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Abstract

The Degrees of Freedom (DoF) of aK-User MISO Broadcast Channel (BC) is studied when the

Transmitter (TX) has access to a delayed channel estimate inaddition to an imperfect estimate of the

current channel. The current estimate could be for example obtained from prediction applied on past

estimates, in the case where feedback delay is within the coherence time. Building on previous recent

works on this setting with two users, the estimation error ofthe current channel is characterized by

its scaling asP−α whereα = 1 (resp.α = 0) corresponds to an estimate being essentially perfect

(resp. useless) in terms of DoF. In this work, we contribute to the characterization of the DoF region

in such a setting by deriving an outerbound for the DoF regionand by providing an achievable DoF

region. The achievable DoF is obtained by developing a new alignment scheme, called theKα-MAT

scheme, which builds upon both the principle of the MAT alignment scheme from Maddah-Ali and

Tse and Zero-Forcing to achieve a larger DoF when the delayedCSIT received is correlated with the

instantaneous channel state.

I. INTRODUCTION

The use of multiple-antenna has been recognized during the last decade as a key element to

improve performance in wireless networks due to the possibility to achieve a larger number of

Degrees-of-Freedom (DoF), or pre-log factor, by transmitting several independent data streams

at the same time [1]. While in point-to-point MIMO systems, the maximal DoF can be achieved
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without Channel State Information (CSI) at the Transmitter(TX), the exploitation of the multiple-

antennas at the TX to achieve a DoF larger than one in multiuser settings heavily relies on the

availability of accurate-enough CSI at the TX (CSIT). For instance, it is well known that in

theK-user Multiple-Input Single Output (MISO) Broadcast Channel (BC), the DoF is reduced

from K to 1 in the absence of CSIT [2] while full DoF is preserved if the variance of the

channel estimation error falls asP−1 or faster, whereP is the Signal-to-Noise Ratio (SNR) [3],

[4]. Similar conclusions have been obtained in more generalsettings [5], [6].

Yet, the obtaining of an accurate-enough CSIT represents a challenge in many settings. Indeed,

the channel estimate has to be fed back from the RXs which inevitably introduces some delays

and some degradations. Therefore, a large literature has focused on the problem of designing

efficient feedback schemes and evaluating the impact of imperfect CSIT [See [3], [7] and

reference therein].

Recently, a new line of work was opened by the work from Maddah-Ali and Tse [8], [9].

Studying aK-user MISO BC, they showed that even completely outdated CSIT, in the sense that

the feedback delay exceeds the coherence period of the channel, could still be used to achieve a

larger DoF than in the absence of CSIT. This is accomplished through a space-time alignment

of the interference referred in the literature as theMAT alignment. Furthermore, if the channel

matrices are independent and identically distributed overtime and across the Receivers (RXs),

theMAT scheme is then optimal in terms of DoF.

This new method of exploiting stale CSIT has attracted a large interest and has been extended

to further network scenarios. In [10], [11], the approach isadapted to two-user and three-user

settings with multiple-antenna at the RXs, and to Interference Channels (ICs) and X-channels

in [12]–[15], among others. In [16], the IC with TXs having unequal CSIT is also investigated.

Going beyond completely outdated CSIT, settings with CSIT of alternating qualities have been

investigated. In [17], a setting is studied in a block fadingmodel where the CSIT is only accurate

for some time slots and completely outdated during others. It is then shown that under some

conditions the maximal DoF can still be achieved. Considering a more general CSIT model,

the two-user MISO BC is studied in [18] in the case where the CSIT relative to one user is

alternatively perfect, completely outdated, or non-existent. It is then shown that the alternating

between different CSIT configurations can lead to synergistic benefits.

Yet, a major restriction of these works is that they all consider the delayed CSIT as being
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completely uncorrelated with the instantaneous channel state. This assumption is lifted in [19]

where an improved DoF is shown to be achievable in the case where the delayed CSIT is assumed

to be possibly correlated with the current channel state. Asa consequence, an imperfect estimate

of the current channel can be obtained by prediction based onthe delayed CSIT. Specifically, it

is assumed that the channel estimation error resulting fromthe prediction based on the delayed

CSIT scales asP−α with α ≥ 0 being theCSIT quality exponent. Thus, whenα is equal to

one, the imperfect estimate of the current channel is essentially perfect in terms of DoF. On the

opposite whenα tends to zero, the estimate of the current channel is essentially useless.

Building on the approach developed in [19], the scheme was improved to reach the maximal

DoF in a two-user MISO scenario [20], [21]. The scheme achieving the optimal DoF region in

the two-user MISO BC is referred hereafter as theα-MAT scheme. This approach has then been

extended to imperfect delayed CSIT in [22], [23] and to two-user MIMO BC and IC in [24].

The study of delayed CSIT correlated to the instantaneous channel state has always remained

restricted to the two-user case and the results do not trivially extend to more users. Finding

the DoF region and extending theα-MAT alignment to more users is precisely the goal of this

work.

Specifically, our main contributions are as follows.

• As a preliminary step, we develop a new alignment scheme, called theA-MAT scheme, to

exploit completely outdated CSIT. This scheme can be seen asan extension of the alternative

version ofMAT for the two-user case and is more adapted to the combined use of ZF and

alignment based on delayed CSIT. Yet, its performances are suboptimal.

• We derive an outerbound for theK-user MISO broadcast channel with delayed CSIT and

imperfect current CSIT with quality exponentα.

• We develop a new scheme which combines theA-MAT alignment scheme and Zero-Forcing

(ZF) in such a way that the sum DoF takes the simple form(1−α) DoFA-MAT+αDoFZF,

whereDoFA-MAT and DoFZF are the sum DoF achieved respectively with theA-MAT

scheme and with ZF.

Notations:The complex circularly invariant Gaussian distribution ofmeanµ and varianceσ2

is denoted byNC(0, σ
2). f(x) ∼ g(x) denotes the fact thatlimx→∞

f(x)
g(x)

= C with C 6= 0. The

jth element of theith row of the matrixA is denoted by{A}ij. The functionlog represents the

logarithm with base2 and‖A‖F the Frobenius norm of the matrixA. A � 0 is used to represent
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the fact that the matrixA is positive semidefinite whileA � B denotes the thatA − B � 0.

If A is a positive definite matrix,A1/2 denotes the unique lower triangular matrix with strictly

positive coefficient obtained via the Cholesky factorization such thatA = A
1/2(A1/2)H. We

write wlog for without loss of generalityand i.i.d. for independently and identically distributed.

