
Gaussian Sensor Networks with Adversarial Nodes
Emrah Akyol, Kenneth Rose Tamer Başar
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Abstract—This paper studies a particular sensor network
model which involves one single Gaussian source observed by
many sensors, subject to additive independent Gaussian obser-
vation noise. Sensors communicate with the receiver over an ad-
ditive Gaussian multiple access channel. The aim of the receiver
is to reconstruct the underlying source with minimum mean
squared error. The scenario of interest here is one where some of
the sensors act as adversary (jammer): they strive to maximize
distortion. We show that the ability of transmitter sensors to
secretly agree on a random event, that is “coordination”, plays a
key role in the analysis. Depending on the coordination capability
of sensors and the receiver, we consider two problem settings. The
first setting involves transmitters with “coordination” capabilities
in the sense that all transmitters can use identical realization
of randomized encoding for each transmission. In this case,
the optimal strategy for the adversary sensors also requires
coordination, where they all generate the same realization of
independent and identically distributed Gaussian noise. In the
second setting, the transmitter sensors are restricted to use fixed,
deterministic encoders and this setting, which corresponds to a
Stackelberg game, does not admit a saddle-point solution. We
show that the the optimal strategy for all sensors is uncoded
communications where encoding functions of adversaries and
transmitters are in opposite directions. For both settings, digital
compression and communication is strictly suboptimal.

Index Terms—Sensor networks, game theory, uncoded com-
munication, analog mappings, coordinated transmission

I. INTRODUCTION

Distributed compression and communication over sensor
networks has been an important problem, see e.g. [1] for
an overview. Joint source-channel coding (JSCC) has certain
advantages over separate source and channel coding, and
several specific aspects of JSCC over sensor networks have
been studied in previous work; see e.g., [2] and the references
therein. In this paper, we extend the game theoretic analysis of
the Gaussian test channel [3]–[6] to Gaussian sensor networks
introduced by [7]. A particular extension of [7] to asymmetric
sensor networks was studied in [8], [9]. Communication games
within general multiple input-multiple output settings were
considered in [10], [11].

In this paper, we consider two settings for the sensor
network model illustrated in Figure 1 and explained in detail
in Section II. The first M sensors (i.e., the transmitters) and
the receiver constitute Player 1 (minimizer) and the remaining
K sensors (i.e., the adversaries) constitute Player 2 (maxi-
mizer). This zero-sum game does not admit a saddle-point in
pure strategies (fixed encoding functions), but admits one in
mixed strategies (randomized functions). In the first setting,
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the transmitter sensors can use randomized encoders, i.e., all
transmitters and the receiver agree on some (pseudo)random
sequence, denoted as {γ} in the paper. We coin the term
“coordination” for this capability and show that it has a
pivotal role in the analysis and the implementation of optimal
strategies for both the transmitter and adversarial sensors. In
the first setting, we consider the more general case of mixed
strategies and present the saddle-point solution in Theorem 1.
In the second setting, encoding functions of transmitters are
limited to the fixed mappings. This setting can be viewed as
a Stackelberg game where Player 1 is the leader, restricted
to pure strategies, and Player 2 is the follower, who observes
Player 1’s choice of pure strategies and plays accordingly. We
present in Theorem 2 the optimal strategies for this Stackelberg
game, whose cost is strictly higher than the cost associated
with the first setting. The sharp contrast between the two
settings underlines the importance of “coordination” in sensor
networks with adversarial nodes.

II. PROBLEM DEFINITION

In general, lowercase letters (e.g., x) denote scalars, bold-
face lowercase (e.g., x) vectors, uppercase (e.g., U,X) matri-
ces and random variables, and boldface uppercase (e.g., X)
random vectors. E(·), P(·) and R denote the expectation and
probability operators, and the set of real numbers respectively.
Bern(p) denotes the Bernoulli random variable, taking values
1 with probability p and −1 with 1−p. Gaussian distribution
with mean µ and covariance matrix R is denoted as N (µ, R).

