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Abstract—We consider the2n channels synthesized by then-
fold application of Arıkan’s polar transform to a binary era sure
channel (BEC). The synthetic channels are BECs themselves,and
we show that, asymptotically for almost all these channels,the
pairwise correlations between their erasure events are extremely
small: the correlation coefficients vanish faster than any exponen-
tial in n. Such a fast decay of correlations allows us to conclude
that the union bound on the block error probability of polar
codes is very tight.

I. I NTRODUCTION

Channel Polarization is a technique recently introduced by
Arıkan [1] as a means of constructing capacity achieving
codes for binary discrete memoryless channels (B-DMCs). The
underlying principle of channel polarization is the following:
Let W : X −→ Y be a B-DMC with input alphabet
X = F2. From two independent copies ofW synthesize
W− : X −→ Y2 andW+ : X −→ Y2 ×X as:

W−(y1, y2|u1) =
∑

u2∈X

1

2
W (y1|u1 ⊕ u2)W (y2|u2),

W+(y1, y2, u1|u2) =
1

2
W (y1|u1 ⊕ u2)W (y2|u2).

As the superscripts suggestW− turns out to be a B-DMC
worse thanW while W+ is a better B-DMC compared to
W . This transform can be repeatedn times to getN = 2n

B-DMCs W
(s)
n , s ∈ {−,+}n. Arıkan shows that (i) the

transformation preserves the mutual information, (ii)W
(s)
n s

approach to “extremal” channels, i.e., either noiseless or
useless channels. In particular, the fraction of almost noiseless
channels is equal to the symmetric capacity of the original B-
DMC W . Based on these properties Arıkan constructspolar
codesby sending uncoded data bits only on (almost) noiseless
channels and arbitrary (but known to receiver) bits on the
remaining channels. The channels used to transmit information
are referred to as “information” channels and the rest are
called “frozen” channels. A successive cancellation decoder
has been proposed by Arıkan to decode the information bits
with complexityO (N logN) and shown to have a block error
probability that behaves roughly asO

(

2−
√
N
)

(cf. [2]).
The set of Binary Erasure Channels (BECs) is stable under

Polarization in the sense that ifW is a BEC, thenW+ andW−

are also BECs. We denote a BEC with erasure probabilityǫ as
BEC (ǫ). One can establish a one-to-one relationship between
a BEC (ǫ) and an “erasure indicator” random variableE such
thatE ∈ {0, 1} andP [E = 1] = ǫ. The polar transform of a
BEC is hence equivalent to taking two independent copies of
E and creating the erasure indicators ofW− andW+.

Lemma 1 (Polar Transform of BEC [1, Proposition 6]). If
W is a BEC with erasure probabilityǫ, applying the polar
transform (W,W ) 7→ (W−,W+) produces two BECsW+

with erasure probabilityǫ2 andW− with erasure probability
2ǫ − ǫ2. Moreover,W− erases iff either copy ofW erases,
andW+ erases iff both copies ofW erase.

Corollary 1. The erasure indicators ofW− andW+, denoted
by E− andE+, are constructed from two independent copies
of E, denoted byE andE′, as:

E− = max{E,E′} = E + E′ − EE′ (1a)

E+ = min{E,E′} = EE′. (1b)

While two copies ofE are independent (and hence un-
correlated),E+ and E− are correlated:E+ = 1 implies
E− = 1. On the other side, by polarizationW (s)

n s (and
equivalentlyE(s)

n s) become deterministic asn → ∞. Hence
it looks like E

(s)
n and E

(t)
n would become uncorrelated for

s 6= t, wheres and t are sign sequences of lengthn used
for indexing the channels. In particular it is easy to see that
E
[

E
(s)
n E

(t)
n

]

−E
[

E
(s)
n

]

E
[

E
(t)
n

]

is small for almost everys, t.
In this paper we provide upper bounds on correlation

coefficientsdefined as:

ρ(s,t)n ,
E
[

E
(s)
n E

(t)
n

]

− E
[

E
(s)
n

]

E
[

E
(t)
n

]

√

var
[

E
(s)
n

]

var
[

E
(t)
n

]

(2)

and exploit these bounds and the inclusion–exclusion principle
to find lower bounds on the block error probability of polar
codes. In particular, our bounds are strong enough to show that
the sum of the Bhattacharyya parameters of the information
channels is a tight estimate of the block error probability.

II. N OTATION

Throughout this manuscript, we use uppercase letters (like
X) to indicate a random variable, and its lowercase version (x)
for a realization of that random variable. The boldface letters
denote matrices, vectors or sequences which will be clear from
the context.

We denote the sets by script-style uppercase letters likeS
and by|S| we mean the cardinality ofS.

We use thebar notation defined asx , 1− x for the sake
of brevity and refer tox as the “complement” ofx.

For sign sequencess ∈ {−,+}∗ andt ∈ {−,+}∗, CP [s, t]
denotes their common prefix. Furthermore, let|s| denote the
length of a sequences.
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III. PROPERTIES OFCORRELATION COEFFICIENTS

As we mentioned in Section I, we are interested in analyzing
the matrix of correlation coefficients of the erasure indicator
vectorEn =

[

E
(s)
n r : s ∈ {−,+}n

]

. It is more convenient to
index theN = 2n elements of that vector using sign sequences
s ∈ {−,+}n instead of mapping the sign sequences to integers
and using the natural indexing. We will use the same indexing
for theN2 elements of the correlation coefficients matrix.

Arıkan has already shown that the vectorZn = E
[

En

]

can be computed via a single-step recursion. More precisely,
havingZn−1 we can compute the elements ofZn as:

Z(s−)
n = 2Z

(s)
n−1 −

(

Z
(s)
n−1

)2

(3a)

Z(s+)
n =

(

Z
(s)
n−1

)2

(3b)

for ∀s ∈ {−,+}n−1 with Z0 = ǫ. Note that (3a) and (3b) can
also be derived by taking the expectation from both sides of
(1a) and (1b) and using the independence betweenE andE′.

Interestingly, the correlation coefficients matrixρn =
[

ρ
(s,t)
n : s, t ∈ {−,+}n

]

can also be computed via a single-
step recursion as we see in this section.