II. SYSTEM MODEL

A. K-User MISO Broadcast Channel

This work considers aK-User MISO BC where the TX is equipped withM antennas and

servesK single-antenna users. We assume furthermore thatM ≥ K. At any time t, the signal

received at RXi can be written as

yi(t) = h
H
i (t)x(t) + zi(t) (1)

wherehH
i ∈ C1×M is the channel to useri at time t, x ∈ CM×1 is the transmitted signal, and

zi(t) ∈ C is the additive noise at RXi, independent of the channel and the transmitted signal

and distributed asNC(0, 1). Furthermore, the transmitted signalx(t) fulfills the average power

constraintE[‖x(t)‖2] ≤ P .

We define further the channel matrixH , [h1, . . . ,hK]
H ∈ CK×M and introduce the nota-

tionHt , {H(k)}k=t
k=1. The channel is assumed to be drawn from a continuous ergodicdistribution

such that all the channel matrices and all their submatricesare full rank.

B. Delayed CSIT with Correlation in Time

The considered CSIT model builds on the delayed CSIT model introduced in [8] and gen-

eralized to account for time correlation in [19]. Accordingto this model, the TX has access

at time t to the delayed CSI. It takes the form of the CSI up to timet − 1 which is denoted

by Ht−1. Furthermore, exploiting the correlation in time between the delayed CSIHt−1 and the

current channel stateH(t), the TX produces an imperfect estimate of the channel state denoted

by Ĥ(t). This channel estimate is then modeled such that

H(t) = Ĥ(t) + H̃(t) (2)

where the channel estimate and the channel estimation errorare independent, the channel estima-

tion errorH̃(t) has its elements i.i.d.NC(0, σ
2) while the elements of the channel estimateĤ(t)
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are assumed to have a variance equal to1 − σ2. We further defineĤt , {Ĥ(k)}k=t
k=1 and

H̃t , {H̃(k)}k=t
k=1.

It is also assumed that the channel stateH(t) is independent of the pair(Ĥt−1, H̃t−1) when

conditioned onĤ(t).

The varianceσ2 of the estimation error is parameterized as a function of theSNR P such

that σ2 = P−α where we have defined theCSIT quality exponentα as

α , lim
P→∞

− log(σ2)

log(P )
. (3)

Note that from a DoF perspective, we can restrict ourselves to α ∈ [0, 1] since an estima-

tion/quantization error scaling asP−1 is essentially perfect while an estimation error scaling

asP 0 is essentially useless in terms of DoF.

Remark:This suggests that in order to keep the rate scaling in the SNR, and under a given

time-correlation model, the feedback delay as a fraction ofthe correlation time must shrink as

the SNR increases (e.g., the terminal velocity must decrease).

Note furthermore that for any ZF precoded vectoru such thatĥH
i u = 0, it can easily be

shown thatE[|hH
i u|

2] ∼ P−αE[‖u‖2].

Following the conventional assumption from the literatureof delayed CSIT (e.g., in [9]), all

the RXs are assumed to receive with a certain delay both the perfect multiuser CSI and the

imperfect CSI. This CSI is used only for the RX to decode its data symbols such that the only

limitation for this delay lies in the delay requirement of the data transmitted. The CSI at the RX

side could for example be obtained if each user broadcasts isCSI implying that the other RXs

can obtain the same CSI as the TX. Another solution is to simply let the TX send its perfect

delayed CSIT to all the RXs [25].

C. Degrees-of-Freedom Analysis

Albeit an incomplete measure of system performance, the DoFoffers the unique advantage

of allowing for analytical tractability for even complex network models and feedback scenarios

such as this one. Let us denote byD∗ the DoF-region, which is defined as follows.

D∗ ,

{

(d1, d2, . . . , dK)|∃(R1(P ), . . . , RK(P ) ∈ C(P ) , s.t.∀i = 1,. . ., K, di= lim
P→∞

Ri(P )

log(P )

}

(4)
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whereC(P ) is the capacity region. Furthermore, the maximal sum DoF will also be of particular

interest in this work. We denote it byDoF∗ and define it such that

DoF∗ , max
(d1,...,dK)∈D∗

K∑

i=1

di. (5)

III. M AIN RESULTS

We provide in this section our main results.

A. Outerbound

We start by describing an outerbound for the DoF region, which will then be proven in

Section VI.

Theorem 1. In theK-user MISO BC with perfect delayed CSIT and current CSIT withquality

exponentα, the DoF regionD∗ is outerbounded byDOut defined by

∀π ∈ Sp, p ∈ {2, . . . , K},

p
∑

k=1

dπ(k)
k

≤ 1 + α

p
∑

k=2

1

k
(6)

∀i ∈ {1, . . . , K}, 0 ≤ di ≤ 1. (7)

whereSp is the symmetric group containing all the permutations of{1, . . . , p}. In turn, the sum

DoF is upperbounded byDoFOut defined as

DoFOut =
K

(

1 + α
∑K

k=2
1
k

)

∑K
k=1

1
k

. (8)

Proof: The detailed proof is provided in Section VI.

It can be seen that this bound subsumes several known outerbounds from the literature. Forα =

0, it coincides with the optimal DoF achieved by the MAT algorithm while forα = 1, the DoF

in a MISO BC with perfect CSIT is obtained. Finally, forK = 2, this outerbound simplifies to

the optimal DoF region provided in [20].
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B. Achievable DoF

The problem of constructing a scheme achieving the outerbound in Theorem 1 is very intricate

and remains open. This is due to the difficulty to combine ZF (which is optimal forα = 1)

with the MAT scheme (optimal forα = 0). The scheme for the two-user case developed in [20],

[21] avoids this problem by using an alternative version of the MAT scheme developped by

Maddah-Ali and Tse in [8]. In contrast with the original MAT scheme, this alternative version

can be nicely combined with ZF such that the optimal DoF couldthen be achieved [20], [21].

This alternative version does not seem applicable for more than two users. As a consequence, our

first step has been to find a new alignment scheme based on completely outdated CSIT, which,

to some extent, generalizes the alternative MAT version to the case of more users. This scheme,

denoted hereafter as theA-MAT scheme, is described in Section IV and shown to achieve the

following DoF.

