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Abstract—The information that can be conveyed through a
wireless channel, with multiple-antenna equipped transmitter
and receiver, crucially depends on the channel behavior as well
as on the input structure. In this paper, we derive analytical
results, concerning the probability density function (pdf) of the
output of a single-user, multiple-antenna communication. The
analysis is carried out under the assumption of an optimized
input structure, and assuming Gaussian noise and a Rayleigh
block-fading channel. Our analysis therefore provides a quite
general and compact expression for the conditional output pdf.
We also highlight the relation between such an expression and
the results already available in the literature for some specific
input structures.

I. INTRODUCTION
The availability of an explicit statistical characterization for

the output of a wireless channel impaired by additive and
multiplicative random disturbance is of paramount importance
to information-theoretic purposes. Specifically, such character-
ization is required for the evaluation of the mutual information
between the input and the output signals of the channel.
The output probability density function (pdf) is particularly
relevant as the communication takes place in absence of
perfect Channel State Information (CSI) at both ends of the
link (see the seminal paper thereabout [1] and its relevant
consequences in [2]). Indeed, this case is of particular interest
as the availability of CSI would imply a high energy and time
consumption at both the transmitter and the receiver.
In this paper, we therefore refer to the above scenario and

consider a single-user, multiple-antenna channel, affected by
AWGN and block Rayleigh fading. In our scenario, a MIMO
channel can be adequately modeled as a matrix of jointly
Gaussian entries. This yields a Gaussian behavior of the output
signal, conditionally on the input structure. Nowadays, several
results are available in the literature about finite-dimensional
random matrices with jointly Gaussian entries, and the most
popular decompositions of such matrices (e.g., Bartlett, Singu-
lar Value, and Cholesky [3]) are completely characterized from
a statistical point of view [4]. In such characterizations, we
often encounter special functions of matrix arguments, which
are largely adopted in theoretical physics for the study of
particles behavior. Based on some results on the integration
of these special functions over complex unitary and positive
definite matrices, we present hereafter a new closed form

expression for the output pdf of the single-user MIMO channel
in Rayleigh block fading channels, conditionally on the input
power distribution and on the channel eigenvalues. We also
highlight the relation between our result and the ones that are
available in the literature for some special cases, such as the
i.i.d. Gaussian or isotropically random input structures [5], [6],
[2].
The paper is organized as follows. Section II presents the

notations used throughout the paper and provides relevant
mathematical background on matrix-variate distributions and
their eigenvalue law. Section III introduces the model of the
wireless system. Then, Section IV presents the derivation of
our new expression of the channel output pdf, as well as the
particularization of such an expression to some relevant input
structure cases. Directions for future work are discussed in
Section V. The integration rules we use in our analysis are
reported in the Appendix.

II. MATHEMATICAL BACKGROUND

A. Notations
Throughout the paper, matrices are denoted by uppercase

boldface letters, vectors by lowercase boldface. The pdf of
a random matrix Z, pZ(Ẑ), is simply denoted by p(Z). (·)†
indicates the conjugate transpose operator, |·| and Tr(·) denote,
respectively, the determinant and the trace of a square matrix,
and || · || stands for the Euclidean norm1. Γp(q), with p≤q, is
the complex multivariate Gamma function [7]

Γp(q) = π
p(p−1)

2

p∏

!=1

(q − ")!

and
pF q(a1, . . . , ap; b1 . . . , bq; ·, . . . , ·) ,

with p and q non-negative integers, denotes the generalized
hypergeometric function [8]. The arguments of such a function
can be either scalars or square matrices; there is in general
no limit to the number of arguments, and hypergeometric
functions of multiple matrix arguments are defined also for
set of square matrices of different size. We denote by Im the
m × m identity matrix. Then, let A be an n × n Hermitian

1As applied to a matrix, we mean ||A||2 = Tr(A†A)



matrix with ordered eigenvalues 2 λ1, . . . ,λn. We denote by
V(A) the Vandermonde determinant of A [3], i.e.,

V(A) =
∏

1≤i<!≤n

(λi − λ!).

The differential of n × m complex matrix variables
are always defined, unless otherwise stated, as dA =
π−nm

∏n,m
i,j=1 dReAi,jdImAi,j .

B. Matrix-variate distributions
Definition 1. Let H be an m × n matrix whose columns are
zero-mean independent complex Gaussian vectors with covari-
ance matrix Θm. Then, the m×m random matrix W = HH†

is a (central) complex Wishart matrix, with n degrees of
freedom and covariance matrix Θm (W ∼ Wm(n,Θm)).
For n ≥ m, the pdf of W is [7]

p(W) =
|W|n−m

Γm(n)|Θm|n exp
{
−Tr

(
Θm

−1W
)}

.