It is useful to rewrite (1a) and (1b) as

E− = E × E′ (4a)

E+ = E × E′ (4b)

and subsequently (3a) and (3b) as:

Z
(s−)
n = Z

(s)
n−1

2

(5a)

Z(s+)
n = Z

(s)
n−1

2
(5b)

to see the symmetry between ‘minus’ and ‘plus’ transforms.
Recall that the “covariance” of random variablesX andY

is defined as:

cov[X,Y ] , E [XY ]− E [X ]E [Y ] . (6)

Lemma 2. Let X and Y be arbitrary random variables and
setU , X andV , Y . Then:

var[U ] = var[X ]. (7)

Moreover,

cov[U, V ] = cov[X,Y ] (8a)

cov[X,V ] = cov[U, Y ] = − cov[X,Y ] (8b)

Proof: It is clear thatE [U ] = 1 − E [X ] and E [V ] =
1 − E [Y ]. (7) is also trivial sincevar[aX + b] = |a|2 var[X ]
for any constantsa andb. Furthermore:

E [UV ] = E [(1−X)(1− Y )] = 1−E [X ]−E [Y ] +E [XY ]

hence

cov[U, V ] = E [UV ]− E [U ]E [V ]

= E [XY ]− E [X ]E [Y ] = cov[X,Y ]

which proves (8a). Likewise,

E [UY ] = E [(1 −X)Y ] = E [Y ]− E [XY ]

which showscov[U, Y ] = E [UY ]−E [U ]E [Y ] = −E [XY ]+
E [X ]E [Y ] = − cov[X,Y ]. The same argument applies to
cov[X,V ] which proves (8b).

Corollary 2. LetX ,Y ,U andV be defined as in Lemma 2 and
ρ[X,Y ] ,

cov[X,Y ]√
var[X] var[Y ]

denote the correlation coefficient

between random variablesX andY , then:

ρ[U, V ] = ρ[X,Y ] (9a)

ρ[X,V ] = ρ[U, Y ] = −ρ[X,Y ] (9b)

Lemma 3. The covariance matrix of the random vectorEn,
Cn ,

[

C
(s,t)
n : s, t ∈ {−,+}n

]

where

C(s,t)
n , cov

[

E(s)
n , E(t)

n

]

,

can be computed in terms ofCn−1 andZn−1 as follows:

C(s−,t−)
n = 2Z

(s)
n−1Z

(t)
n−1C

(s,t)
n−1 + C

(s,t)
n−1

2
, (10a)

C(s−,t+)
n = 2Z

(s)
n−1Z

(t)
n−1C

(s,t)
n−1 − C

(s,t)
n−1

2
, (10b)

C(s+,t−)
n = 2Z

(s)
n−1Z

(t)
n−1C

(s,t)
n−1 − C

(s,t)
n−1

2
, (10c)

C(s+,t+)
n = 2Z

(s)
n−1Z

(t)
n−1C

(s,t)
n−1 + C

(s,t)
n−1

2
. (10d)

It is clear thatC0 = ǫǫ whereǫ is the erasure probability of
the underlying BEC.

Proof: We first prove (10d) and then show how the rest
of results easily follow using Lemma 2.

Recall thatE(s+)
n = E

(s)
n−1 × E

(s)
n−1

′
andE

(t+)
n = E

(t)
n−1 ×

E
(t)
n−1

′
. Furthermore,E

[

E
(s)
n−1

]

= Z
(s)
n−1 and E

[

E
(t)
n−1

]

=

Z
(t)
n−1:

cov
[

E(s+)
n , E(t+)

n

]

= E

[

E
(s)
n−1E

(s)
n−1

′
E

(t)
n−1E

(t)
n−1

′]

− E

[

E
(s)
n−1E

(s)
n−1

′]
E

[

E
(t)
n−1E

(t)
n−1

′]

(∗)
= E

[

E
(s)
n−1E

(t)
n−1

]2 − E
[

E
(s)
n−1

]2
E
[

E
(t)
n−1

]2

=
(

E
[

E
(s)
n−1E

(t)
n−1

]

− Z
(s)
n−1Z

(t)
n−1

)2

+ 2Z
(s)
n−1Z

(t)
n−1

(

E
[

E
(s)
n−1E

(t)
n−1

]

− Z
(s)
n−1Z

(t)
n−1

)

= C
(s,t)
n−1

2
+ 2Z

(s)
n−1Z

(t)
n−1C

(s,t)
n−1 .

Note that in (*) we have used the independence between the
indicator variables withprime and the ones without that and
the fact that they are both identical copies of the same random
variable.

Now observe thatE(s−)
n = E

(s)
n−1 × E

(s)
n−1

′
and E

(t−)
n =

E
(t)
n−1 × E

(t)
n−1

′
.



To computeC(s−,t−)
n , using (8a) we have:

cov
[

E(s−)
n , E(t−)

n

]

= cov

[

E
(s)
n−1 × E

(s)
n−1

′
, E

(t)
n−1 × E

(t)
n−1

′
]

= cov
[

E
(s)
n−1 × E

(s)
n−1

′
, E

(t)
n−1 × E

(t)
n−1

′]

(∗)
= C

(s,t)
n−1

2
+ 2Z

(s)
n−1Z

(t)
n−1C

(s,t)
n−1

where (*) follows by observing that we are essentially com-
puting the same covariance as the one we just computed to

show (10d) considering the facts that (i)cov
[

E
(s)
n−1, E

(t)
n−1

]

=

cov
[

E
(s)
n−1, E

(t)
n−1

]

(using (8a) once again) and (ii)E
[

E
(s)
n−1

]

=

Z
(s)
n−1 andE

[

E
(t)
n−1

]

= Z
(t)
n−1.

Likewise (10b) (similarly (10c)) follows using (8b):

cov
[

E(s−)
n , E(t+)

n

]

= cov

[

E
(s)
n−1 × E

(s)
n−1

′
, E

(t)
n−1 × E

(t)
n−1

′
]

= − cov
[

E
(s)
n−1 × E

(s)
n−1

′
, E

(t)
n−1 × E

(t)
n−1

′]

(∗)
= −

(

C
(s,t)
n−1

2
− 2Z

(s)
n−1Z

(t)
n−1C

(s,t)
n−1

)

.

