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MISO Broadcast Channel with Delayed and
Evolving CSIT
Jinyuan Chen and Petros Elia

Abstract—The work considers the two-user MISO broadcast
channel with a gradual and delayed accumulation of channel
state information at the transmitter (CSIT), and addressesthe
question of how much feedback is necessary, and when, in
order to achieve a certain degrees-of-freedom (DoF) performance.
Motivated by limited-capacity feedback links with delays, that
may not immediately convey perfect CSIT, and focusing on the
block fading scenario, we consider a gradual accumulation of
feedback bits that results in a progressively increasing CSIT
quality as time progresses across the coherence period (T channel
uses - current CSIT), or at any time after (delayed CSIT).

Specifically, for any set{αt}
T
t=1 of feedback quality exponents

describing the high-SNR rates-of-decay of the mean square error
of the current CSIT estimates at time t ≤ T (0 ≤ α1 ≤ · · · ≤
αT ≤ 1), given an averageᾱ =

∑T

t=1 αt/T , and given perfect
delayed CSIT (received at any time t > T ), the work here
derives the optimal DoF region to be the polygon with corner
points {(0, 0), (0, 1), (ᾱ, 1), ( 2+ᾱ

3
, 2+ᾱ

3
), (1, ᾱ), (1, 0)}. Aiming to

now reduce the overall number of feedback bits, we also prove
that the above optimal region holds even with imperfect delayed
CSIT for any (delayed-CSIT) quality exponent β ≥ 1+2ᾱ

3
.

Additionally, motivated by settings where users have different
feedback qualities and delays, we prove the above to hold true
even when the users’ quality exponents are different but share
a common average. The work further proceeds to derive the
optimal DoF region in the general asymmetric setting.

The results are supported by novel multi-phase precoding
schemes that utilize gradually improving CSIT. The approach
here incorporates different settings such as the delayed CSIT
setting of Maddah-Ali and Tse (β = 1, αt = 0, ∀t ≤ T ), the
imperfect current CSIT setting of Yang et al. and of Gou and
Jafar (β = 1, α1 = · · · = αT > 0), the asymmetric setting of
Maleki et al., and the not-so-delayed CSIT setting of Lee and
Heath (β = 1, α1 = · · · = ατ = 0 for some τ < T ).

I. I NTRODUCTION

A. Channel model

We consider the multiple-input single-output broadcast
channel (MISO BC) with anM -transmit antenna (M ≥ 2)
transmitter communicating to two receiving users with a single
receive antenna each. Within the block fading setting, we
consider a coherence period ofT channel uses, during which
the channel remains the same. Forhℓ and gℓ denoting this
channel during theℓth coherence block for the first and second
user respectively, and forxℓ,t denoting the transmitted vector
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during timeslott of this ℓth block, the corresponding received
signals at the first and second user take the form

y
(1)
ℓ,t = hT

ℓxℓ,t + z
(1)
ℓ,t (1)

y
(2)
ℓ,t = gT

ℓxℓ,t + z
(2)
ℓ,t (2)

(t = 1, 2, · · · , T ), where z
(1)
ℓ,t , z

(2)
ℓ,t denote the unit power

AWGN noise at the receivers. The above transmit vectors
accept a power constraintE[||xℓ,t||

2] ≤ P , for some power
P which also here takes the role of the signal-to-noise ratio
(SNR). The fading coefficients are assumed to be independent
and identically distributed (i.i.d.) complex Gaussian random
variables with zero mean and unit variance, and are assumed
to remain fixed during a coherence block, and to change
independently from block to block.

B. Delay-and-quality effects of feedback

As in many multiuser wireless communications scenarios,
the performance of the broadcast channel depends on the
timeliness and quality of channel state information at the
transmitter (CSIT). This timeliness and quality though may
be reduced by limited-capacity feedback links, which may
offer consistently low feedback quality, or may offer good
quality feedback which though comes late in the communi-
cation process and can thus be used for only a fraction of
the communication duration. The corresponding performance
degradation, as compared to the case of having perfect feed-
back without delay, forces the delay-and-quality questionof
how much feedback is necessary, and when, in order to achieve
a certain performance.

These delay-and-quality effects of feedback, naturally fall
between the two extreme cases of no CSIT and of full CSIT
(immediately available and perfect CSIT), with full CSIT
allowing for the optimal1 degree-of-freedom (DoF) per user
(cf., [1])1, while the absence of any CSIT reduces this to just
1/2 DoF per user (cf., [2], [3]).

A valuable tool towards bridging this gap and further
understanding the delay-and-quality effects of feedback,came
with [4] showing that arbitrarily delayed feedback can still
allow for performance improvement over the no-CSIT case.
In a setting that differentiated between current and delayed
CSIT - delayed CSIT being that which is available after the
channel elapses, i.e., after the end of the coherence periodcor-
responding to the channel described by this delayed feedback,

1We remind the reader that for an achievable rate pair(R1, R2), the
corresponding DoF pair(d1, d2) is given bydi = limP→∞

Ri
logP

, i = 1, 2.
The corresponding DoF region is then the set of all achievable DoF pairs.
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while current CSIT corresponded to feedback received during
the channel’s coherence period - the work in [4] showed that
perfect delayed CSIT, even without any current CSIT, allows
for an improved2/3 DoF per user.

Within the same context of delayed vs. current CSIT, the
work in [5]–[7] introduced feedback quality considerations,
and managed to quantify the usefulness of combining perfect
delayed CSIT with immediately available imperfect CSIT of a
certain quality that remained unchanged throughout the entire
coherence period. In this setting the above work showed a
further bridging of the gap from2/3 to 1 DoF, as a function
of this current CSIT quality.

Further progress came with the work in [8], [9] which,
in addition to exploring the effects of the quality of current
CSIT, also considered the effects of the quality of delayed
CSIT, thus allowing for consideration of the possibility that the
overall number of feedback bits (corresponding to delayed plus
current CSIT) may be reduced. Focusing again on the specific
setting where the current CSIT quality remained unchanged
for the entirety of the coherence period, this work revealed
among other things that imperfect delayed CSIT can achieve
the same optimality that was previously attributed to perfect
delayed CSIT, thus equivalently showing how the amount of
delayed feedback required, is proportional to the amount of
current feedback.

A useful generalization of the delayed vs. current CSIT
paradigm, came with the work in [10] which deviated from
the assumption of having invariant CSIT quality throughoutthe
coherence period, and allowed for the possibility that current
CSIT may be available only after some delay, and specifically
only after a certain fraction of the coherence period2. Under
these assumptions, in the presence of more than two users,
and in the presence of perfect delayed CSIT, the above work
showed that for up to a certain delay, one can achieve the
optimal performance corresponding to full (and immediate)
CSIT.

The above settings3 addressed different instances of the
more general problem of communicating in the presence of
feedback with different delay-and-quality properties, with each
of these settings being motivated by the fact that perfect
CSIT may be generally hard and time-consuming to obtain,
that CSIT precision may be improved over time4, and that
feedback delays and imperfections generally cost in terms
of performance. The generalization here to the setting of
time-evolving CSIT, incorporates the above considerations and
motivations, and allows for insight on pertinent questionssuch
as:

• Can a specific accumulation-rate of feedback bits, guar-
antee a certain target DoF performance?

2We note that [5] also introduces comparable delay considerations, in the
context of the two-user correlated MISO BC with a bounded doppler spread.

3In describing existing work, we focused only on immediatelyrelated work,
thus neglecting other results in the context of delayed CSIT, such as those in
( [11]–[16]) and in many other publications.

4Such gradual improvement could be sought in FDD settings with limited-
capacity feedback links that can be used more than once during the coherence
period to progressively refine CSIT, as well as in TDD settings that use
reciprocity-based prediction that improves over time.

– If we send α′ logP feedback bits without delay
(at t = 0), then send(α′′ − α′) logP bits at
t = T/3, (α′′′ − α′′) logP bits at t = 2T/3, and
(β − α′′′) logP bits at any timet > T , then what
performance can be guaranteed?

• Can imperfect CSIT allow for the optimal 1 DoF?
– Can CSIT with very small delays allow for the

optimal 1 DoF?
• What is better: less feedback early, or more feedback

later?
– Given a certain target DoF, what is the tradeoff

between feedback delays and feedback quality?
– Given imperfect feedback, what feedback delays

allow for a certain DoF?
• How many feedback bits must be accumulated before

the channel changes, in order to achieve a certain per-
formance?

