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Abstract—An intuitive outer bound for the multiterminal
source coding problem is given. The proposed bound explidjt
couples the rate distortion functions for each source and goe-
lation measures which derive from a “strong” data processig
inequality. Unlike many standard outer bounds, the proposd
bound is not parameterized by a continuous family of auxiliay
random variables, but instead only requires maximizing two
ratios of divergences which do not depend on the distortion
functions under consideration.

I. INTRODUCTION

— each with unit variance and correlatign— and distor-

(Rx, Ry, Dx, Dy) satisfying

Rx > %log (D—lx (1-p"+ /)22_2RY)) (1)

Ry > %IOg (DLY (1-p*+ p22_2R")> ()

Rx + Ry > %log((l_pjj)f)fgiﬁDY)) ) (3)
where

B(DX,Dy)é1+,/1+4(p12D$'§2Y. (4)
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was known that any(Rx, Ry, Dx, Dy) satisfying [1){38)
was achievable. Indee@Rx, Ry, Dx, Dy) satisfying [1){38)

correspond to a set of points in the Berger-Tung achievatma"a
region attained by Gausian test channéls [2], [3]. Moreové’ry
roughly a decade before the sum-rate lower bodiid (3) W,

We begin with a discussion of the two-encoder quadratic
Gaussian source coding prob@r'm order to motivate our

main result. To this end, supposg Y are jointly Gaussian .on pe seen by linearizing the RHS BF (1)/¢ = 0

tion is measured under mean square error. In this settinl% 1
the set of achievable rate distortion tuples is given by ali*X = 3 '°8

Long before the converse result was completed in [1],

[4] and [1], ad-hoc lower bounds on the sum-rate could be
established as follows.

Noting that the right hand sides dfl (1) arid (2) are convex
in Rx and Ry, respectively, it is straightforward to establish

the necessity of
l10 —1
2 %%\ Dy

1o (L
2%\ Dy

in order for(Rx, Ry, Dx, Dy) to be achievable. Indeed, this

Rx + p*Ry

Y

(®)

Ry + p*Rx

v

(6)
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+ (1= 2 29—2Ry 7
5 (DX( P+ p ) @)
llog (L (1p2+p22—2Ry))

T2 Dx Ry =0

o 1 1

Ry - —— —log | — (1 —p? + p?2728

T BRy 2 Og<DX( e ) Ry=0
1 1

= —log ( — ) — p’Ry. 8
10t (5 ) -~ Ry ®

Thus, a simple sum-rate lower bound in the quadratic Gaussia
setting is given by

i (e(ac) 2 3).

In Figure[d1, we have compared the lower bound (9) against
optimal sum-rate constraifi (3) for= 1/5. As evidenced
the figure, the reader will note that the simplified sunerat
er bound[(B) provides a strikingly tight approximatian t

R+ Re >

it

established in[]1], it was proved by Oohanmia [4] that (1)*-

(2) were necessary conditions f6Rx, Ry, Dx, Dy) to be

In Figure[2, we consider more highly correlated sources

achievable. Thus, in the period between the publication ¥fth » = 4/5. As the reader will notice, the accuracy with

This work is supported in part by the NSF Center for Sciendafofmation
under grant agreement CCF-0939370.

1We assume the reader has some familiarity with the multitahsource
coding problem. For those who are unfamiliar, a formal dgfini of the
problem is given in Sectioflll.

which (9) approximate§13) worsens Bs; Dy becomes small.
This is to be expected sinckl (9) was obtained by considering
hyperplanes which support the rate-distortion region wres
rate is zero (i.e., in the low-resolution regime). This aftan

can be remedied in part by recalling known results for source
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Fig. 1. Comparison of Eqnd1(3L1(9), add(10) for= 1/5. Fig. 2. Comparison of Eqnd](3[1(9), add(10) for= 4/5.

coding in the high-resolution regime (cfl[5, Equation {c) e remark thats™(X;Y) € [0,1] as a consequence of the
data processing inequality for relative entropy.