The sensor network model is illustrated in Figure 1. The
underlying source {S(i)} is a sequence of i.i.d. real valued
Gaussian random variables with zero mean and variance σ2

S .
Sensor m ∈ [1 :M+K] observes a sequence {Um(i)} defined
as

Um(i) = S(i) +Wm(i), (1)

where {Wm(i)} is a sequence of i.i.d. Gaussian random
variables with zero mean and variance σ2

Wm
, independent

of {S(i)}. Sensor m ∈ [1 : M +K] can apply arbitrary
Borel measurable function gNm : RN → R to the observation
sequence of length N , Um so as to generate sequence of
channel inputs Xm(i) = gNm(Um) under power constraint:

lim
N→∞

1

N

N∑
i=1

E{X2
m(i)} ≤ Pm (2)
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Fig. 1. The sensor network model.

The channel output is then given as

Y (i) = Z(i) +

M+K∑
j=1

Xj(i) (3)

where {Z(i)} is a sequence of i.i.d. Gaussian random variables
of zero mean and variance σ2

Z , independent of {S(i)} and
{Wm(i)}. The receiver applies a Borel measurable function
hN : RN → R to the received sequence {Y (i)} to minimize
the cost, which is measured as mean squared error (MSE)
between the underlying source S and the estimate at the
receiver Ŝ as

J(gNm(·), hN (·)) = lim
N→∞

1

N

N∑
i=1

E{(S(i)− Ŝ(i))2} (4)

for m = 1, 2, . . . ,M +K.
The transmitters gNm(·) for m ∈ [1 : M ] and the receiver

hN (·) seek to minimize the cost (4) while the adversaries aim
to maximize (4) by properly choosing gNk (·) for k ∈ [M+1:
M+K]. We focus on the symmetric sensor and symmetric
source where Pm = PT and σ2

Wm = σ2
WT , ∀m ∈ [1 :M ] and

σ2
Wk

= σ2
WT

and Pk = PA, ∀k ∈ [M + 1:M+K].
A transmitter-receiver-adversarial policy (gN∗m , gN∗k , hN∗)

constitutes a saddle-point solution if it satisfies the pair of
inequalities

J(gN∗m , gNk , h
N ) ≤ J(gN∗m , gN∗k , hN∗) ≤ J(gNm , gN∗k , hN )

(5)

III. PROBLEM SETTING I

The first scenario is concerned with the setting where the
transmitter sensors have the ability to coordinate, i.e., all
transmitters and the receiver can agree on an i.i.d. sequence
of random variables {γ(i)} generated, for example, by a side
channel, the output of which is, however, not available to
the adversarial sensors1. The ability of coordination allows
transmitters and the receiver to agree on randomized encoding

1An alternative practical method to coordinate is to generate the identical
pseudo-random numbers at each sensor, based on pre-determined seed.

mappings. Surprisingly, in this setting, the adversarial sensors
also need to coordinate, i.e., agree on an i.i.d. random se-
quence, denoted as {θ(i)}, to generate the optimal jamming
strategy.

The saddle-point solution of this problem is presented in
the following theorem.

Theorem 1: Under scenario 1, the optimal encoding func-
tion for the transmitters is randomized uncoded transmission:

Xm(i) = γ(i)αTUm(i), M ≥ m ≥ 1 (6)

where γ(i) is i.i.d. Bernoulli ( 12 ) over the alphabet {−1, 1}

γ(i) ∼ Bern(1
2
).