• How many (delayed) feedback bits must be gathered after
the channel changes in order to achieve the best possible
performance?

• When is delayed feedback unnecessary?
• Under what conditions of feedback asymmetry, do two

uneven feedback links behave similarly?
• How do the feedback capabilities of one user, affect the

other user?
– Is a reduction in a user’s feedback quality made

worse, for that user, by an increase or a decrease
of the other user’s feedback quality?

C. Quantification of evolving CSIT quality

In terms of current CSIT, i.e., in terms of CSIT correspond-
ing to feedback received during the coherence period of the
channel in question, we consider the case where at timet of
theℓth coherence block, the transmitter has estimatesĥℓ,t, ĝℓ,t

of hℓ andgℓ respectively, with estimation errors

h̃ℓ,t = hℓ − ĥℓ,t, g̃ℓ,t = gℓ − ĝℓ,t (3)

having i.i.d. Gaussian entries with power

1

M
E[‖h̃ℓ,t‖

2] =
1

M
E[‖g̃ℓ,t‖

2] = P−αt (4)

for some non-negative parameterαt describing the quality
of the estimates at any given timet = 1, 2, · · · , T during
the channel’s coherence period5. In this setting, a possibly
increasingαt implies an improving CSIT quality, withαt = 0
implying very little current CSIT knowledge up to timet, and
with αt = ∞ - and for all DoF-related purposes,αt = 1 (
[17]) - implying that starting at a given timet, the transmitter
has access to perfect CSIT.

In terms of delayed CSIT, and again focusing on the afore-
mentioned channelshℓ, gℓ appearing during theℓth coherence
block, we consider the case where at any time after the end
of the ℓth block, the transmitter has delayed estimatesȟℓ, ǧℓ

with estimation errors

ḧℓ = hℓ − ȟℓ, g̈ℓ = gℓ − ǧℓ (5)

5We clarify that the power of the error is averaged over channel realizations
and noise, and is naturally a function oft but not ofℓ.



again having i.i.d. Gaussian entries, but this time with power

1

M
E[‖ḧℓ‖

2] =
1

M
E[‖g̈ℓ‖

2] = P−β

for some non-negative parameterβ.
Remark 1:We here note that the choice of invariant (non

evolving) delayed CSIT, is meant to reflect the fact that - unlike
the case of evolving current CSIT - delayed CSIT can, without
loss of generality, be assumed to be received with any delay,
after which any further improvement of feedback-quality may
be unrealistic. Equivalently given a sequenceβt, t > T of
delayed CSIT quality exponents at any timet after the end
of the coherence period, then ourβ here simply denotes the
maximum in this sequence.

Remark 2:We also note that without loss of generality, in
the DoF setting of interest, we can restrict our attention to
the range0 ≤ α1 ≤ α2 ≤ · · · ≤ αT ≤ 1 and 0 ≤ β ≤ 1,
as well as to the case whereαT ≤ β since delayed CSIT
with β < αT can be readily improved to delayed CSIT with
β = αT , simply by recalling current CSIT estimates at a later
time. As a result, we will consider the general setting where

0 ≤ α1 ≤ α2 ≤ · · · ≤ αT ≤ β ≤ 1,

whereβ = 1 corresponds to having perfect delayed CSIT, and
whereα1 = 1 corresponds to the optimal case of perfect and
immediately available CSIT.

Remark 3:While the results here will be in terms of
feedback quality rather than in terms of feedback quantity,in
the DoF setting of interest, the relationship between the two
takes a clear form under basic scalar quantization techniques6,
where from [18] we know that sendingα′ logP feedback bits
at some point in timet1, corresponds to a quality exponent
αt1 = α′. Furthermore proceeding to gradually accumulate
more feedback bits, allows for gradual improvement of CSIT
quality; for example proceeding to send(α′′ −α′) logP extra
bits at some pointt2 < T aftert1, corresponds to an increased
quality exponent ofαt2 = α′′, while sending(β − α′′) logP
bits at any point after the end of the coherence period,
corresponds to a delayed CSIT exponent ofβ.

We can now see how the evolving CSIT generalization
naturally incorporates different settings such as the perfect-
delayed CSIT setting in [4] (β = 1, αt = 0, ∀t ≤ T ), the
perfect-delayed and imperfect current CSIT setting in [5]–
[7] (β = 1, α1 = · · · = αT < 1), the bounded-overall-
feedback setting with imperfect current and imperfect delayed
CSIT [8], [9] (β < 1, α1 = · · · = αT < 1), as well as the
‘not-so-delayed’ CSIT setting in [10] corresponding to having
β = 1, α1 = · · · = ατ = 0, ατ+1 = · · · = αT = 1 for some
integerτ < T .

Furthermore proceeding to the asymmetric setting where the
CSIT quality differs from user to user, we consider the case
where

1

M
E[‖h̃ℓ,t‖

2] = P−α
(1)
t ,

1

M
E[‖g̃ℓ,t‖

2] = P−α
(2)
t (6)

6We clarify that this relationship between CSIT quality and feedback
quantity, plays no role in the development of the results, and is simply
mentioned in the form of comments that offer intuition. Our focus is on
quality exponents, and we make no optimality claim regarding the number of
quantization bits.

for α
(1)
t , α

(2)
t describing the current CSIT quality for user 1

and user 2 respectively, and where

1

M
E[‖ḧℓ‖

2] = P−β(1)

,
1

M
E[‖g̈ℓ‖

2] = P−β(2)

for β(1), β(2) describing the delayed CSIT exponents for the
two users. The asymmetric setting here incorporates the setting
in [19] corresponding to havingα(1)

t = 1, α
(2)
t = 0, ∀t ≤ T

andβ(1) = β(2) = β = 1.

D. Structure of paper

Section II provides the optimal DoF regions for the different
cases of evolving CSIT, with Theorem 1 describing the optimal
DoF region for the case of having symmetrically evolving cur-
rent CSIT and perfect delayed CSIT, with Theorem 2 consid-
ering the same symmetric setting but with imperfect delayed
CSIT, with Theorem 3 considering the partially symmetric
setting where the two users’ quality exponentsα

(1)
t , α

(2)
t are

different but share a common averageᾱ =
∑T

t=1 α
(1)
t /T =

∑T
t=1 α

(2)
t /T , and with Theorem 4 describing the optimal

DoF region for the general asymmetric setting where the
aforementioned averages need not be the same. In addition
to the theorems, we also provide corollaries and examples
that are meant to offer insight. Section III is dedicated to
presenting the different schemes and their DoF performance,
and it applies towards the achievability part of the proof ofthe
aforementioned results. Specifically, after a brief description
in Section III-A of the notation that is common to all schemes,
the subsequent subsections III-B,III-C and III-D describe
different schemes that jointly achieve the optimal DoF region
in the general asymmetric case, then Section III-E describes
the scheme for the case of having symmetric or partially
symmetric evolving current CSIT and perfect delayed CSIT,
and then Section III-F describes the scheme for the case
of having symmetric or partially symmetric evolving current
CSIT and imperfect delayed CSIT. Section IV provides the
DoF outer bound for the asymmetric case with perfect delayed
CSIT, where this outer bound directly supports Theorem 4,
while it also supports Theorem 3 after settingᾱ(1) = ᾱ(2),
as well as supports Theorem 1 and Theorem 2 after setting
α
(1)
t = α

(2)
t , t = 1, 2, · · · , T . Appendix VI presents some

details from the achievability proofs, some DoF calculations
as well as some encoding details, and finally Appendix VII
provides brief proofs of the different corollaries.

E. Notation and conventions

Throughout this paper,(•)T, (•)H and || • ||F denote the
transpose, conjugate transpose and Frobenius norm of a matrix
respectively, whilediag(•) denotes a diagonal matrix,|| • ||
denotes the Euclidean norm, and|• | denotes the magnitude of
a scalar.o(•) comes from the standard Landau notation, where
f(x) = o(g(x)) implies limx→∞ f(x)/g(x) = 0. We also use
.
= to denoteexponential equality, i.e., we writef(P )

.
= PB

to denote lim
P→∞

log f(P )

logP
= B. Similarly

.
≥ and

.
≤ denote

exponential inequalities. Logarithms are of base2. Finally
we adhere to the common convention (see [4], [6], [7], [19])



of assuming perfect and global knowledge of channel state
information at the receivers (perfect global CSIR), where the
receivers know all channel states and all estimates7.