Theorem 2. In the K-user MISO BC with completely outdated CSIT (α = 0), the A-MAT

scheme achieves a sum DoF equal to

DoFA-MAT =
2K

K + 1
+

1

n




2K − 3 + 2

K+1
(

(K−1)
2

)

+ 1
n

(
K−1
2

+ 1
)
+ 1

n

(
K(K+1)

2
−K

)



 (9)

where the numbernTS of time slots over which theA-MAT scheme is spread is

nTS = n
K(K − 1)

2
+

K(K − 1)

2
+

K2(K + 1)

2
−K(K − 1). (10)

Hence, it holds

lim
nTS→∞

DoFA-MAT =
2K

K + 1
. (11)

TheA-MAT scheme can easily be adapted to exploit the correlation between the delayed CSIT

and the instantaneous channel state. The modified scheme, denoted as theKα-MAT scheme, will

then be shown in Section V to achieve the following DoF.

Theorem 3. In theK-user MISO BC with perfect delayed CSIT and current CSIT withquality

exponentα, the DoF achieved with theKα-MAT scheme is equal to

DoFKα-MAT = (1− α) DoFA-MAT+αDoFZF (12)
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with DoFZF = K.

The DoF achieved with ZF for the CSIT quality exponentα is well known to be equal to the

second term of (12) [3]. Hence, theKα-MAT scheme outperforms ZF and appears as a robust

ZF scheme with respect to delay in the CSIT. The first term of (12) is the DoF improvement.

IV. THE A-MAT SCHEME

Similarly to the MAT scheme, theA-MAT scheme does not exploit the correlation in time

and hence treats the estimate as completely “stale”. Although suboptimal, theA-MAT scheme

can be easily adapted to exploit the time-correlation and henceforth will be a key component to

develop a scheme which outperforms bothMAT and ZF whenα > 0. Similarly to [9], a DoF

strictly larger than one will be achieved by exploiting the broadcast nature of the channel. This

means that a message destined toj users (called order-j messages) will be overheard by another

K − j users, hence providing side information which can be exploited. As a consequence, we

will also defineDoFj as the DoF with which order-j messages are transmitted. Note that with

this notation, our objective is to transmit order-1 messages and to maximizeDoF1.

When no confusion is possible, we omit to mention the dependency of the channels as a

function of the timet.

A. Example of theA-MAT Scheme forK = 3

The A-MAT scheme consists of one initialization step, followed by a number of “main

iteration” steps and is ended by a termination step.

• Step1–Initialization–This step consists of3 time slots and takes as input4 order-1 symbols

for every user. During the first time slot, the vectoru1 ∈ C2×1 containing2 data symbols

for RX 1 and the vectoru2 ∈ C2×1 containing2 data symbols for RX2 are transmitted.

The received signal at RXi can then be written as

yi = h
H
i u1 + h

H
i u2 + zi. (13)

Following the same philosophy as the alternative form of theMAT scheme [9], the interfer-

enceshH
1 u2 andhH

2 u1 are transmitted to both RX1 and RX2. Indeed, these equations are

needed at both RXs because they represent, for one of them, the received interference, and
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for the other, a second independent observation of the desired signal. Hence, the transmission

of the 4 order-1 data symbols has been replaced by the transmission of2 order-2 data

symbols. During the second (resp. the third) time slot, the same transmission scheme is

used to transmit to RX2 and RX3 (resp. RX3 and RX1).

• From step2 to stepn+1–Main iteration step–We assume that6 order-2 data symbols need

to be transmitted to every user from the previous step. This phase is spread over6 time

slots and takes as input3 order-1 messages for each user as well as the6 order-2 messages

from the previous step.

In the first time slot,3 order-1 messages are transmitted to RX1 while 2 order-2 messages

are transmitted to RX2 and RX3. We define the vectoru1 ∈ C3×1 containing the3 order-1

messages and the vectoru23 ∈ C2×1 containing the two order-2 messages. The received

signal at RXi reads then as

yi = h
H
i u1 + h

H
i u23 + zi. (14)

Let the interferencehH
1 u23 be transmitted to all the RXs, the interferenceh

H
2 u1 be trans-

mitted to RX 1 and RX 2 and the interferencehH
3 u1 to RX 1 and RX 3. Each RX can

then decode its desired data symbols. Indeed, each RX could then remove the interference

received as well as receive the right number of additional independent equations to decode

its desired messages. Thus,h
H
1 u23 can be seen as an order-3 message whilehH

2 u1 andhH
3 u1

are order-2 messages. The transmission of the input data symbols has been replaced by the

transmission of two order-2 messages and one order-3 message. During the two following

time slots, the same transmission occurs after having permuted circularly the role of the

RXs.

Finally, the three order-3 data symbols are broadcasted, which requires3 time slots. In total,

6 order-2 data symbols have been transmitted and9 order-1 data symbols. At the same time,

6 order-2 messages have been generated (from the overheard interference) and have to be

transmitted in the following step.

• Stepn+ 2-Termination-At the beginning of this phase,6 order-2 data symbols have to be

transmitted. This is carried out by simple broadcasting, and hence requires6 time slots.

In total, 12 + 9n order-1 data symbols have been transmitted in6 + 6n + 6 time slots. After

simplifications, the DoF given in Theorem 2 is then obtained.As the number of main iteration



10

A-MAT

Step k

- Main iteration-

Step n+2

- Termination-

.........Init

BC

Step 1

- Initialization-

BC

BC

2 order-2

4 order-1

2 order-2

1 order-3

2 order-22 order-2

3 order-13 order-1

2 Time 

Slots

2 Time 

Slots

2 Time 

Slots

... ...

1 order-3

3 order-1

n iterations

Fig. 1. Symbolic representation of theA-MAT scheme forK = 3 users.

stepsn increases, the DoF converges to3/2.

The mains steps of theA-MAT scheme forK = 3 are illustrated in Fig. 1. A particularity of

A-MAT is that symbols of different orders are sent at the same time.

Note that the number of order-2 symbols transmitted is exactly equal to the number of order-

2 messages created. This represents a particular case and forK > 3, it will be necessary to

consider several transmissions of symbols of different orders so as to reach an equilibrium where

the number of data symbols of order-j with j ≥ 2 taken as input equals the number of symbols

of order j.
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B. Description of theA-MAT Scheme

We will now describe theA-MAT scheme for arbitrary values ofK. TheA-MAT algorithm

can be divided in distinct phases which we denote asorder-j phase. We will start by presenting

the order-j phase before moving to the description of how such phases arecombined in the

A-MAT scheme.