The optimal jamming function (for adversarial sensors) is to
generate i.i.d. Gaussian output

Xk(i) = θ(i), M +K ≥ k ≥M + 1

where
θ(i) ∼ N (0, PA),

and is independent of the adversarial sensor input Uk(i). The
optimal receiver is the Bayesian estimator of S given Y , i.e.,

h(Y (i)) =
MαTσ

2
S

Mα2
Tσ

2
S +M2α2

Tσ
2
WT

+K2PA + σ2
Z

Y (i). (7)

Cost at this saddle-point is

J2 = σ2
S

M2α2
Tσ

2
WT

+K2PA + σ2
Z

Mα2
Tσ

2
S +M2α2

Tσ
2
WT

+K2PA + σ2
Z

(8)

where αT =
√

PT

σ2
S+σ2

WT

.
Proof: We prove this result by verifying that the mappings

in this theorem satisfy the saddle-point criterion given in (5),
following the approach in [5].

RHS of (5): Suppose the policy of the adversarial sensors
is given as in Theorem 1. Then, the communication system
at hand becomes identical to the problem considered in [7],
whose solution is uncoded communication with deterministic,
linear encoders, i.e., Xm(i) = αTUm(i). Any probabilistic
encoder, given in the form of (6) (irrespective of the density
of γ) yield the same cost (8) with deterministic encoders and
hence is optimal.

LHS of (5): Note that all the adversarial sensors must use
the same jamming strategy to maximize the overall cost. Let
us derive the overall cost conditioned on the realization of
the transmitter mappings (i.e., γ = 1 and γ = −1) used in
conjunction with optimal linear decoders given in (7). If γ = 1

D1 = J1 + ξE{SXk}+ ψE{ZXk} (9)

for some constants ξ, ψ, and similarly if γ = −1

D2 = J1 − ξE{SXk} − ψE{ZXk} (10)

where the overall cost is

D(i) = P(γ(i) = 1)D1 + P(γ(i) = −1)D2. (11)



Clearly, for γ(i) ∼ Bern( 12 ) the overall cost J1 is only
a function of the second-order statistics of the adversarial
outputs, irrespective of the distribution of {θ(i)}, and hence
the solution presented here is indeed a saddle-point.

Corollary 1: The solution in Theorem 1 is (almost surely)
the unique solution for the transmitters, the adversaries (jam-
mer) and the receiver.

Proof: We start by restating the fact that the optimal
solution for transmitter sensors must be in the randomized
form given in (6). Let us prove the properties which were not
covered by the proof of the saddle-point.

Gaussianity of {θ(i)}: The choice θ(i) ∼ N (0, PA) maxi-
mizes (4) since it renders the simple uncoded linear mappings
asymptotically optimal, i.e., the transmitters cannot improve
on the zero-delay performance by utilizing asymptotically
high delays. Moreover, the optimal zero-delay performance
is always lower bounded by the performance of the linear
mappings, which is imposed by the adversarial choice of
θ(i) ∼ N (0, PA).

Independence of {θ(i)} of {S(i)} and {W (i)}: If the adver-
sarial sensors introduce some correlation, i.e., if E{SXk} 6= 0
or E{WXk} 6= 0, the transmitter can adjust its Bernoulli
parameter to decrease the distortion. Hence, the optimal ad-
versarial strategy is setting E{SXk} = E{WXk} = 0 which
implies independence since all variables are jointly Gaussian.

Choice of Bernoulli parameter: Note that the optimal choice
of the Bernoulli parameter for the transmitters is 1

2 since other
choices will not cancel the cross terms in (9) and (10), i.e.,
E{SXk} and E{WXk}. These cross terms can be exploited
by the adversary to increase the cost, hence optimal strategy
for transmitter is to set γ = Bern(1/2).

Corollary 2: Coordination is essential for adversarial sen-
sors in the case of coordinating transmitters and receiver, in the
sense that lack of adversarial coordination strictly decreases
the overall cost.

Proof: Note that coordination enables adversarial sensors
to create a Gaussian noise with variance K2PA yielding
the cost in (8). However, without coordination, each sensor
can only generate independent Gaussian random variables,
yielding an overall Gaussian noise with variance KPA and
the total cost

J2 = σ2
S

M2α2
Tσ

2
WT

+KPA + σ2
Z

Mα2
Tσ

2
S +M2α2

Tσ
2
WT

+KPA + σ2
Z

< J1 (12)

Hence, coordination of adversarial sensors strictly increases
the overall cost, i.e., coordination is essential for adversarial
sensors in this setting.

