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Abstract—We consider the2™ channels synthesized by thes- Lemma 1 (Polar Transform of BEC[]1, Proposition 6])f
fold application of Arikan’s polar transform to a binary era sure 1}/ js a BEC with erasure probability, applying the polar
channel (BEC). The synthetic channels are BECs themselvead .0 <form (W, W) — (W=, W) produces two BEC$V+

we show that, asymptotically for almost all these channelghe ; Sl o -
pairwise correlations between their erasure events are es¢mely with erasure probabilitye and W with erasure probability

; h i 2 - .
small: the correlation coefficients vanish faster than any gponen-  2€ — €. Moreovgr,W erases iff either copy ofV’ erases,
tial in n. Such a fast decay of correlations allows us to conclude and W erases iff both copies d¥ erase.

that the union bound on the block error probability of polar o
codes is very tight. Corollary 1. The erasure indicators d#/ — and W+, denoted

by £~ and £, are constructed from two independent copies
|. INTRODUCTION of E, denoted byF and E’, as:

Channel Polarization is a technique recently introduced by _ , , ,
Arikan [1] as a means of constructing capacity achieving E” =max{E,E'} =E+E - EE (1a)
= ' codes for binary discrete memoryless channels (B-DMCs). Th E* =min{E,E'} = EF'. (1b)
underlying principle of channel polarization is the foliog:

ay 2013

= Let W X —» Y be a B-DMC with input alphabet While two copies of F are independent (and hence un-
+ - T+ ; ;
X = T,. From two independent copies & synthesize co_rrelated),E and E are correlatedE _ 1(s)|mplles
WX —)Y2andWt: X — )2 x X as: E~ = 1. On the other side, by polarizatioW,, ’s (and
1 equivalentIyE,(f)s) become deterministic as — oo. Hence
W~ (y1, yo|u1) = Z —W (y1|u1 @ uz)W (ya|us), it looks like £ and EY would become uncorrelated for
uz€X 2 s # t, wheres andt are sign sequences of lengthused

for indexing the channels. In particular it is easy to sed tha
E[EY ES] -E[EPE[EY)] is small for almost everg, t.

As the superscripts suggeBt~ turns out to be a B-DMC In .this paper we provide upper bounds on correlation
worse thani while W+ is a better B-DMC compared to CO€fficientsiefined as:
W. This transform can be repeatedtimes to getNV = 2" (s) (t) (s) (t)

E|Ey Ey’ | —E|Ey’ |E|Ey
B-DMCs W.¥,s € {—,+}". Arikan shows that (i) the plEt) & [ ] (B B [Bn]

transformation preserves the mutual information, {){*'s \/ var[E,(f)} var[E,(f)]

approach to “extremal” channels, i.e., either noiseless ord loit th bounds and the inclusi lusion o
useless channels. In particular, the fraction of almosteless and exploit these bounds and the inclusion—exclusion yimc

channels is equal to the symmetric capacity of the original & find lower bounds on the block error probability of polar
DMC W. Based on these properties Arikan constryxitar codes. In particular, our bounds are strong enough to shatwv th
codesby sending uncoded data bits only on (almost) noisele@e sum of the Bhattacharyya parameters of the information
channels and arbitrary (but known to receiver) bits on tHg'@nnels is a tight estimate of the block error probability.

remaining channels. The channels used to transmit inféomat
are referred to as “information” channels and the rest are
called “frozen” channels. A successive cancellation decod Throughout this manuscript, we use uppercase letters (like
has been proposed by Arikan to decode the information bits) to indicate a random variable, and its lowercase versipn (
with complexityO (N log N) and shown to have a block errorfor a realization of that random variable. The boldfaceelett

1
W (y1,y2, ui|uz) = W (yrur @ uz2)W(y2|uz).

)

II. NOTATION
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probability that behaves roughly @(2*\@) (cf. [2]). denote matrices, vectors or sequences which will be clean fr
The set of Binary Erasure Channels (BECs) is stable undbe context.
Polarization in the sense thatfiif is a BEC, therd¥ + andWW — We denote the sets by script-style uppercase lettersSike

are also BECs. We denote a BEC with erasure probakility and by|S| we mean the cardinality of.