The joint distribution of the ordered eigenvalues of W
coincides with the law of the squared non-zero singular values
of H. Specifically, denoting by H = UΣ1/2V† the Singular
Value Decomposition of H, it turns out that W = UΣU†.
Notice that Σ is positive definite and, by Σ1/2 we mean
the m × n matrix with the m non-zero singular values of
H on its main diagonal. If Θm = Im, then U and V are
isotropic3 matrices independent of Σ, and the joint eigenvalue
distribution can be written as

p(Σ) =

m∏

k=1

σn−me−σ

∏s
!=1(n − ")!(m − ")!

V2(Σ).

Definition 2. Let H be an m×n matrix whose rows are zero-
mean independent complex Gaussian vectors with covariance
matrix Θm. Then, the m × m random matrix W̃ = HH†

is a (central) complex pseudo-Wishart matrix, with n degrees
of freedom and covariance matrix Θn, (W̃ ∼ W̃m(n,Θn) ).
For n ≥ m, the pdf of W̃ is [9]

p(W̃) =
|W̃|n−m

0F 0(Θ−1
n ,−W̃)∏m

i=1(n − i)!|Θn|m

where 0F 0(·, ·) is the hypergeometric function of exponential
type of two square matrix arguments of different size [9].

Definition 3. The m×m random matrix B is Beta-distributed
with positive integer parameters p and n, (B ∼ Betam(p, n))
if it can be written as B = (T†)−1CT where C ∼
Wm(p,Θm), and, given A ∼ Wm(n,Θm), A + C = T†T,
with T upper triangular with positive diagonal elements.
Notice that, if either or both p < m and n < m, the
distribution is referred to as pseudo-Beta since it involves
pseudo-Wishart matrices [2, and references therein].
2In the following, all the joint eigenvalue distributions assume the eigen-

values to be ordered.
3In the multi-antenna literature, a matrix is often referred to as isotropic if it

belongs to the set of Haar matrices, i.e., unitary matrices uniformly distributed
on their group.

A Beta-distributed matrix admits, like the Wishart, an
eigendecomposition where the matrix of the eigenvectors
is independent of the matrix of the eigenvalues. The joint
eigenvalues distribution of B ∼ Betam(p, n) can be written
as

p(Λ) =
πm(m−1)Γm(p + n)
Γm(m)Γm(p)Γm(n)

·

|I − Λ|n−m|Λ|p−mV2(Λ) , (1)

for n ≥ m, or, rather, as

p(Λm−n+1) =
πn(m−1)Γn(p + n)

Γn(m)Γn(p + n − m)Γn(n)
·|I − Λm−n+1|m−n|Λm−n+1|p−mV2(Λm−n+1) ,

if m > n. Notice that, for n ≥ m, the matrix has m nonzero
eigenvalues, whose joint law is given by (1). Instead, for m >
n, the first m− n eigenvalues are equal to 1 with probability
(w.p.) 1, and thus Λm−n+1 = {λm−n+1, . . . ,λm}.

III. SYSTEM MODEL

We consider a single-user multiple-antenna communication,
with nR and nT denoting the number of receive and transmit
antennas. Assuming block-fading Rayleigh with block length
nb, the channel output can be described by the following linear
relationship:

Y =
√
γHX + N. (2)

In (2), Y is the nR × nb output, X is the complex nT × nb

input matrix, and N is the nR × nb matrix of additive com-
plex circularly symmetric Gaussian noise. H is the nR×nT

complex channel matrix, whose entries represent the fading
coefficients between each transmit and each receive antenna.
Finally, γ = SNR/nT represents the normalized per-transmit
antenna Signal-to-Noise Ratio (SNR).
For ease of notation, let us denote

s = min{nT , nR}, r = max{nT , nR}, τ = r − s,

m = min{nT , nb}, n = max{nT , nb}, δ = n − m

p = min{m, s}, q = max{n, r}.

The input matrix X, unless otherwise stated, is assumed
to have a product structure, i.e., X = D1/2Φ, where D is a
random, nT -dimensional, diagonal matrix, which is positive
definite w.p. 1. The entries of D represent the amount of
transmit power allocated to each of the nT transmit antennas,
while Φ is an nT ×nb isotropic matrix. As usually done in the
literature [10], [6], we will refer to square isotropic matrices
as Haar and to rectangular isotropic matrices as Stiefel. We
stress that the above structure of the input matrix X allows to
achieve the capacity limit in absence of CSI at both the link
ends [6, Thm2].



