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Abstract—Conditions are derived on line-of-sight channels to
ensure the feasibility of interference alignment. The conditions
involve choosing only the spacing between two subcarriers of
an orthogonal frequency division multiplexing (OFDM) scheme.
The maximal degrees-of-freedom are achieved and even an upper
bound on the sum-rate of interference alignment is approached
arbitrarily closely.

I. I NTRODUCTION

Interference alignment (IA) is a promising method because
it achieves higher throughput in interference limited scenarios
than conventional methods such as time- or frequency-division
multiplexing or treating interference as noise [1]. The main
idea of IA is to use precoding at the transmitters to align
interference at each receiver in one subspace. The orthogonal
subspace is used for interference-free communication.

One commonly measures performance by the sum of the
rates that the users can transmit reliably. The degrees-of-
freedom (DoF) are defined as

d = lim
SNR→∞

Csum(SNR)
log(SNR)

, (1)

whereCsum(SNR) is the sum-rate capacity at the signal to
noise ratio SNR. The DoF represent the number of non-
interfering data streams that can be simultaneously transmitted
over the network.

For single antennas IA achieves the maximal DoF asymp-
totically with an infinite number of subcarriers or time-slots
[2]. We derive conditions for whichtwo subcarriers make IA
feasible for general channels in Section III and for line-of-
sight channels in Section IV. For line-of-sight (i.e. single-
tap) channels these conditions are fulfilled by choosing the
subcarrier spacing carefully, while in prior art the subcarriers
are assumed to be fixed when IA is applied. Hence for line-of-
sight channels we achieve the maximal DoF and even achieve
an upper bound on the sum-rate of IA arbitrarily closely.

II. SYSTEM MODEL

Consider an interference channel withK user pairs, where
each transmitter sends either one or two streams to its receiver.
Each node is equipped with a single antenna and uses the

same two orthogonal subcarriers. The received signal in the
frequency domain at receiveri is

yi = U
†
iHi,iVisi +





K∑

k=1,k 6=i

U
†
iHi,kVksk



+U
†
izi (2)

wheresk is the vector of symbols at transmitterk with length
D ∈ {1, 2}, Vk is a 2×D precoding matrix,Hi,k is a 2× 2
channel matrix in the frequency domain between transmitter
k and receiveri, Ui is a D × 2 receive filter matrix.U†

is the complex conjugate transpose of matrixU, while u∗

is the complex conjugate of scalaru. The precoding and the
receive filter matrices are chosen to satisfy‖Vk‖F ≤ 1 and
‖Ui‖F ≤ 1, where‖ ‖F denotes the Frobenius norm.zi is a
proper complex AWGN vector of length2 and varianceσ2

i .
The first term on the right hand side of (2) carries the data of
receiveri, while the sum represents the interference, and the
last term is filtered noise. Channels connecting the transmitter
and receiver of the same user pair are calleddirect channels;
the other channels (i.e.Hi,k i 6= k) are calledcrosschannels.

For orthogonal subcarriers the channel matricesH are
diagonal. The diagonal entries are denoted byh

(l)
i,k ∈ C, where

l indicates the subcarrier index. We write

Hi,k=

[

h
(1)
i,k 0

0 h
(2)
i,k

]

=





∣
∣
∣h

(1)
i,k

∣
∣
∣ e

−j∠h
(1)
i,k 0

0
∣
∣
∣h

(2)
i,k

∣
∣
∣ e−j∠h

(2)
i,k



, (3)

where|x| denotes the amplitude ofx and∠x denotes the phase
of x in radians. For line-of-sight channels the amplitudes are
equal for all subcarriers, while the phase rotations dependon
the delayτi,k and the subcarrier frequenciesf (1) andf (2):

HLoS
i,k =|hi,k|

[

e−j2πf(1)τi,k 0

0 e−j2πf(2)τi,k

]

. (4)

The amplitudes are bounded as0 <
∣
∣
∣h

(l)
i,k

∣
∣
∣ to avoid degenerate

channel conditions. We assume perfect channel knowledge of
all channel parameters at all nodes.

