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Abstract—An intuitive outer bound for the multiterminal
source coding problem is given. The proposed bound explicitly
couples the rate distortion functions for each source and corre-
lation measures which derive from a “strong” data processing
inequality. Unlike many standard outer bounds, the proposed
bound is not parameterized by a continuous family of auxiliary
random variables, but instead only requires maximizing two
ratios of divergences which do not depend on the distortion
functions under consideration.

I. I NTRODUCTION

We begin with a discussion of the two-encoder quadratic
Gaussian source coding problem1 in order to motivate our
main result. To this end, supposeX,Y are jointly Gaussian
– each with unit variance and correlationρ – and distor-
tion is measured under mean square error. In this setting,
the set of achievable rate distortion tuples is given by all
(RX , RY , DX , DY ) satisfying

RX ≥
1

2
log

(

1

DX

(

1− ρ2 + ρ22−2RY

)

)

(1)

RY ≥
1

2
log

(

1

DY

(

1− ρ2 + ρ22−2RX

)

)

(2)

RX +RY ≥
1

2
log

(

(1 − ρ2)β(DX , DY )

2DXDY

)

, (3)

where

β(DX , DY ) , 1 +

√

1 +
4ρ2DXDY

(1− ρ2)2
. (4)

Long before the converse result was completed in [1], it
was known that any(RX , RY , DX , DY ) satisfying (1)-(3)
was achievable. Indeed,(RX , RY , DX , DY ) satisfying (1)-(3)
correspond to a set of points in the Berger-Tung achievable
region attained by Gausian test channels [2], [3]. Moreover,
roughly a decade before the sum-rate lower bound (3) was
established in [1], it was proved by Oohama [4] that (1)-
(2) were necessary conditions for(RX , RY , DX , DY ) to be
achievable. Thus, in the period between the publication of
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1We assume the reader has some familiarity with the multiterminal source
coding problem. For those who are unfamiliar, a formal definition of the
problem is given in Section II.

[4] and [1], ad-hoc lower bounds on the sum-rate could be
established as follows.

Noting that the right hand sides of (1) and (2) are convex
in RX andRY , respectively, it is straightforward to establish
the necessity of

RX + ρ2RY ≥
1

2
log

(

1

DX

)

(5)

RY + ρ2RX ≥
1

2
log

(

1

DY

)

(6)

in order for(RX , RY , DX , DY ) to be achievable. Indeed, this
can be seen by linearizing the RHS of (1) atRY = 0:

RX ≥
1

2
log

(

1

DX

(

1− ρ2 + ρ22−2RY

)

)

(7)

≥
1

2
log

(

1

DX

(

1− ρ2 + ρ22−2RY

)

)∣

∣

∣

∣

RY =0

+ RY ·
∂

∂RY

1

2
log

(

1

DX

(

1− ρ2 + ρ22−2RY

)

)∣

∣

∣

∣

RY =0

=
1

2
log

(

1

DX

)

− ρ2RY . (8)

Thus, a simple sum-rate lower bound in the quadratic Gaussian
setting is given by

R1 +R2 ≥
1

(1 + ρ2)

(

1

2
log

(

1

DX

)

+
1

2
log

(

1

DY

))

.

(9)

In Figure 1, we have compared the lower bound (9) against
the optimal sum-rate constraint (3) forρ = 1/5. As evidenced
by the figure, the reader will note that the simplified sum-rate
lower bound (9) provides a strikingly tight approximation to
(3).

In Figure 2, we consider more highly correlated sources
with ρ = 4/5. As the reader will notice, the accuracy with
which (9) approximates (3) worsens asDXDY becomes small.
This is to be expected since (9) was obtained by considering
hyperplanes which support the rate-distortion region whenone
rate is zero (i.e., in the low-resolution regime). This situation
can be remedied in part by recalling known results for source
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Fig. 1. Comparison of Eqns. (3), (9), and (10) forρ = 1/5.

coding in the high-resolution regime (cf. [5, Equation (2c)]):

RX +RY ≥
1

2
log

(

1− ρ2

DXDY

)

. (10)

Taking the maximum of (9) and (10) then yields a fairly
accurate approximation of (3). The reader should note that (10)
coincides with the so-calledcooperative lower bound, in which
we assume that both sources are known to a single encoder.
As shown in Figure 2, (9) can significantly outperform the
cooperative lower bound.