IV. STATISTICAL CHARACTERIZATION OF THE CHANNEL
OUTPUT

We now present our main result, i.e., the expression of the
output pdf, conditioned on the input power allocation and on
the channel.

Theorem 1. Given a channel as in (2), the pdf of its matrix-
variate output, conditionally on the nT -dimensional (diagonal)
input power allocation matrix D and on the s-dimensional
matrix of the non-zero squared singular values of the channel,
Σ, can be expressed as

p(Y|D,Σ) =
e−||Y||2

ṽπnRnb
0F 2(nT , nR;−Σ2, γ2D2,Y†Y) .

(3)
In (3), ṽ = 2δπδ2

/Γδ(δ) is the volume of the unitary group of
dimension δ, and the hypergeometric function of three matrix
arguments can be expanded in zonal polynomials [7] Cκ(·),
following [11, Appendix B] as

0F 2(nT , nR;−Σ2, γ2D2,Y†Y) = (4)

(2π)2q−m−nT

+∞∑

k=0

∑

#κ=k

(nT )κ(nR)κ

Cκ(−Σ2)Cκ(γ2D2)Cκ(Y†Y)
k!C2

κ(Iq)
,

with (·)κ being the multivariate Pochhammer symbol of order
κ [7], and #κ the cardinality of κ.

Proof. The output pdf of the MIMO channel (2) can be
expressed as follows:

p(Y) =
∫

p(Y|X,H)p(X)p(H)dXdH , (5)

with the integral being over the appropriate matrix spaces,
which will be specified step by step throughout the proof.
The Gaussianity of both channel and noise leads to

p(Y|X,H) =
e
−Tr

“
(Y−√

γHX)(Y−√
γHX)†”

πnRnb
.

Notice that, expanding the product in the exponent and de-
composing in its singular values/vectors the channel matrix
H = UΣ1/2V†, one obtains, term by term, e−||Y||2 , which
is independent of H and X and, thus, it can be factored out
of the integral (5);

exp
{
−γTr

(
HXX†H†)} = exp

{
−γTr

(
ΣV†DV

)}
,

which depends only on V, and finally

exp{√γTr
(
YX†H† + HXY†)} ,

which is the only term dependent on U. Hence, we can write

p(Y)=
exp{−||Y||2}

πnRnb

∫
p(D)dDp(Σ)dΣ

∫

Φ
dΦ

∫

U(nT )
exp

{
−γTr

(
ΣV†DV

)}
d∗V

∫

U(nR)
e
√
γTr(YΦ†D

1
2 VΣ

1
2 U†+UΣ

1
2 V†D

1
2 ΦY†)d∗U

where d∗V and d∗U are normalized measures4. The inner
integral over the unitary group can be expressed in terms of
the Bessel hypergeometric functions of matrix argument, by
virtue of [7, Formula (91)],

∫

U(nR)
e
√
γTr(YΦ†D

1
2 VΣ

1
2 U†+UΣ

1
2 V†D

1
2 ΦY†)d∗U

= 0F 1(nR; γVΣV†D1/2ΦY†YΦ†D1/2) . (6)

The integration over V is a bit trickier, and follows as
a consequence of [12, Thms I and III]. Indeed, exploiting
the linear independence of the differential operators of the
complex variable V and of its conjugate (transpose) V †, we
can integrate separately with respect to each of the variables.
We stress that both the product property and the splitting
property (see Appendix) of integration over unitary groups
are exploited. Indeed [12, Formula (70)],

∫

U(nT )
d∗V

∫

U(nT )
d∗V† exp{−Tr

(
γΣV†DV

)
}

0F 1(NR; γVΣV†D1/2ΦY†YΦ†D1/2) =

0F 2(nT , nR;−Σ2, γ2D2ΦY†YΦ†) .

The last integration is taken with respect to a Stiefel matrix
and results in [2, Formula (54)]

∫

Φ
0F 2(nT , nR;−Σ2, γ2D2ΦY†YΦ†)dΦ =

1
ṽ

0F 2(nT , nR;−Σ2, γ2D2,Y†Y) ,

from where the theorem statement follows.