II. D OF REGION OF THEMISO BC WITH EVOLVING CSIT

We proceed with the main results, which we divide in
four cases; the case of symmetrically evolving current CSIT
with perfect delayed CSIT, of symmetrically evolving current
CSIT and imperfect delayed CSIT, the partially symmetric
case with perfect and imperfect delayed CSIT, and finally the
more general asymmetric case. As stated, the corresponding
schemes can be found in Section III, while the corresponding
outer bound proof can be found in Section IV.

A. Symmetrically evolving current CSIT and perfect delayed
CSIT

We here consider the case of evolving current CSIT with
perfect delayed CSIT, and focus on the case where the two
users enjoy the same quality of current CSIT corresponding to
the same set of quality exponents (0 ≤ α1 ≤ · · · ≤ αT ≤ 1).
This statistical symmetry is meant to reflect scenarios where
the quality of the feedback links is similar across different
users. We also focus for now on the case where delayed CSIT
can be considered to be perfect; an assumption that is meant
to reflect the ability to eventually, after sufficiently large delay,
receive sufficient feedback to allow for perfect CSIT estimates.
For notational convenience, we define

ᾱ,
1

T

T∑

t=1

αt (7)

to be the average (current) CSIT quality exponent.

Theorem 1:The optimal DoF region for the two-user MISO
BC with symmetrically evolving current CSIT and perfect
delayed CSIT, takes the form

d1 ≤ 1, d2 ≤ 1 (8)

2d1 + d2 ≤ 2 + ᾱ (9)

2d2 + d1 ≤ 2 + ᾱ (10)

and corresponds to the polygon with corner points

{(0, 0), (0, 1), (ᾱ, 1), (
2 + ᾱ

3
,
2 + ᾱ

3
), (1, ᾱ), (1, 0)}.

This is depicted in Fig. 1.
Drawing from the above, the following corollary is partially

motivated by the possibility of having imperfect feedback
and/or having feedback with delays. The proof is brief and can
be found in Appendix VII-A. The use of the termsymmetric
DoF is meant to correspond to the case where the two users
have equal DoF.

Corollary 1a: In the setting of the two-user MISO BC, the
optimal symmetric DoFd′ = 1 (DoF pair (d′, d′) = (1, 1))
requiresᾱ = 1, i.e., requires perfect and immediately available
CSIT.

7See for example the work of [20], [21] on the challenge of obtaining such
perfect global CSIR, and the work in [9] on designs that optimally utilize
imperfect and delayed global CSIR.
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Fig. 1. Optimal DoF region of two-user MISO BC with evolving current
CSIT and perfect delayed CSIT.

The above applies to settings such as that in [10] which
considers delays in receiving current CSIT, thus corresponding
to havingα1 = · · ·ατ = 0 for someτ > 0, and thus having
ᾱ < 1. The corollary shows that, unlike in the (M + 1)-user
user case in [10] where the optimal sum DoF is achieved
even in the presence of the aforementioned (current feedback)
delays, in the two-user case here, any delay or imperfectionin
the current CSIT, will result in suboptimal DoF performance.

The following examples provides insight.
Example 1:Let us consider a setting where we seek to

achieve a certain symmetric target DoFd′ = 7/9. Noting
directly from the theorem that this requiresᾱ ≥ 3d′−2 = 1/3,
we identify possible sets of quality exponents to include:
• (αt = 0 for t ≤ 2T/3, αt = 1 for t > 2T/3) which allows
for maximal current-feedback delay that is equal to two thirds
of the coherence block, and which asks for perfect feedback
at the beginning of the last third of the block
• (αt = 0 for t ≤ T/3, αt = 4/9 for t ∈ (T/3, 2T/3], αt =
5/9 for t > 2T/3) which allows for some feedback delay and
a gradual evolution of CSIT quality
• (αt = 1/3 for all t ∈ (0, T ]) which asks for immediate
feedback, but of lesser quality with fewer feedback bits.

Example 2: In the setting of the previous example and the
aforementioned three options, let us assume for the sake of
simplicity that channel quantization is simple scalar quantiza-
tion, in which case a quantization rate oflogP bits allows for
(essentially) perfect feedback, and whereα logP bits allow
for a quality exponentα ∈ [0, 1] ( [18]). In this simplified
quantization setting we observe the following.
• The first option is direct: send no feedback during the
first two-thirds of the coherence block, and then sendlogP
feedback bits right after that (no need for further delayed
feedback).
• To get the second option, we allow for feedback delay equal
to a third of the coherence block, at the end of which we send
4
9 logP bits of feedback to getαt = 4/9, t ∈ (T/3, 2T/3],
and then at the beginning of the last third of the coherence



TABLE I
SOME FEEDBACK OPTIONS ACHIEVING SYMMETRICDOF d

′
= 7

9
.

α1 αT
3
+1

α 2T
3

+1
feedback feedback extra bits

to to to delay bits in after
αT

3
α 2T

3
αT period1 → T t = T

1/3 1/3 1/3 0 1/3 · logP 2/3 · logP
0 4/9 5/9 T/3 5/9 · logP 4/9 · logP
0 0 1 2T/3 logP 0

block, send an additional19 logP bits to increase the number
of accumulated feedback bits to59 logP bits and to get
αt = 5/9, t ∈ (2T/3, T ]. Sending, at any point after the
end of the coherence block, an additional4

9 logP bits of
delayed feedback, would complement the existing5

9 logP bits
of feedback accumulated during the coherence block, would
bring the total number of accumulated feedback bits tologP
bits, and would allow for perfect delayed CSIT corresponding
to β = 1.
• To get the third option, we immediately send13 logP bits
of feedback at the beginning of the coherence block in order
to get αt = 1/3, t ∈ [1, T ]. Sending an extra23 logP bits
of delayed feedback at any pointt > T after the end of the
coherence block, would result in perfect delayed CSIT.

These are summarized in Table II where the second-to-last
column describes the total number of feedback bits sent during
the coherence block, and where the last column describes the
number of extra (delayed) feedback bits required to refine the
current CSIT estimates to the point of perfect delayed CSIT.

B. Symmetrically evolving current CSIT with imperfect de-
layed CSIT

We now proceed to the more general case where, in addition
to imperfections in the current CSIT, imperfections can be
found in delayed CSIT estimates as well (0 ≤ α1 ≤ · · · ≤
αT ≤ β ≤ 1). Havingβ ≤ 1 could reflect a limitation in the
feedback link quality or a limitation in the total number of
(current plus delayed) feedback bits, which in turn resultsin
coarse CSIT, irrespective of how long we wait for this delayed
feedback. We recall that delayed feedback is not consideredto
be evolving, again because such delayed feedback can, without
loss of generality, be considered to arrive at any point after
the end of the coherence period, and after CSIT has reached
its maximum refinement. As before,̄α is the average of the
quality exponents.

Theorem 2:The optimal DoF region takes the form

d1 ≤ 1, d2 ≤ 1, 2d1 + d2 ≤ 2 + ᾱ, 2d2 + d1 ≤ 2 + ᾱ

whenβ ≥ 1+2ᾱ
3 , while whenβ < 1+2ᾱ

3 this region is inner
bounded by the achievable region

d1 ≤ 1, d2 ≤ 1 (11)

2d1 + d2 ≤ 2 + ᾱ (12)

2d2 + d1 ≤ 2 + ᾱ (13)

d2 + d1 ≤ 1 + β (14)

which takes the form of a polygon with corner points
{(0, 0), (0, 1), (ᾱ, 1), (2β − ᾱ, 1 + ᾱ − β), (1 + ᾱ − β, 2β −
ᾱ), (1, ᾱ), (1, 0)}.

The following corollaries provide further insight and con-
clusions that hold in the same DoF context.

Corollary 2a: Having delayed-CSIT qualityβ ≥ 1+2ᾱ
3

is equivalent to having perfect delayed CSIT. Consequently
wheneverαT ≥ 1+2ᾱ

3 , there is no need for any delayed CSIT,
i.e., there is no utility in sending feedback after the end ofthe
coherence block.