Note that each step should be carried outK times for theK circular permutations of the users.

This is necessary to ensure that every user is transmitted the same number of data symbols. For

clarity, we will present the scheme for one particular RX configuration only.

1) Order-j Phase: The order-j phase consists in the simultaneous transmission of messages

of order-j and of messages of order-(K − j). We assume wlog that the order-j messages are

destined to RX1, RX 2, . . ., RX j, while the order-(K−j) messages are destined to the remaining

K − j users. We will discuss later on how these messages of order-j and order-(K − j) are

obtained. In one time slot, the vectoruj ∈ C(K−j+1)×1 containing theK − j + 1 data symbols

of order-j and the vectoruK−j ∈ C(j+1)×1 containing thej + 1 data symbols of order-(K − j)

are transmitted.

Hence, the received signal at RXi can be written as

yi = h
H
i uj + h

H
i uK−j + zi. (15)

For i = 1, . . . , j, hH
i uK−j represents an interfering signal which is desired at RXi in order

to remove the interference. Yet, this is also of interest to RX k for k = j + 1, . . . , K since it

represents an additional equation inuK−j. Thus,hH
i uK−j can be seen as an order-(K − j + 1)

message.

Similarly, for i = j + 1, . . . , K, hH
i uj represents an interfering signal at RXi but is also

of interest to RXk for k = 1, . . . , j. The messageshH
i uj for i = j + 1, . . . , K are then of

order-(j + 1).

If the j order-(K−j+1) messages and theK−j order-(j+1) messages are transmitted to the

RXs who desire these messages, each RX can be seen to have enough interference-free equations

to decode its messages. Indeed, the firstj (resp. lastK− j) RXs have receivedK− j+1 (resp.

j+1) independent equations, which is exactly equal to the number of independent data symbols

that they need to decode. The number of time slotsnTS required for this is then equal to

nTS =
K − j

DoFj+1
+

j

DoFK−j+1
+ 1 (16)
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where the addition of a1 corresponds to the one time slot used for the transmission in(15).

During thenTS time slots,K − j + 1 order-j messages andj + 1 order-(K − j) messages can

then be successfully transmitted. From the definition of theDoF, we can then also writenTS as

nTS =
K − j + 1

DoFj

+
j + 1

DoFK−j

. (17)

Putting together (17) and (16) yields

j + 1

DoFK−j(K,K)
+

K − j + 1

DoFj

=
K − j

DoFj+1(K,K)
+

j

DoFK−j+1

+ 1. (18)

2) TheA-MAT Scheme:The order-j phase assumes that messages of order-j and messages

of order-(K− j) need to be transmitted. We will now show how the order-j phase are combined

in theA-MAT scheme to allow for the transmission of order-1 data symbols.

The proof that theA-MAT scheme successfully transmit the data symbols and the derivation

of the DoF will be done in the following subsection. We present the A-MAT for the caseK

odd and the modifications required whenK is even will be described hereafter.

• Step1–Initialization– The order-j phase is carried out forj = 1, . . . , (K − 1)/2 but for

every phase, the messages of higher order are replaced by theorder-1 symbols that we aim

at transmitting. This is done by choosing arbitrarily any RXamong thej destined RXs

since the messages are transmitted so as to be decoded at eachof the j RXs. This step

is spread over(K − 1)/2 time slots and leads to the creation of messages of orderj for

j = 2, . . . , K. The number of messages of order-j generated can be obtained from (19).

One message of order-K is generated and is directly transmitted via broadcasting.

Note that for clarity a different initialization has been used forK = 3 in SubsectionIV-A.

• Step2 to step(n + 1)–Main Iteration–For every iteration step, all the order-j phases are

carried out once forj = 1, . . . , (K − 1)/2. At the nth step, the order-j data symbols being

sent are the ones which have been generated during step(n − 1), where the initialization

corresponds to step0. The verification that the number of data symbols created matches

the number of data symbols needed as inputs will be done in thenext subsection.

• Stepn + 2–Termination–All the data symbols which need to be transmitted are simply

broadcasted. This phase can be seen after summation of all the equations given by (17) to

requireK(K + 1)/2− 1− (K − 1) time slots.

If K is even(K−1)/2 is replaced byK/2−1 and the order-K/2 phase is carried out only one

time every two steps. The number of time slots used for the termination remains unchanged.
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C. Sum DoF Achieved

We will now show that this scheme can indeed be used to achievethe DoF given in Theorem 2.

We start by proving the following lemma.

Lemma 1. For every j 6= 1, K, the number of data symbols taken as input in oneA-MAT

iteration is equal to the number of orderj messages generated in such an iteration.

Proof: A detailed proof is provided in Appendix A.

Using Lemma 1, we can compute the DoF achieved by theA-MAT scheme by observing

how many time slots are used and how many order-1 data symbols could be transmitted during

those time slots. Let us consider for the momentK to be odd.

• –Initialization–The initialization step is spread over(K+1)/2 time slots andK(K+1)/2−1

order-1 data symbols are taken as input.

• –Main iteration step–At every time iteration,K order-1 data symbols are taken as input and

each iteration is spread over(K + 1)/2 time slots. According to Lemma 1, the number of

order-j symbols created in every iteration withj ≥ 2, is the same as the number of order-j

messages transmitted. Thus, the DoF of one iteration step isK/((K+1)/2) = 2K/(K+1).

• –Termination–The termination step requiresK(K + 1)/2 −K time slots to broadcast all

the remaining data symbols.

To compute the DoF achieved, it is necessary to take into account the need to consider for

every steps theK circular permutations between the users. Hence, the total number of time slots

over which theA-MAT scheme is spread is equal to

nTS = K

(
K + 1

2
+ n

K + 1

2
+

K(K + 1)− 2(K − 1)

2

)

(19)

where the first term in the RHS of (17) corresponds to the initialization, the second term to the

n main iteration steps, and the third one to the termination step.

In total, the DoF achieved by theA-MAT after n steps is then

DoFA-MAT
1 (K,K) =

K
(
K(K + 1)− 1 + nK+1

2

(
2K
K+1

))

K
(

(K+1)
2

)

+ n
(
K+1
2

)
+
(

K(K+1)−2(K−1)
2

) (20)

which gives after some basic manipulations the expression in Theorem 2.