BEC (¢). One can establish a one-to-one relationship betweerWe use thebar notation defined ag £ 1 — z for the sake
aBEC (¢) and an “erasure indicator” random varialilesuch of brevity and refer tar as the “complement” of.

that £ € {0,1} andP[E = 1] = ¢. The polar transform of a  For sign sequencesc {—, +}* andt € {—, +}*, CP[s, t]
BEC is hence equivalent to taking two independent copies @énotes their common prefix. Furthermore, |gtdenote the
E and creating the erasure indicators¥of- and W . length of a sequence
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I1l. PROPERTIES OFCORRELATION COEFFICIENTS which proves[(8a). Likewise,

As we mentioned in Sectidh I, we are interested in analyzing
the matrix of correlation coefficients of the erasure inttica
vectorE,, = [Eff)r :s € {—,+}"]. It is more convenient to
index theN = 2™ elements of that vector using sign sequences
s € {—, +}" instead of mapping the sign sequences to mteger
and using the natural indexing. We will use the same mdexmg
for the N2 elements of the correlation coefficients matrix. Corollary 2. Let X,Y,U andV be defined as in Lemria 2 and

Arikan has already shown that the vec®; = E[E,| p[X,Y] £ M denote the correlation coefficient

var[X] var[Y]

can be computed via a single-step recursion. More precisglényeen random variablex and Y, then:
havingZ,,_1 we can compute the elements %f as:

E[UY]=E[(1 - X)Y] =E[Y] - E[XY]

WhICh showxov[U Y| =E[UY]-E[U|E[Y]=-E[XY]+
4 = —cov[X,Y]. The same argument applies to
v[X, V Wh|ch proves[(8b). [ |

2 U V] =plX,Y 9a

267 Z27® _ (Z(S,)l) (3a) plU V] = p[X, Y] (92)
Z(s+) _ (Z(S) )2 (3b)

no T \"nol Lemma 3. The covariance matrix of the random veciBy,,

for Vs € {—,+}"~1 with Z, = e. Note that[[3a) and(3b) canCn 2[C8Y st € {—,+}"] where
also be derived by taking the expectation from both sides of (5t) & &) o
(@2) and[(Ib) and using the independence betweemd E’. CY & cov[EY, ELF],

Interestingly, the correlation coefficients matrix, =
[pgf’t) :s,t € {—,+}"] can also be computed via a single-
step recursion as we see in this section.

can be computed in terms &f,,_; andZ,,_, as follows:

. . —t— () (t) ( t) ( t)
It is useful to rewrite[(Tla) and_(1b) as cet) =222, 20,0 + Gy (10a)
B =ExD (4a) et =220, 20, c) — o', (1ob)
) 2
Et=ExE (4b) Cletto) — 976 70 o) o0 (10c)
(s4,t4) _ or(s) (t) ~(st) (s.t)2
and subsequently (Ba) arld{3b) as: Cym" =227".2.",C.77 +C.2 7 . (10d)
Z,(f’) (5)12 (5a It is clear thatCy = €€ wheree is the erasure probability of
“n ) the underlying BEC.
ZH =2, (5b)

Proof: We first prove [(10d) and then show how the rest
to see the symmetry between ‘minus’ and ‘plus’ transformsof results easily follow using Lemnid 2.
Recall that the “covariance” of random variabl¥sandY Recall thatE®H) = Eflsjl % Eflsjl’ and Bt = Efltzl %

[ fi :
's defined as Eff_)ll. Furthermore,E[EY ] = 2%, and E[EY ] =
cov[X, Y| £ E[XY] - E[X]E[Y]. ®) 2z

Lemma 2. Let X andY be arbitrary random variables and

- - (s+) pt+)] _ () m(s) " p(t) p(t) ’}
setU2 X andV 2 Y. Then: cov[ BT BF] = E[Eannq E, L Ey”

var[U] = var[X]. (7 —E [Ev(zs—)lEés—)ll} E |:E7(Lt—)1E7(zt—)1/}
Moreover, 2E[EY, ] - E[EX)E[EY,)’
cov|U, V] = cov[X, Y] (8a) ( E(s) E(t Zés,)lZ,(lt,)l)Q
cov[X, V] = cov[U,Y] = — cov[X, Y] (8b) " 2Z(s)1Z(t) (]E [Er(lszlEr(ltll} B Zészlzr(ltzl)

Proof: It is clear thatE [U] = 1 — E[X] andE[V] =
1—E[Y]. @) is also trivial sincevar[aX + b] = |a|* var[X]
for any constants andb. Furthermore:

)t t t
= 07(1571) + 2Z7(zsf)12'r(zf)lc7(zsfl)'

Note that in (*) we have used the independence between the
E[UV]=E[(1-X)1-Y)]=1-E[X]-E[Y]+E[XY] indicator variables wittprime and the ones without that and

the fact that they are both identical copies of the same mando
hence variable.