The above is direct from the theorem and simply considers
that current CSIT estimates can be recalled at a later point in
time. It applies towards answering the question of how many
(delayed) feedback bits must be gathered after the channel
changes in order to achieve the best possible performance,
offering insight on understanding when delayed feedback is
necessary.

Furthermore we have the following, which gives insight on
how many feedback bits to send, and when, in order to achieve
a certain performanced′. The proof is again direct.

Corollary 2b: To achieve a symmetric target DoFd′, it is
sufficient to haveᾱ ≥ 3d′ − 2 with β ≥ 2d′ − 1 or to have
ᾱ ≥ 3d′−2 with αT ≥ 2d′−1 (and no extra delayed feedback).

In addition, the following corollary describes feedback
delays that allow for a given target symmetric DoFd′ in the
presence of constraints on current and delayed CSIT qualities.
We will be specifically interested in the allowable fractional
delay of feedback

γ, argmax
γ′

{αγ′T = 0} (15)

i.e., the fractionγ ≤ 1 for which α1 = · · · = αγT =
0, αγT+1 > 0. A constraint αt ≤ αmax on the current
quality exponents, is meant to reflect a constraint on the total
number of feedback bits sent during the coherence period,
while boundingβ corresponds to having a limited total number
of (current plus delayed) feedback bits per coherence period8.

Corollary 2c: Under a current CSIT quality constraintαt ≤
αmax, a symmetric target DoFd′ can be achieved with any
fractional delayγ ≤ 1− 3d′−2

αmax
, by settingα1 = · · · = αγT =

0, αγT+1 = · · · = αT = αmax = 2d′ − 1 = β. Furthermore
under a delayed CSIT quality constraintβ ≤ βmax, a target
DoF d′ can be achieved with anyγ ≤ 1 − 3d′−2

βmax
, by setting

α1 = · · · = αγT = 0, αγT+1 = · · · = αT = βmax = 2d′ − 1.
Finally under no specific constraint on CSIT quality, the target
DoF d′ can be achieved with anyγ ≤ 3(1− d′), using perfect
(but delayed) feedback (α1 = · · · = αγT = 0, αγT+1 =
· · ·αT = β = 1).

The following bounds the quality of current and of delayed
CSIT needed to achieve a certain target symmetric DoFd′.

Corollary 2d: Havingαmax = 3d′ − 2 andβ = 2d′ − 1, is
sufficient to achieve a symmetric DoFd′.

The proof of this is straightforward; the corresponding qual-
ity exponents can beα1 = · · · = αT = 3d′ − 2, β = 2d′ − 1.

8Our ignoring integer rounding considerations is an abuse ofnotation that
is only done for the sake of clarity, and it carries no real effect.



TABLE II
SOME FEEDBACK OPTIONS ACHIEVING SYMMETRICDOF d

′
= 7

9
.

α1 αT
3
+1

α 2T
3

+1
feedback extra bits

to to to β delay after
αT

3
α 2T

3
αT t = T

1/3 1/3 1/3 5/9 0 2/9 · logP
0 4/9 5/9 5/9 T/3 0
0 0 1 1 2T/3 0

We proceed with some simple examples.
Example 3:Consider a symmetric target DoFd′ = 7

9 . In
the absence of any specific constraint on the quality of current
and delayed CSIT,d′ can be achieved withα1 = · · ·α2T/3 =
0, αt = β = 1, t ∈ (2T/3, T ], corresponding to fractional
feedback delayγ = 3(1 − d′) = 2/3 (Corollary 2c), and
corresponding to sending perfect feedback at the beginningof
the last third of the coherence period. If on the other hand,
the feedback link only allows forαt ≤ αmax = 1/2, then
the desiredd′ = 7/9 can be achieved with feedback delay
γ = 1 − (3d′ − 2)/αmax = 1/3, allowing for αt = 0 for t ∈
[1, T/3] and thenαt = 1/2 for t > T/3, andβ ≥ 1+2ᾱ

3 =
2d′ − 1 = 5/9.

Example 4: If in the setting of the previous example, we
loosened slightly the constraint, fromαt ≤ 1/2 to αt ≤ 5/9,
we could allow for an increase in the fractional delay, from
γ = 1/3 to γ = 1− ᾱ

β = 1− 3d′−2
2d′−1 = 1− 1/3

5/9 = 2/5 allowing
for αt = 0 for t ≤ 2T/5 and thenαt = 2d′ − 1 = 5/9 =
β for t > 2T/5.

Example 5: If feedback delay is not a priority, then we can
substantially reduce the number of current feedback bits and
achieved′ = 7

9 with α1 = · · · = αT = ᾱ = 3d′ − 2 = 1/3
(β = 1+2ᾱ

3 = 2d′ − 1 = 5/9).
Example 6: If feedback can only be sent every third of the

coherence period, then possible feedback options ford′ = 7/9
would include:
• (αt = 0 for t ≤ 2T/3, αt = 1 = β for t > 2T/3) which
allows for increased feedback delay
• (αt = 0 for t ≤ T/3, αt = 4/9 for t ∈ (T/3, 2T/3], αt =
5/9 = β for t > 2T/3) which combines feedback delay and
a reduced total amount of feedback bits
• (αt = 1/3 for all t < T, β = 5/9) which allows for reduced
feedback within the duration of the coherence block.

These options are summarized in Table II, again correspond-
ing to the simple aforementioned quantization setting. Thelast
column describes the number of delayed feedback bits, sent at
any point after the end of coherence block, to refine current
CSIT estimates to the desired quality of delayed CSIT.

C. Asymmetrically evolving current CSIT

We here consider the asymmetric case whereα
(1)
t need

not be equal toα(2)
t , corresponding to having CSIT quality

that evolves differently from user to user. Such asymmetry
could reflect feedback links with different capacity or different
delays. The approach here seeks to shed light on the question
of how the feedback capabilities of one user, affect the
other user. The exposition of the results is done for two

distinct cases. In the first case, which could be described
as a partially symmetric case, we show that the results of
the two previous theorems hold even when the two users’
quality exponentsα(1)

t , α
(2)
t are different but share a common

averageᾱ =
∑T

t=1 α
(1)
t /T =

∑T
t=1 α

(2)
t /T , thus revealing

among other things the condition (equal exponent average)
under which two uneven feedback links behave similarly. The
results are derived based on the design of specific schemes
that will be shown to properly utilize this partial asymmetry.
In the second case we derive the optimal DoF region in the
general asymmetric setting where the averages need not be
the same. The subsequent results are supported by the outer
bound in Section IV, while the achievability part of Theorem3
is supported by the schemes in Section III-E and Section III-F,
and the achievability part of Theorem 4 is supported by the
schemes in Section III-B, Section III-C and Section III-D,
where these latter schemes are specifically designed to handle
asymmetric feedback qualities.

Theorem 3:For any set of quality exponentsα(1)
t , α

(2)
t

that share a common averagēα =
∑T

t=1 α
(1)
t /T =

∑T
t=1 α

(2)
t /T , and in the presence of perfect delayed

CSIT, the optimal DoF region for the two-user MISO
BC takes the form of a polygon with corner points
{(0, 0), (0, 1), (ᾱ, 1), (2+ᾱ

3 , 2+ᾱ
3 ), (1, ᾱ), (1, 0)}. Furthermore

in this same partially symmetric setting, the above optimal
region remains the same for any imperfectβ ≥ 1+2ᾱ

3 , while
for β < 1+2ᾱ

3 the optimal DoF region is inner bounded by the
polygon with corner points{(0, 0), (0, 1), (ᾱ, 1), (2β− ᾱ, 1+
ᾱ− β), (1 + ᾱ− β, 2β − ᾱ), (1, ᾱ), (1, 0)}.

Proceeding to a more general asymmetric case, without loss
of generality we assume that

ᾱ(2) ,
1

T

T∑

t=1

α
(2)
t ≤ ᾱ(1) ,

1

T

T∑

t=1

α
(1)
t ,

and focus on the practical case where

0 ≤ α
(2)
t ≤ α

(1)
t ≤ 1, t = 1, 2, · · · , T (16)

as well as on the case of perfect delayed CSIT.