Remark 1: Note that the optimality of this jamming strat-
egy does not depend on the “symmetry” assumption for the
adversaries. Hence, it is straightforward to show that in the
more general setting of σ2

Wk1
6= σ2

Wk2
and Pk1 6= Pk2 , for

(k1, k2) ∈ [M + 1 : M +K] our results hold. We do not
include such generalizations for brevity.

Remark 2: We note that the optimal strategies do not de-
pend on the sensor index m, hence the implementation of the

optimal strategy, for both transmitter and adversarial sensors,
requires “coordination” among the sensors. This highlights
the need for coordination in game theoretic settings in sensor
networks. Note that this coordination requirement arises purely
from the game theoretic considerations, i.e., the presence of
adversarial sensors. In the case where no adversarial node
exists, transmitters do not need to “coordinate”. Moreover,
as we will show in Theorem 2 if the transmitters cannot
coordinate, then adversarial sensors do not need to coordinate.

IV. PROBLEM SETTING II

In this section, we focus on the problem, where the trans-
mitters do not have the ability to secretly agree on a “coordina-
tion” random variable to generate their transmission function
Xk. In this case, it turns out that the optimal transmitter strat-
egy, which is almost surely unique, is uncoded transmission
with linear mappings, while the adversarial optimal strategy
for the (jamming) sensors is uncoded, linear mappings with
the opposite sign of the transmitter functions.

The following theorem captures this result.
Theorem 2: Under scenario 2, the optimal encoding func-

tion for the transmitters is uncoded transmission, i.e.,

Xm(i) = αTUm(i), M ≥ m ≥ 1

The optimal jamming function (for adversarial sensors) is
uncoded transmission with the opposite sign of the transmit-
ters, i.e.,

Xk(i) = αAUk(i), M +K ≥ k ≥M + 1

The optimal decoding function is the Bayesian estimator of
S given Y , i.e.,

h(Y (i))=

[
(MαT+KαA)σ

2
S

]
Y (i)

(MαT+KαA)σ2
S+M

2α2
Tσ

2
WT

+K2α2
Aσ

2
WA

+σ2
Z

.

Cost at this saddle-point is

J3 = σ2
S

M2α2
Tσ

2
WT

+K2α2
Aσ

2
WA

+ σ2
Z

(MαT +KαA)σ2
S +M2α2

Tσ
2
WT

+K2α2
Aσ

2
WA

+ σ2
Z

(13)

where αT =
√

PT

σ2
S+σ2

WT

and αA = −
√

PA

σ2
S+σ2

WA

.
Proof: First, we note that adversarial sensors have the

knowledge of the transmitter encoding functions, and hence
the adversarial encoding functions will be in the same form as
the transmitters functions but with a negative sign i.e., gA(·) =
−
√

PA

PT
gT (·) since outputs are sent over an additive channel

(see e.g., [5], [6] for a proof of this result). We next proceed to
find the optimal encoding functions for the transmitters, given
gA(·) = −

√
PA

PT
gT (·). From the data processing theorem, we

must have

I(U1,U2, . . . ,UM+K ; Ŝ) ≤ I(X1,X2, . . . ,XM+K ;Y )
(14)

The left hand side can be lower bounded as:

I(U1,U2, . . . ,UM+K ; Ŝ) ≥ R(D) (15)



where R(D) is derived in Appendix A. The right hand side
can be upper bounded by

I(X1,X2 , ...,XM+K ;Y ) (16)

(a)
≤

N∑
i=1

I(X1(i), . . . , XM+K(i);Y (i)) (17)

≤ max

N∑
i=1

I(X1(i), . . . , XM+K(i);Y (i)) (18)