III. F EASIBILITY OF INTERFERENCEALIGNMENT VIA

TWO SUBCARRIERS

For single antenna nodes, the DoF are upper-bounded by
1/2 per user pair [2]. The precoder and receive filters reduce
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to vectorsvk andui and interference is aligned if [3]

u
†
iHi,kvk = 0, ∀i 6= k (5)

∣
∣
∣u

†
iHi,ivi

∣
∣
∣ > 0, ∀i. (6)

The equations (5) mean that the interference lies in the null-
space of the receive filter, while the equations (6) ensure that
the effective channel̄hi = u

†
iHi,ivi (which is interference-

free if the first set of equations is fulfilled) has unit rank. The
question of IA feasibility asks if there is a solution forui ∀i
andvk ∀k such that (5) and (6) are fulfilled.

Suppose that all channel coefficients are chosen indepen-
dently with a continuous distribution. The conditions (6) are
fulfilled with probability 1 if the precoder and receive filters
satisfy (5). Hence we need to examine the feasibility of (5) to
show that the maximal DoF are achievable.

The question of feasibility is tackled, e.g., in [2]-[5]. In[2] it
is shown that the maximal DoF are asymptotically achievable
with IA for time-varying channels by increasing the number
of symbol extensions (i.e. the number of subcarriers or time
slots). We show that for interesting channel conditions IA is
feasible with two subcarriers. For this we use Lemma 1 to
write the IA equation set (5) as the sum of logarithms of
the channel, precoder, and receive filter coefficient fractions.
With Lemma 1 we prove Theorem 1 which states feasibility
conditions on the channel coefficients for the 3 user pairs case.
In the following subsection we examineK user pairs.

Lemma 1. For single antenna nodes and two orthogonal
subcarriers the IA conditions(5) are

ln

(

u
(2)∗
i

u
(1)∗
i

)

+ln

(

v
(2)
k

v
(1)
k

)

= jπ (1+2ni,k)−ln

(

h
(2)
i,k

h
(1)
i,k

)

(7)

for all i 6= k, whereni,k ∈ Z can be any integer.

Proof: We write (5) as the equation set

u
(1)∗
i h

(1)
i,kv

(1)
k + u

(2)∗
i h

(2)
i,kv

(2)
k = 0, ∀i 6= k. (8)

There exist trivial solutions of (8):

• ui = 0 or vi = 0, which both violate (6);
• u

(1)
i =v

(2)
k =0 or v(1)i =u

(2)
k =0, which, when examining

the equation set∀i 6= k, lead to the invalid solutions
ui = 0 ∀i or vk = 0 ∀k.

Other trivial solutions withu(l)
i = 0 or v(l)k = 0 do not exist,

since we haveh(1)
i,k 6= 0 andh(2)

i,k 6= 0 (recall that
∣
∣
∣h

(l)
i,k

∣
∣
∣ > 0).

Hence allui andvk are non-zero for nontrivial solutions.
Manipulating (8) we obtain

u
(2)∗
i h

(2)
i,kv

(2)
k

u
(1)∗
i h

(1)
i,kv

(1)
k

= −1 (9)

and therefore

ln

(

u
(2)∗
i h

(2)
i,kv

(2)
k

u
(1)∗
i h

(1)
i,kv

(1)
k

)

= jπ (1 + 2ni,k) (10)

whereni,k ∈ Z.

Note thath(1)
i,k = 0 or h(2)

i,k = 0 have zero probability for
continuous distributions.

A. 3 User Pairs

Theorem 1. Three DoF over two subcarriers are feasible for
three user pairs with single antennas if the following condition
holds

h
(2)
1,2

h
(1)
1,2

h
(1)
1,3

h
(2)
1,3

h
(2)
2,3

h
(1)
2,3

h
(1)
2,1

h
(2)
2,1

h
(2)
3,1

h
(1)
3,1

h
(1)
3,2

h
(2)
3,2

= 1. (11)

Proof: 1 For three users there are six cross-channels.
According to Lemma 1 six equations of type (7) must be
satisfied. We write these equations in the formAx = b as
follows:














1 0 0 0 1 0

1 0 0 0 0 1

0 1 0 0 0 1

0 1 0 1 0 0

0 0 1 1 0 0

0 0 1 0 1 0














︸ ︷︷ ︸

Rank(A)=5























ln

(

u
(2)∗
1

u
(1)∗
1

)

ln

(

u
(2)∗
2

u
(1)∗
2

)

ln

(

u
(2)∗
3

u
(1)∗
3

)

ln

(

v
(2)
1

v
(1)
1

)

ln

(

v
(2)
2

v
(1)
2

)

ln

(

v
(2)
3

v
(1)
3

)























=























jπ(1+2n1,2)−ln

(
h
(2)
1,2

h
(1)
1,2

)

jπ(1+2n1,3)−ln

(
h
(2)
1,3

h
(1)
1,3

)

jπ(1+2n2,3)−ln

(
h
(2)
2,3

h
(1)
2,3

)

jπ(1+2n2,1)−ln

(
h
(2)
2,1

h
(1)
2,1

)

jπ(1+2n3,1)−ln

(
h
(2)
3,1

h
(1)
3,1

)

jπ(1+2n3,2)−ln

(
h
(2)
3,2

h
(1)
3,2

)























. (12)

Since the rank ofA is 5, which is less than the number of
equations, a solution exists if and only if the rank of the
augmented matrix(A|b) is equal to the rank ofA (or b is in
the column space or image ofA). This condition is fulfilled
for

ln

(

h
(2)
1,2

h
(1)
1,2

)

− ln

(

h
(2)
1,3

h
(1)
1,3

)

+ ln

(

h
(2)
2,3

h
(1)
2,3

)

− ln

(

h
(2)
2,1

h
(1)
2,1

)

+ ln

(

h
(2)
3,1

h
(1)
3,1

)

− ln

(

h
(2)
3,2

h
(1)
3,2

)

= j2πn, (13)

wheren = n1,2 − n1,3 + n2,3 − n2,1 + n3,1 − n3,2 ∈ Z.
Theorem 1 can be expressed as two equations: One for the

subcarrier amplitudes
∣
∣
∣h

(2)
1,2

∣
∣
∣

∣
∣
∣h

(1)
1,2

∣
∣
∣

∣
∣
∣h

(1)
1,3

∣
∣
∣

∣
∣
∣h

(2)
1,3

∣
∣
∣

∣
∣
∣h

(2)
2,3

∣
∣
∣

∣
∣
∣h

(1)
2,3

∣
∣
∣

∣
∣
∣h

(1)
2,1

∣
∣
∣

∣
∣
∣h

(2)
2,1

∣
∣
∣

∣
∣
∣h

(2)
3,1

∣
∣
∣

∣
∣
∣h

(1)
3,1

∣
∣
∣

∣
∣
∣h

(1)
3,2

∣
∣
∣

∣
∣
∣h

(2)
3,2

∣
∣
∣

= 1 (14)

1The proof can also be obtained by examining the subspaces spanned
by the channel matrix and the precoding vector as is done in Section
IV-D of [2]. For interference to align one must have span(H1,2v2) =
span(H1,3v3) and span(H2,3v3) = span(H2,1v1) and span(H3,1v1) =
span(H3,2v2). From this one obtains span(v1) = span(Tv1), where
T = (H1,3)

−1
H2,3 (H2,1)

−1
H1,2 (H3,2)

−1
H3,1. Due to the diagonal

structure of the channel matrices,T is also diagonal. UnlessT is a (scaled)
identity matrix the precoderv1 must be an eigenvector of all channel matrices,
leading to interference not being aligned. SettingT as a scaled identity matrix
leads to (11).



and one for the subcarrier phase rotations

− ∠h
(2)
1,2 + ∠h

(1)
1,2 + ∠h

(2)
1,3 − ∠h

(1)
1,3 − ∠h

(2)
2,3 + ∠h

(1)
2,3

+ ∠h
(2)
2,1 − ∠h

(1)
2,1 − ∠h

(2)
3,1 + ∠h

(1)
3,1 + ∠h

(2)
3,2 − ∠h

(1)
3,2

= 2πn. (15)

B. K User Pairs

ForK user pairs there areK(K−1) cross-channels and we
hence haveK(K − 1) equations of type (7). We collect them
into an equation systemAx = b, whereA is of dimension
K(K − 1)× 2K, but has rank2K − 1.