Theorem 4:The optimal DoF region for the two-user MISO
BC with asymmetric and evolving CSIT, takes the form

d1 ≤ 1, d2 ≤ 1 (17)

2d1 + d2 ≤ 2 + ᾱ(1) (18)

2d2 + d1 ≤ 2 + ᾱ(2) (19)

and for 2ᾱ(1) − ᾱ(2) < 1 corresponds
to a polygon with corner points {(0, 0),
(1, 0), (1, ᾱ(1)), (2+2ᾱ(1)−ᾱ(2)

3 , 2+2ᾱ(2)−ᾱ(1)

3 ), (ᾱ(2), 1), (0, 1)},
else to a polygon with corner points
{(0, 0), (1, 0), (1, 1+ᾱ(2)

2 ), (ᾱ(2), 1), (0, 1)}.

Figure 2 depicts the above.
The following corollaries provide further insight and conclu-

sions that hold in the above context of asymmetrically evolving
current CSIT and perfect delayed CSIT.

Corollary 4a: For any2ᾱ(1) − ᾱ(2) ≥ 1, the optimal DoF
region does not depend on̄α(1).
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Fig. 2. Optimal DoF regions for the two-user MISO BC with asymmetric and

evolving CSIT. The corner points take the following values:A = (1, 1+ᾱ(2)

2
),

B = (ᾱ(2), 1), C = ( 2+2ᾱ(1)
−ᾱ(2)

3
, 2+2ᾱ(2)

−ᾱ(1)

3
) andD = (1, ᾱ(1)).

Example 7:For ᾱ(1) = 1, the optimal
DoF region is a polygon with corner points
{(0, 0), (1, 0), (1, 1+ᾱ(2)

2 ), (ᾱ(2), 1), (0, 1)}. This generalizes
the optimal DoF region{(0, 0), (1, 0), (1, 12 ), (0, 1)} derived
in [19] for ᾱ(1) = 1, ᾱ(2) = 0.

The next corollary provides insight on how a reduction in a
user’s feedback quality, is exacerbated by quality asymmetry.
The proof is brief and can be found in Appendix VII-C.

Corollary 4b: Let (d(ᾱ, ᾱ), d(ᾱ, ᾱ)) be the optimal sym-
metric DoF pair in the symmetric casēα(1) = ᾱ(2) = ᾱ, and
let (d(ᾱ, ᾱ), d(ᾱ, ᾱ′)) be the new optimal DoF pair that, after
ᾱ(2) is reduced from̄α to ᾱ′ (ᾱ′ < ᾱ), maintains the DoF of
the first user. Thend(ᾱ, ᾱ′) < d(ᾱ′, ᾱ′).

Example 8:Consider an original set of quality expo-
nents ᾱ(1) = ᾱ(2) = 0.6 providing for an optimal
(d(ᾱ, ᾱ), d(ᾱ, ᾱ)) = (d(0.6, 0.6), d(0.6, 0.6)) = (2.63 , 2.6

3 ).
Then consider a feedback quality degradation for the second
user, from ᾱ(2) = 0.6 to a new ᾱ(2) = 0.5. The optimal
DoF pair(2.63 , d(0.6, 0.5)) = (2.63 , 4.9

6 ) that guarantees the first
user’s original performance of2.6/3 DoF, offers the second
user a DoF of4.96 , which is less thand(0.5, 0.5) = 2.5

3 , i.e.,
which is less than what the second user would have gotten
if both users received their optimal DoF after their qualities
equally degraded tōα′ = 0.5.

III. C OMMUNICATION SCHEMES FOR THEMISO BC WITH

EVOLVING CSIT

We proceed to describe precoding schemes that achieve
the corresponding DoF corner points, by properly utilizing
different combinations of superposition coding, successive
cancelation, power allocation, and phase durations. As before,
we will consider a channel coherence period ofT time slots,
but clarify that the schemes’ DoF performance does not
depend on the channel being temporally independent.

We first present the basic notation and conventions used in
our schemes. This preliminary description allows for brevity
in the subsequent description of the details of our schemes.

A. Precoding schemes: Basic notation and conventions

The schemes are designed to haveS phases, with phases
(s = 1, 2, · · · , S) spanningTs coherence blocks, and where
T1, T2, · · · , TS will be separately designed in each scheme.
The labels of the blocks in each phases, will constitute a set
Bs, where9

B1 = {i}T1

i=1, B2 = {i+ T1}
T2

i=1, · · · ,BS = {i+

S−1∑

k=1

Tk}
TS

i=1.

(20)

The transmitted vector at timeslott of block ℓ will typically
take the form

xℓ,t = wℓ,tcℓ,t +uℓ,taℓ,t +u
′

ℓ,ta
′

ℓ,t + vℓ,tbℓ,t + v
′

ℓ,tb
′

ℓ,t (21)

whereaℓ,t, a
′

ℓ,t are symbols meant for user 1,bℓ,t, b
′

ℓ,t for user
2, andcℓ,t are common symbols. Their respective powers are
denoted as

P
(c)
ℓ,t ,E|cℓ,t|

2, P
(a)
ℓ,t ,E|aℓ,t|

2, P
(a′)
ℓ,t ,E|a

′

ℓ,t|
2

P
(b)
ℓ,t ,E|bℓ,t|

2, P
(b′)
ℓ,t ,E|b

′

ℓ,t|
2,

and the prelog factors of their corresponding rates are re-
spectively denoted as10 r

(a)
ℓ,t , r

(a′)
ℓ,t , r

(b)
ℓ,t , r

(b′)
ℓ,t , r

(c)
ℓ,t . From the

unit-norm precoders,uℓ,t,vℓ,t are typically chosen to be
orthogonal toĝℓ,t and ĥℓ,t respectively, whilewℓ,t,u

′

ℓ,t,v
′

ℓ,t

are generated pseudo-randomly. All precoders are assumed to
be known by all nodes.

In addition

ι
(1)
ℓ,t ,hT

ℓ(vℓ,tbℓ,t + v
′

ℓ,tb
′

ℓ,t), ι
(2)
ℓ,t ,gT

ℓ(uℓ,taℓ,t + u
′

ℓ,ta
′

ℓ,t)
(22)

will denote the interference at user 1 and user 2 respectively,
and

ι̌
(1)
ℓ,t , ȟ

T

ℓ(vℓ,tbℓ,t + v
′

ℓ,tb
′

ℓ,t), ι̌
(2)
ℓ,t , ǧT

ℓ(uℓ,taℓ,t + u
′

ℓ,ta
′

ℓ,t)
(23)

will denote the transmitter’s delayed estimates ofι
(1)
ℓ,t , ι

(2)
ℓ,t ,

while we will use

¯̌ι
(1)
ℓ,t = ι̌

(1)
ℓ,t − ι̃

(1)
ℓ,t ,

¯̌ι
(2)
ℓ,t = ι̌

(2)
ℓ,t − ι̃

(2)
ℓ,t (24)

to denote the quantized versions ofι̌
(1)
ℓ,t and ι̌(2)ℓ,t respectively,

with ι̃
(2)
ℓ,t , ι̃

(1)
ℓ,t denoting the corresponding quantization errors.

Furthermore in the setting where we quantize a setx of com-
plex numbers, we will useφ(x) to mean that the corresponding
number of quantization bits isφ(x) logP .

We proceed to first describe the three schemes for the
asymmetric quality setting11. Specifically,X11 will achieve
DoF pointC = (2+2ᾱ(1)−ᾱ(2)

3 , 2+2ᾱ(2)−ᾱ(1)

3 ) for the case of

9Blocks ℓ = 1 → T1 constitute phase 1, blocksℓ = T1 + 1 → T2

constitute phase2,· · · , blocksℓ = TS−1 + 1 → TS constitute phaseS.
10For example, we user(a)

ℓ,t
to mean that, at timeslott of block ℓ, symbol

aℓ,t carriesr(a)
ℓ,t

logP − o(log P ) bits.
11As stated, in this setting, without loss of generality, we assume that

ᾱ(2) ≤ ᾱ(1), focusing on the case where0 ≤ α
(2)
t ≤ α

(1)
t ≤ 1, t =

1, 2, · · · , T , as well as on the case of perfect delayed CSIT. The scheme
description often considers the case of rationalα

(i)
t , but any other case can

be readily handled with minor modifications. To accommodatethe choice of
phase durations, the number of phasesS may be chosen to be large.