Once again in (*) we are computing the same form of
covariance as the one we did to show (10d) considering the

fact thatcov
[

E
(s)
n−1, E

(t)
n−1

]

= − cov
[

E
(s)
n−1, E

(t)
n−1

]

= −C
(s,t)
n−1

(by (8b)).

Corollary 3. The correlation coefficients matrix of the random
vectorEn, defined asρn ,

[

ρ
(s,t)
n

]

(whereρ(s,t)n is defined
in (2)) can be computed in terms ofρn−1 andZn−1 as:

ρ(s−,t−)
n = 2

√

√

√

√

√

Z
(s)
n−1

1 + Z
(s)
n−1

√

√

√

√

√

Z
(t)
n−1

1 + Z
(t)
n−1

ρ
(s,t)
n−1

+

√

√

√

√

Z
(s)
n−1

1 + Z
(s)
n−1

√

√

√

√

Z
(t)
n−1

1 + Z
(t)
n−1

ρ
(s,t)
n−1

2
(11a)

ρ(s−,t+)
n = 2

√

√

√

√

√

Z
(s)
n−1

1 + Z
(s)
n−1

√

√

√

√

Z
(t)
n−1

1 + Z
(t)
n−1

ρ
(s,t)
n−1

−

√

√

√

√

Z
(s)
n−1

1 + Z
(s)
n−1

√

√

√

√

Z
(t)
n−1

1 + Z
(t)
n−1

ρ
(s,t)
n−1

2
(11b)

ρ(s+,t−)
n = 2

√

√

√

√

Z
(s)
n−1

1 + Z
(s)
n−1

√

√

√

√

√

Z
(t)
n−1

1 + Z
(t)
n−1

ρ
(s,t)
n−1

−

√

√

√

√

Z
(s)
n−1

1 + Z
(s)
n−1

√

√

√

√

Z
(t)
n−1

1 + Z
(t)
n−1

ρ
(s,t)
n−1

2
(11c)

ρ(s+,t+)
n = 2

√

√

√

√

Z
(s)
n−1

1 + Z
(s)
n−1

√

√

√

√

Z
(t)
n−1

1 + Z
(t)
n−1

ρ
(s,t)
n−1

+

√

√

√

√

Z
(s)
n−1

1 + Z
(s)
n−1

√

√

√

√

Z
(t)
n−1

1 + Z
(t)
n−1

ρ
(s,t)
n−1

2
(11d)

Clearly ρ0 = 1.

Proof: Once again we only prove (11d) and the rest follow
by the symmetry using Corollary 2. SinceE(s)

n s are{0, 1}
valued RVs with meanZ(s)

n :

var[E(s)
n ] = Z(s)

n Z
(s)
n . (12)

Setting C
(s,t)
n = ρ

(s,t)
n

√

Z
(s)
n Z

(s)
n Z

(t)
n Z

(t)
n in both sides of

(10d) and using the fact thatZ(s+)
n = Z

(s)
n−1

2
(similarly

Z
(t+)
n = Z

(t)
n−1

2
) we get:

ρ(s+,t+)
n

√

Z
(s)
n−1

2(

Z
(s)
n−1

2)

Z
(t)
n−1

2(

Z
(t)
n−1

2)

=

2Z
(s)
n−1Z

(t)
n−1

√

Z
(s)
n−1Z

(s)
n−1Z

(t)
n−1Z

(t)
n−1ρ

(s,t)
n−1

+
(

Z
(s)
n−1Z

(s)
n−1Z

(t)
n−1Z

(t)
n−1

)

ρ
(s,t)
n−1

2

Eliminating Z
(s)
n−1Z

(t)
n−1 from both sides and observing that

√

xx
1−x2 =

√

x
1+x and x√

1−x2
=

√

x
1+x proves the claim.

The property of being computable by a single-step recursion
generalizes to higher order statistics:

Lemma 4. In general them-th order moments of the random
variables E

(sn)
n , sn ∈ {−,+}n can be computed from the

m-th order moments of random variablesE
(sn−1)
n−1 , sn−1 ∈

{−,+}n−1.

Proof: By them-th order moment we mean:

E

[

E
(sn1 )
n E

(sn2 )
n · · ·E(snm)

n

]

for some set of indicessn1 , s
n
2 , · · · , snm which arenot neces-

sarily distinct.
Let sn−1 denote the subsequence ofsn including its firstn−

1 elements and observe that for anyk ∈ {1, 2, . . . ,m}, E(snk )
n

is linear in each ofE
(sn−1

k )
n−1 andE

(sn−1
k )

n−1

′
(cf. (1a) and (1b)).

This means in the expansion ofE(sn1 )
n E

(sn2 )
n · · ·E(snm)

n we will

have the terms in the form ofE
(sn−1

1 )
n−1 E

(sn−1
2 )

n−1 · · ·E(sn−1
l )

n−1 ×
E
(sn−1

1

′)
n−1

′
E
(sn−1

2

′)
n−1

′
· · ·E(sn−1

l′
′)

n−1

′
for somel ≤ m and l′ ≤ m.

The independence of the variables with prime and the one
without prime implies that the expectation of such product will
be product of two expectations each of which is at most an

m-th order moment of the random variablesE
(sn−1)
n−1 .

One can derive the properties stated in the sequel onρ
(s,t)
n

according to the aforementioned recursions:

Property 1.

0 ≤ ρ(s,t)n ≤ min











√

√

√

√

Z
(s)
n Z

(t)
n

Z
(s)
n Z

(t)
n

,

√

√

√

√

Z
(s)
n Z

(t)
n

Z
(s)
n Z

(t)
n











(13)



Property 1 follows as a corollary of the following property
on C

(s,t)
n :

Property.

0 ≤ C(s,t)
n ≤ min

{

Z
(s)
n Z(t)

n , Z(s)
n Z

(t)
n

}

(14)

Proof: We prove the claim by induction onn. The claim
is trivially true for n = 0 since:

0 ≤ C0 = var[E0] = ǫǫ ≤ min{ǫǫ, ǫǫ}
whereǫ is the erasure probability of the underlying BEC.