cov[U,V] =E[UV] - E[U]E[V] Now observe thatZ®~) = B x E®

i ) Tand EfT) =
—E[XY] - E[X]E[Y] = cov[X, Y] O« g0



To computeCff”t’), using [84) we have: 7(5) 7(®) 9
n—1 n—1 (s,t) (11d)
1429, \ 1120,
n—1 n—1

cov[E,(f—),Eth_)] = cov Efls,)l X E,(ls,)l/,E,(lt,)l X Eflt,)l/

Clearly pg = 1.
= cov {Effll X Eflsjll, Efﬁl X Efltlll} Proof: Once again we only prove (Il1d) and the rest follow
5) 602 o SE SE ) by the symmetry using Corollafyl 2. Sinde)s are {0,1}
=0y +22,7,2,7,C7 valued RVs with mearf:
where (*) follows by observing that we are essentially com- Var[E(s)] _ g(s) z(s) (12)

puting the same covariance as the one we just computed to
show [108) considering the facts that {jv {Eff_)l,Eff_)l} = Setting C&Y — p&t) [ 79 78 70 7®) {0 both sides of
. 2
cov[ES,, E\Y,] (using [Bk) once again) and (B[ £, | = ([09) and using the fact thaty™ = 2z, (similarly
2
s t t Z&H) — Zz® :
Z® | andE Efjll =z, 1) We get

Ijkewise ) {similarly [10c)) follows usind (8b): 9 5 9 5
ez (20,770, (240, =

220,201/ 22,20, 2, 20, 2%

cov[BET), B4D] = cov| E®, x E® | B x Y,

n—1
—— N S S S, 2
= —cov {E,(f,)l « E® ' EW Eff,)ll} + (28,28, 20,29,)p8
®) _(C(s_,tl)2 _ 2Z(S_)1Z(t_)10(s_*t1)). Eliminating fo_)lzg_)l from both sides and observing that
o _ i — /2 and —Z— =,/ proves the claim. m
Once again in (*) we are computing the same form of 1—*° 1tz Vi-a? T+ P

covariance as the one we did to shdw (10d) considering theThe property of being computable by a single-step recursion

eneralizes to higher order statistics:
fact thatcov [Effjl, Effjl} — —cov[E® |, EM ] = —c&Y J 9

(by (80)). m Lemma 4. In general them-th order moments of the random

. o . variables B ,s" € {—,+}" can be computed from the
Corollary 3. The correlation coefficients matrix of the random

_ i (snil) n—1
vectorE,, defined asp, 2 psls"t) (wherepSf"t) is defined " th order moments of random variablds, ; ’,s €

. . __7*_ nfl.
in @)) can be computed in terms pf,_; andZ,,_; as: { '
Proof: By the m-th order moment we mean:

(s) (t) n n "
ps—t=) g | _Znoa Zntr o) E[BSD D B
" (s) ® "
1+2 1+ 2,5 for some set of indices?, sy, -- - ,s! which arenot neces-

sarily distinct.
(11a) Lets" ! denote the subsequencessfincluding its firstn—
1 elements and observe that for ahy {;1,2, .o.,m}, E,(f’f)

n—1 n—1
is linear in each ofETgikl ) and E,(:_kl )n (cf. Clﬁ)n and[(Ib)).
This means in the expansion &1 B2 ... 55 we wiill
n—1 n—1 n—1
have the terms in the form @7(15_11 )Egsfl ). ET(LS_Z1 ) X
n—1/\/ gn—1 / gn—1 /

E,(lsjl ) E,(lfl ) ~-~E7(Zj’1 ) for somel < m andl’ < m.
(11b) The independence of the variables with prime and the one

without prime implies that the expectation of such produidt w

be product of two expectations each of which is at most an

n—1
m-th order moment of the random variabLE‘;%s_1 ) m

One can derive the properties stated in the sequejgi)ﬂ
according to the aforementioned recursions:

(11c) Property 1.

Z7(ZS)Z7(Zt) Zr(ls)Zr(lt)
Z7(ZS)Z7(Z':) ’ Z7(Zs)Zr(lt)

0< pgls"t) < min (13)




Property 1 follows as a corollary of the following property — If ab < @b, then the LHS of our inequality at= ab

on C&Y): will be equal to:
Property. 2ab x ab — (ab)” = ab [2ab — ab]
0<Clt <min{Z0Z0, 2020} 4 =abfab+a+b—1]
=ab[(1+a)(1+0) 2]

Proof: We prove the claim by induction on. The claim

is trivially true for n = 0 since:
0 < Cp = var[Eo] = €€ < min{ee, €&} .Fur'ghermore, as the_LI;|S_ is increasingcirlatc =ab
it will be less than(ab)* (its value atc =ab). W

< ab(1+a)(1+b)

wheree is the erasure probability of the underlying BEC.

Now, assuming[{14) holds for — 1, we shall show: Remark.This upper-bound shows for almost all choicessof

andt, O = E[ES EY] — E[EP]E[EY] goes to zero
0< Ol < min{z,(f‘>z,<f*>, foﬂsz‘)}. (15a) asn gets large.