As the number of time slots increases, theA-MAT scheme achieves a DoF of2K/(K + 1)

based on completely outdated CSIT. Although the sum DoF of this new scheme is smaller than
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Fig. 2. Sum DoF in terms of the number of usersK.

the one achieved withMAT, it provides an alternative way to exploit delayed CSIT which will

make the exploitation of the prediction obtained from the delayed CSIT more applicable. The

A-MAT scheme is compared to theMAT scheme in Fig. 2.

V. THE Kα-MAT SCHEME

When the CSIT is completely outdated (α = 0), we will use our newA-MAT scheme in

place of the MAT scheme. In the other extreme, whenα = 1, ZF is well known to be DoF

achieving. Thus, it remains to develop a scheme for the intermediate values of the CSIT quality

exponentα. Extending theA-MAT scheme to this case will in fact prove to be very easy: The

DoF achieved with the modified scheme, which we denote as theKα-MAT scheme, will go
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linearly from the DoF achieved with theA-MAT scheme to the DoF achieved with ZF as the

CSIT quality exponentα increases.

Note that the sum DoF obtained with the outer bound given in Theorem 1 for a CSIT quality

exponentα is equal to(1 − α) DoFMAT+αDoFZF whereDoFMAT is the DoF achieved with

MAT alignement. Hence, ifA-MAT were optimal forα = 0, Kα-MAT would then be optimal

for arbitrary values ofα. This it the case forK = 2 whereA-MAT coincides with the alternative

version ofMAT. As a consequence, theKα-MAT scheme is also optimal. In fact, theKα-MAT

scheme matches then with the optimal scheme from [20], [21].

We will start by describing the different steps of theKα-MAT scheme before moving to the

analysis of the DoF achieved.

A. Description of theKα-MAT Scheme

We will show how the order-j phase of theA-MAT scheme is modified to exploit the

correlation between the delayed CSIT and the instantaneouschannel. The fullKα-MAT scheme

follows then trivially from the description of theA-MAT scheme in Section IV.

We assume wlog that the order-j symbols are destined to the firstj TXs and the order-(K−j)

symbols to theK − j last RXs.

• Direct Transmission:

a) TheA-MAT Data Symbols:According to theA-MAT scheme, the TX transmitK−j+1

order-j messages andj + 1 order-(K − j) messages. Yet, the data symbols are this time

precoded. Theith order-j data symbol is precoded to form the vectora
(j)
i ∈ CM×1 while

the kth order-(K − j) data symbol is precoded as the vectora
(K−j)
k ∈ CM×1. The vector

a
(j)
1 is chosen to ZF the interference to theK − j last RXs, i.e., such that

∀k = j + 1, . . . , K, ĥ
H
k a

(j)
1 = 0. (21)

The remainingK− j precoded data symbols are chosen such that∀k < i, (a
(j)
k )Ha

(j)
i = 01.

Similarly, a(K−j)
1 is chosen such that

∀k = 1, . . . , j, ĥ
H
k a

(K−j)
1 = 0 (22)

1Note that this is solely done to ensure that all the precoded data symbols are linearly independent and span a subspace of

dimensionK − j + 1.
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and the remainingj beamformers such that∀k < i, (a
(K−j)
k )Ha

(K−j)
i = 0.

The power is allocated to these precoded data symbols as follows.






k = 1, ‖a(j)
k ‖2 =

[
1
2
(P − P α)− 1

2
K−j

K−j+1
P 1−α

]+

,

∀k = 2, . . . , K − j + 1 ‖a(j)
k ‖2 = 1

2
1

K−j+1
P 1−α

(23)

and similarly






k = 1, ‖a(K−j)
k ‖2 =

[
1
2
(P − P α)− 1

2
j

j+1
P 1−α

]+

,

∀k = 2, . . . , j + 1 ‖a(K−j)
k ‖2 = 1

2
1

j+1
P 1−α

(24)

The reason for this particular power allocation will becomeclear in the decoding part of

the scheme. Every data symbol is sent with the rate(1− α) log(P ).

b) The ZF Data Symbols:In addition to these data symbols, we will transmit at the same

time via conventional ZF one data symbolsj to RX j (i.e an order-1 data symbol) for every

RX j. Hence, the data symbolsj is precoded to obtainuj ∈ CM×1 such that

∀k 6= j, ĥH
kuj = 0. (25)

The power is allocated to verify that∀i,E[‖ui‖2] = P α/K and each data symbol is sent

with the rateα log(P ).

The received signal at RXk then reads as






k ≤ j, yk = h
H
k a

(j)
1

︸ ︷︷ ︸

∼P

+

K−j+1
∑

i=2

h
H
k a

(j)
i

︸ ︷︷ ︸

∼P 1−α

+

j+1
∑

i=1

h
H
k a

(K−j)
i

︸ ︷︷ ︸

∼P 1−α

+

K∑

i=1

h
H
kui

︸ ︷︷ ︸

∼Pα

+zk

k ≥ j + 1, yk = h
H
k a

(K−j)
1

︸ ︷︷ ︸

∼P

+

j+1
∑

i=2

h
H
k a

(K−j)
i

︸ ︷︷ ︸

∼P 1−α

+

K−j+1
∑

i=1

h
H
k a

(j)
i

︸ ︷︷ ︸

∼P 1−α

+
K∑

i=1

h
H
kui

︸ ︷︷ ︸

∼Pα

+zk

(26)

Note that the interferences froma(j)
1 anda

(K−j)
1 have been attenuated byP−α following

the ZF with respect to the imperfect channel estimates.

• Creation of theA-MAT Order-j+1 Data Symbols:Considering the received signal scaling

in P α as noise and omitting the power scaling of the received signals, we have obtained

the same received signals as in theA-MAT scheme described in Section IV. Hence, the

interference
∑

i h
H
k a

(K−j)
i for k ≤ j is needed to remove the interference at RXk but forms

also a desired equation for the lastK−j users. Thus, it can be seen as an order-(K−j+1)
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message. Similarly, the interference
∑

i h
H
k a

(j)
i for k ≥ j + 1 is needed by the firstj RXs

and by RXk, and is hence an order-(j + 1) message.

All the “equations” which have to be retransmitted have a power scaling inP 1−α. Hence,

we can use the well known result that quantizing them with(1− α) log(P ) bits leads to a

distorsion scaling inP 0 [26], which is negligible in terms of DoF.

The data symbols of order-j and order-(K− j) taken as input have a rate of(1−α) log(P )

and this is also the case of the new messages created. As a consequence, theA-MAT

algorithm can proceed with the transmission of the quantized equations as the order-(j+1)

and order-(K − j + 1) messages for the next iteration of theA-MAT scheme.