The augmented matrix(A|b) again must have the same
rank asA for a solution to exist. TransformingA to row-
echelon form by using Gaussian elimination results in a new
matrix A′ where the last

K(K − 1)− (2K − 1) = K2 − 3K + 1 (16)

rows are zero. We apply the same transformations tob to
obtainb′. The lastK2 − 3K + 1 entries ofb′ must be zero,
and are of the form

∑

∀i,k

α
[w]
i.k

(

jπ (1 + 2ni,k)− ln

(

h
(2)
i,k

h
(1)
i,k

))

(17)

where α
[w]
i.k ∈ {−1, 0, 1} are the weights of thew-th row.

Hence we obtainK2 − 3K + 1 equations of type similar to
(13) which must be fulfilled for feasibility of IA.

IV. SPECIAL CASE: 3 USERPAIRS AND L INE-OF-SIGHT

CHANNELS

We examine IA for the special case of line-of-sight channels
and K = 3. We show that the feasibility condition of the
channel can be fulfilled by choosing the subcarrier spacing
carefully. We also derive the amplitudes of the effective
channels and show that for increasing bandwidth an upper
bound on the sum-rate of the presented scheme can be reached
arbitrary closely.

Corollary 1. For line-of-sight channels the condition of The-
orem 1 simplifies to
(

f (2)−f (1)
)

(τ1,3−τ1,2+τ2,1−τ2,3+τ3,2−τ3,1) = n (18)

wheren ∈ Z \ {0}.

Proof: For single tap channels the subcarrier amplitudes
satisfy

∣
∣
∣h

(1)
i,k

∣
∣
∣ =

∣
∣
∣h

(2)
i,k

∣
∣
∣ and hence only the phase rotation

difference remains. Inserting∠h(l)
i,k = 2πf (l)τi,k gives

−2π
(

f (2) − f (1)
)

τ1,2 + 2π
(

f (2) − f (1)
)

τ1,3

−2π
(

f (2) − f (1)
)

τ2,3 + 2π
(

f (2) − f (1)
)

τ2,1 (19)

−2π
(

f (2) − f (1)
)

τ3,1 + 2π
(

f (2) − f (1)
)

τ3,2 = 2πn.

After some manipulations one obtains (18). Choosingn = 0
violates the assumption of orthogonal sub-carriers, sincethis
meansf (2) = f (1).

According to (18) line-of-sight channels may create condi-
tions where IA is feasible by choosing the sub-carrier spacing
∆f = f (2) − f (1) carefully. This means that the precoding
and receive filter vectors can be chosen such that (5) holds.
The required spacing depends only on the delays of the cross
channels and the non-zero integern which can be chosen
freely. Hence we can identify a minimal sub-carrier spacing

∆fmin = 1/ (τ1,3 − τ1,2 + τ2,1 − τ2,3 + τ3,2 − τ3,1) (20)

for which IA is feasible. Any multiple of∆fmin, except0,
creates feasibility again.

For the special case

τ1,3 − τ1,2 + τ2,1 − τ2,3 + τ3,2 − τ3,1 = 0 (21)

IA is directly feasible and the subcarrier spacing can be chosen
arbitrarily. For continuously and independently distributed
delays the probability of this event is zero and is not treated
further.

Note that we are not limited to using two subcarriers. Since
the feasibility depends solely on the spacing, subcarrier pair
f (1)+foffset andf (2)+foffset is feasible if pairf (1) andf (2) is.
Even different user pairs, which require different∆fmin, can
be scheduled in one OFDM frame. It might not be possible
to use all subcarriers with IA in which case the remaining
subcarriers are used as usual.