Now, assuming (14) holds forn− 1, we shall show:

0 ≤ C(s−,t−)
n ≤ min

{

Z
(s−)
n Z(t−)

n , Z(s−)
n Z

(t−)
n

}

. (15a)

0 ≤ C(s−,t+)
n ≤ min

{

Z
(s−)
n Z(t+)

n , Z(s−)
n Z

(t+)
n

}

. (15b)

0 ≤ C(s+,t−)
n ≤ min

{

Z
(s+)
n Z(t−)

n , Z(s+)
n Z

(t−)
n

}

. (15c)

0 ≤ C(s+,t+)
n ≤ min

{

Z
(s+)
n Z(t+)

n , Z(s+)
n Z

(t+)
n

}

. (15d)

As (10d) is obtained by replacing bothZ(t)
n andZ

(s)
n by

their complements and (10c) is obtained by swappings andt
in (10b) we only need to prove (15a) and (15b) and the rest
follow by symmetry. Furthermore, positivity ofC(s−,t−)

n and
C

(s−,t+)
n is clear by the assumption (14) (forn− 1) and the

combination formulae (10a) and (10b). So, we only verify the
upper-bounds.

Let a , Z
(s)
n−1, b , Z

(t)
n−1 and c , C

(s,t)
n−1 , for the sake of

brevity. Note that by definition0 ≤ a ≤ 1 and 0 ≤ b ≤ 1.
However, if eithera or b is extremal, by assumption (14),
c = 0 and the claim is trivial. So, for the rest of the proof, we
safely assume0 < a < 1 and0 < b < 1.

• To prove (15a) we have to show:

2abc+ c2 ≤ min{a2(2b− b2), (2a− a2)b
2}.

The above inequality is symmetric ina and b hence
without loss of generality we can assumea ≥ b which
implies ba ≥ ab and also(2a−a2)b

2 ≥ a2(2b− b2). The
LHS of the above inequality is increasing inc, hence once
we verify the inequality for maximum possible value of
c we are done. Replacingc with ab we get:

2abab+ (ab)2 ≤ (a)2(2b− b2).

Simplifying a2 from both sides yields2b− b2 ≤ 2b− b2.
• To prove (15b) we need to show:

2abc− c2 ≤ min{a2b2, (2a− a2)(1 − b2)}
= min{(ab)2, ab(1 + a)(1 + b)}

As c ≤ ab the LHS is an increasing function ofc and we
only need to verify the inequality for maximum possible
value ofc.

– If ab ≤ ab, the LHS of the inequality will be(ab)2

at c = ab and:

(ab)2 ≤ (ab)× (ab) < [(1 + a)(1 + b)]×
[

ab
]

– If ab ≤ ab, then the LHS of our inequality atc = ab
will be equal to:

2ab× ab−
(

ab
)2

= ab
[

2ab− ab
]

= ab [ab+ a+ b− 1]

= ab [(1 + a)(1 + b)− 2]

≤ ab(1 + a)(1 + b)

Furthermore, as the LHS is increasing inc, at c = ab
it will be less than(ab)2 (its value atc = ab).

Remark.This upper-bound shows for almost all choices ofs

and t, C(s,t)
n = E

[

E
(s)
n E

(t)
n

]

− E
[

E
(s)
n

]

E
[

E
(t)
n

]

goes to zero
asn gets large.

Property 2. For s, t ∈ {−,+}n−1 and sn, tn ∈ {−,+}

ρ(ssn,ttn)n ≤ ρ
(s,t)
n−1

with equality iff

(i) ρ
(s,t)
n−1 = 0, or

(ii) sn = tn and ρ
(s,t)
n−1 = 1 andZ

(s)
n−1 = Z

(t)
n−1, or

(iii) Z
(s)
n−1 = bsn andZ(t)

n−1 = btn , whereb+ = 1 andb− = 0.

Proof: The case ofρ(s,t)n−1 = 0 is trivial. Otherwise, we

consider the ratioρ(ssn,ttn)n /ρ
(s,t)
n−1 . Using (11a) to (11d) this

ratio is as shown in (16). Leta , Z
(s)
n−1, b , Z

(t)
n−1 and

r , ρ
(s,t)
n−1 and observe that:

1) If (sn, tn) = (+,+), applying the Cauchy-Schwarz
inequality to the RHS of (16) we get:





√

2a

1 + a

√

2b

1 + b
+

√

ar

1 + a

√

br

1 + b





≤
√

2a+ ra

1 + a

√

2b+ rb

1 + b

For a ∈ [0, 1], b ∈ [0, 1] and r ∈ [0, 1], each of the
square-roots are strictly smaller than1 unlessr = 1 1

or a = b = 1. Furthermore, the equality conditions for

Cauchy-Schwarz inequality imply
√

a/a =
√

b/b which
in turn impliesa = b. Therefore, we can conclude that if
(sn, tn) = (+,+), ρ(ssn,ttn)n−1 /ρ

(s,t)
n−1 ≤ 1 with equality iff

(Z(s)
n−1 = Z

(t)
n−1 andρ(s,t)n−1 = 1) or (Z(s)

n−1 = Z
(t)
n−1 = 1).

The same argument can also be applied to the case of
(sn, tn) = (−,−).

2) If (sn, tn) = (+,−), the RHS of (16) can be bounded
as:

2

√

a

1 + a

√

b

1 + b
−
√

a

1 + a

√

b

1 + b
r

≤ 2

√

a

1 + a

√

b

1 + b
≤ 1.

1As each of them is in the form of
√

1+x+(r−1)x
1+x

which is smaller than
one since the numerator is less than the denominator.



ρ
(ssn,ttn)
n

ρ
(s,t)
n−1

=



































































2

√

Z
(s)
n−1

1+Z
(s)
n−1

√

Z
(t)
n−1

1+Z
(t)
n−1

+

√

Z
(s)
n−1

1+Z
(s)
n−1

√

Z
(t)
n−1

1+Z
(t)
n−1

ρ
(s,t)
n−1 if (sn, tn) = (+,+),

2

√

Z
(s)
n−1

1+Z
(s)
n−1

√

Z
(t)
n−1

1+Z
(t)
n−1

−
√

Z
(s)
n−1

1+Z
(s)
n−1

√

Z
(t)
n−1

1+Z
(t)
n−1

ρ
(s,t)
n−1 if (sn, tn) = (+,−),

2

√

Z
(s)
n−1

1+Z
(s)
n−1

√

Z
(t)
n−1

1+Z
(t)
n−1

−
√

Z
(s)
n−1

1+Z
(s)
n−1

√

Z
(t)
n−1

1+Z
(t)
n−1

ρ
(s,t)
n−1 if (sn, tn) = (−,+),

2

√

Z
(s)
n−1

1+Z
(s)
n−1

√

Z
(t)
n−1

1+Z
(t)
n−1

+

√

Z
(s)
n−1

1+Z
(s)
n−1

√

Z
(t)
n−1

1+Z
(t)
n−1

ρ
(s,t)
n−1 if (sn, tn) = (−,−).