0 Ot < min{ 28200, ZEZE0 ). (s PrOPeRy 2. For st € (-} and b € {4}

N - (ssn,tt ) < (s, t)
0< Ot < min{Z(s’L)Z(t’) Z<S+>Z<t‘>}. (15¢) Pr—
. 269 5t (t+) with equality iff
0<CtD <min{Z80 200, 2200 @5d) gy 60 _g o

St) (S) —7®

As (I0d) is obtained by replacing both?) and Z by (i) sn )_t andp,,” ® =landz,-, =Z2,",, o
their complements an@(Z0c) is obtained by swapgirgdt (i) 23, = b, andZ 21 = b, whereb+ =landb. =
:‘nllmb) we Onlytneelg t?hprovaa) ?%@Z%ﬂ? thz €St proof: The case ofp™*) = 0 is trivial. Otherwise, we
ollow by symmetry. Furthermore, positivity afy>*~ an der the ratio () L, Y Using [TIR) t D thi
C,(f*"t*) is clear by the assumptiof_(14) (far— 1) and the consider ehra P 6/pL S'Z”(% . )AOZ[((% ) dIS
combination formulad {I0a) and{10b). So, we only verify thré’itlo is as shown in[(16). Let = 2,7, b = 7,7, an

upper- bounds r 2 p% and observe that:
Let a = Z(S)l, = Z(t)1 andc £ C,(f tl, for the sake of 1) If (sn,tn) = (+,+), applying the Cauchy-Schwarz
brevity. Note that by definitio) < a« < 1 and0 < b < 1. inequality to the RHS of[(16) we get:
However, if eithera or b is extremal, by assumption_(14), -
¢ = 0 and the claim is trivial. So, for the rest of the proof, we \/ \/ \/ ar br
safely assumé < a <1 and0 < b < 1. 1+a 1+b 1+a\/1+

« To prove [15h) we have to show:

- , o ) - < 2a +ra |2b+7b
2abc 4+ ¢* < min{a*(2b — b*), (2a — a*)b" }. = 1+a 1+0

The above inequality is symmetric ia and b hence Fora € [0,1], b € [0,1] andr € [0,1], each of the
without loss of generality we can assume> b which square-roots are strictly smaller thanunlessr = 1 [1
impliesba > @b and also(2a —a )b > @*(2b—b?). The or a = b = 1. Furthermore, the equality conditions for

LHS of_ther?b(_)ve me::_{uafllty IS mt_:reasmganh_glnce olnce ¢ Cauchy-Schwarz inequality impIW = 4/b/b which
we verify the inequality for maximum possible value o in turn impliesa = b. Therefore, we can conclude that if

¢ we are done. Replacingwith ab we get: (Smytn) = (+,4), p (ssn ttn / (5.1 t) < 1 with equality iff

2abab + (ab)? < (@)*(20 — b?). (2%, =2zY, and p(s Y =1)or (Z<s)1 =z", =1).
Simplifying @* from both sides yield&b — b? < 2b — b2 ;rshetsz;rie(er%l)ment can also be applled to the case of
« To prove [15b) we need to show: 2) If (sn,tn) = (+,—), the RHS of [(Ib) can be bounded
2abc — ¢ < min{a®b?, (2a — a?)(1 — b*)} as:
= min{(ﬁb)2, ag(l +a)(1+0b)} 2\/T 3 \/T b
= — =T
As ¢ < ab the LHS is an increasing function efand we 14+al 1+5b 1+al\l14+5b
only need to verify the inequality for maximum possible -
value ofec. <2,/ b_ <1.
— If @b < ab, the LHS of the inequality will beab)? L+ay1+0b

atc = ab and: _
1As each of them is in the form %7::1)1 which is smaller than

(@b)* < (a@b) x (ab) < [(1+a)(1 +b)] x [ab] one since the numerator is less than the denominator.



Z2®] Z® z2®] 29, (s .
2 e e ’ It (sp,tn) =
1+Z(s) 1+Z(t31 + 1"‘27(1531 1+Z£21pn_1 ( ns n) (+7 +)7

(s) (t) (s) (t)
Z, Il Zyy Znly  (s;t) if (S t ) _ (+ _)
p(ssn,ttn) 1+Z(S)1 1+Z(t) 1_~_Z(s)1 l-i—Z(t) pnfl nytn) — ) I}
n n— n-1 n— n-1
CON ) ® =) ® (16)
pn—l 2 Zns—l Zn—l _ Zns—l anl p(sat) |f (S t ) — (7 +)
1+Z(s) 1+Zy(ltl1 1+Z(s) 1+Z*Eltll n—1 nybn ’ ’

Il
—~
|
|
~—

2 Zy(lel Zy(ltll + Zy(lsll Zy(:ll (s;t) If (S t )
1+2® (*) (s) ® Pn-1 o
+2n21 | 127 4270\ 1+2,7

The Iast inequality follows by observing thatbecause the evolutions &f do not allow Z to jump from
f for 2 € [0,1] with equality iff = = 1. one extreme to the other. Without loss of generality, assume