1 — p?
Rx + Ry > - log : (10)  Definition 2. For a random variableX with alphabet.x,
2 Dx Dy : ; ) . ;

_ _ _ _a reproduction alphabett, and a distortion functiond, :
Taking the maximum of[(9) and_{IL0) then yields a fairlyy . ¥ — [0, o), let Rx (D) denote the corresponding rate
accurate approximation dfl(3). The reader should noteff@t ( gistortion function. That is,
coincides with the so-callectboperative lower boundn which i N
we assume that both sources are known to a single encoder. Rx(Dx) = p(i|x)~]E[dIn(1)I(1 0]<nx 1(X5 X). (12)
As shown in Figurd]2,[{9) can significantly outperform the A o
cooperative lower bound. Definition 3. Assume{X,,Y;}°, is a 2-DMS with joint

Admittedly, our derivation of[{9) was ad-hoc and requireflistribution Pxy . A rate distortion tuplgRx, Ry, Dx, Dy)
necessity of[{{1) and{2), which was established by Oohamaifnachievable for distortion functions,, d,, if, for any e > 0,
[4] many years after the multiterminal source coding problethere exists an integet, encoding functions

was posed. Thus, it is desirable to establish a generalizati for X" {1,... 2"Ex} (13)
of (B and [6) to arbitrary sources and distortion measures £,V {1 gnitv (14)
which does not require known converse results for the specifi v B ’

problem instance under consideration. This generalimaio and decoding functions

preusgly what we prove in j[h|s paper. bo s {1,...,20Bx ) 5 {1, onfv) In (15)
Sectior 1) delivers our main result. Two alternate proofs ar nRx Ry -

given in Sectiof 1ll, along with a brief discussion. Sectidf Gy {1, 2 {2 = Y (16)

summarizes our conclusions. which satisfy
II. DEFINITIONS AND MAIN RESULT E[de (X", ¢ (fo(X™), fy(¥Y™))] < Dx + ¢ a7)
Throughout this section, leX,Y be random variables with E[dy(Y", ¢y (fo(X"), f(Y™)))] < Dy +e.  (18)

given joint distribution Pxy. Let Px and Py denote the
marginal distributions ofX and Y, respectively. To avoid
technicalities, we will assumaax{|X/|, |Y|} < oco. Without
loss of generality, assum&y (z) > 0 for all 2 € X and Theorem 1. Suppose(Rx, Ry, Dx,Dy) is an achievable

We remark that distortion between two sequences is defined
as the average per-symbol distortion (as usual).

Py(y) > 0forally e . rate distortion tuple for distortion functiong,, d,. Then
Definition 1. Define Rx +s"(Y; X)Ry > Rx(Dx) (19)
. D(Qy | Py) Ry +s*(X;Y)Rx > Ry (Dy). (20)
SXY) = ot D(Qx|Px)’ A et (X, ¥) 2 max{s*(X;Y), s*(V: X)}. An immediate
where Oy denotes they-marginal distribution of Qxy = corollary of Theorenill is the sum-rate lower bound

Qx Py|x, and the supremum is over all probability distri-

. PrET (Rx(Dx) +Ry(Dy)). (21)
butions@ x on X not identical toPx.

1
Rx+ Ry > ——————
T S (XY)



We remark that ifX, " are jointly Gaussian with correlationfor some conditional distributio®y; y. \ ;- satisfying
coefficient p, we have thap? = p*(X;Y) (upon extending .
the definition ofs*(X;Y) to continuous distributions). This Ed, (X, X) < Dx (25)
can be shown by invoking the entropy power inequality in Edy(Y,Y) < Dy. (26)
a manner similar to[]6, Section IV-D]. Thus, Theorém 1 ) .
generalizes the bounds] (5) add (6) to any choice of source&learly, Theorentll follows immediately from Theorem

and distortion measures as desired, (21) generdles @ and Definition[R. As n_oted prgvio_qsly, we shall assume
max{|X|,|V|} < oo to avoid technicalities.

