 0 w 0 w w 1 w? can be uniquely described by a generator polynomid )

w 0 w 1 0 w w1 that dividesX™ — 1. Given two nested cyclic codeS; =

0 1 w w w2 1 w2 0 [n, ko] C C1 = [n, k1], their generator polynomials obey the
0 w 0 w2 w 1 1 w? relation g2(X) = ¢1(X)h(X), whereh(X) is some factor

0 0 1 w? 1 w w w of X™ — 1 of degreek; — ky. Assume that the polynomial
0 0 w 1 w w? 1 w? (23) h(X) has irreducible factors;(X) of degrees;, respectively.

0 0 0 w 0 w w w Then the coset spadg, /C> can be decomposed into spaces
0 0 w 0 w w 0 w of dimensiony; which are preserved by the action of the cyclic
0 0 0 1 w 0 & 0 group Z,, of ordern. In turn, for a cyclic CSS code based on
0 00 0 1 0 w w? Cy C (4, the cyclic shift gives rise to operations on blocks
0 0w 0 0 0 w? 1 with &; logical qubits. Ifn < 6%, the matrices corresponding

to the action on these blocks do not generate the full algebra
Herew € GF(4) obeys the relation? = w + 1, and Pauli of §; x §; matrices. Hence we cannot apply Theofém 4, and it
matricesX, Y, andZ correspond td, w?, andw, respectively. is not clear whether we can implement the full group of linear
The permutation automorphism group ©fis isomorphic to transformations on that block with logical qubits. Of course
the groupAGL(1,8) of order56. On the symplectic spacethe situation changes when there are more automorphisms tha
of the logical operators of, we have the following matrix just the cyclic shift.



VI. TOWARDS THE FULL CLIFFORD GROUP

When the conditions in Theoref 4 are met, we can in¢
plement all linear transformations on a single block /o
logical qudits as well as on any nhumber of such blocks. Usiﬁ@
tensor products of locakK -operations corresponding to cosef
representatives, we can implement affine shifts on the logical
qudits, and hence all affine transformations.

If a CSS code is based on a classical self—orthogoqg\l
codeC < C*, we can apply a local Fourier transformatiorb
transversally on all qudits, resulting in a simultaneousriey
transformation on all logical qudits. This operation wiitér-
change the role of the logical’ - and Z-operations. In order
to implement all Clifford operations on the logical qudits
additional transformations that miX- and Z-operations are
required.

If the CSS code is based on a doubly-even binary co
applying the local transformatioR = diag(1,i), wherei? =
—1, transversally induces an operation on the code states
given by the
POy = "8 gy ). (24

Hence depending owgt(v) mod 4, different powers ofP are o
applied to the corresponding logical state. The favoraitle s
ation is when we indeed have a different action on the logicd®]
qubits. In that case, the combination with permutationshef t 3]
logical qubits (which are in particular linear transforinas)
yields a larger group of transformations on the logical tgidi
The very group, however, depends on the particular code.

VII. CONCLUSIONS Gl

We proposed a general method that allows the implement?s]
tion of operations in a fault-tolerant manner for codes el
several qubits. In Theoref 4 we presented a sufficient cond
tion on the automorphism group of a quantum code such th
all linear transformations on the logical qubits can be &npl

interesting to know if code families with this property ebtisat

asymptotically good. (ii) Can we find codes—or families

. of codes—for which we can implement not only all linear
nsformations, but the full Clifford group dnlogical qudits
tending the results shown here?
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