1+1 - n—1

urthermore it is easy to see that the equalityin all obowe = + which in turn reqwresZ( ) > 1 — 6. Now we
chain of weak inequalities happens {if,b) = (1 O)@ have an incompatible situation;, = + for all n > ng will
By symmetry, this argument also applles to the case dfive Z*" to 0. This shows, cannot converge to a non-zero
(8n,tn) = (=, +)- B value. n

Additionally we can show that the average of the elements
of the correlation coefficients matrix is exponentially $nira

Proof Let p £ CP [s, t] be the common prefix of and -

t andm = |p| its length. Thens,,, 1 # t,,+1 and Property]2 Lemma 6. For anys, t ¢ {77+}n71,
together with either(11b) of_(Ilic) result in:

1
Sm+1,Ptm - § (ss, tt) (S t)
szs’t) < p£§+1+1 plm1) 4 Pn =3F

Property 3. If s # t thenp{&"*) < 1.

(s;t)e{—+}?
2 ZT(?EL)) (s) (t) A
V142w Proof: Leta = 2,7, b= Z,”,, f(z) £ %[ =+
‘/1+7«} andg(z) £ 1[ [Z - H%}.USiﬂg[ﬂh)to[ﬂd)

Z®) 7P _ m_Zm one can easily verify that:

O A = @O + g(@e )

with equality iff z® = 1. m (s,t)e{—,+}2
_ (s,t) | (s,t)
IV. CONVERGENCE OFCORRELATION COEFFICIENTS = {f(“)f(b) +9(a)g(b)py,” 1}9 1

_In the previous section we showed how correlation coeffijow, observe that both sides of the above are positive and:
cients can be computed efficiently by single-step recussion

and derived some algebraic properties of them. In this @ecti [ (a)f(b) + g(a)g (b)p(s tl)}
we show that correlation coefficients converge to zero. - "

) S, S,
Lemma 5. Let s and t be infinite sign sequences such that < {f(a) + 55 g(a) } [f(b)Q + o5t g(b)? }
s # t ands™ and t" be the subsequences corresponding to < [f(a) + g(a) } [f(b) + g(b) }

their first n elements respectively. Thém,, pgl T =0.

Proof: Letm = |CP [s, t]| anda, 2 & *"). Forn > m

by PropertieE]1 arid 3 we knaw, < [0, 1/3] and by Propert&]Z easy to se¢f(x)? + g(v)* = 3 (1 + m which is
it is decreasmg Hence,, is a convergent sequence. Supposaaximized atr = 1 (for z € [0 1]) with value 2 u
its limit is a* > 0. This implies for every > 0 there exist a
ng such that fom > ny, an/an 1 > 1 —e&. By the continuity

where (*) follows from the Cauchy-Schwarz inequality. It is

Corollary 4. The average of the normalized correlation matrix

(s (61 elements satisfies:
of (16), we must haveZ, |, ' —b, | <dand|Z,_, ' —
by, | < & forall n > ng according to equality condition (i) 1 Z pE) < (g)n
of Property[2, where) is a quantity approaching zero as 4r ste{—+}m 3

gets small. This implies,, = s* andt,, = t* for all n > ng
Proof: The result follows by applying Lemmiad % times

2By Property[d this condition impliepffl) =0. and observing thap, = 1. [ |



V. RATE OF CONVERGENCE in terms ofS"~1, S, andp, = |CP[S",t"]|, denoted as

Corollary[4 implies that for large enough almost all of X (S Sn’pn)
non-diagonal entries of,, are small. However, the bound it 1© this end, let

gives is not strong enough to show the asymptotic tightnéss o (s 1" (s) ® ) 2 p;S" )
the union bound on the block error probability of polar cades (Sn’ tns Pz s Zn1y 2, ) (Sn—1gn—1)"
For that, one has to show (i) that the correlations decay like Prn—1

O(2~(+e)m) for somea > 0, and (ii) that this bound applies M (s, t, 7, a,b) takes four possible forms according [01(16),
not just to the average value pf™*) but to max, p$*) for ~€ach of which can be bounded as:

the s's andt’s which index the information channels. M (+,t,7,a,b) < min {17 V2a + r}
To this end, we establish a probabilistic framework simi-
lar to that used in[]1] for proving the channel polarization M (—,t,r,a,b) < min{l,\/ﬁJrr}
theorem. . . . o
Let Si,S;,..., be iid Bernoulli () random variables using Lemmd (and triangle inequality sif~ ¢):
such thatS; € {—,+}, defineS™ £ (5,,5,,...,5,) and Lemma 8. Let f(z) 2 \/ 14z andg(z ) = /115 Define
Fn. 2 o(S") as thecs-algebra generated by random vector
S". We consider the random variables® = E[E®")|S"] F(r,a,b) = 2f(a)f(b) + g(a)g(b)r.
andplS" ") for t" € {—,+}" which are allF,, measurable. Then
We show that for anya > 0, maxensgn pl © ) < F(r,a,b) < min{l,\/%—l—r}, 17)

—(+a)n with very high probability for sufficiently large.
foral 0<r<1,0<a<1,0<b< 1.