Admittedly, our derivation of (9) was ad-hoc and required
necessity of (1) and (2), which was established by Oohama in
[4] many years after the multiterminal source coding problem
was posed. Thus, it is desirable to establish a generalization
of (5) and (6) to arbitrary sources and distortion measures
which does not require known converse results for the specific
problem instance under consideration. This generalization is
precisely what we prove in this paper.

Section II delivers our main result. Two alternate proofs are
given in Section III, along with a brief discussion. SectionIV
summarizes our conclusions.

II. D EFINITIONS AND MAIN RESULT

Throughout this section, letX,Y be random variables with
given joint distributionPXY . Let PX and PY denote the
marginal distributions ofX and Y , respectively. To avoid
technicalities, we will assumemax{|X |, |Y|} < ∞. Without
loss of generality, assumePX(x) > 0 for all x ∈ X and
PY (y) > 0 for all y ∈ Y.

Definition 1. Define

s∗(X ;Y ) = sup
QX 6=PX

D(QY ‖PY )

D(QX‖PX)
, (11)

where QY denotes they-marginal distribution ofQXY =
QXPY |X , and the supremum is over all probability distri-
butionsQX on X not identical toPX .
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Fig. 2. Comparison of Eqns. (3), (9), and (10) forρ = 4/5.

We remark thats∗(X ;Y ) ∈ [0, 1] as a consequence of the
data processing inequality for relative entropy.

Definition 2. For a random variableX with alphabetX ,
a reproduction alphabetX̂ , and a distortion functiondx :
X ×X̂ → [0,∞), let RX(DX) denote the corresponding rate
distortion function. That is,

RX(DX) = min
p(x̂|x):E[dx(X,X̂)]≤DX

I(X ; X̂). (12)

Definition 3. Assume{Xi, Yi}
∞
i=1 is a 2-DMS with joint

distributionPXY . A rate distortion tuple(RX , RY , DX , DY )
is achievable for distortion functionsdx, dy if, for any ǫ > 0,
there exists an integern, encoding functions

fx : Xn → {1, . . . , 2nRX} (13)

fy : Yn → {1, . . . , 2nRY }, (14)

and decoding functions

φx : {1, . . . , 2nRX} × {1, . . . , 2nRY } → X̂n (15)

φy : {1, . . . , 2nRX} × {1, . . . , 2nRY } → Ŷn (16)

which satisfy

E [dx(X
n, φx(fx(X

n), fy(Y
n)))] ≤ DX + ǫ (17)

E [dy(Y
n, φy(fx(X

n), fy(Y
n)))] ≤ DY + ǫ. (18)

We remark that distortion between two sequences is defined
as the average per-symbol distortion (as usual).

Theorem 1. Suppose(RX , RY , DX , DY ) is an achievable
rate distortion tuple for distortion functionsdx, dy. Then

RX + s∗(Y ;X)RY ≥ RX(DX) (19)

RY + s∗(X ;Y )RX ≥ RY (DY ). (20)

Let ρ∗(X,Y ) , max{s∗(X ;Y ), s∗(Y ;X)}. An immediate
corollary of Theorem 1 is the sum-rate lower bound

RX +RY ≥
1

1 + ρ∗(X ;Y )
(RX(DX) + RY (DY )) . (21)



We remark that ifX,Y are jointly Gaussian with correlation
coefficientρ, we have thatρ2 = ρ∗(X ;Y ) (upon extending
the definition ofs∗(X ;Y ) to continuous distributions). This
can be shown by invoking the entropy power inequality in
a manner similar to [6, Section IV-D]. Thus, Theorem 1
generalizes the bounds (5) and (6) to any choice of sources
and distortion measures as desired, and (21) generalizes (9).

A. Discussion

Roughly speaking, Theorem 1 implies that, as long asX,Y
are not highly correlated under the measuress∗(X ;Y ) and
s∗(Y ;X), compressing with an optimal scheme provides little
savings in attainable sum-rate over treating the sources as
if they were independent. For example, consider quaternary
sources with joint distribution given by

pX,Y (x, y) =

{

1/10 if x = y
1/20 if x 6= y.

(22)

By applying the branch and bound algorithm in [7], we can
computeρ∗(X ;Y ) ≈ 0.045. Hence, (21) implies that separate
encoding ofX andY at ratesRX(DX) andRY (DY ) incurs
at most a4.3% penalty in sum-rate over an optimal scheme
regardless of which distortion measures are considered. It does
not appear one can easily make such a claim using previously
known results.