=
1

2

N∑
i=1

log(1 +
1

σ2
Z

1TRX(i)1) (19)

where RX(i) is defined as

{RX(i)}p,r , E{Xp(i)Xr(i)} ∀p, r ∈ [1 :M+K]. (20)

Note that (a) follows from the memoryless property of the
channel and the maximum in (18) is over the joint density
over X1(i), . . . , XM+K(i) given the structural constraints on
RX(i) due to the power constraints and also the fact that
gA(·) = −

√
PA

PT
gT (·). It is well known that the maximum

is achieved by the jointly Gaussian density for a given fixed
covariance structure [12], yielding (19). Since logarithm is
a monotonically increasing function, hence the optimal en-
coding functions gNm(·),m ∈ [1 :M ] equivalently maximize∑
p,r

E{Xp(i)Xr(i)}. Note that

Xm(i) = gNm(Um) (21)

and hence gNm(·),m ∈ [1 :M ] that maximize

p=M+K∑
p=1

r=M+K∑
r=1

E{gNp (Up)g
N
r (U r)} (22)

can be found by invoking Witsenhausen’s lemma (given in Ap-
pendix B) as gNm(Um) = αNUm where αN = [αT , . . . , αT ].
Finally, we obtain J3 as an outer bound by equating the left
and right hand sides of (14). The linear mappings in Theorem
2 achieve this outer bound and hence are optimal.

Corollary 3: Source-channel separation, based on digital
compression and communications is strictly suboptimal for
this setting.

Proof: We first note that the optimal adversarial encoding
functions must be the negative of that of the transmitters to
achieve the saddle-point solution derived in Theorem 2. But
then, the problem at hand becomes equivalent to a problem
with no adversary which was studied in [2], where source-
channel separation was shown to be strictly suboptimal. Hence,
separate source-channel coding has to be suboptimal for our
problem. A more direct proof follows from the calculation of
the separate source-channel coding performance.

Corollary 4: Coordination is essential for transmitter sen-
sors, in the sense that lack of coordination strictly increases
the overall cost.

Proof: Proof follows from the fact that J1 < J3.

V. DISCUSSION AND CONCLUSION

This paper is an initial attempt to analyze game theo-
retic source-channel coding within sensor networks. We have
conducted a game-theoretical analysis of a specific Gaussian
sensor network, specialized to symmetric transmitter and ad-
versarial sensors. Depending on the coordination capabilities
of the sensors, we have analyzed two problem settings. The
first setting allows coordination among the transmitter sensors.
Coordination capability enables the transmitters to use ran-
domized encoders. The saddle-point solution to this problem
is randomized uncoded transmission for the transmitters and
the coordinated generation of i.i.d. Gaussian noise for the
adversarial sensors. In the second setting, transmitter sensors
cannot coordinate, and hence they use fixed, deterministic
mappings. The solution to this problem is shown to be uncoded
communication with linear mappings for both the transmitter
and the adversarial sensors, but with opposite signs. We note
that coordination aspect of the problem is entirely due to
game-theoretic considerations, i.e., if no adversarial sensors
exist, optimal transmitter encoding functions do not need
coordination.

Our analysis has uncovered an interesting result regarding
coordination among transmitter nodes, and among adversarial
nodes. If transmitter nodes can coordinate, then so must the
adversaries, i.e., all must generate the identical realization
of an i.i.d. Gaussian noise sequence. If transmitters cannot
coordinate, adversarial sensors do not need to coordinate, and
this saddle-point is at strictly higher cost than the one when
transmitters can coordinate.

Several questions still remain open and are currently under
investigation, including extensions of the analysis to vector
sources and channels, which require a vector form of Wit-
senhausen’s Lemma, an important research question in its
own right; the asymptotic (in the number of sensors M and
K) analysis of the results presented here; and extension of
our analysis to asymmetric sensor networks and non-Gaussian
settings.