A. Closely relateds and t .
] (s.t) ) Proof: Observe that'(r, a,b) > 0 by construction and:
Let us first focus onp, ~ for s and t sharing a long

common prefix. Recall thatCP [s, t] | denotes the length of F(r,a,b)” = (2f(a)f(b) + g(a)g(b)r)*
this prefx S @) + glag®)?
2

Lemma 7. Fix o > 0. Setm,, = 4log(2(1+a)n—1). Then:
(2/(a)” + 9(a)?) (2/(0)° + 9(b)")

lim P max S | where (*) follows by Cauchy-Schwarz inequality. Further-
n—00 t7£87:|CP[S™,t"]|>my, 2 2 2z i
more, 2f(2)* + g(z)® = =5 + 37 = 1 which proves
Proof: Let P = CP[S™,t"] and ny = |P|. Observe F(r,a,b) <1
that P is a uniformly chosen sign sequence fa-, +}™. It is also easy to verifyf(x) < 25 and g(z) < 1 for
According to Propertifl2p!®") = 1 and: vz € [0,1]. Hence:
P) (P r,a,b <V2 +r<vV2a+r
p(snytn) < p(PS"'U+1’Pt"'U+1) _ Z7(740)Z7(740) ( ) f( )
n not1 P),(P) ru
91 ZT(ZO)me) where the last inequality follows by observing that <

1 I vz sincex > 0.
< min {\/527(11:), \/iZflf)}. Observe that the upper-bounds a#h depend onIyZ(S)
(Sn—l n—1

) . Let us also define
Results of [2] show that for any fixed < 8 < 1/2 and

: (s" %) & (s7.£")

§ > 0 there exist ang such that form, > my n.p tno£s™ | OP I 67| <p

P [27(11:) c [2_N§7 1— Q_N(?]} <5 Consequently we may choose:
where Ny = 2. X ("1, +,p,) = min {1 V228 + p£ 1p"*)} (18a)

In particular we takes = i in the above bound and take
_—

n Iarg_e enough _s_o thaty, > mq. I(—1|393n_cen0 > m, > mo, X (an, *,pn) _ min{l, /22(5)1 ijEI 1p; )} (18b)
and with erobablllty at least — 4, 7y,  is extremal. Together
with 2= No'" < 2-2(1+)n+1 e get Now we would like to show thatnin,, x (S™~1, s,,pn)

P [t < 27(1+a)n:| >1_04. m Jets arbitrarily small with very high probability. For thiwe

" - - first need the following lemma:

B. Distantly relateds and t Lemma 9. For any sequence,, such thatlim, . 2 — p, =

A more involved task is find and upper- bound/dﬁ when oo and any fixedy > 0,

s andt do not have a long common prefix. For this purpose no(si)
(st ) lim P (Vi> < :p; ") <=1 (19)

we first seek an upper-bound Qjﬁs o )/ only n— 00 =9 Pip, =



Proof: Observe that for fixeg, p(sl’*) is decreasing in Proof: For any p, let us define the random variable

(s o Bnp £ 1[S, =argmin, x (S"7!,s,p)]. It is easy to see

n/2
i (if ¢ > p). Hencep ) < ~ implies p(s ) < ~ for all

n/2.p thatP [By, , = 1| F,—1] = P[By,, = 01 F 1] = 3.
i 2 n/2. Fix e > 0 and let
Supposes is a seguence such that for sorhet s with
(s726772)
[CP s, t]| < pns £y o > 7. Recall thats® (resp.t?) G )2 Z B
denotes the subsequence ©f(resp.t) including its first: B, P &) = i 2
elements. i=n/2+1