A. Discussion We give two different proofs of Theorelm 2. Both arguments

) o rely on the following “strong” data processing lemma.
Roughly speaking, Theorelm 1 implies that, as longfa¥

are not highly correlated under the measuse6X;Y) and Lemma 1 (See[8]) If U < X < Y form a Markov chain
s*(Y; X)), compressing with an optimal scheme provides littli9 that order, then

savings in attainable sum-rate over treating the sources as I(Y;U) < s*(X;Y)I(X;U) 27)
if they were independent. For example, consider quaternary T ’ e
sources with joint distribution given by Remark 1. The constants*(X;Y) in (24) is tight. Until

) very recently, it was mistakenly believed tH#@il) held with
px.y(z,y) = { 1/10 !f =y (22) s*(X:;Y) replaced byp2,(X;Y) — the squared Hirschfeld-
’ 1/20 it = #y. Gebelein-Rnyi maximal correlation betweeN and Y (see
By applying the branch and bound algorithm n [7], we calb): How_ev*er, it was recently shown in [8]_ that the cor_rect
computey* (X; Y) ~ 0.045. Hence, [21L) implies that separaté:fmStan,t iss*(X;Y). We refer the reader ta [8] for a detailed
encoding ofX andY at ratesRy (Dx) andRy (Dy) incurs discussion.
at mc()jsl;t a4.3f% r?er:]?jl'ty in sum-rate over an opti_@glﬂ;c)hemg_ A Direct Proof of Theorerfy 2
regardless of which distortion measures are consi es First Proof of Theorem[]2: Fix ¢ > 0. Since

not appear one can easily make such a claim using previou . . ;
PP y gp (Q' x,Ry,Dx,Dy) is achievable, there exists a
known results. i n . L
o . . (2nhx 2ntY n) - code  (fi, fy, ¢z, ¢y) Which  satisfies
Theorem[dL has a certain intuitive appeal since it explics DY . Lo
) and [(IB). In order to simplify notation, we wrifg” =
w(

itly relates the multiterminal source coding problem to th n n S n n
individual rate distortion functions coupled via the cdation f.I(X .)’ fy(Y_ ))) and¥™ = oy, (fx(X™), f,(Y™)).
With this notation, observe that

measuress*(X;Y) and s*(Y; X). This tradeoff between

correlation and achievable rate-distortion tuples is abst  nRy > H(f,(Y")) (28)

in the well-known Berger-Tung outer bound due to its use > I(Y™: f,(Y™)|f(X™)) (29)

of auxiliary random variables which often have no physical - n’ Y n N " n n

interpretation (due to the Marokov conditions they sajisfy = I(Y" £y (V") fa (X)) = I(Y™; fo(X™)) (30)
Although the Gaussian and quaternary examples we have = I(Y"; fy(Y™"), fo(X™))

discussed may give the impression tHafl (21) is nearly tight, — s XM YMI(X™; f.(X™) (31)

we point out that this is not always the case. Indeed, one can > (Y™ V) Xn) — (X" Y "Ry (32)

devise examples such @ ~ Bernoulli1/2), Y = X a.s.,

d, = 0, andd, equal to Hamming distortion. In this case
(27) is suboptimal by a factor df, however [(ID) is tight in
this case. Setting aside contrived examples, we believe tha

(YY", X"Y'™1) — s*(X™; Y")nRx  (33)

I
NIE

1

.
Il

TheorentdL will give useful bounds for many practical setting > Z (Y Vi, Xi) — s*(X™ Y™")nRx (34)
of interest (e.g., sensor networks, binaural recording).et i=1
I1l. Two PROOFS OFTHEOREM[ = ZI(YZ'? Vi, Xi) = s"(X;Y)nRx. (35)

s
Il
-

In lieu of proving Theorenil1, we shall prove the strongqf, the above string of inequalities

resulf: . .
esulf o (31) is a consequence of Lemma 1 sinfgX") <«
Theorem 2. Suppose(Rx, Ry, Dx,Dy) is an achievable X" Y™,

rate distortion tuple for distortion functions,, d,. Then « ([32) follows from the data processing inequality and the
L fact thatI(X™; f,(X™)) < nRx.
Rx +s*(Y; X)Ry > I(X; X,Y) (23) .« (33) follows by the memoryless property of the source
Ry + s*(X;Y)Rx > I(Y;X,Y/) (24) and monotonicity of mutual information.
« (35) follows by the tensorization property of
2Like Theorem[d, the outer bound given by TheorEin 2 is effitjent s*(X™;Y") for memoryless sources. That s,

computable. s*(X;Y) =s*(X™Y™) (See [8]).