A. Effective Channel Amplitudes

If (18) is fulfilled, the ratios of the precoding and receive
filter coefficients are obtained from the system of linear equa-
tions (12). SinceA is rank-deficient there is one independent
variable inx, which we choose without loss of generality to
be ln

(

u
(2)∗
1 /u

(1)∗
1

)

. The remaining variables are determined
as

ln

(

v
(2)
2

v
(1)
2

)

= jπ(1+2n1,2+2∆fτ1,2)−ln

(

u
(2)∗
1

u
(1)∗
1

)

(22)

ln

(

v
(2)
3

v
(1)
3

)

= jπ(1+2n1,3+2∆fτ1,3)−ln

(

u
(2)∗
1

u
(1)∗
1

)

(23)

ln

(

u
(2)∗
2

u
(1)∗
2

)

= jπ(1+2n2,3+2∆fτ2,3)−ln

(

v
(2)
3

u
(1)
3

)

(24)

ln

(

u
(2)∗
3

u
(1)∗
3

)

= jπ(1+2n3,2+2∆fτ3,2)−ln

(

v
(2)
2

v
(1)
2

)

(25)

ln

(

v
(2)
1

v
(1)
1

)

= jπ(1+2n2,1+2∆fτ2,1)−ln

(

u
(2)∗
2

u
(1)∗
2

)

. (26)

From (22)-(26) one obtains, fori ∈ {1, 2, 3},
∣
∣
∣u

(1)∗
i

∣
∣
∣

∣
∣
∣v

(1)
i

∣
∣
∣ =

∣
∣
∣u

(2)∗
i

∣
∣
∣

∣
∣
∣v

(2)
i

∣
∣
∣ . (27)

Together with‖vi‖F ≤ 1 and‖ui‖F ≤ 1 one obtains

∣
∣
∣u

(1)∗
i v

(1)
i

∣
∣
∣ ≤

∣
∣
∣v

(1)
i

∣
∣
∣

√

1−
∣
∣
∣v

(1)
i

∣
∣
∣

2

≤ 1/2. (28)



For all else held fixed thei-th amplitude is largest if
∣
∣
∣v

(1)
i

∣
∣
∣ =

∣
∣
∣v

(2)
i

∣
∣
∣ =

∣
∣
∣u

(1)∗
i

∣
∣
∣ =

∣
∣
∣u

(2)∗
i

∣
∣
∣ = 1/

√
2 (29)

which we use when obtaining the amplitudes.
The amplitude of the first direct channel is

∣
∣h̄1

∣
∣=
∣
∣
∣u

†
1H1,1v1

∣
∣
∣

=|h1,1|
∣
∣
∣u

(1)∗
1 e−j2πf(1)τ1,1v

(1)
1 + u

(2)∗
1 e−2πf(2)τ1,1v

(2)
1

∣
∣
∣

(a)
=
|h1,1|
2

∣
∣
∣
∣
1+e

−j2π∆fτ1,1+ln
(

u
(2)∗
1 /u

(1)∗
1

)

+ln
(

v
(2)
1 /v

(1)
1

)

∣
∣
∣
∣

(b)
=
|h1,1|
2

∣
∣
∣1−ej2π(∆f(−τ1,1+τ2,1−τ2,3+τ1,3)+n2,1−n2,3+n1,3)

∣
∣
∣

(c)
=|h1,1| |sin(πn∆fmin∆τ1)| (30)

where∆τ1 = −τ1,1+ τ2,1− τ2,3 + τ1,3. For (a) we used (29).
For (b) we inserted (26), into which we inserted (24) and (23).
For (c) we used∆f = n∆fmin,

∣
∣1− ejθ

∣
∣ = 2 |sin(θ/2)| and

|sin(θ + πl)| = |sin(θ)| for l ∈ Z.
The amplitudes of the second and third direct channels

follow similarly and are
∣
∣h̄2

∣
∣=|h2,2| |sin(πn∆fmin∆τ2)|

∣
∣h̄3

∣
∣=|h3,3| |sin(πn∆fmin∆τ3)| (31)

where∆τ2 = −τ2,2 + τ2,3 − τ1,3 + τ1,2 and∆τ3 = −τ3,3 +
τ3,2 − τ1,2 + τ1,3.