2ᾱ(1) − ᾱ(2) < 1 (case 1), whileX12 will achieve DoF point
D = (1, ᾱ(1)) for case 1, as well asA = (1, 1+ᾱ(2)

2 ) for the
case where2ᾱ(1) − ᾱ(2) ≥ 1 (case 2), andX13 will achieve
DoF pointB = (ᾱ(2), 1) for both cases.

B. SchemeX11: utilizing asymmetric and evolving CSIT to
achieve DoF pointC = (2+2ᾱ(1)−ᾱ(2)

3 , 2+2ᾱ(2)−ᾱ(1)

3 ) for
case 1 (2ᾱ(1) − ᾱ(2) < 1)

As stated, schemeX11 is designed to haveS phases,
with phases (s = 1, 2, · · · , S) spanningTs blocks, where
T1, T2, · · · , TS are integers satisfying

Ts = T1ε1µ
s−2, ∀s ∈ {2, 3, · · · , S − 1},

TS = TS−1ε2 = T1ε1µ
S−3ε2 (25)

where µ = ᾱ(1)−ᾱ(2)+2∆
1−ᾱ(1)−∆

, ε1 = 2−ᾱ(1)−ᾱ(2)

1−ᾱ(1)−∆
, ε2 =

ᾱ(1)−ᾱ(2)+2∆
1−ᾱ(2) , and where∆ can be any number12 such that

0 < ∆ <
1− 2ᾱ(1) + ᾱ(2)

3
. (26)

The labels of the blocks in each phases, constitute the setBs

as this was described in (20).
1) Phase 1:During phase 1 (consisting of blocksℓ ∈ B1),

the transmitter sends

xℓ,t=uℓ,taℓ,t+u
′

ℓ,ta
′

ℓ,t+vℓ,tbℓ,t+v
′

ℓ,tb
′

ℓ,t (27)

ℓ ∈ B1, t = 1, 2, · · · , T , with power and rates set as

P
(a)
ℓ,t

.
= P, P

(a′)
ℓ,t

.
= P 1−α

(2)
t , P

(b)
ℓ,t

.
= P, P

(b′)
ℓ,t

.
= P 1−α

(1)
t

r
(a)
ℓ,t = 1, r

(a′)
ℓ,t = 1− α

(2)
t , r

(b)
ℓ,t = 1, r

(b′)
ℓ,t =1−α

(1)
t .

(28)
The received signals at the two users then take the form

y
(1)
ℓ,t =hT

ℓuℓ,taℓ,t
︸ ︷︷ ︸

P

+hT

ℓu
′

ℓ,ta
′

ℓ,t
︸ ︷︷ ︸

P 1−α
(2)
t

+

ι
(1)
ℓ,t

︷ ︸︸ ︷

h̃
T

ℓ,tvℓ,tbℓ,t
︸ ︷︷ ︸

P 1−α
(1)
t

+hT

ℓv
′

ℓ,tb
′

ℓ,t
︸ ︷︷ ︸

P 1−α
(1)
t

+z
(1)
ℓ,t

︸︷︷︸

P 0

,

(29)

y
(2)
ℓ,t =

ι
(2)
ℓ,t

︷ ︸︸ ︷

g̃T

ℓ,tuℓ,taℓ,t
︸ ︷︷ ︸

P 1−α
(2)
t

+gT

ℓu
′

ℓ,ta
′

ℓ,t
︸ ︷︷ ︸

P 1−α
(2)
t

+gT

ℓvℓ,tbℓ,t
︸ ︷︷ ︸

P

+gT

ℓv
′

ℓ,tb
′

ℓ,t
︸ ︷︷ ︸

P 1−α
(1)
t

+z
(2)
ℓ,t

︸︷︷︸

P 0

(30)

where under each term we noted the order of the summand’s
average power, and where

E|ι
(1)
ℓ,t |

2=E|hT

ℓvℓ,tbℓ,t|
2 + E|hT

ℓv
′

ℓ,tb
′

ℓ,t|
2

=E|h̃
T

ℓ,tvℓ,tbℓ,t|
2+E|hT

ℓv
′

ℓ,tb
′

ℓ,t|
2 .
=P 1−α

(1)
t ,

E|ι
(2)
ℓ,t |

2=E|g̃T

ℓ,tuℓ,taℓ,t|
2+E|gT

ℓu
′

ℓ,ta
′

ℓ,t|
2 .
=P 1−α

(2)
t . (31)

At this point, and after the end of the first phase, the
transmitter uses its perfect knowledge of delayed CSIT to

12We here clarify that any choice of∆ in the region shown in (26) will, as
the number of phases increases, eventually achieve the sameDoF. Generally
speaking, choosing a larger∆ reduces delay and allows for faster convergence
to the optimal DoF.

reconstruct perfect delayed estimates{ι̌
(1)
ℓ,t , ι̌

(2)
ℓ,t , ℓ ∈ B1}

T
t=1

(cf. (22),(23)), and to quantize them into{¯̌ι(1)ℓ,t ,
¯̌ι
(2)
ℓ,t , ℓ ∈ B1}

T
t=1

(cf. (24)) with

φ(¯̌ι
(1)
ℓ,t ) = 1− α

(1)
t , φ(¯̌ι

(2)
ℓ,t ) = 1− α

(2)
t

φ({¯̌ι
(2)
ℓ,t ,

¯̌ι
(1)
ℓ,t , ℓ ∈ B1}

T
t=1) = T1T (2− ᾱ(1) − ᾱ(2)) (32)

which, given thatE|ι(1)ℓ,t |
2 .
= P 1−α

(1)
t andE|ι(2)ℓ,t |

2 .
= P 1−α

(2)
t ,

allows for bounded quantization noise power

E|ι̃
(1)
ℓ,t |

2 .
= E|ι̃

(2)
ℓ,t |

2 .
= 1, ℓ ∈ B1, t = 1, · · · , T

(see for example [18]). At this point, theT1T (2 − ᾱ(1) −

ᾱ(2)) logP bits representing{¯̌ι(2)ℓ,t , ¯̌ι
(1)
ℓ,t , ℓ ∈ B1}

T
t=1, are dis-

tributed evenly across the set{cℓ,t, ℓ ∈ B2}
T
t=1 of newly

constructed symbols which will be sequentially transmitted
during the next (second) phase. This transmission of{cℓ,t, ℓ ∈
B2}

T
t=1 in the next phase, will help each of the users cancel

the dominant part of the interference from the other user,
and it will also serve as an extra observation (which will in
turn enable the creation of a corresponding MIMO channel
- see (37) later on) that allows for decoding of all private
information of that same user.

2) Phases, 2 ≤ s ≤ S− 1: During phases (consisting of
block ℓ, ℓ ∈ Bs), the transmitted signal takes the exact form
in (21)

xℓ,t = wℓ,tcℓ,t + uℓ,taℓ,t + u
′

ℓ,ta
′

ℓ,t + vℓ,tbℓ,t + v
′

ℓ,tb
′

ℓ,t

(33)

ℓ ∈ Bs, t = 1, 2, · · · , T , where we set power and rates as

P
(c)
ℓ,t

.
= P, r

(c)
ℓ,t = 1− α

(1)
t −∆

P
(a)
ℓ,t

.
= Pα

(1)
t +∆, r

(a)
ℓ,t = α

(1)
t +∆

P
(a′)
ℓ,t

.
= Pα

(1)
t −α

(2)
t +∆, r

(a′)
ℓ,t = α

(1)
t − α

(2)
t +∆

P
(b)
ℓ,t

.
= Pα

(1)
t +∆, r

(b)
ℓ,t = α

(1)
t +∆

P
(b′)
ℓ,t

.
= P∆, r

(b′)
ℓ,t = ∆.