Define for each index = 1,2,...,n, Theoren B guarantees the ex-
istence of a joint distributiop(x, y)p(q)p(ux |z, ¢)p(uy |y, q)

(@il y) ZPY( — &Y = X =2, Y = y) . with [Ux| < |X|, [Uy| < |V, and|Q| < 5 which satisfied
o . Rx > I(X;Ux|Uy,Q)  (45)
By linearity of expectation, we have Ry > 1(Y;Uy|Ux,Q) (46)
Edy (Y,Y) = E[d,(Y", ¢ (£(X"), £,(Y™)] < Dy +e. Rx + Ry =I(X,Y;Ux,Ur|Q) (47)

1 n
Since (X;,Y;) are identically distributed for ali, convexity = — ZH(XAfw(X"),fy(Y")) > H(X|Ux,Uy,Q) (48)
of mutual information in the conditional distribution inigsd =

e dested inequally S B, 1,0 2 HOUX U, @) @49)

n

1 oA i=1
=3 I(Y5 X, Vi) = I(Y; X,Y). (36) _ _ _
i We now make several observations, from which the claim
) follows easily.
A symmetric argument completes the proof. ] First, note that[(48) is equivalent to

_ _ I(X;Ux,Uy|Q) = = > I(Xi; fo(X™), f,(Y™)).  (50)
Interestingly, Theoreml 2 can also be derived from the recent i—1

results on source coding under logarithmic loss [9]. Thi

suggests that logarithmic loss may be useful in obtainihgot

converse results, which are stronger than Thedrem 2.
Let(L/\/lL)(X) denote the set of probability measures &n Ry = I(X,Y;Ux,Uy|Q) — Rx (51)

jFVolr(;c() N IE/i\s/lEj/"e(f)i,ngljet:sgarlthmlc loss functiod,r, : &' x — I(Y:Uy|Q) — (Rx — I(X: Ux|Uy, Q) (52)

B. A Proof of Theoreml?2 via Logarithmic Loss

:|>—‘

§econd smceRX + Ry = I(X,Y;Ux,Uy|Q) and Rx >
I(X;Ux|Uy,Q), we have

< I(Y;Uy|Q). (53)
LY Z 1o L .
dpr(z,277) = log I () (37) " Third, we observe that
wherez(“L) (z) is the probability:(“) assigns to the outcome ~ fix + Ry = I(X,Y; Ux, Uy|Q) (54)
xz € X. Whend, andd, are both logarithmic loss distortion = I(X;Ux,Uy|Q)+ I(Y;Ux,Uy|X,Q) (55)
measures (defined for their respective source alphabetsd = I(X;Ux,Uy|Q) + I(Y;Uy|Q) — I(X;Uy|Q) (56)

)), the rate distortion region is known. The characterizatd ) )
this region is given by the following theorem, which is prdve = I()i’ Ux, Uy |Q) + I(Y; Uy |Q)

in [9]. = s (V3 X)I(Y; Uy|Q) (57)
=I1(X;Ux,Uy|Q)+ (1 —s*(YV; X)I(Y;Uy|Q) (58)

Theorem 3. (Rx, Ry, Dx,Dy) is achievable under loga- .
> I(X;Ux,Uy|Q) + (1 = s*(Y; X)) Ry, (59)

