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Abstract—Fault-tolerant quantum computation is a technique
that is necessary to build a scalable quantum computer from
noisy physical building blocks. Key for the implementation of
fault-tolerant computations is the ability to perform a uni versal
set of quantum gates that act on the code space of an underlying
quantum code. To implement such a universal gate set fault-
tolerantly is an expensive task in terms of physical operations,
and any possible shortcut to save operations is potentially
beneficial and might lead to a reduction in overhead for fault-
tolerant computations. We show how the automorphism group
of a quantum code can be used to implement some operators on
the encoded quantum states in a fault-tolerant way by merely
permuting the physical qubits. We derive conditions that a code
has to satisfy in order to have a large group of operations that
can be implemented transversally when combining transversal
CNOT with automorphisms. We give several examples for quan-
tum codes with large groups, including codes with parameters
[[8, 3, 3]], [[15, 7, 3]], [[22, 8, 4]], and [[31, 11, 5]].

I. I NTRODUCTION

Quantum error-correcting codes (QECC) are essential in-
gredients for the realization of quantum computing devices.
In addition to the mere error correction, it is also important
that quantum operations can be implemented in a fault-tolerant
way, i. e., the operations preserve the code space and if an op-
eration fails, the errors remain local [1], [2]. Several schemes
are known for universal fault-tolerant quantum computing,
including schemes that are based on distance-three codes
[3] such as for instance the concatenated Steane code [4],
[5], concatenated error detecting codes [6], or the Bacon-
Shor codes [7]. Quite recently, the surface code—a stabilizer
code that exhibits one of the highest reported thresholds that
exceed1% for a standard 2D lattice of physical qubits and
independent depolarizing noise—has gained a lot of attention
[8], [9]. So far, most of the schemes for fault-tolerant quantum
computing encode very few qubits per code block; in the
case of concatenated codes, typically QECCs are chosen that
encode only a single qubit per code block.

In this paper we present a general method that allows the
implementation of operations in a fault-tolerant manner for
codes encoding several qubits. Like in the single-qubit case,
CSS codes appear to be well suited for our methods, but
they can be applied to any stabilizer code. The basic idea
is that code automorphisms can give rise to non-trivial logical
operations on the encoded quantum information that can be
executed by merely permuting, or what arguably is simpler in

a practical implementation, simply relabeling of the physical
qubits. While such operations cannotper se give rise to a
universal gate set for which additional techniques such as state
distillation are essential, our construction can nevertheless lead
to operations that can be performed at basically zero cost.
This might lead to overhead reductions, in particular for fault-
tolerant quantum computations on long block codes, provided
they exhibit large automorphism groups or automorphism
groups with suitable structure.

II. CSS CODES AND THEIRAUTOMORPHISM GROUP

First we consider the special case of CSS codes based on a
classical linearC = [n, k1, d1] which is contained in its dual
codeC⊥ = [n, n− k1, d2]. The (permutation) automorphism
groupAut(C) of C is the set of all permutationsπ ∈ Sn that
preserve the code, i. e., (see also [10])

∀c ∈ C : cπ = (cπ(1), . . . , cπ(n)) ∈ C. (1)

It turns out thatAut(C) = Aut(C⊥).

Lemma 1. Let B = {b1, . . . , bn−2k1
, . . . , bn−k1

} be a basis
of C⊥ such thatB0 = {bn−2k1

, . . . , bn−k1
} is a basis ofC.

With respect to the basisB, the automorphism groupAut(C)
has a linear representation in the block-triangular form

Aut(C) → GL(n− k1, 2)

π 7→ T (π) =

(

T1(π) T2(π)
0 T3(π)

)

. (2)

Recall that the basis states of the CSS codeC = [[n, k, d]],
wherek = n− 2k1, based on the codeC are given by

|ψv〉 =
1

√

|C|

∑

c∈C

|c+ v〉, (3)

where the vectorsv =
∑k

i=1 βibi are representatives of the
cosets ofC in C⊥. If we apply a permutationπ ∈ Aut(C)
to the qudits of a basis state of the CSS code, from eq. (2) it
follows that

|ψv〉
π =

1
√

|C|

∑

c∈C

|cπ + vπ〉 =
1

√

|C|

∑

c∈C

|c+ v′〉 = |ψv
′〉,

(4)
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where

v′ =
k
∑

i=1

β′
ibi and β′

i =
k
∑

j=1

(

T1(π)
)

ij
βj . (5)