Examining the effective channel amplitudes, we observe that
the amplitude of thei-th channel is bounded by

0 ≤
∣
∣h̄i

∣
∣ ≤ |hi,i| . (32)

For a given channel one can influence only the integern of
the argument of the sine function, as the∆τ and the∆fmin

are fixed.

B. Upper Bound

The sum-rate of the proposed scheme for a three user pairs
system with line-of-sight channels is upper bounded by

Rsum≤
∑

∀i

log2

(

1 +

∣
∣h̄i

∣
∣
2

σ2
i

)

. (33)

Since the sum-rate is different for different choices ofn, one
can optimize the choice of∆f = n∆fmin within the available
bandwidth to obtain the optimal sum-rate.

Lemma 2. For continuously and independently distributed de-
lays the upper bound on the sum-rate of the presented scheme
is achieved arbitrarily closely for increasing bandwidth.

Proof: The minimal sub-carrier spacing depends only on
the delays and the delays are continuously and independently
distributed. Hence also the productsλi = ∆fmin∆τi are con-
tinuously distributed. They are even independently distributed,
sinceτi,i appears only in∆τi. We can writeλi mod 1 with
its infinitely long decimal expansion as

λi mod 1 = 0.λ
[1]
i λ

[2]
i λ

[3]
i . . . , (34)

where each elementλ[l]
i of the sequence is i.i.d. and takes on

the values{0, 1, 2, . . .9} with equal probability.
We wish to show that∃n ∈ {Z : 0 < n < N} with N → ∞

such that(nλi mod 1) ∀i is arbitrarily close to some number
µ ∈ (0, 1). We do this by looking for strings of decimal places
of λi which are equal for alli and which are, when shifted to
the first decimal places, close enough to the desired number
µ. We then choosen to shift the resulting sequence to the first
decimal places.

We chooseR ∈ Z such that10−R < ǫ, where0 < ǫ < 1.
Our goal is to find anr such, that the random variablesMr ={

λ
[w]
i : ∀i, w = r, r + 1, . . . , r +R− 1

}

fulfill the condition

λ
[r]
i λ

[r+1]
i . . . λ

[r+R−1]
i = µ[1]µ[2] . . . µ[R], ∀i, (35)

whereµ[w] is thew-th position of the decimal expansion of
µ. The probability that the variablesMr fulfill the conditions
(35) for a givenr is positive. There are infinite independent
realizations of the setMr, hence∃r such that the setMr

fulfills conditions (35). We complete the proof by choosing
n = 10r andµ = 1/2.

Lemma 2 ensures that by increasing the bandwidth and
optimizing the choice of∆f = n∆fmin we can get arbitrarily
close to the upper bound of the presented scheme.

C. Connection to Time Based Interference Alignment

Time based IA aligns interference by transmitting only in
every other time slot and by (possibly) using different offsets.
Interference is aligned when at the receivers the interference
arrives in the same time slot, while the useful signals arrive in
a different time slot. Analyses of time based IA can be found
in [4], [6] or [7] for example.

We show that time based IA is a special case of subcarrier
IA. Choosing a precodervk in the frequency domain translates
to the time domain signal
[

Xk[t]

Xk[t+ 1]

]

=

[

1 1

1 −1

]

︸ ︷︷ ︸

F†

[

v
(1)
k

v
(2)
k

]

sk=





(

v
(1)
k + v

(2)
k

)

sk
(

v
(1)
k − v

(2)
k

)

sk



 (36)

whereF† is the IDFT matrix. Since for time based IA nothing
is transmitted in the second time slot, we havev

(1)
k −v

(2)
k = 0.

Thus ln
(

v
(2)
k /v

(1)
k

)

= 0, ∀k follows. In a similar way we

obtain ln
(

u
(2)∗
i /u

(1)∗
i

)

= 0, ∀i. This means that the right-
hand side in (12) must beb = 0, which automatically fulfills
(13) and hence (11) and (18). Fromb = 0 it follows that

jπ(1 + 2ni,k) = ln

(

h
(2)
i,k

h
(1)
i,k

)

= −j2π∆fτi,k, ∀i 6= k (37)

from where we obtain the conditions on the subcarrier spacing

∆f =
1 + 2ni,k

2τi,k
, ∀i 6= k. (38)