(16)

The last inequality follows by observing that
√

x
1+x ≤ 1√

2
for x ∈ [0, 1] with equality iff x = 1.

Furthermore, it is easy to see that the equality in all obove
chain of weak inequalities happens iff(a, b) = (1, 0)2.
By symmetry, this argument also applies to the case of
(sn, tn) = (−,+).

Property 3. If s 6= t thenρ(s,t)n ≤ 1
3 .

Proof: Let p , CP [s, t] be the common prefix ofs and
t andm , |p| its length. Thensm+1 6= tm+1 and Property 2
together with either (11b) or (11c) result in:

ρ(s,t)n ≤ ρ
(psm+1,ptm+1)
m+1

= 2

√

Z
(p)
m

1 + Z
(p)
m

√

√

√

√

Z
(p)
m

1 + Z
(p)
m

−

√

√

√

√

Z
(p)
m

1 + Z
(p)
m

√

√

√

√

Z
(p)
m

1 + Z
(p)
m

=

√

√

√

√

√

Z
(p)
m Z

(p)
m

(

1 + Z
(p)
m

)(

1 + Z
(p)
m

) =

√

√

√

√

Z
(p)
m Z

(p)
m

2 + Z
(p)
m Z

(p)
m

≤ 1

3

with equality iff Z(p)
m = 1

2 .

IV. CONVERGENCE OFCORRELATION COEFFICIENTS

In the previous section we showed how correlation coeffi-
cients can be computed efficiently by single-step recursions
and derived some algebraic properties of them. In this section
we show that correlation coefficients converge to zero.

Lemma 5. Let s and t be infinite sign sequences such that
s 6= t and sn and tn be the subsequences corresponding to
their first n elements respectively. Thenlimn→∞ ρ

(sn,tn)
n = 0.

Proof: Letm = |CP [s, t]| andan , ρ
(sn,tn)
n . Forn > m,

by Properties 1 and 3 we knowan ∈ [0, 1/3] and by Property 2
it is decreasing. Hence,an is a convergent sequence. Suppose
its limit is a∗ > 0. This implies for everyε > 0 there exist a
n0 such that forn > n0, an/an−1 ≥ 1− ε. By the continuity

of (16), we must have|Z(sn−1)
n−1 − bsn | < δ and |Z(tn−1)

n−1 −
btn | < δ for all n > n0 according to equality condition (iii)
of Property 2, whereδ is a quantity approaching zero asε
gets small. This impliessn = s∗ and tn = t∗ for all n > n0

2By Property 1 this condition impliesρ(s,t)n−1 = 0.

because the evolutions ofZ do not allowZ to jump from
one extreme to the other. Without loss of generality, assume

s∗ = + which in turn requiresZ
(sn−1)
n−1 > 1 − δ. Now we

have an incompatible situation:sn = + for all n > n0 will
driveZ

(sn)
n to 0. This showsan cannot converge to a non-zero

value.
Additionally we can show that the average of the elements

of the correlation coefficients matrix is exponentially small in
n.

Lemma 6. For any s, t ∈ {−,+}n−1,

1

4

∑

(s,t)∈{−,+}2

ρ(ss,tt)n ≤ 2

3
ρ
(s,t)
n−1 .

Proof: Let a = Z
(s)
n−1, b = Z

(t)
n−1, f(x) , 1√

2

[
√

x
1+x +

√

x
1+x

]

, andg(x) , 1
2

[√

x
1+x−

√

x
1+x

]

. Using (11a) to (11d)

one can easily verify that:

1

4

∑

(s,t)∈{−,+}2

ρ(ss,tt)n = f(a)f(b)ρ
(s,t)
n−1 + g(a)g(b)ρ

(s,t)
n−1

2

=
[

f(a)f(b) + g(a)g(b)ρ
(s,t)
n−1

]

ρ
(s,t)
n−1 .

Now, observe that both sides of the above are positive and:
[

f(a)f(b) + g(a)g(b)ρ
(s,t)
n−1

]2

(*)
≤

[

f(a)2 + ρ
(s,t)
n−1g(a)

2
] [

f(b)2 + ρ
(s,t)
n−1g(b)

2
]

≤
[

f(a)2 + g(a)2
] [

f(b)2 + g(b)2
]

where (*) follows from the Cauchy-Schwarz inequality. It is
easy to seef(x)2 + g(x)2 = 1

2

(

1 +
√

xx
(1+x)(1+x)

)

which is

maximized atx = 1
2 (for x ∈ [0, 1]) with value 2

3 .

Corollary 4. The average of the normalized correlation matrix
elements satisfies:

1

4n

∑

s,t∈{−,+}n

ρ(s,t)n ≤
(2

3

)n

Proof: The result follows by applying Lemma 6n times
and observing thatρ0 = 1.



V. RATE OF CONVERGENCE

Corollary 4 implies that for large enoughn, almost all of
non-diagonal entries ofρn are small. However, the bound it
gives is not strong enough to show the asymptotic tightness of
the union bound on the block error probability of polar codes.
For that, one has to show (i) that the correlations decay like
O
(

2−(1+α)n
)

for someα > 0, and (ii) that this bound applies

not just to the average value ofρ(s,t)n but tomaxt6=s ρ
(s,t)
n for

the s’s andt’s which index the information channels.
To this end, we establish a probabilistic framework simi-

lar to that used in [1] for proving the channel polarization
theorem.

Let S1, S2, . . . , be i.i.d Bernoulli
(

1
2

)

random variables
such thatSi ∈ {−,+}, defineSn , (S1, S2, . . . , Sn) and
Fn , σ(Sn) as theσ-algebra generated by random vector
Sn. We consider the random variablesZ(S)

n = E
[

E
(Sn)
n |Sn

]

andρ(S
n,tn)

n for tn ∈ {−,+}n which are allFn measurable.
We show that for anyα > 0, maxtn 6=Sn ρ

(Sn,tn)
n ≤

2−(1+α)n with very high probability for sufficiently largen.