• Successive decoding:We now consider that the modifiedA-MAT has reached its end. Let

us first consider RXk for k ≤ j. This RX has receivedK − j equations relative to its

order-j symbols and was also able to remove the interference received. Hence, it has in

total K − j + 1 equations having each a SNR scaling inP 1−α. Consequently, RXk can

decode all the desired precoded data symbolsa
(j)
i for all i.

• Successive decoding:We now consider that the modifiedA-MAT has reached its end. Let

us first consider RXk for k ≤ j. This RX has receivedK − j equations relative to its

order-j symbols and was also able to remove the interference received. Hence, it has in

total K − j + 1 equations having each a SNR scaling inP 1−α. Consequently, RXk can

decode all the desired precoded data symbolsa
(j)
i for all i.

The data symbols of order-j being decoded, they can be subtracted from the received signal.

Since the interference have also been subtracted, the received signal at RXk reads then as

yk = h
H
kuk

︸ ︷︷ ︸

∼Pα

+
K∑

i=1,i 6=k

h
H
kui

︸ ︷︷ ︸

∼P 0

+zk. (27)

The interference term in (27) is drawn in the noise due to the attenuation byP−α from the

ZF precoding. As a consequence, the precoded symboluk is received at RXk with a SNR

scaling asP α and can be decoded.

The same analysis can be carried out for RXk with k ≥ j.
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Fig. 3. Sum DoF forK = 5 users in terms of the CSIT quality exponentα.

B. Degrees of Freedom Analysis

From the description of the algorithm, the DoF expression from Theorem 3 is easily derived

as follows. TheA-MAT scheme has been used to transmit data symbol of rate(1 − α) log(P )

while at every time slotof this scheme, one data symbol has been transmitted to everyuser via

ZF with a rate equal toα log(P ). Hence, the DoF given in Theorem 3 can be achieved.

In Fig. 3, we represent the sum DoF achieved with theKα-MAT scheme. Although theMAT

scheme is optimal whenα = 0 and the CSIT is completely outdated, theA-MAT scheme

becomes more efficient as the CSIT quality exponent increases. TheKα-MAT scheme coincides

with ZF when the CSIT is accurate enough (α = 1) and is otherwise more performing. Hence,

it can be seen as a robust version of ZF with respect to the delay in the CSIT.
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Furthermore, we show in Fig. 4 the DoF achieved in terms of thenumber of users with the

CSIT quality exponentα = 0.5. It can be seen that theKα-MAT scheme outperforms in that

case both ZF andMAT.
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Fig. 4. Sum DoF in terms of the number of usersK for the CSIT quality exponentα = 0.5.
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VI. PROOF OF THEOUTER BOUND

To obtain the outer bound, we adopt a genie-aided upper bounding technique inspired from

[10], [20]. We provide to RXi the side information of the RXj’s messageWj as well as

the received signalyj(t′), ∀t′ ≤ t for j = i + 1, · · · , K. We consider that all theK users are

active (i.e., have a positive DoF) because the approach trivially extends by replacingK with

any numberp of active users such that1 ≤ p ≤ K. Recall that all the RXs have access after a

given delay to the perfect CSIH(t) as well as the imperfect CSÎH(t). Since the decoding of

the signal received at timet is done solely once the RX has received the CSI relative to time t,

it means that we can consider that the RXs have access to the CSI instantaneously. We further

define for ease of notationW[i:j] , {Wi,Wi+1, · · · ,Wj}, Y[i:j](t) , {yi(t), yi+1(t), · · · , yj(t)},

H[i:j](t) , [hi(t),hi+1(t), · · · ,hj(t)]
H, wherej ≥ i, andYt

[i:j] , {Y[i:j](m)}tm=1.

From Fano’s inequality, it follows for arbitraryεn > 0,

n(Rk − εn) ≤ I(Wk;W[k+1:K],Y
n
[k:K]|H

n, Ĥn) (28)

= I(Wk;Y
n
[k:K]|W[k+1:K],H

n, Ĥn) (29)

=

n∑

t=1

I(Wk;Y[k:K](t)|W[k+1:K],Y
t−1
[k:K],H

n, Ĥn) (30)

=
n∑

t=1

(

h(Y[k:K](t)|W[k+1:K],Y
t−1
[k:K],H

t, Ĥt)− h(Y[k:K](t)|W[k:K],Y
t−1
[k:K],H

t, Ĥt)
)

(31)

=

n∑

t=1

(
h(Y[k:K](t)|Uk(t),H(t))− h(Y[k:K](t)|Wk,Uk(t),H(t))

)
(32)

where we have definedUk(t) , {W[k+1:K],Y
t−1
[k:K],H

t−1, Ĥt}. Thus, the weighted sum rate can
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be bounded for arbitrary nonzero natural numberNk, k = 1, . . . , K as

K∑

k=1

n(Rk − εn)

Nk

≤
n∑

t=1

K∑

k=1

1

Nk
h(Y[k:K](t)|Uk(t),H(t))−

n∑

t=1

K∑

k=1

1

Nk
h(Y[k:K](t)|Wk,Uk(t),H(t)) (33)

=

n∑

t=1

K−1∑

k=1

{
1

Nk
h(Y[k:K](t)|Uk(t),H(t))−

1

Nk+1
h(Y[k+1:K](t)|Wk+1,Uk+1(t),H(t))

}

+
1

NK
h(yK(t)|UK(t),H(t))−

1

N1
h(Y[1:K](t)|W1,U1(t),H(t)) (34)

≤
n∑

t=1

K−1∑

k=1

{
1

Nk
h(Y[k:K](t)|Uk(t),H(t))−

1

Nk+1
h(Y[k+1:K](t)|Wk+1,Uk+1(t),H(t),Yt−1

k )

}

+ n logP + n · O(1) (35)

=

n∑

t=1

K−1∑

k=1

{
1

Nk
h(Y[k:K](t)|Uk(t),H(t))−

1

Nk+1
h(Y[k+1:K](t)|Uk(t),H(t))

}

+ n logP + n · O(1) (36)

Let us focus on one of the differences of entropy in the summation. We can apply the same
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calculation as in the proof of the outerbound in [20]. Firstly, we set∀k,Nk = K−k+1 to write

1

K − k + 1
h(Y[k:K](t)|Uk(t),H(t))−

1

K − k
h(Y[k+1:K](t)|Uk(t),H(t))