Note that the basis state|ψv〉 corresponds to the encoding of
the computational basis state|β〉. Hence we can label the basis
states of the CSS codeC by the vectorβ = (β1, . . . , βk)

T .
Then we have

|β〉π = |T1(π)β〉, (6)

i. e., the automorphismπ of the classical codeC gives rise
to a permutation of the basis states of the CSS codeC
corresponding to the linear transformationT1(π). In summary
we have:

Theorem 1. Let C be a CSS code based on the classical code
C ≤ C⊥. Then the automorphismπ ∈ Aut(C) corresponds
to the linear operationT1(π) defined in eq. (2) on the logical
basis states ofC.

In the general situation, a CSS codeC is based on nested
classical codesC2 ⊂ C1, and the basis states ofC correspond
to the cosets ofC2 in C1. In general, the automorphism groups
Aut(C1) andAut(C2) need not be equal. However, when we
consider their intersection, we obtain the following result:

Theorem 2. Let C be a CSS code based on nested classical
codesC2 ≤ C1. Then a joint automorphismπ ∈ Aut(C1) ∩
Aut(C2) corresponds to a linear operationT1(π) on the
logical basis states ofC, defined analogously to eq. (2).

Note that these operations can be implemented by permuting
the qubits or just by relabeling them. Below we will show
that by a similar argument, the (permutation) automorphism
group of an additive code corresponding to a stabilizer code
gives rise to symplectic operations on the logical operators of
the stabilizer code. We would also like to point out that while
automorphism groups of additive codes have been investigated
before, see e. g., [11], [12], [13], the idea to leverage automor-
phisms to perform large sets of encoded logical operations
does not seem to have been investigated much.1

III. C OMBINING AUTOMORPHISMS ANDTRANSVERSAL

OPERATIONS

For CSS codes, applying the controlled-NOT (CNOT) op-
eration transversally is an operation preserving the spaceof
two copies of the code. More precisely, we have

CNOT⊗n
(

|ψv1
〉|ψv2

〉
)

= |ψv1
〉|ψv1+v2

〉, (7)

whereCNOT⊗n should be understood as applyingCNOT-
gates to the corresponding qudits in both code blocks. In terms
of the encoded basis states, we have

CNOT⊗n
(

|β1〉|β2〉
)

= |β1〉|β1 + β2〉, (8)

1However, we would like to point out that the automorphism group of the
quantum Hamming code of length15 was used to aid fault-tolerant quantum
computation in a talk given by J. Harrington at the QEC 2011 conference.

i. e., the transversal CNOT corresponds to the linear2k × 2k
matrix

(

I 0

I I

)

. (9)

In the following we assume that the CNOT-gates can not only
be applied to the corresponding pairs of qudits in each code
block, but between any pair of qudits. Then we can combine
the operations on the code arising from the automorphism
group of the underlying classical code and the transversal
CNOT.

Theorem 3. Given a CSS codeC = [[n, k, d]] derived from a
linear codeC ≤ C⊥ with automorphism groupAut(C), one
can realize the following groupG12 of linear transformations
on 2k encoded qudits in a fault-tolerant manner:

G12 =

〈(

I 0

I I

)

,

(

I I

0 I

)

, (10)

(

T1(π1) 0

0 T1(π2)

)

: π1, π2 ∈ Aut(C)

〉

.

The first two generators ofG12 are the transversal CNOT
with all controls in the first or second code block, respectively.
While we cannot make a general statement about the relation
between the automorphism groupAut(C) and the groupG12,
we have the following observation.

Lemma 2. The groupG12 contains all matrices of the form
(

I A

0 I

)

and

(

I 0

A I

)

, (11)

whereA is an arbitrary element of theZ-algebra generated
by the matricesT1(πj), i. e.,

A =
∑

π∈Aut(C)

απT1(π), απ ∈ Z. (12)

Hence we can in particular realize transformations of the form

|β1〉|β2〉 7→ |β1〉|Aβ1 + β2〉. (13)

Proof: First, note that
(

T1(π) 0

0 I

)(

I I

0 I

)(

T1(π) 0

0 I

)−1

(14)

=

(

I T1(π)

0 I

)

.