A. Closely relateds and t

Let us first focus onρ(s,t)n for s and t sharing a long
common prefix. Recall that|CP [s, t] | denotes the length of
this prefix.

Lemma 7. Fix α > 0. Setmn , 4 log
(

2(1+α)n− 1
)

. Then:

lim
n→∞

P

[

max
tn 6=Sn:|CP[Sn,tn]|≥mn

ρ(S
n,tn)

n ≤ 2−(1+α)n

]

= 1

Proof: Let P = CP [Sn, tn] and n0 = |P|. Observe
that P is a uniformly chosen sign sequence in{−,+}n0.
According to Property 2,ρ(P,P)

n0 = 1 and:

ρ(S
n,tn)

n < ρ
(PSn0+1,Ptn0+1)
n0+1 =

√

√

√

√

Z
(P)
n0 Z

(P)
n0

2 + Z
(P)
n0 Z

(P)
n0

≤ min

{

√

1

2
Z

(P)
n0 ,

√

1

2
Z

(P)
n0

}

.

Results of [2] show that for any fixed0 < β < 1/2 and
δ > 0 there exist am0 such that forn0 ≥ m0

P

[

Z(P)
n0

∈ [2−Nβ
0 , 1− 2−Nβ

0 ]
]

< δ

whereN0 = 2n0 .
In particular we takeβ = 1

4 in the above bound and take
n large enough so thatmn ≥ m0. Hencen0 ≥ mn ≥ m0,
and with probability at least1− δ, Z(P)

n0 is extremal. Together
with 2−N

1/4
0 ≤ 2−2(1+α)n+1 we get

P

[

ρ(S
n,tn)

n ≤ 2−(1+α)n
]

≥ 1− δ.

B. Distantly relateds and t

A more involved task is find and upper-bound onρ
(s,t)
n when

s andt do not have a long common prefix. For this purpose

we first seek an upper-bound onρ(S
n,tn)

n /ρ
(Sn−1,tn−1)
n−1 only

in terms of Sn−1, Sn and pn = |CP [Sn, tn]|, denoted as
χ
(

Sn−1, Sn, pn
)

.
To this end, let:

M
(

Sn, tn, ρ
(Sn−1,tn−1)
n−1 , Z

(S)
n−1, Z

(t)
n−1

)

,
ρ
(Sn,tn)
n

ρ
(Sn−1,tn−1)
n−1

.

M (s, t, r, a, b) takes four possible forms according to (16),
each of which can be bounded as:

M (+, t, r, a, b) ≤ min
{

1,
√
2a+ r

}

M (−, t, r, a, b) ≤ min
{

1,
√
2a+ r

}

using Lemma 8 (and triangle inequality ifs 6= t):

Lemma 8. Let f(x) ,
√

x
1+x and g(x) ,

√

x
1+x . Define

F (r, a, b) , 2f(a)f(b) + g(a)g(b)r.

Then
F (r, a, b) ≤ min

{

1,
√
2a+ r

}

, (17)

for all 0 ≤ r ≤ 1, 0 ≤ a ≤ 1, 0 ≤ b ≤ 1.

Proof: Observe thatF (r, a, b) ≥ 0 by construction and:

F (r, a, b)2 = (2f(a)f(b) + g(a)g(b)r)2

r<1
≤ (2f(a)f(b) + g(a)g(b))2

(∗)
≤

(

2f(a)2 + g(a)2
) (

2f(b)2 + g(b)2
)

where (*) follows by Cauchy-Schwarz inequality. Further-
more, 2f(x)2 + g(x)2 = 2x

1+x + x
1+x = 1 which proves

F (r, a, b) ≤ 1.
It is also easy to verifyf(x) ≤ 1√

2
and g(x) ≤ 1 for

∀x ∈ [0, 1]. Hence:

F (r, a, b) ≤
√
2f(a) + r ≤

√
2a+ r

where the last inequality follows by observing that
√

x
1+x ≤

√
x sincex ≥ 0.
Observe that the upper-bounds onM depend onlyZ(S)

n−1

andρ
(Sn−1,tn−1)
n−1 . Let us also define

ρ(s
n,∗)

n,p , max
tn 6=sn:|CP[sn,tn]|≤p

ρ(s
n,tn)

n .

Consequently we may choose:

χ
(

Sn−1,+, pn
)

= min

{

1,

√

2Z
(S)
n−1 + ρ

(Sn−1,∗)
n−1,pn

}

(18a)

χ
(

Sn−1,−, pn
)

= min

{

1,

√

2Z
(S)
n−1 + ρ

(Sn−1,∗)
n−1,pn

}

(18b)

Now we would like to show thatminsn χ
(

Sn−1, sn, pn
)

gets arbitrarily small with very high probability. For this, we
first need the following lemma:

Lemma 9. For any sequencepn such thatlimn→∞
n
2 − pn =

∞ and any fixedγ > 0,

lim
n→∞

P

[

∀i ≥ n

2
: ρ

(Si,∗)
i,pn

≤ γ

]

= 1. (19)



Proof: Observe that for fixedp, ρ
(si,∗)
i,p is decreasing in

i (if i > p). Henceρ
(sn/2,∗)
n/2,pn

≤ γ implies ρ
(sn,∗)
i,pn

≤ γ for all
i ≥ n/2.

Supposes is a sequence such that for somet 6= s with

|CP [s, t]| ≤ pn, ρ
(sn/2,tn/2)
n/2 > γ. Recall thatsi (resp.ti)

denotes the subsequence ofs (resp. t) including its first i
elements.

Define ai , ρ
(si,ti)
i and mi , ai/ai−1. It is clear that

apn+1 ≤ 1
3 and ai is decreasing fori > pn by Properties 3

and 2.
For any0 < ε < 1, an/2 > γ implies that the number of

indicesi ∈ {pn + 2, pn + 3, . . . , n
2 } for which mi ≤ 1− ε is

at most log(3γ)
log(1−ε) .