≤ max
p(Uk(t)),p(x(t)|Uk(t))

(
h(Y[k:K](t)|Uk(t),H(t))

K − k + 1
−

h(Y[k+1:K](t)|Uk(t),H(t))

K − k

)

(37)

≤ max
Uk(t))

EUk(t) max
p(x(t)|Uk(t))

(
h(Y[k:K](t)|Uk(t),H(t))

K − k + 1
−

h(Y[k+1:K](t)|Uk(t),H(t))

K − k

)

(38)

= max
Uk(t))

EUk(t) max
p(x(t)|Uk(t))

EH(t)|Uk(t)

(
h(Y[k:K](t)|Uk(t),H(t))

K − k + 1
−

h(Y[k+1:K](t)|Uk(t),H(t))

K − k

)

(39)

= max
Uk(t))

EUk(t) max
p(x(t)|Uk(t))

E
H(t)|Ĥ(t)

(
h(H[k:K](t)x(t) + z[k:K](t)|Uk(t))

K − k + 1

−
h(H[k+1:K](t)x(t) + z[k+1:K](t)|Uk(t))

K − k

)

(40)

= max
Uk(t))

EUk(t) max
C�0

tr(C)≤P

max
p(x(t)|Uk(t))

cov(x(t)|Uk(t))�C

E
H(t)|Ĥ(t)

(
h(H[k:K](t)x(t) + z[k:K](t)|Uk(t))

K − k + 1

−
h(H[k+1:K](t)x(t) + z[k+1:K](t)|Uk(t))

K − k

)

(41)

where (39) is obtained because maximizing inside the expectation leads to an upper bound and

(41) follows from splitting the constraint on the distribution in two constraints.

We can now apply the Extremal Inequality from [27, Theorem8]. This is possible because

x(t) is independent ofH(t) (and of the noise) conditioned on the channel estimateĤ(t). The

multiplication by the channel matrices (not present in the original theorem) is taking care of by

inverting the channel after having regularized it, and letting then the regularization tend to zero

[28].

It follows from that result that the optimal vectorx(t) is Gaussian distributed. We define then



23

the covariance matrixKx(t) , E{x(t)xH(t)|Uk(t)} and write

1

K − k + 1
h(Y[k:K](t)|Uk(t),H(t))−

1

K − k
h(Y[k+1:K](t)|Uk(t),H(t))

≤ max
Uk(t))

EUk(t) max
C�0

tr(C)≤P

max
Kx(t)�C

E
H(t)|Ĥ(t)

(
1

K−k+1
log det(IK−k+1+H[k:K](t)Kx(t)H

H
[k:K](t))

−
1

K − k
log det(IK−k +H[k+1:K](t)Kx(t)H

H
[k+1:K](t))

)

(42)

= max
Uk(t))

EUk(t) max
C�0

tr(C)≤P

E
H(t)|Ĥ(t)

(
1

K−k+1
log det(IK−k+1+H[k:K](t)K

∗(t)HH
[k:K](t))

−
1

K − k
log det(IK−k +H[k+1:K](t)K

∗(t)HH
[k+1:K](t))

)

(43)

≤ max
Uk(t))

EUk(t) max
C�0

tr(C)≤P

E
H(t)|Ĥ(t)

(
1

K−k+1
log det(IK−k+1+H[k:K](t)C(t)HH

[k:K](t))

−
1

K − k
log det(IK−k +H[k+1:K](t)C(t)HH

[k+1:K](t))

)

(44)

a

≤
1

K − k + 1
α logP +O(1) (45)

where we have definedK∗ as the covariance matrix solution of the inner maximizationin (42).

Inequalitya is a consequence of the following lemma which is proven in Appendix B:

Lemma 2. Let us consider twoNk × M (k = 1, 2) random matricesHk = Ĥk + H̃k, where

H̃k has its entries distributed as i.i.d.NC(0, σ
2) and independent of̂Hk. Given anyK � 0 with

eigenvaluesλ1 ≥ · · · ≥ λM ≥ 0, andM ≥ N1 ≥ N2, if σ2 tends to zero, then

1

N1
E
H̃1

log det(IN1
+H1KH

H
1 )−

1

N2
E
H̃2

log det(IN2
+H2KH

H
2 ) ≤ −

N1 −N2

N1
log(σ2) +O(1).

(46)

Using (45) in (36) withNk = K − k + 1, it follows that

K∑

k=1

n(Rk − εn)

K − k + 1
≤

n∑

t=1

K−1∑

k=1

1

K − k + 1
α logP + n logP + n ·O(1). (47)
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Dividing by n log(P ), considering arbitrarily long codewords, and lettingP tend to infinity gives

K∑

k=1

dk
K − k + 1

≤ 1 + α

K−1∑

k=1

1

K − k + 1
(48)

= 1 + α
K∑

k=2

1

k
. (49)

By permutation of the users and variation of the number of active users, all the outer bounds

can be obtained. This concludes the proof.
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VII. CONCLUSION

In this work, considering aK-user MISO BC, a new transmission scheme has been developed

to exploit at the same time the principle behind theMAT alignment based on delayed CSIT

and ZF of the interference. The novelKα-MAT scheme is more robust than ZF to the channel

estimates being received with some delay and coincides withZF when the CSIT received is

accurate enough. Furthermore, over a wide range of values taken by the CSIT quality exponentα,

the Kα-MAT scheme outperforms bothMAT and ZF. This makes such approach a strong

candidate to improve the robusteness to CSI feedback delaysof the transmission scheme. In

addition, an outer-bound DoF region has been derived. How toreduce the gap between the outer

and the inner bound is an interesting open problem for futur research. Furthermore, theMAT

alignment scheme from Maddah-Ali and Tse is very recent and is expected to have applications

in many more settings and to have a strong potential for further improvements.
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APPENDIX A

PROOF OFLEMMA 1

Proof: Let us recall first for the sake of clarity the DoF expression for the order-j phase

j + 1

DoFK−j

+
K − j + 1

DoFj

=
K − j

DoFj+1

+
j

DoFK−j+1

+ 1. (50)

Rewriting this expression for the order-j + 1 phase gives

j + 2

DoFK−j−1
+

K − j

DoFj+1
=

K − j − 1

DoFj+2
+

j + 1

DoFK−j
+ 1. (51)

and for the order-j − 1 phase

j

DoFK−j+1
+

K − j + 2

DoFj−1
=

K − j + 1

DoFj
+

j − 1

DoFK−j+2
+ 1. (52)

Adding (50) and (51), the first term of the Left-Hand Side (LHS) of (50) simplifies with

the second term of the right-hand side (RHS) in (51) while thefirst term of the RHS of (50)

simplifies with the second term of the LHS of (51). Similarly,adding (50) and (52), leads to

the simplification of the second term of the LHS and the secondterm of the RHS in (50) with

their counterpart in (52).