For K = 3 there are six fractions that must be equal
to each other and which determine∆f . The denominators



of the fractions are real numbers while the numerators are
integers. Since the delays are i.i.d., equality of these fractions
is approached only by choosing larger integer numerators.
This means that feasibility is achieved only asymptotically
for increasing∆f , which translates to decreasing slot lengths
in the time domain. This is precisely what Theorem 1 in
[4] states. But we are able to determine subcarrier spacings
which achieve feasibilityexactlyfor K = 3. This shows that
restricting the choice of the precoder, as time based IA does,
prohibits achieving the DoF exactly.

V. SIMULATION RESULTS

Consider a 3 user pair line-of-sight channel, where the
transmitter-receiver distancesdi,k are continuously and inde-
pendently distributed. The delays are related to the distances
by

τi,k =
c

di,k
(39)

where c is the speed of wave propagation, which we set to
the speed of lightc = 3 ·108 m/s. The channel amplitudes are
obtained from the distances as

|hi,k| =
(
1m
di,k

)γ

(40)

where we choose the path-loss exponentγ = 3.76.
The distances of the direct channels are distributed asdi,i ∈

[150m, 250m], and the distances of the cross channels asdi,k ∈
[250m, 350m], i 6= k. The direct channels thus have the largest
amplitudes and we do not have too small distances (for which
treating interference as noise works best). We average over
104 channel realizations.

As benchmark schemes we consider (I) treatingInterference
as Noiseand (II) an orthogonal access scheme, where we use
TDMA. For treatingInterference as Noise, each transmitter
transmits two streams for every channel use and at the re-
ceivers the interference is treated as noise. For theTDMA
scheme, each transmitter transmits only in everyK-th slot, but
with K times the power. Since only one pair communicates per
slot, the receiver can receive two streams without interference.

To obtain the precoder and receive filter for IA, we use the
pseudo-inverse ofA to obtain a solution (or a least-squares
solution, if IA is infeasible) for the system of linear equations
(12). Since we are interested mainly in the DoF, we consider
only interference-zero-forcing approaches. Other approaches,
e.g. MaxSINR or MMSE, will be examined in future work.

The values of∆fmin seem to be Rayleigh-distributed, where
more than95% of the values are between106Hz and108Hz for
the considered scenario. These values depend strongly on the
distances and the speed of wave propagation. For increasing
distances or decreasingc (e.g. under-water communication)
the distribution of∆fmin is shifted to lower frequencies.

Figure 1 shows the average sum-rate of the benchmark
schemes and of IA for an average received SNR from the direct
channels of20dB. The x-axis is normalized to1/∆fmin, where
∆fmin is different for every channel realization. As expected,
the benchmark schemes perform independent of the subcarrier

spacing. For IA we plot three curves. The curve labeledIA ZF
is the average sum-rate with the current subcarrier spacing. As
expected, we observe peaks at multiples of∆fmin. Note that
for small deviations from the optimal∆fmin there are small
reductions in sum-rate. A subcarrier spacing between multi-
ples of ∆fmin leads to leakage interference, which prevents
achieving the maximal DoF. But for finite SNR we achieve
a good performance when the direct channel’s amplitude is
large. The curve labeledMax IA ZF is obtained in two steps:
For each channel realization the maximal sum-rate within the
bandwidth equal to the x-axis’ value is determined. In the next
step we take the average and obtain the curve labeledMax IA
ZF. A steep increase of this curve can be observed around
∆fmin due to the feasibility of IA. With increasing bandwidth
the curve labeledMax IA ZF approaches the curve labeledIA
Upper Bound, which is the average of the upper bounds (33).
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Fig. 1. Average sum-rate for randomly distributed distances, wheredi,i ∈
[150m, 250m] and di,k ∈ [250m, 350m], i 6= k and γ = 3.76 and the
average received SNR from the direct channels is20dB.

VI. CONCLUSIONS

We derived conditions for feasibility of IA via two orthogo-
nal subcarriers. For line-of-sight channels these conditions can
be fulfilled by carefully choosing the subcarrier spacing.
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