The products of these matrices and their inverses yield ar-
bitrary integer linear combinations of the matricesT1(πj) in
the upper right block. The result for lower-triangular block
matrices follows analogously.

Theorem 4. Assume that the groupG12 contains all matrices
of the form

{(

I A
0 I

)

: A ∈Mn×n(Fq)

}

and (15)



{(

I 0
B I

)

: B ∈Mn×n(Fq)

}

,

whereA,B ∈Mn×n(Fq) are arbitrary matrices of the algebra
of n× n matrices over the fieldFq. ThenG12 = SL2n(Fq).

Proof: Let Ei,j denote then × n matrix which has
the entry1 in row i and columnj, and is zero elsewhere.
By assumption, the groupG12 contains the following two
matrices:

M1 =

(

I αEi,j

0 I

)

and M2 =

(

I 0
βEj,k I

)

(16)

with i 6= k. We compute

M−1
2 M1M2M

−1
1 =

(

I + αβEi,k 0
0 I

)

. (17)

By symmetry, we also get the same type of matrices in the
lower right block, and in summary all elementary transvections
with identity on the diagonal and a single non-zero off-
diagonal entry. Furthermore, fort 6= 0 we obtain the following
factorizations of diagonal matrices:









t 0 0 0
0 1/t 0 0
0 0 1 0
0 0 0 1









=









1 0 0 0
0 1 0 0
0 0 1 0
0 (t− 1)/t 0 1

















1 0 0 1
0 1 0 −1
0 0 1 0
0 0 0 1









×









1 0 0 0
0 1 0 0
0 0 1 0

(1− t)/t 0 0 1

















1 0 0 −t
0 1 0 0
0 0 1 0
0 0 0 1









×









1 0 0 0
0 1 0 0
0 0 1 0

(t− 1)/t2 (1− t)/t 0 1

















1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1









(18)

and








t 0 0 0
0 1 0 0
0 0 1/t 0
0 0 0 1









=









1 0 t− 1 0
0 1 0 0
0 0 1 0
0 0 0 1

















1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1









×









1 0 (1− t)/t 0
0 1 0 0
0 0 1 0
0 0 0 1

















1 0 0 0
0 1 0 0
−t 0 1 0
0 0 0 1









. (19)

The matrices of the form (18) and (19) generate all diagonal
matrices with unit determinant. Together with the transvections
in (16) and (17), they generate the full special linear group
SL2(Fq).

IV. EXAMPLES

Good candidates for this construction are codes with large
automorphism group or automorphism groups for which the
representation given byT1(π) is irreducible or has only a
few irreducible components of large dimension. Among those,
Reed-Muller codes and cyclic codes are promising candidates.

A. CSS code[[15, 7, 3]]

The 4th-order binary Hamming code has parameters
[15, 11, 3] and contains its dual codeC = [15, 4, 8]. The
automorphism group ofC is isomorphic to the alternating
groupA8 of order21600.

The linear action on the7 logical qubits is given by the
group

G1 =

〈





















1 0 0 1 1 0 1
1 1 0 0 1 0 0
1 1 1 0 1 1 1
1 1 0 0 0 1 0
0 1 0 0 1 0 1
0 0 0 1 1 0 1
1 1 0 0 1 1 0





















,





















1 0 1 0 0 1 0
1 1 1 1 1 0 0
0 1 1 0 1 1 0
0 1 0 1 0 1 1
1 0 0 1 0 0 0
0 1 0 0 1 1 0
0 1 1 1 1 0 1





















〉

. (20)

Combining the groupG1 × G1 with the transversal CNOTs,
we get the groupG12

∼= SL(12, 2) × SL(2, 2) with more
than 2144 elements. What is even more, the block-diagonal
subgroupG̃1 of G12 that acts trivially on the second code
block is isomorphic to the groupSL(6, 2).

A closer inspection shows that the Hamming code contains
the all-one vector which corresponds to the logical operator
X⊗15 on the code. Both are invariant under permutations.
Hence on the subcode[[15, 6, 3]] of the original code, which is
obtained by removing the all-one vector from the Hamming
code, we can realize the full linear groupSL(6, 2) on the
encoded states as well as the full linear groupSL(12, 2) on
pairs of encoded states.