Theorem 1 has a certain intuitive appeal since it explic-
itly relates the multiterminal source coding problem to the
individual rate distortion functions coupled via the correlation
measuress∗(X ;Y ) and s∗(Y ;X). This tradeoff between
correlation and achievable rate-distortion tuples is obscured
in the well-known Berger-Tung outer bound due to its use
of auxiliary random variables which often have no physical
interpretation (due to the Marokov conditions they satisfy).

Although the Gaussian and quaternary examples we have
discussed may give the impression that (21) is nearly tight,
we point out that this is not always the case. Indeed, one can
devise examples such asX ∼ Bernoulli(1/2), Y = X a.s.,
dy ≡ 0, and dx equal to Hamming distortion. In this case
(21) is suboptimal by a factor of2, however (19) is tight in
this case. Setting aside contrived examples, we believe that
Theorem 1 will give useful bounds for many practical settings
of interest (e.g., sensor networks, binaural recording, etc.).

III. T WO PROOFS OFTHEOREM 1

In lieu of proving Theorem 1, we shall prove the stronger
result2:

Theorem 2. Suppose(RX , RY , DX , DY ) is an achievable
rate distortion tuple for distortion functionsdx, dy. Then

RX + s∗(Y ;X)RY ≥ I(X ; X̂, Ŷ ) (23)

RY + s∗(X ;Y )RX ≥ I(Y ; X̂, Ŷ ) (24)

2Like Theorem 1, the outer bound given by Theorem 2 is efficiently
computable.

for some conditional distributionP
X̂,Ŷ |X,Y satisfying

Edx(X, X̂) ≤ DX (25)

Edy(Y, Ŷ ) ≤ DY . (26)

Clearly, Theorem 1 follows immediately from Theorem
2 and Definition 2. As noted previously, we shall assume
max{|X |, |Y|} < ∞ to avoid technicalities.

We give two different proofs of Theorem 2. Both arguments
rely on the following “strong” data processing lemma.

Lemma 1 (See [8]). If U ↔ X ↔ Y form a Markov chain
in that order, then

I(Y ;U) ≤ s∗(X ;Y )I(X ;U). (27)

Remark 1. The constants∗(X ;Y ) in (27) is tight. Until
very recently, it was mistakenly believed that(27) held with
s∗(X ;Y ) replaced byρ2m(X ;Y ) – the squared Hirschfeld-
Gebelein-Ŕenyi maximal correlation betweenX and Y (see
[6]). However, it was recently shown in [8] that the correct
constant iss∗(X ;Y ). We refer the reader to [8] for a detailed
discussion.

A. A Direct Proof of Theorem 2

First Proof of Theorem 2: Fix ǫ > 0. Since
(RX , RY , DX , DY ) is achievable, there exists a
(2nRX , 2nRY , n) code (fx, fy, φx, φy) which satisfies
(17) and (18). In order to simplify notation, we writêXn =
φx(fx(X

n), fy(Y
n))) and Ŷ n = φy(fx(X

n), fy(Y
n))).

With this notation, observe that

nRY ≥ H(fy(Y
n)) (28)

≥ I(Y n; fy(Y
n)|fx(X

n)) (29)

= I(Y n; fy(Y
n), fx(X

n))− I(Y n; fx(X
n)) (30)

≥ I(Y n; fy(Y
n), fx(X

n))

− s∗(Xn;Y n)I(Xn; fx(X
n)) (31)

≥ I(Y n; Ŷ n, X̂n)− s∗(Xn;Y n)nRX (32)

=
n
∑

i=1

I(Yi; Ŷ
n, X̂n|Y i−1)− s∗(Xn;Y n)nRX (33)

≥

n
∑

i=1

I(Yi; Ŷi, X̂i)− s∗(Xn;Y n)nRX (34)

=

n
∑

i=1

I(Yi; Ŷi, X̂i)− s∗(X ;Y )nRX . (35)

In the above string of inequalities,

• (31) is a consequence of Lemma 1 sincefx(Xn) ↔
Xn ↔ Y n.

• (32) follows from the data processing inequality and the
fact thatI(Xn; fx(X

n)) ≤ nRX .
• (34) follows by the memoryless property of the source

and monotonicity of mutual information.
• (35) follows by the tensorization property of

s∗(Xn;Y n) for memoryless sources. That is,
s∗(X ;Y ) = s∗(Xn;Y n) (See [8]).



Define

p(x̂, ŷ|x, y) =
1

n

n
∑

i=1

Pr
(

X̂i = x̂, Ŷi = ŷ|Xi = x, Yi = y
)

.