rithmic loss if and only if

) here [5¥) follows from Lemmia 1, and {59) follows from{53)
> I[(X; Ux|U 3g) W
Bx 2 I( ) x|Uy, Q) (38) and the fact that*(Y; X) < 1.
Ry > I(Y;Uy|Ux, Q) (39) We rearrange[(39) and applz{50) to obtain the desired
Rx + Ry > I(X,Y;Ux,Uy|Q) (40) inequality:
Dx > H(X|Ux, Uy, Q) (41)
Rx + s*(Y: X)Ry > I(X;Ux, U 60
Dy = H(Y|Ux,Uy,Q) @g) IO 1( Q) 0
for some joint distribution of the form = ﬁZ;HXi;fZ(X ) HT) (6D
p(@, y)p(@)p(ux |z, @)p(uyly,q)  with  [Ux| < |X], Lo o
Uy < |V], and|Q| < 5. ==Y I(X; XY™ (62)
n 4
Second Proof of Theorel 2Since (Rx, Ry, Dx, Dy) =
is achievable, there exists a(2"/'x,2" n) code > 1 ZI(Xi;Xi,Yi)- (63)
(fzs [y, ¢z, dy) Which satisfies[(17) and (1L8). By considering n

the logarithmic loss reproductions ) ) . .
A standard convexity argument (identical to the final step of
XL PrX; = z|f(X"), f,(Y™)] (43) the alternative proof) completes the argument. ]

K2

VD = Pr{Y; = yl (X7, £, (Y] (44)

SEstablishing the equality in the sum-rate constraint iaightforward.



C. Remarks Theoren[ 2, we can obtain an alternate proof of Thedrém 4
Many applications of strong data processing inequalitié@thou" appealing to a single-letter characterizatiorCgR).

begin with a single-letter characterization of the proble Remark 2. Zhao's statement of Theorém 4 (i.€..][11, Theorem
interest. However, such characterizations are unknown g}y involved 2, (X,Y) instead ofs*(X;Y), and is therefore

most multiterminal problems. Indeed, characterizing @@+ incorrect in light of [8]. Above, we give a corrected version
distortion region for the multiterminal source coding piesh

defined in Sectiof ]l for general distortion measurgsd, ~ Proof of Theorenil}4: Fix ¢ > 0 and consider a scheme
is a longstanding open problem. In general, the strong ddRich satisfiesl(67):(69), witld’ = C'(R). Then, we have:

processing inequality supplied by Leminh 1 can be used in nR+ns*(X;Y)C(R) > nR + s*(X; Y)H(K) (72)

conjunction vylth the tensorization property si*f(X_ ;Y™) to > R+ 5" (X V) I(K; X™) (73)

obtain meaningful outer bounds in source coding problems

without first appealing to a single-letter characterizatio > I(fm(X"); X" K) + I(K;Y™) (74)
For instance, a simple sum-rate bound for the CEO problem > I(fr(X"); X" K|Y™) + I(K;YT) (75)

(cf. [10] for a definition) can be given as follows. Suppose th = I(fm(X™), Y™ X", K) (76)

observationgYi, ..., Y;) are conditionally independent given > I(K'; K) 77)

X, which should be reproduced at the decoder subject to a - ’

constraint on distortion measured underIf (R, ..., R, D) > n(C(R) —e), (78)

is an achievable rate-distortion vector for this CEO prohle

N where [7%) follows from Lemma&ll and the tensorization
en

property ofs*(X™; Y™). [ |
k
ZS*(Y;,X)RZ Z Rx(Dx)
i=1 We give an intuitive outer bound for the multitermi-
Similar ideas can be applied to non-rate-distortion sgétin Nal source coding problem which couples the rate distor-
As an example, consider the problem of generating commb@n functions for each source and the correlation measures
randomness: s*(X;Y),s*(Y; X). Unlike many standard outer bounds, the
. ) ... proposed bound is not parameterized by a continuous farhily o
Definition 4. Assume{X;,Y;}72, is a 2-DMS with joint g iliary random variables, but rather only requires extitn
distribution Pxy. A common randomness paliC’, R) iS  of s«(x.y) ands*(Y; X). Roughly speaking, our main result
achievable if, for anye > 0, there exists an integen, an

, : . iy “1indicates that compressing the sources as if they were érdep
encoding functionf,,, : & — {1,...,2""}, and decoding gent yields near-optimal sum-rate performance, providied t

(64) V. CONCLUSION

functions sources are sufficiently decorrelated in the sensepth@t, v')
fi K = fi(X™), (65) s relatively small.
fo: K'= fo(Y™, fr(X™)) (66) REFERENCES
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