B. CSS code[[31, 11, 5]]

The BCH code with parameters[31, 21, 5] contains its dual
C = [31, 10, 12]. The resulting CSS code has parameters
C = [[31, 11, 5]]. The automorphism group ofC is a group
G1 of order 155 isomorphic toC31 ⋊ C5. However, when
combiningG1 × G1 with the transversal CNOTs, we obtain
the groupG12 isomorphic toSL(10, 2)×SL(10, 2)×SL(2, 2)
with more than2199 elements. Restricted to one code block,
we get the group̃G1

∼= SL(5, 2)×SL(5, 2). Similar as for the
CSS code[[15, 7, 3]], we find that the spaces of dimension5,
5, and1 stabilized by the code correspond to cyclic subcodes
lying between the codeC andC⊥. On each of the subspaces,
we can realize the full linear group, despite the fact that the
automorphism groupAut(C) is relatively small.



C. CSS code[[22, 8, 4]]

The classical self-orthogonal codeC = [22, 7, 8] generated
by

G =





















1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0
0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1 1
0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0
0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 0 1 1
0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0 0 1 0
0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1





















(21)
is contained in its dualC⊥ = [22, 15, 4]. Hence we obtain
a CSS codeC = [[22, 8, 4]]. The automorphism group ofC
has order 336 and is isomorphic to a semi-direct product of
PSL(2, 7) andZ2. Although the group is relatively small, the
action on the space of8 logical qubits is an irreducible matrix
group

G1 =

〈

























1 1 0 1 0 1 1 0
0 1 1 1 1 1 0 0
0 1 1 0 1 1 0 1
1 1 1 0 0 0 0 0
1 0 1 0 1 1 0 0
1 1 0 1 1 1 0 1
0 0 1 0 0 1 0 0
1 0 1 0 0 1 1 0

























,

























1 1 1 0 0 0 0 1
0 1 0 1 1 0 1 0
0 1 0 0 1 0 1 1
1 0 1 0 1 0 0 1
1 1 0 0 0 0 1 1
1 1 1 0 1 1 0 1
0 0 0 0 0 0 1 0
1 0 1 1 0 0 0 0

























〉

.

(22)
The matrices inG1 span the full space of binary8×8 matrices.
Hence by Theorem 4, combining the groupG1 × G1 with
the transversal CNOTs we get the maximal possible group
SL(16, 2).

D. Stabilizer code[[8, 3, 3]]

There is a stabilizer codeC = [[8, 3, 3]] whose five generators
of the stabilizer, the three logicalX-operators, and the three
logical Z-operators correspond to the following vectors (top
to down, respectively) overGF (4):





































1 0 ω 0 ω2 ω 1 ω2

ω 0 ω 1 0 ω2 ω2 1
0 1 ω ω ω2 1 ω2 0
0 ω 0 ω2 ω 1 1 ω2

0 0 1 ω2 1 ω ω2 ω
0 0 ω 1 ω ω2 1 ω2

0 0 0 ω 0 ω ω ω
0 0 ω 0 ω ω 0 ω
0 0 0 1 ω 0 ω2 0
0 0 0 0 1 0 ω ω2

0 0 ω 0 0 0 ω2 1





































(23)

Hereω ∈ GF (4) obeys the relationω2 = ω + 1, and Pauli
matricesX , Y , andZ correspond to1, ω2, andω, respectively.
The permutation automorphism group ofC is isomorphic to
the groupAGL(1, 8) of order 56. On the symplectic space
of the logical operators ofC, we have the following matrix

representation ofAut(C):

G1 =

〈

















0 1 0 0 0 0
0 0 1 0 0 0
1 0 1 0 0 0
1 0 0 0 1 0
0 1 1 1 0 1
0 1 0 1 0 0

















,

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
0 0 0 0 0 1

















〉

Note that with this choice of logical operators, the space
corresponding to the logicalX-operators is preserved.

Unlike the situation for CSS codes, the transversal CNOT-
gate does not preserve stabilizer codes in general. So we have
to look for stabilizer codes which have a larger symmetry
group. Additionally, we may consider the automorphism group
including local Clifford operations as well.

V. CODE FAMILIES

We briefly discuss the situation for CSS codes based on
Reed-Muller codes or cyclic codes.