By linearity of expectation, we have

Edy(Y, Ŷ ) = E [dy(Y
n, φy(fx(X

n), fy(Y
n)))] ≤ DY + ǫ.

Since (Xi, Yi) are identically distributed for alli, convexity
of mutual information in the conditional distribution implies
the desired inequality

1

n

n
∑

i=1

I(Yi; X̂i, Ŷi) ≥ I(Y ; X̂, Ŷ ). (36)

A symmetric argument completes the proof.

B. A Proof of Theorem 2 via Logarithmic Loss

Interestingly, Theorem 2 can also be derived from the recent
results on source coding under logarithmic loss [9]. This
suggests that logarithmic loss may be useful in obtaining other
converse results, which are stronger than Theorem 2.

Let M(X ) denote the set of probability measures onX .
For x̂(LL) ∈ M(X ), the logarithmic loss functiondLL : X ×
M(X ) → R is defined by

dLL(x, x̂
(LL)) = log

1

x̂(LL)(x)
, (37)

wherex̂(LL)(x) is the probabilitŷx(LL) assigns to the outcome
x ∈ X . Whendx anddy are both logarithmic loss distortion
measures (defined for their respective source alphabetsX and
Y), the rate distortion region is known. The characterization of
this region is given by the following theorem, which is proved
in [9].

Theorem 3. (RX , RY , DX , DY ) is achievable under loga-
rithmic loss if and only if

RX ≥ I(X ;UX |UY , Q) (38)

RY ≥ I(Y ;UY |UX , Q) (39)

RX +RY ≥ I(X,Y ;UX , UY |Q) (40)

DX ≥ H(X |UX , UY , Q) (41)

DY ≥ H(Y |UX , UY , Q) (42)

for some joint distribution of the form
p(x, y)p(q)p(uX |x, q)p(uY |y, q) with |UX | ≤ |X |,
|UY | ≤ |Y|, and |Q| ≤ 5.

Second Proof of Theorem 2:Since(RX , RY , DX , DY )
is achievable, there exists a(2nRX , 2nRY , n) code
(fx, fy, φx, φy) which satisfies (17) and (18). By considering
the logarithmic loss reproductions

X̂
(LL)
i = Pr[Xi = x|fx(X

n), fy(Y
n)] (43)

Ŷ
(LL)
i = Pr[Yi = y|fx(X

n), fy(Y
n)] (44)

for each indexi = 1, 2, . . . , n, Theorem 3 guarantees the ex-
istence of a joint distributionp(x, y)p(q)p(uX |x, q)p(uY |y, q)
with |UX | ≤ |X |, |UY | ≤ |Y|, and |Q| ≤ 5 which satisfies3:

RX ≥ I(X ;UX |UY , Q) (45)

RY ≥ I(Y ;UY |UX , Q) (46)

RX +RY = I(X,Y ;UX , UY |Q) (47)

1

n

n
∑

i=1

H(Xi|fx(X
n), fy(Y

n)) ≥ H(X |UX , UY , Q) (48)

1

n

n
∑

i=1

H(Yi|fx(X
n), fy(Y

n)) ≥ H(Y |UX , UY , Q). (49)

We now make several observations, from which the claim
follows easily.

First, note that (48) is equivalent to

I(X ;UX , UY |Q) ≥
1

n

n
∑

i=1

I(Xi; fx(X
n), fy(Y

n)). (50)

Second, sinceRX + RY = I(X,Y ;UX , UY |Q) andRX ≥
I(X ;UX |UY , Q), we have

RY = I(X,Y ;UX , UY |Q)−RX (51)

= I(Y ;UY |Q)− (RX − I(X ;UX |UY , Q)) (52)

≤ I(Y ;UY |Q). (53)

Third, we observe that

RX +RY = I(X,Y ;UX , UY |Q) (54)

= I(X ;UX , UY |Q) + I(Y ;UX , UY |X,Q) (55)

= I(X ;UX , UY |Q) + I(Y ;UY |Q)− I(X ;UY |Q) (56)

≥ I(X ;UX , UY |Q) + I(Y ;UY |Q)

− s∗(Y ;X)I(Y ;UY |Q) (57)

= I(X ;UX , UY |Q) + (1− s∗(Y ;X))I(Y ;UY |Q) (58)

≥ I(X ;UX , UY |Q) + (1− s∗(Y ;X))RY , (59)

where (57) follows from Lemma 1, and (59) follows from (53)
and the fact thats∗(Y ;X) ≤ 1.