A. Special cases
1) i.i.d. Gaussian input: In the case of an ergodic channel 5,

the capacity-achieving input distribution, as the transmitter has
neither instantaneous or statistical CSI, is a Gaussian vector
with i.i.d. components. For non-ergodic channels, under the
same assumptions about the CSI availability, there are no
results that prove the optimality of isotropic input. This is
mainly due to the fact that optimality depends on the operating
SNR regime and on the relationships among r, s and n b.
Nevertheless, also in absence of CSI, the i.i.d. input distri-

bution has been taken as a baseline [5, and references therein].
Indeed, in such a case, the input matrix X distribution is
invariant under both left and right multiplications times unitary
matrices, and integration is noticeably simplified with respect
to the general case. Under such an assumption, we can write
the output pdf as

p(Y|X,Σ,U)=
exp

{
−||Y||2

}

πnRnb
exp

{
−γTr

(
ΣX̃X̃†

)}

exp
{√

γTr
(
YX̃†Σ1/2U† + UΣ1/2X̃Y†

)}

4By normalized measures we mean d∗U = dU/Vol(U(nR)) and,
respectively, d∗V = dV/Vol(U(nT )).
5A channel is ergodic when a codeword spans many realizations of the

fading coefficients.



with X̃ = V†X still being an i.i.d. Gaussian matrix. This way,
integration over U yields, as in (6),

p(Y|X̃,Σ) =
e−||Y||2e−γTr(ΣeXeX†)

0F 1

(
nR; γX̃†ΣX̃Y†Y

)

πnRnb

Recalling that the i.i.d. input assumption implies

p(X) =
e−||X||2

πnT nb
,

the average over the input is performed by the help of [12,
Thm. II and Consequence II], namely

∫

X
e−||X||2e−γTr(ΣXX†)

0F 1

(
nR; γX†ΣXY†Y

)
dX =

0F 1

(
nR;−γ2Σ2,Y†Y

)
.

As a consequence,

p(Y|Σ) =
exp{−||Y||2}

πnRnb
0F 1

(
nR;−γ2Σ2,Y†Y

)
,

where, as in [5], the average over Σ has to be performed
numerically.
As mentioned above, in absence of CSI the capacity-

achieving input structure depends on the relationships among
r, s and nb. The existing results on this aspect can be es-
sentially grouped into two categories, depending on whether
nb ≥ nR + s, or the other way round. Below, we consider the
two cases separately.

B. A limited number of antennas: nb ≥ nR + s

In this case, it turns out that the capacity-achieving input
structure is such that D = cI w.p. 1, and c = nbnR

min{nR,nb−nT }
[2]. Thus, the conditional law of the output can be evaluated
following the footsteps of the proof of Theorem I. Indeed, in
this case

exp{−γ||HX||2} = exp{−cγTr (Σ)} ,

while
∫

U(nR)
e
√

γTr(YΦ†U†Σ1/2V+UΣ1/2V†ΦY†)d∗U

= 0F 1(nR; γVΣV†D1/2ΦY†YΦ†D1/2) . (7)

Replacing the capacity-achieving expression of D in (7) and
noticing that Φ†V = Ṽ is an nb × nT Stiefel matrix, we can
exploit again the splitting property to obtain

p(Y|Σ) =
exp{−||Y||2}

ṽπnRnb
0F 1(nR;Σ, γcY†Y)e−γcTr(Σ) .

This case is the only one for which we are able to give
a closed form expression of the unconditional law of the
output signal, p(Y). The result has been already obtained in
a slightly different way in [13]. We first observe that, due to
our assumptions, Σ and YY† are not warranted to have the
same size. In particular, if nR = s, they are square matrices
of the same size, and then the determinant representation of
0F 1(nR;Σ, γcY†Y) is given by [12, Formula (35)]. Once

the hypergeometric function is expressed as a ratio of deter-
minants, we resort to [14, Lemma III] in order to average over
Σ whose law is given by (1). We obtain

p(Y) = K
exp{−||Y||2}
V(γcY†Y)

|F| ,

with
K =

cnR

s!ṽπnRnb
∏s

!=1(nR − ")!(nT − ")!

being a normalizing constant 6 and7

Fi,j = Γ(τ + j)1F 1

(
τ + j, 1,

y2
i γc

1 + γc

)
, (8)

where y2
i denotes the i-th eigenvalue of Y†Y. Notice

that, for nT = s, the determinant representation of
0F 1(nR;Σ, γcY†Y) is a bit more involved and can be found
in [15, Lemma II]. Apart from that, the evaluation of the
closed-form pdf ofY follows the same steps as in the simplest
case of nR = s.
We remark that, since τ + j ≥ 1, ∀τ, j, (8) can be written

as a Laguerre polynomial [8] rather than as an infinite, tough
convergent, series.