Define a; £ pz(sl’tl) andm; £ a;/a;_;. It is clear that Observe thaf? [Gg(n,p,<)] is independent op and by the
ap,+1 < % and a; is decreasing foi > p, by Propertieg13 Weak Law of Large Numbers for any> 0 there exist ang

and[2. such thatP [Gg(n, p,e)] > 1 —46/2 for n > ny.
For any0 < ¢ < 1, a, 2 > 7 implies that the number of Fix o/ > 0 and define
indicesi € {p, +2,pn +3,..., %} for whichm; <1—c¢is . n - o
at mostli‘)gg((f”g) Gx(n) = {@ > 5 min (877, si,mp) <27 (e )}
Letl! = 5 —p, — 1, takee = 1/+/1, and observe that the ) ] . o
number of indices for whichn; <1 —1/+/1 is at most Sincelim, o0 5 — my = oo, in view of Lemma1D, there
existn; such thatP [G, (n)] > 1 —4/2 for n > n;.
log(37) < — log(37) =1 For n > max{ng,n1}, P[Gr(n,mn,e)NGy(n)] > 1—-146
log(1-1/vl) = 1)Vl T and forS™ € Gg(n,mn,c) NGy (n) and anyt” # S™ such

wherec, is a constant that depends gronly. These indices that|CP [S",t"]| < m,, we have:
partition the intervalp, +2 : %] into at mostc, /] segments, (/24772
one of those must have a length at Iea§fx/i. Let us only log( (S7,¢" )) < log (pn/Q ' )
consider this “long” segment:

The fact thain; > 1—1/+/1 on this segment implies the sign n Z log (x (S, Si,my))
sequences,, 4o, .., 5,/2 Must be constant on this segment oy 0 v
(cf. Proof of Lemmab). The set of sequences of lerigttich
have a run of the same sign for an interval of Iengj;H\/f (2 Z 4(1+ o)
has probability at mos2l -2~ V1, However, by assumption =n/2+
l =2 —p, — 1 goes to infinity asn gets large. Hence the —n(1— )(1 +a).
probablhty of having such a sequence gets arbitrarily small
whenn gets large. B In the above, (*) follows from the fact thai > pS’”

1 and observing that if3; ,,, = 1 thenx(S*~1,S;,m,)
2-40+2Y) (@sS € G, (n)), otherwisex(S*~!, S;,m,) <
hence:

Lemma 10. For any sequencg,, such thatim,, . 4 —pn =
oo and any fixedy > 0

— INIA

n—o0

v i—1 4(14«) | _ .
lim P {Vz > 5 mlnx (S sl,pn) <2- } 1. log (X (S“l, S’L;mn)) < —4(1 4 /)Bim, .

Proof: Let | FOrS € G (n, M, €), Yr oy Biom, 2 @.
Gr(n) 2 {Vi > p_(sz*) < 2—(5+4a)} _ Choosing’ ande such thatl —e)(1+a’) > (14 «) proves
-2 v 7 the claim. |

Observe that Lemmid 9 implies for ady> 0 there exist ang

Theorem 1. For an > 0.
such thatP [Gp(n)] > 1 — 6/2 for n > ny. ye

Let lim P maxp(s ) < gnita)| — g (20)
Gz(n) & {vi> 2 2{ ¢ [27 (8 1 _g-(rssel] |, oo LS
2 Proof: The proof follows by combining the results of

Likewise, the convergence &f process implies that there eX'StLemma['_T and Lemma 11 n

an; such that for anyr > ny P[Gz(n)] > 1 —6/2. '

Now (I18a) and [(18b) imply that foiS € Gg(n) N VI. LOWERBOUND ON PROBABILITY OF ERROR OF
Gz(n), Vi > %, either x (S""!,+,p,) < 2740+ or POLAR CODES
X (Siil, f,pn) < 2740+ For n > max{ng, n1}, . . .
P [Gr(n) NGz(n)] > 1 — & which proves the claim. m In this section, we use our results on correlations among po-

_ . larized BECs to give lower-bounds on block error probapilit
Lemma 11. Fix o > 0 and letm,, = 4log(2(1 4+ a)n — 1)  of Polar Codes over BEC. Recall the analysis of error of the
(as in Lemmal7). Then: code: The error everdt is the union of error events in each of
P . S84 < g-(tram] _ information channelsg = (J . 4, & where A C {—, +}(S)|s
n—yoo  [t#£S:|CP[S t]|<mn. " T the set of information bits anéls denotes the error il .



For a BEC — with a pessimistic assumption on decoder — Choosen large enough such thaﬁ—/ﬂ! > 1-6 and
a decision error happens exactly when an erasure hadi)enp.(N, R,e) < ¢ (note that this is possiBIe sinde < 1 — ¢
Therefore &s = {Ev(ls) = 1} and the union bound gives us: ang the results of [2] suggest thB(N,R,¢) = O (TW)).