We rearrange (59) and apply (50) to obtain the desired
inequality:

RX + s∗(Y ;X)RY ≥ I(X ;UX , UY |Q) (60)

≥
1

n

n
∑

i=1

I(Xi; fx(X
n), fy(Y

n)) (61)

=
1

n

n
∑

i=1

I(Xi; X̂
n, Ŷ n) (62)

≥
1

n

n
∑

i=1

I(Xi; X̂i, Ŷi). (63)

A standard convexity argument (identical to the final step of
the alternative proof) completes the argument.

3Establishing the equality in the sum-rate constraint is straightforward.



C. Remarks

Many applications of strong data processing inequalities
begin with a single-letter characterization of the problemof
interest. However, such characterizations are unknown for
most multiterminal problems. Indeed, characterizing the rate-
distortion region for the multiterminal source coding problem
defined in Section II for general distortion measuresdx, dy
is a longstanding open problem. In general, the strong data
processing inequality supplied by Lemma 1 can be used in
conjunction with the tensorization property ofs∗(Xn;Y n) to
obtain meaningful outer bounds in source coding problems
without first appealing to a single-letter characterization.

For instance, a simple sum-rate bound for the CEO problem
(cf. [10] for a definition) can be given as follows. Suppose the
observations(Y1, . . . , Yk) are conditionally independent given
X , which should be reproduced at the decoder subject to a
constraint on distortion measured underdx. If (R1, . . . , Rk, D)
is an achievable rate-distortion vector for this CEO problem,
then

k
∑

i=1

s∗(Yi;X)Ri ≥ RX(DX). (64)

Similar ideas can be applied to non-rate-distortion settings.
As an example, consider the problem of generating common
randomness:

Definition 4. Assume{Xi, Yi}
∞
i=1 is a 2-DMS with joint

distribution PXY . A common randomness pair(C,R) is
achievable if, for anyǫ > 0, there exists an integern, an
encoding functionfm : Xn → {1, . . . , 2nR}, and decoding
functions

f1 : K = f1(X
n), (65)

f2 : K ′ = f2(Y
n, fm(Xn)) (66)

which satisfy

Pr(K = K ′) > 1− ǫ (67)
1

n
H(K) > C − ǫ (68)

1

n
H(K|K ′) < ǫ. (69)

Let C(R) be thecommon randomness capacity:

C(R) , sup{C : (C,R) is achievable.}. (70)

In his Ph.D. thesis, Zhao proved the following theorem, which
bounds the maximum number of bits of randomness that can
be “unlocked” by each bit of communication between users.

Theorem 4 ( [11, Theorem 3]).

C(R)

R
≤

1

1− s∗(X ;Y )
. (71)

Zhao’s original proof of Theorem 4, while simple, begins
with a single-letter characterization of the common random-
ness capacityC(R), originally due to Ahlswede and Csiszár
[12]. By proceeding along the lines of the direct proof of

Theorem 2, we can obtain an alternate proof of Theorem 4
without appealing to a single-letter characterization ofC(R).

Remark 2. Zhao’s statement of Theorem 4 (i.e., [11, Theorem
3]) involvedρ2m(X,Y ) instead ofs∗(X ;Y ), and is therefore
incorrect in light of [8]. Above, we give a corrected version.

Proof of Theorem 4: Fix ǫ > 0 and consider a scheme
which satisfies (67)-(69), withC = C(R). Then, we have:

nR+ ns∗(X ;Y )C(R) ≥ nR+ s∗(X ;Y )H(K) (72)

≥ nR+ s∗(X ;Y )I(K;Xn) (73)

≥ I(fm(Xn);Xn,K) + I(K;Y n) (74)

≥ I(fm(Xn);Xn,K|Y n) + I(K;Y n) (75)

= I(fm(Xn), Y n;Xn,K) (76)

≥ I(K ′;K) (77)

≥ n(C(R)− ǫ), (78)

where (74) follows from Lemma 1 and the tensorization
property ofs∗(Xn;Y n).

IV. CONCLUSION

We give an intuitive outer bound for the multitermi-
nal source coding problem which couples the rate distor-
tion functions for each source and the correlation measures
s∗(X ;Y ), s∗(Y ;X). Unlike many standard outer bounds, the
proposed bound is not parameterized by a continuous family of
auxiliary random variables, but rather only requires evaluation
of s∗(X ;Y ) ands∗(Y ;X). Roughly speaking, our main result
indicates that compressing the sources as if they were indepen-
dent yields near-optimal sum-rate performance, provided the
sources are sufficiently decorrelated in the sense thatρ∗(X,Y )
is relatively small.
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