Let l = n
2 − pn − 1, takeε = 1/

√
l, and observe that the

number of indices for whichmi ≤ 1− 1/
√
l is at most

log(3γ)

log(1− 1/
√
l)

≤ − log(3γ)

1/
√
l

= cγ
√
l,

wherecγ is a constant that depends onγ only. These indices
partition the interval[pn+2 : n

2 ] into at mostcγ
√
l segments,

one of those must have a length at leastc−1
γ

√
l. Let us only

consider this “long” segment:
The fact thatmi ≥ 1−1/

√
l on this segment implies the sign

sequencespn+2, . . . , sn/2 must be constant on this segment
(cf. Proof of Lemma 5). The set of sequences of lengthl which
have a run of the same sign for an interval of lengthc−1

γ

√
l

has probability at most2l · 2−c−1
γ

√
l. However, by assumption

l = n
2 − pn − 1 goes to infinity asn gets large. Hence the

probability of having such as sequence gets arbitrarily small
whenn gets large.

Lemma 10. For any sequencepn such thatlimn→∞
n
2 −pn =

∞ and any fixedα > 0

lim
n→∞

P

[

∀i > n

2
: min

si
χ
(

Si−1, si, pn
)

≤ 2−4(1+α)

]

= 1.

Proof: Let

GR(n) ,

{

∀i ≥ n

2
: ρ

(Si,∗)
i,pn

≤ 2−(5+4α)

}

.

Observe that Lemma 9 implies for anyδ > 0 there exist an0

such thatP [GR(n)] ≥ 1− δ/2 for n ≥ n0.
Let

GZ(n) ,
{

∀i ≥ n

2
: Z

(S)
i /∈

[

2−(11+8α), 1− 2−(11+8α)
]}

.

Likewise, the convergence ofZ process implies that there exist
a n1 such that for anyn ≥ n1 P [GZ(n)] ≥ 1− δ/2.

Now (18a) and (18b) imply that forS ∈ GR(n) ∩
GZ(n), ∀i > n

2 , either χ
(

Si−1,+, pn
)

≤ 2−4(1+α) or
χ
(

Si−1,−, pn
)

≤ 2−4(1+α). For n ≥ max{n0, n1},
P [GR(n) ∩ GZ(n)] ≥ 1− δ which proves the claim.

Lemma 11. Fix α > 0 and letmn , 4 log
(

2(1 + α)n − 1
)

(as in Lemma 7). Then:

lim
n→∞

P

[

max
t6=S:|CP[S,t]|<mn

ρ(S,t)n ≤ 2−(1+α)n

]

= 1

Proof: For any p, let us define the random variable
Bn,p , 1

[

Sn = argmins χ
(

Sn−1, s, p
)]

. It is easy to see
thatP [Bn,p = 1|Fn−1] = P [Bn,p = 0|Fn−1] =

1
2 .

Fix ε > 0 and let

GB(n, p, ε) ,







1

n/2

n
∑

i=n/2+1

Bi,p ≥ 1− ε

2







.

Observe thatP [GB(n, p, ε)] is independent ofp and by the
Weak Law of Large Numbers for anyδ > 0 there exist an0

such thatP [GB(n, p, ε)] ≥ 1− δ/2 for n ≥ n0.
Fix α′ > 0 and define

Gχ(n) ,

{

i >
n

2
: min

si
χ(Si−1, si,mn) ≤ 2−4(1+α′)

}

Sincelimn→∞
n
2 −mn = ∞, in view of Lemma 10, there

exist n1 such thatP [Gχ(n)] ≥ 1− δ/2 for n ≥ n1.
For n ≥ max{n0, n1}, P [GB(n,mn, ε) ∩ Gχ(n)] ≥ 1 − δ

and forSn ∈ GB(n,mn, ε) ∩ Gχ(n) and anytn 6= Sn such
that |CP [Sn, tn]| < mn we have:

log
(

ρ(S
n,tn)

n

)

≤ log

(

ρ
(Sn/2,tn/2)
n/2

)

+

n
∑

i=n/2+1

log
(

χ
(

Si−1, Si,mn

))

(∗)
≤

n
∑

i=n/2+1

−4(1 + α′)Bi,mn

≤ −n(1− ε)(1 + α′).

In the above, (*) follows from the fact that0 ≥ ρ
(s,t)
n ≤

1 and observing that ifBi,mn = 1 then χ(Si−1, Si,mn) ≤
2−4(1+α′) (as S ∈ Gχ(n)), otherwiseχ(Si−1, Si,mn) ≤ 1
hence:

log
(

χ
(

Si−1, Si,mn

))

≤ −4(1 + α′)Bi,mn .

For S ∈ GB(n,mn, ε),
∑n

i=n/2+1 Bi,mn ≥ n(1−ε)
4 .

Choosingα′ andε such that(1−ε)(1+α′) ≥ (1+α) proves
the claim.

Theorem 1. For anyα > 0.

lim
n→∞

P

[

max
t6=S

ρ(S,t)n ≤ 2−n(1+α)

]

= 1. (20)

Proof: The proof follows by combining the results of
Lemma 7 and Lemma 11.

VI. L OWER BOUND ON PROBABILITY OF ERROR OF

POLAR CODES

In this section, we use our results on correlations among po-
larized BECs to give lower-bounds on block error probability
of Polar Codes over BEC. Recall the analysis of error of the
code: The error eventE is the union of error events in each of
information channels:E =

⋃

s∈A Es whereA ⊂ {−,+}n is

the set of information bits andEs denotes the error inW (s)
n .



For a BEC — with a pessimistic assumption on decoder —
a decision error happens exactly when an erasure happens.3

Therefore,Es =
{

E
(s)
n = 1

}

and the union bound gives us:

P [E ] ≤
∑

s∈A
Z(s)
n (21)

A trivial lower-bound on the probability of decoding error
is obtained by observing thatE ⊇ Es, hence,P [E ] ≥ P [Es]
for any s ∈ A. In particular,

P [E ] ≥ max
s∈A

P [Es] = max
s∈A

Z(s)
n . (22)

However, having the second order statistics, one can use the
inclusion–exclusion principle to obtain a much tighter lower-
bound on probability of error.