APPENDIX A
THE GAUSSIAN CEO PROBLEM

In the Gaussian CEO problem, an underlying Gaussian
source S ∼ N (0, σ2

S) is observed under additive noise
W ∼ N (0, RW ) as U = S +W . These noisy observations,
i.e., U , must be encoded in such a way that the decoder
produces a good approximation to the original underlying
source. This problem was proposed in [13] and solved in [14]
(see also [15], [16]). A lower bound for this function for the
non-Gaussian sources within the “symmetric” setting where
all U ’s have identical statistics was presented in [17]. Here,
we simply extend the results in [15] to asymmetric settings,
following the approach in [17], focusing on MSE distortion
measure

D = E{(S − Ŝ)2} (23)

and rate

R = min I(U , Ŝ) (24)



where U = S + W , W ∼ N (0, RW ), and RW is an
(M +K) × (M +K) diagonal matrix where the first M
diagonal entries are σ2

WT
and the remaining K are σ2

WA
. The

minimization in (24) is over all conditional densities p(ŝ|u)
that satisfy (23). Distortion can be written as sum of two terms

D =E{(S − T + T − Ŝ)2}, (25)

=E{(S − T )2}+ E{(T − Ŝ)2}, (26)

where T , E{S|U}. Note that (26) holds since

E{(S − T )(Ŝ − T )} = 0, (27)

as the MMSE error is orthogonal to any function2 of the
observation, U . The first term in (26), i.e., the estimation error
Dest , E{(S − T )2} is constant with respect to p(ŝ|u), i.e.,
a fixed function of U and S. Hence, the minimization is over
the densities that satisfy a distortion constraint of the form
E{(T − Ŝ)2} ≤ Drd and R = min I(U ; Ŝ). Hence, we write
(26) as

D = Drd +Dest. (28)

Note that due to their Gaussianity, T is sufficient statistics of
U for S, i.e., S − T −U forms a Markov chain in that order
and T ∼ N (0, σ2

T ). Hence, R = min I(U ; Ŝ) = min I(T ; Ŝ)
where minimization is over p(ŝ|t) that satisfy E{(T − Ŝ)2} ≤
Drd, where all variables are Gaussian. This is the classical
Gaussian rate distortion problem, and hence:

R =
1

2
log(σ2

T /Drd). (29)

Noting that

T = E{SU∗}(E{UU∗})−1U , (30)

and using standard linear estimation principles, we obtain

σ2
T = σ2

S

1

1 +
σ2
WA

σ2
WT

σ2
S

(
Kσ2

WT
+Mσ2

WA

) , (31)

and

Dest = σ2
S

σ2
WT

σ2
WA

Kσ2
WT

+Mσ2
WA

+ σ2
WT

σ2
WA

. (32)

APPENDIX B
WITSENHAUSEN’S LEMMA

In this section, we recall Witsenhausen’s lemma [18], which
is used in the proof of Theorem 2.

Lemma 1: Consider two sequences of i.i.d. random vari-
ables X(i) and Y (i), generated from a joint density PX,Y ,
and two (Borel measurable) arbitrary functions f, g : R → R
satisfying

E{f(X)}= E{g(Y )}=0, (33)
E{f2(X)}=E{g2(Y )}=1. (34)

Define
ρ∗ , sup

f,g
E{f(X)g(Y )} (35)

2Note that Ŝ is also a deterministic function of U , since optimal recon-
struction can always be achieved by deterministic codes.

Then for any (Borel measurable) functions fN , gN : RN → R
satisfying

E{fN (X)}=E{gN (Y )} = 0, (36)
E{f2N (X)}=E{g2N (Y )} = 1, (37)

for length N vectors X and Y , we have

sup
fN ,gN

E{fN (X)gN (Y )} ≤ ρ∗. (38)

Moreover, the supremum above is attained by linear mappings,
if PX,Y is a bivariate normal density.
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