C. The Massive MIMO regime: nb < nR + s

In this case, the high-SNR capacity-achieving input has
been proven in [2] to be given by X =

√
cD1/2Φ, with D

being a diagonal nT -dimensional matrix whose squared entries
are jointly distributed as the eigenvalues of a Beta-distributed
matrix. Evaluation of the output pdf in this case has been
carried out in [18], where the mutual information conveyed by
the MIMO channel (2) is analytically characterized, leading to

p(Y) = T · L · e−‖Y‖2

V(Y†Y)
· |Ψ| · |M̃| (9)

with
T =

π−nbnR
∏nb

i=nb−nR+1 Γ(i)

(cγ)nT (
nT −3

2 +nb)
,

L =
πnT (nT −1)ΓnT (nR)

ΓnT (nT )ΓnT (nb − nT )ΓnT (nR + nT − nb)
,

and

M̃i,j =
∫ 1

0

(1 − x)nR−nbxi−1−nT

(1 + cγx)nR−nb+1
·
[
exp

(
cγxy2

j

1 + cγx

)
−

nb−nT∑

l,k=1

(Ψ−1)l,k exp

(
cγxy2

l+nT

1 + cγx

)
y2(nb−k−nT )

j



dx ,

where y2
i , i = 1, . . . , nb are the eigenvalues of the square

matrix YY† and Ψ is a square matrix of size nb −nT whose
elements are given by (Ψ)i,j = y2(nb−nT −i)

nT +j i, j = 1, . . . , nb−
nT .
6In K , cnR =

Qs−1
t=1 (t(nR + t))s−t and for the general case cm is

defined in the Appendix.
7We have herein skipped analytical details due to space limitation, however

the expression for Fi,j can be obtained through [16, Formulae (6.643.2) and
(9.220.2)].



V. DISCUSSION AND FUTURE WORK

We obtained a new expression for the law of the output
signal of a block-Rayleigh fading MIMO channel, relying on
sophisticated results in the field of finite-dimensional random
matrix theory. We focused on channels where neither the
transmitter nor the receiver, each equipped with multiple
antennas, are aware of the CSI. This assumption is relevant
in energy-efficient wireless systems, in that CSI sharing is
time and resource-consuming. From the mathematical point of
view, this implies that a relevant structure for the input is the
product of a positive-definite (diagonal) matrix times a Stiefel
matrix. The main expression we obtained for the output law is
conditioned to the channel eigenvalues and to the input power
allocation, while we were able to average over the input and
the channel eigenvectors distributions. We also highlighted the
relation between our result and previous studies.
The following further observations on our result are worth-

while being underlined. Although very compact, in the general
case the expression in (3) presents several difficulties as one
aims at further averaging it over either Σ, or D, or over
both matrices. First of all, yet no determinant representation is
known for hypergeometric functions of more than two matrix
arguments. This prevents us from expressing the output pdf
as a ratio of determinants, and forces us to exploit the zonal
polynomial expansion in (4). Henceforth, one should adopt the
procedure in [17, Appendix], expanding the zonal polynomials
as ratio of determinants and choosing the best way to recover
a closed-form result summing over partitions of properly
defined sets. The combinatorial complexity of this procedure is
noticeable, and its application to our expressions is subject of
ongoing work. Furthermore, it would be worthwhile extending
the analysis to block-fading channels with Line of Sight
component.
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VI. APPENDIX: PROPERTIES OF HYPERGEOMETRIC
FUNCTIONS

Hereinafter, we list some essential properties of hypergeometric
functions of (multiple) matrix arguments, which follow from matrix-
variate complex zonal polynomials properties. In the following, both
A and B are n × n matrices.
Splitting property of the integral:

Z

U(n)
pF q

“
a1, . . . , ap; b1 . . . , bq ;AUBU†

”
d∗U =

pF q (a1, . . . , ap; b1 . . . , bq;A,B) .

Product property:
Z

U(n)
pF q (a1, . . . , ap; b1 . . . , bq;AU) (10)

epF eq

“
a1, . . . , ap̃; b1 . . . , bq̃ ;BU†

”
d∗U =

p+p̃F q+q̃+1

„
a1, . . . , ap, a1, . . . , ap̃

n, b1 . . . , bq, b1 . . . , bq̃
;AB

«
.

Notice that (10) and (10) hold, mutatis mutandis, also for the
integration over generic complex matrices [12].
Determinant representations. For single and double matrix ar-

guments, hypergeometric functions can be efficiently expressed as
ratio of determinants involving scalar hypergeometric functions and
Vandermonde determinants of the matrix arguments. Indeed, for the
case of a single matrix argument it holds [12, Formula 34], while
for two matrix arguments one should refer to [12, Formula 35].
Unfortunately, no such representations are available for more than
two matrix arguments.
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