Lemma 12. Let W be a BEC (ǫ) and Cn be a polar code
of block-lengthN = 2n with information bitsAn. The block
error probability of such a code,Pe(Cn) is lower-bounded as:

Pe(Cn) ≥
∑

s∈An

Z(s)
n − 1

2

∑

s,t∈An:
s 6=t

[

Z(s)
n Z(t)

n

+ ρ(s,t)n

√

Z
(s)
n Z

(s)
n

√

Z
(t)
n Z

(t)
n

]

(23)

whereZn vector andρn matrix can be computed via single-
step recursions explained in Section III.

Proof: The result follows by applying the inclusion–
exclusion principle to lower-bound the probability of
⋃

s∈An
Es.

While the lower-bound given by Lemma 12 is already useful
in practice (see Section VII), we seek for a lower-bound that
is theoretically more significant.

Theorem 2. Let W be aBEC (ǫ) andR < 1− ǫ. Let Cn be a
polar code of block lengthN = 2n with information bitsAn

such that|An| = ⌈NR⌉. LetP (N,R, ǫ) be the sum of⌈NR⌉
smallest elements of the vectorZn. Then, for any fixedδ > 0
and sufficiently largen:

(1− δ)P (N, (1− δ)R, ǫ) ≤ Pe(Cn) ≤ P (N,R, ǫ).

Proof: The upper-bound is already known and we only
need to prove the lower-bound. Let

Dn =

{

s ∈ {−,+}n : max
t6=s

ρ(s,t)n ≤ δ2−n

}

By Theorem 1 we know thatlimn→∞
|Dn|
N = 1. Let, C′

n be
the polar code defined by the information bitsA′

n = An∩Dn

and S′
n ,

∑

s∈A′

n
Z

(s)
n . It is clear thatlimn→∞

|A′

n|
|An| = 1,

S′
n ≤ P (N,R, ǫ) (asAn contains⌈NR⌉ smallest elements of

Zn), andPe(C′
n) ≤ Pe(Cn) asC′

n is a sub-code ofCn.

3A practical decoder can break the ties randomly which increases the chance
of correctly decoding the bit to1

2
. An analysis analogous to the one we do

in this section applies to such a decoder.

Choosen large enough such that
|A′

n|
|An| ≥ 1 − δ and

P (N,R, ǫ) ≤ δ (note that this is possible sinceR < 1 − ǫ

and the results of [2] suggest thatP (N,R, ǫ) = O
(

2−
√
N
)

).
By (23):

S′
n − Pe(Cn) ≤ S′

n − Pe(C′
n)

≤ 1

2

∑

s,t∈A′

n:
s 6=t

[

Z(s)
n Z(t)

n + ρ(s,t)n

√

Z
(s)
n Z

(s)
n

√

Z
(t)
n Z

(t)
n

]

.

Observe thatρ(s,t)n ≤ δ/N for all s, t in the above sum-
mation,

∑

s,t∈A′

n:s 6=t Z
(s)
n Z

(t)
n ≤ ∑

s,t∈A′

n
Z

(s)
n Z

(t)
n = S′

n
2,

and
∑

s,t∈A′

n:s 6=t

√

Z
(s)
n Z

(t)
n

√

Z
(t)
n Z

(t)
n

≤
∑

s,t∈A′

n:s 6=t

√

Z
(s)
n

√

Z
(t)
n ≤

∑

s,t∈A′

n

√

Z
(s)
n

√

Z
(t)
n

=

[

∑

s∈A′

n

√

Z
(s)
n

]2 (∗)
≤ |A′

n|
∑

s∈A′

n

Z(s)
n ≤ NS′

n,

where (*) follows by the Cauchy-Schwarz inequality4.
Therefore,

S′
n − Pe(Cn) ≤

1

2

[

S′
n
2
+ δS′

n

]

≤ δS′
n,

where the last inequality follows by observing thatS′
n ≤

P (N,R, ǫ) ≤ δ. As a result,

(1− δ)S′
n ≤ Pe(Cn)

C′
n is a code of rateR′ ≥ (1 − δ)R and by definition

S′
n ≥ P (N,R′, ǫ) ≥ P (N, (1− δ)R, ǫ). Hence we can

lower-bound the LHS of the above by substitutingS′
n with

P (N, (1− δ)R, ǫ) which completes the proof.

VII. N UMERICAL RESULTS

In this section we provide a numerical example which
confirms our theoretical results. We have considered Polar
Codes of different rates on aBEC (0.5) and computed the
upper-bound of (21), the trivial lower-bound of (22) and the
tighter lower-bound of (23). We emphasize that we have
exactly computed the lower-bound on the error probability by
computing the correlation coefficients. We did the computa-
tions for block lengths ofN = 4096 (n = 12) andN = 16384
(n = 14).

As shown in Table I, the proposed lower bound is much
tighter than the trivial one. Moreover, the results show that
the lower bound is very close to the upper bound of (21).
This confirms thatP (N,R, ǫ) (as defined in Theorem 2) is
indeed a very good estimation for block error probability of
Polar Codes over BEC.

4For any set ofm numbersxi, i = 1, 2, · · · , m:
(

m
∑

i=1

xi

)2

≤ m

m
∑

i=1

x2
i

.



R
∑

s∈An
Z

(s)
n maxs∈An Z

(s)
n Lower-bound (23)

0.2 4.04 · 10−18
3.43 · 10−19

4.04 · 10−18

0.25 1.87 · 10−11
9.25 · 10−13

1.87 · 10−11

0.3 5.4 · 10−7
2.29 · 10−8

5.4 · 10−7

0.35 8.14 · 10−4 2.11 · 10−5 8.12 · 10−4

0.4 0.17 3.49 · 10−3 0.14

(a) N = 4096

R
∑

s∈An
Z

(s)
n maxs∈An Z

(s)
n Lower-bound (23)

0.2 9.32 · 10−36 4.72 · 10−37 9.32 · 10−36

0.25 1.32 · 10−22
3.54 · 10−24

1.32 · 10−22

0.3 2.32 · 10−13
5.4 · 10−15

2.32 · 10−13

0.35 2.63 · 10−7
3.61 · 10−9

2.63 · 10−7

0.4 5.47 · 10−3
4.91 · 10−5

5.43 · 10−3

(b) N = 16384

TABLE I: Bounds on Block Error Probability of Polar Code onBEC (0.5)
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