A. Reed-Muller codes

Recall that the r-th order binary Reed-Muller code
RM(r,m) of length n = 2m, for 0 ≤ r ≤ m is obtained
by the evaluation of all Boolean functions inm variables
of maximal degreer (see, e. g., [10]). The automorphism
group of RM(r,m) contains the groupAGL(m, 2) of all
affine transformations onFm

2 . As affine transformations pre-
serve the degree of Boolean functions, it follows that the
automorphism group also preserves the cosets ofRM(r,m)
in RM(r + 1,m). Hence, if a CSS code is based on the
nested codesRM(r,m) ⊂ RM(r + s,m), the action of
AGL(m, 2) on the CSS code will not mix the blocks of logical
qubits corresponding to homogeneous Boolean functions of
fixed degree. Additional automorphisms or other techniques
are needed to implement operations between the blocks.

B. Cyclic codes

Recall that every linear binary cyclic code of odd lengthn
can be uniquely described by a generator polynomialg(X)
that dividesXn − 1. Given two nested cyclic codesC2 =
[n, k2] ⊂ C1 = [n, k1], their generator polynomials obey the
relation g2(X) = g1(X)h(X), whereh(X) is some factor
of Xn − 1 of degreek1 − k2. Assume that the polynomial
h(X) has irreducible factorshi(X) of degreeδi, respectively.
Then the coset spaceC1/C2 can be decomposed into spaces
of dimensionδi which are preserved by the action of the cyclic
groupZn of ordern. In turn, for a cyclic CSS code based on
C2 ⊂ C1, the cyclic shift gives rise to operations on blocks
with δi logical qubits. Ifn < δ2i , the matrices corresponding
to the action on these blocks do not generate the full algebra
of δi× δi matrices. Hence we cannot apply Theorem 4, and it
is not clear whether we can implement the full group of linear
transformations on that block withδi logical qubits. Of course
the situation changes when there are more automorphisms than
just the cyclic shift.



VI. TOWARDS THE FULL CLIFFORD GROUP

When the conditions in Theorem 4 are met, we can im-
plement all linear transformations on a single block ofk
logical qudits as well as on any number of such blocks. Using
tensor products of localX-operations corresponding to coset
representativesv, we can implement affine shifts on the logical
qudits, and hence all affine transformations.

If a CSS code is based on a classical self-orthogonal
codeC ≤ C⊥, we can apply a local Fourier transformation
transversally on all qudits, resulting in a simultaneous Fourier
transformation on all logical qudits. This operation will inter-
change the role of the logicalX- andZ-operations. In order
to implement all Clifford operations on the logical qudits,
additional transformations that mixX- andZ-operations are
required.

If the CSS code is based on a doubly-even binary code,
applying the local transformationP = diag(1, i), wherei2 =
−1, transversally induces an operation on the code states (3)
given by

P⊗n|ψv〉 = iwgt(v)|ψv〉. (24)

Hence depending onwgt(v) mod 4, different powers ofP are
applied to the corresponding logical state. The favorable situ-
ation is when we indeed have a different action on the logical
qubits. In that case, the combination with permutations of the
logical qubits (which are in particular linear transformations)
yields a larger group of transformations on the logical qudits.
The very group, however, depends on the particular code.

VII. C ONCLUSIONS

We proposed a general method that allows the implementa-
tion of operations in a fault-tolerant manner for codes encoding
several qubits. In Theorem 4 we presented a sufficient condi-
tion on the automorphism group of a quantum code such that
all linear transformations on the logical qubits can be imple-
mented by permutations of the qubits and transversal CNOT
operations. We applied this to a set of examples, including
quantum codes with parameters[[8, 3, 3]], [[15, 7, 3]], [[22, 8, 4]],
and [[31, 11, 5]]. Furthermore, we discussed the prospects for
applying this framework to infinite families of quantum block
codes, such as the Reed-Muller codes and cyclic codes.
There are several open questions that are implied by these
observations: (i) Can we find more examples of quantum codes
for which the complete set of linear transformations can be
implemented following Theorem 4? In particular, it would be

interesting to know if code families with this property exist that
are asymptotically good. (ii) Can we find codes—or families
of codes—for which we can implement not only all linear
transformations, but the full Clifford group onk logical qudits
extending the results shown here?
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