Ple]< S 2% (1) BY @
seA S;lfPe(Cn)SS;lfPe(C;)
A trivial lower-bound on the probability of decoding error 1 Ot ot e O om
is obtained by observing that D &, hence,P[£] > P[&] 5 Z 278 + ple )\/Zn Zn \/Zn Zn' |-
for anys € A. In particular, s’tsiftl;':
P[£] > maxP [£] = max Z. (22)  Observe thap'™ < §/N for all s, in the above sum-

. . ation, /. z® 70 < , 7® 70 s 2
However, having the second order statistics, one can use LswedsiiZn It S Dispea, I n "

inclusion—exclusion principle to obtain a much tighter éw
bound on probability of error. Z \/ZT(Zs)Zth) \/Zr(lt)Zr(lt)
Lemma 12. Let W be aBEC(¢) and C,, be a polar code S,bEA, is#t

of block-lengthN = 2™ with information bitsA,,. The block. < Z /fo) /Zr(lt) < Z /Z7(ZS) /Z7(Zt)

error probability of such a code?, (C,,) is lower-bounded as: -

s, te A’ :s#t s, te A7
1 2 (%)
(s) _ = (s) 7 (t) — (s) / (s) /
)= Y 2L Y |2z _[ vzt } 2140 Y 29 < N,
s€A, s,teA,: s€ Al s€ Al

s#t

where (*) follows by the Cauchy-Schwarz inequallty

P 22020 @3 Therefore,

n

1
_ o Si = P(Ca) < 5 |57 + 08, | < s,
whereZ,, vector andp,, matrix can be computed via single- 2

step recursions explained in Sect{on IIl. where the last inequality follows by observing thét <

Proof: The result follows by applying the inclusion—P(N’ R,e) < 4. As aresult,

exclusion principle to lower-bound the probability of (1-6)S!, < P.(Cn)

Usea, &s- . r s 7
While the lower-bound given by Lemrhal12 is already usef@l’} IS> aP??\;jeRloz)ra;eRP (7\[ 8 _ (;B%Re)a ndHek;]yced(\e;lgltg;nn

@n practiC(_a (see Sectid_ﬂ_}’l_l), we seek for a lower-bound thf’bf\l/ve?-bound the LHS of the above by substitutisg with
is theoretically more significant. P (N, (1 — 6)R, ) which completes the proof. -
Theorem 2. LetW be aBEC (¢) and R < 1 —e. LetC,, be a il
polar code of block lengtliv = 2™ with information bits.A,,
such that|A,,| = [NR]. Let P(N, R, ¢) be the sum of NR]
smallest elements of the vectdy,. Then, for any fixed > 0
and sufficiently largen:

. NUMERICAL RESULTS

In this section we provide a numerical example which
confirms our theoretical results. We have considered Polar
Codes of different rates on BEC(0.5) and computed the
upper-bound of[(21), the trivial lower-bound ¢f{22) and the
(1-6)P(N,(1—=0)R,¢e) < P.(C,) < P(N,R,e¢). tighter lower-bound of [(23). We emphasize that we have

) exactly computed the lower-bound on the error probability b
Proof: The upper-bound is already known and we onlgomputing the correlation coefficients. We did the computa-

need to prove the lower-bound. Let tions for block lengths ofV = 4096 (n = 12) andN = 16384
. (n = 14).
D, = {S e{—+}": I?QSXPSLS’” <62 ”} As shown in Tabld]l, the proposed lower bound is much

tighter than the trivial one. Moreover, the results showt tha

By Theoren{lL we know thalim, .., 2=l — 1. Let, ¢/, be the lower bound is very close to the upper bound [of (21).
the polar code defined by the information hit§ = .A,, ND,,  This confirms thatP(N, R, ¢) (as defined in Theorei 2) is

. . A’ i : . .
and S/, & e 79 Itis clear thatlim,, _, - ||An|| _ 1, |Fr>1d|e(redcadvery \?oroI(BJIEeCsnmatlon for block error probability of
S! < P(N,R,¢) (asA,, contains| N R]| smallest elements of olar -odes ove '

Z,), andP.(C],) < P.(C,) asC,, is a sub-code of,,. “For any set ofm numberse;,i = 1,2, -, m:
m 2 m

3A practical decoder can break the ties randomly which irszedhe chance i) <m> a4}
of correctly decoding the bit t(%. An analysis analogous to the one we do i=1 i=1

in this section applies to such a decoder.



R Y.eu, 2 maxsea, Z)  Lower-bound[2B)

0.2 4.04-10718 3.43-10719 4.04-10718
0.25 1.87-10"11 9.25.10~13 1.87-10~11
0.3 5.4-10"7 2.29.10-8 5.4-10"7
0.35 8.14-10~% 2.11-10-° 8.12-10~¢
0.4 0.17 3.49.10-3 0.14

(@) N = 4096

R Dsed, z\? maXse A, z{®  Lower-bound [(ZB)

0.2 9.32.10736 4.72 10737 9.32.10736

0.25 1.32-1022 3.54-10"24 1.32-10—22

0.3 2.32.10713 5.4.10715 2.32.10713

0.35 2.63-10~7 3.61-107° 2.63-10~7

0.4 5.47-1073 4.91-1073 5.43-1073
(b) N = 16384

TABLE [: Bounds on Block Error Probability of Polar Code &EC (0.5)
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