(34)

Then the received signals at the two users take the form

y
(1)
ℓ,t = hT

ℓwℓ,tcℓ,t
︸ ︷︷ ︸

P

+hT

ℓuℓ,taℓ,t
︸ ︷︷ ︸

Pα
(1)
t +∆

+ hT

ℓu
′

ℓ,ta
′

ℓ,t
︸ ︷︷ ︸

Pα
(1)
t −α

(2)
t +∆

+

ι
(1)
ℓ,t

︷ ︸︸ ︷

h̃
T

ℓ,tvℓ,tbℓ,t
︸ ︷︷ ︸

P∆

+hT

ℓv
′

ℓ,tb
′

ℓ,t
︸ ︷︷ ︸

P∆

+ z
(1)
ℓ,t

︸︷︷︸

P 0

, (35)

y
(2)
ℓ,t = gT

ℓwℓ,tcℓ,t
︸ ︷︷ ︸

P

+

ι
(2)
ℓ,t

︷ ︸︸ ︷

g̃T

ℓ,tuℓ,taℓ,t
︸ ︷︷ ︸

Pα
(1)
t −α

(2)
t +∆

+ gT

ℓu
′

ℓ,ta
′

ℓ,t
︸ ︷︷ ︸

Pα
(1)
t −α

(2)
t +∆

+ gT

ℓvℓ,tbℓ,t
︸ ︷︷ ︸

Pα
(1)
t

+∆

+ gT

ℓv
′

ℓ,tb
′

ℓ,t
︸ ︷︷ ︸

P∆

+ z
(2)
ℓ,t

︸︷︷︸

P 0

. (36)

Upon reception, based on (35),(36), each user first decodes
the common signalcℓ,t by treating the other signals as noise.
The details for the achievability ofr(c)ℓ,t = 1 − α

(1)
t − ∆

follow closely the exposition of the details of schemeX3,



as these details are shown in Appendix VI-C. After decoding
cℓ,t, user 1 removeshT

ℓwℓ,tcℓ,t from y
(1)
ℓ,t , and user 2 removes

gT

ℓwℓ,tcℓ,t from y
(2)
ℓ,t , ℓ ∈ Bs, t = 1, 2, · · · , T .

At this point, each user goes back one phase and re-
constructs, using its knowledge of{cℓ,t, ℓ ∈ Bs}

T
t=1, the

quantized delayed estimates{¯̌ι(2)ℓ,t ,
¯̌ι
(1)
ℓ,t , ℓ ∈ Bs−1}

T
t=1 of all

the interference accumulated during the previous phases− 1.
User 1 then subtractš̄ι(1)ℓ,t from y

(1)
ℓ,t to remove, up to bounded

noise, the interference corresponding toι̌(1)ℓ,t , ℓ ∈ Bs−1,
t = 1, · · · , T . The same user also employs the estimate
¯̌ι
(2)
ℓ,t of ι̌(2)ℓ,t as an extra observation which, together with the

observationy(1)ℓ,t −hT

ℓwℓ,tcℓ,t−¯̌ι
(1)
ℓ,t , allow for decoding of both

aℓ,t anda
′

ℓ,t, again corresponding to the phase(s − 1) (note
that cℓ,t = 0, ℓ ∈ B1). Specifically user 1 is presented, at this
instance, with a2× 2 equivalent MIMO channel of the form
[

y
(1)
ℓ,t − hT

ℓwℓ,tcℓ,t−¯̌ι
(1)
ℓ,t

¯̌ι
(2)
ℓ,t

]

=

[
hT

ℓ

gT

ℓ

][

uℓ,t u
′

ℓ,t

][aℓ,t
a

′

ℓ,t

]

+

[

z
(1)
ℓ,t + ι̃

(1)
ℓ,t

−ι̃
(2)
ℓ,t

]

(37)

which allows for decoding ofaℓ,t anda
′

ℓ,t with r
(a)
ℓ,t = α

(1)
t +

∆, r
(a′)
ℓ,t = α

(1)
t − α

(2)
t + ∆, ℓ ∈ Bs−1, t = 1, · · · , T (see

Appendix VI-C for similar achievability details).
Similar actions are performed by user 2 which uses the

knowledge of̄̌ι(1)ℓ,t andy(2)ℓ,t − gT

ℓwℓ,tcℓ,t − ¯̌ι
(2)
ℓ,t to decode both

bℓ,t and b
′

ℓ,t with r
(b)
ℓ,t = α

(1)
t + ∆, r

(b′)
ℓ,t = ∆, ℓ ∈ Bs−1,

t = 1, · · · , T .
As before, after the end of phases, the transmitter uses

its knowledge of delayed CSIT to reconstruct{ι̌
(2)
ℓ,t , ι̌

(1)
ℓ,t , ℓ ∈

Bs}
T
t=1, and quantize that into{¯̌ι(2)ℓ,t ,

¯̌ι
(1)
ℓ,t , ℓ ∈ Bs}

T
t=1 with

φ(¯̌ι
(1)
ℓ,t ) = ∆, φ(¯̌ι

(2)
ℓ,t ) = α

(1)
t − α

(2)
t +∆

φ({¯̌ι
(2)
ℓ,t , ¯̌ι

(1)
ℓ,t , ℓ ∈ Bs}

T
t=1) = TsT (ᾱ

(1) − ᾱ(2) + 2∆) (38)

which allows for bounded quantization noise. Then the total
TsT (ᾱ

(1)−ᾱ(2)+2∆) logP bits representing all the quantized
values{¯̌ι(2)ℓ,t , ¯̌ι

(1)
ℓ,t , ℓ ∈ Bs}

T
t=1, are distributed evenly across

the set{cℓ,t, ℓ ∈ Bs+1}
T
t=1, the elements of which will be

sequentially transmitted in the next phase (phases+ 1).
3) PhaseS: During the last phase (consisting of blockℓ,

ℓ ∈ BS), the transmitter sends

xℓ,t = wℓ,tcℓ,t + uℓ,taℓ,t + vℓ,tbℓ,t (39)

ℓ ∈ BS , t = 1, · · · , T , with power and rates set as

P
(c)
ℓ,t

.
= P, r

(c)
ℓ,t = 1− α

(2)
t

P
(a)
ℓ,t

.
= Pα

(2)
t , r

(a)
ℓ,t = α

(2)
t

P
(b)
ℓ,t

.
= Pα

(2)
t , r

(b)
ℓ,t = α

(2)
t

(40)

resulting in received signals of the form

y
(1)
ℓ,t=h

T

ℓwℓ,tcℓ,t
︸ ︷︷ ︸

P

+h
T

ℓuℓ,taℓ,t
︸ ︷︷ ︸

Pα
(2)
t

+ h̃
T

ℓ,tvℓ,tbℓ,t
︸ ︷︷ ︸

Pα
(2)
t −α

(1)
t ≤P 0

+z
(1)
ℓ,t

︸︷︷︸

P 0

, (41)

y
(2)
ℓ,t=g

T

ℓwℓ,tcℓ,t
︸ ︷︷ ︸

P

+ g̃T

ℓ,tuℓ,taℓ,t
︸ ︷︷ ︸

P 0

+gT

ℓvℓ,tbℓ,t
︸ ︷︷ ︸

Pα
(2)
t

+ z
(2)
ℓ,t

︸︷︷︸

P 0

. (42)

As before, for ℓ ∈ BS, t = 1, 2, · · · , T , both receivers
decodecℓ,t by treating all other signals as noise. Consequently
user 1 removeshT

ℓwℓ,tcℓ,t from y
(1)
ℓ,t and decodesaℓ,t, and

user 2 removesgT

ℓwℓ,tcℓ,t from y
(2)
ℓ,t and decodesbℓ,t, all at

the aforementioned rates. Finally each user goes back one
phase and, using knowledge of{cℓ,t, ℓ ∈ BS}

T
t=1, reconstructs

{¯̌ι
(2)
ℓ,t , ¯̌ι

(1)
ℓ,t , ℓ ∈ BS−1}

T
t=1, which in turn allows for decoding of

aℓ,t anda
′

ℓ,t at user 1, and ofbℓ,t andb
′

ℓ,t at user 2,ℓ ∈ BS−1,
t = 1, 2, · · · , T , all as described in the previous phases (see
Appendix VI-C for more details).

Table III summarizes the parameters of schemeX11. The use
of symbol⊥ is meant to indicate precoding that is orthogonal
to the channel estimate (rather than random). The table’s last
row indicates the prelog factor of the quantization rate.

TABLE III
SUMMARY OF SCHEMEX11 .