As a consequence, adding the equations obtained from phase1 to phasek yields

K

DoF1
+

k + 1

DoFK−k
=

K − k

DoFk+1
+

1

DoFK
+ k. (53)

We now differentiate between the two casesK even andK odd.

• If K is odd, then choosingk = (K − 1)/2 in (53) gives

K

DoF1
=

1

DoFK
+

K − 1

2
. (54)

because it holds in that case thatK − k = k + 1 such that two terms simplify in (53). The

proof concludes by using thatDoFK(K,K) = 1.

• If K is even, writing (53) withk = K/2− 1 gives

K

DoF1
+

K
2

DoFK

2
+1

=
K
2
+ 1

DoFK

2

+
1

DoFK
+

K

2
− 1. (55)

We proceed by writing the DoF expression (50) for the order-K/2 phase which gives

K + 2

DoFK

2

=
K

DoFK

2
+1

+ 1. (56)

Adding one half of (56) to (55) gives (54).

The result follows directly from (54) since the expression relative to the symbol of order-j for

j 6= 1, K have been simplified.
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APPENDIX B

PROOF OFLEMMA 2

We will proceed by bounding first separately each term of (46).

• Let us consider first the second term which we should lower bound. Recall that we consider

two Nk×M (k = 1, 2) random matricesHk = Ĥk+H̃k, whereH̃k has its entries distributed

as i.i.d. NC(0, σ
2) and independent of̂Hk and a matrixK � 0 of size M × M with

eigenvaluesλ1 ≥ · · · ≥ λM ≥ 0 such thatM ≥ N1 ≥ N2. We also define the EigenValue

Decomposition (EVD) of the positive semi-definite matrixK such thatK = VΛV
H with V

a unitary matrix of sizeM ×M andΛ = diag(λ1, λ2, . . . , λK) such thatλ1 ≥ λ2 ≥ . . . ,≥

λK . We then write

E
H̃2

log det(IN2
+H2KH

H
2 )

= E
H̃2

log det(IN2
+H2KH

H
2 ) + E

H̃2
log det(IN2

+H2H
H
2 )− E

H̃2
log det(IN2

+H2H
H
2 )

(57)

≥ E
H̃2

log det(IN2
+H2H

H
2 + (IN2

+H2H
H
2 )

1

2H2KH
H
2

(

(IN2
+H2H

H
2 )

1

2

)H

)

−N2EH̃2
log det(1 + ‖H2‖

2
F) (58)

≥ E
H̃2

log det(IN2
+H2(IM +K)HH

2 )−N2 log det(1 + ‖Ĥ2‖
2
F +MN2σ

2) (59)

= E
H̃2

log det(IN2
+H2(IM +K)HH

2 ) +O(1) (60)

where (59) has been obtained by applying Jensen’s inequality. We defineΛ′ = diag(λ1, λ2, . . . , λN1
)

as the matrix containing theN1 largest eigenvalues fromΛ and we proceed from (60) as

E
H̃2

log det(IN2
+H2KH

H
2 )

≥ E
H̃2

log det(IN2
+H2V(IM +Λ)VH

H
H
2 ) +O(1) (61)

a

≥ E
H̃2

log det(IN2
+H2V

′(IN1
+Λ

′)V′H
H

H
2 ) +O(1) (62)

= E
H̃2

log det(IN2
+Φ

′(IN1
+Λ

′)Φ′H) +O(1) (63)

b
≥

N2

N1
log det(IN1

+Λ
′) +

N2(N1 −N2)

N1
log(σ2) +O(1) (64)

where we have definedΦ′ , H2V
′ ∈ CN2×N1 with V

′ containing theN1 largest eingen-

vectors, i.e., such that

K = V
′
Λ

′(V′)H + (V −V
′)(Λ−Λ

′)(V −V
′)H. (65)
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Inequalitya follows from the fact thatdet(I +X) ≥ det(I +Y) if X � Y. Inequality b

is verified because the Gaussian distribution remains invariant by multiplication with a

deterministic rotation. Hence,Φ′ can be written aŝΦ′+Φ̃
′ with the elements of̃Φ distributed

as the elements of̃H2.

As a consequence, the following lemma presented in [24] (although in a different form)

can be applied to obtain inequalityb.

Lemma 3. Given a random matrixH = Ĥ + H̃ ∈ C
n×m (n ≤ m ≤ 2n), whereH̃ is

independent of̂H and has its entries distributed as i.i.d.NC(0, σ
2), and anyK � 0 with

eigenvaluesΛ , diag([λ1, λ2, . . . , λm]), with λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0, it holds that

E
H̃
log det(In +HKH

H) ≥
n

m
log det(Λ) +

n(m− n)

m
log(σ2) +O(1). (66)

• We now turn to deriving an upper bound for the first term in (46).

1

N1
E
H̃1

log det(IN1
+H1KH

H
1 ) ≤

1

N1
E
H̃1

N1∑

i=1

log(1 + ‖H1‖
2
Fλi) (67)

≤
1

N1

N1∑

i=1

log(1 + (‖Ĥ1‖
2
F +MN1σ

2)λi) +O(1) (68)

≤
1

N1

N1∑

i=1

log(1 +
[

max(‖Ĥ1‖
2
F +MN1σ

2), 1)
]

λi) + O(1).

(69)

From the upper bound (69) and the lower bound (64), we can thenwrite

1

N1
E
H̃1

log det(IN1
+H1KH

H
1 )−

1

N2
E
H̃2

log det(IN2
+H2KH

H
2 )

≤
1

N1

N1∑

i=1

(

log(1+
[

max(‖Ĥ1‖
2
F+MN1σ

2), 1)
]

λi)−log(1+λi)
)

−
N1−N2

N1
log(σ2)+O(1)

(70)

= −
N1 −N2

N1
log(σ2) +O(1) (71)

where (71) is obtained by observing that the sum of difference of logarithms in (70) remains

bounded for any values taken by theλi.
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