Phase 1 Ph. s (2≤s≤S−1) PhaseS
Duration T1 T1ε1µs−2 T1ε1µS−3ε2

r
(a)
ℓ,t

1 α
(1)
t +∆ α

(2)
t

r
(a′)
ℓ,t

1−α
(2)
t α

(1)
t −α

(2)
t +∆ -

r
(b)
ℓ,t

1 α
(1)
t +∆ α

(2)
t

r
(b′)
ℓ,t

1−α
(1)
t ∆ -

r
(c)
ℓ,t

- 1−α
(1)
t −∆ 1−α

(2)
t

P
(a)
ℓ,t

⊥ P Pα
(1)
t +∆ Pα

(2)
t

P
(a′)
ℓ,t

P 1−α
(2)
t Pα

(1)
t −α

(2)
t +∆ -

P
(b)
ℓ,t

⊥ P Pα
(1)
t +∆ Pα

(2)
t

P
(b′)
ℓ,t

P 1−α
(1)
t P∆ -

P
(c)
ℓ,t

- P P

Quant. 2−ᾱ(1)−ᾱ(2) ᾱ(1)−ᾱ(2)+2∆ 0

a) DoF calculation for schemeX11: We proceed to
add up the total amount of information transmitted during
this scheme. In accordance to the declared pre-log factors

r
(a)
ℓ,t , r

(a
′
)

ℓ,t and phase durations (see Table III), we have that

d1 =
T1(2− ᾱ(2)) +

∑S−1
i=2 Ti(2ᾱ

(1) − ᾱ(2) + 2∆) + TSᾱ
(2)

∑S
i=1 Ti

= (
S−1∑

i=2

(Ti(1− ᾱ(1) −∆) + Ti(ᾱ
(1) +∆)) + TS(1− ᾱ(2))

+ TSᾱ
(2) + T1ᾱ

(1) −∆
S−1∑

i=2

Ti)/(
S∑

i=1

Ti) (43)

= (1−∆) +
T1(ᾱ

(1) +∆− 1) + TS∆
∑S

i=1 Ti

(44)

where (43) considers the phase durations seen in (25), and
where we recall that∆ can be chosen to be any number that
satisfies (26). Considering that0 < µ < 1 (see (25) for case 1),
and that

∑S−3
i=0 µi = 1−µS−2

1−µ , we see that

d1 = (1−∆) +

T2

ε1
(ᾱ(1) +∆− 1) + T2µ

S−3ε2∆
T2

ε1
+ T2(

1
1−µ + µS−3(ε2 −

µ
1−µ ))

(45)



which, for asymptotically highS, gives that

d1 = (1−∆) +
1
ε1
(ᾱ(1) +∆− 1)

1
ε1

+ 1
1−µ

= (1−∆)−
1 + ᾱ(2) − 2ᾱ(1) − 3∆

3
=

2 + 2ᾱ(1) − ᾱ(2)

3
.

(46)

Similarly, considering the values forr(b)ℓ,t , r
(b

′
)

ℓ,t , we have that

d2=
T1(2− ᾱ(1)) +

∑S−1
i=2 Ti(ᾱ

(1) + 2∆) + TSᾱ
(2)

∑S
i=1 Ti

= ᾱ(1)+2∆+
T1(2−2ᾱ(1)−2∆)+TS(ᾱ

(2)−ᾱ(1)−2∆)
∑S

i=1 Ti

= ᾱ(1)+2∆+
1
ε1
(2−2ᾱ(1)−2∆)+µS−3ε2(ᾱ

(2)−ᾱ(1)−2∆)
1
ε1

+ ( 1
1−µ + µS−3(ε2 −

µ
1−µ ))

which, in the highS limit, gives

d2 = ᾱ(1) + 2∆+
1
ε1
(2− 2ᾱ(1) − 2∆)

1
ε1

+ 1
1−µ

= ᾱ(1)+2∆+
2(1+ᾱ(2)−2ᾱ(1)−3∆)

3
=
2+2ᾱ(2)−ᾱ(1)

3
.

(47)

In conclusion, for case 1 (2ᾱ(1) − ᾱ(2) < 1), schemeX11

achieves DoF pairC = (2+2ᾱ(1)−ᾱ(2)

3 , 2+2ᾱ(2)−ᾱ(1)

3 ) .

C. SchemeX12: utilizing asymmetric and evolving CSIT to
achieve DoF point(1, ᾱ(1)) for case 1, and(1, 1+ᾱ(2)

2 ) for
case 2 (2ᾱ(1) − ᾱ(2) ≥ 1)

SchemeX12 hasS phases, with phases (s = 1, 2, · · · , S)
spanningTs blocks (with labels from setBs from (20)), where

Ts =T1ϕ1η
s−2, ∀s ∈ {2, 3, · · · , S − 1},

TS = TS−1ϕ2 = T1ϕ1η
S−3ϕ2 (48)

and whereη = ᾱ(1)−ᾱ(2)

1−ᾱ(1) , ϕ1 = 1−ᾱ(2)

1−ᾱ(1) , ϕ2 = ᾱ(1)−ᾱ(2)

1−ᾱ(2) .
1) Phase 1:The transmitter sends

xℓ,t=uℓ,taℓ,t+u
′

ℓ,ta
′

ℓ,t+vℓ,tbℓ,t (49)

ℓ ∈ B1, t = 1, 2, · · · , T , with power and rates set as

P
(a)
ℓ,t

.
= P, P

(a′)
ℓ,t

.
= P 1−α

(2)
t , P

(b)
ℓ,t

.
= Pα

(1)
t ,

r
(a)
ℓ,t = 1, r

(a′)
ℓ,t = 1− α

(2)
t , r

(b)
ℓ,t = α

(1)
t .

(50)

After the end of the first phase, the transmitter recon-
structs delayed estimates{ι̌(2)ℓ,t , ℓ ∈ B1}

T
t=1, quantizes them

into {¯̌ι
(2)
ℓ,t , ℓ ∈ B1}

T
t=1 (cf. (24)) with φ(¯̌ι

(2)
ℓ,t ) = 1 − α

(2)
t

(getting bounded quantization noise), and evenly distributes
the T1T (1 − ᾱ(2)) logP bits representing{¯̌ι(2)ℓ,t , ℓ ∈ B1}

T
t=1,

across the set{cℓ,t, ℓ ∈ B2}
T
t=1 to be sent in the second phase.

2) Phases, 2 ≤ s ≤ S − 1: The transmitter sends

xℓ,t = wℓ,tcℓ,t + uℓ,taℓ,t + u
′

ℓ,ta
′

ℓ,t + vℓ,tbℓ,t (51)

ℓ ∈ Bs, t = 1, 2, · · · , T , with power and rates

P
(c)
ℓ,t

.
= P, r

(c)
ℓ,t = 1− α

(1)
t

P
(a)
ℓ,t

.
= Pα

(1)
t , r

(a)
ℓ,t = α

(1)
t

P
(a′)
ℓ,t

.
= Pα

(1)
t −α

(2)
t , r

(a′)
ℓ,t = α

(1)
t − α

(2)
t

P
(b)
ℓ,t

.
= Pα

(1)
t , r

(b)
ℓ,t = α

(1)
t .

(52)

Each user first decodescℓ,t by treating the other signals as
noise, and then user 1 removeshT

ℓwℓ,tcℓ,t and user 2 removes
gT

ℓwℓ,tcℓ,t. Then each user goes back one phase and recon-
structs the quantized delayed estimates{¯̌ι

(2)
ℓ,t , ℓ ∈ Bs−1}

T
t=1 of

all the interference in phases − 1. User 1 then employs the
estimate¯̌ι(2)ℓ,t of ι̌(2)ℓ,t as an extra observation which, together

with the observationy(1)ℓ,t − hT

ℓwℓ,tcℓ,t, allow for decoding of
both aℓ,t and a

′

ℓ,t, again corresponding to the phase(s − 1)
(note thatcℓ,t = 0, ℓ ∈ B1). At the same time, user 2 subtracts
¯̌ι
(2)
ℓ,t from y

(2)
ℓ,t to remove, up to bounded noise, the interference

corresponding tǒι(2)ℓ,t , and decodebℓ,t, ℓ ∈ Bs−1, t = 1, · · · , T
(see Appendix VI-C for more achievability details).

As before, after the end of phases, the transmitter uses its
knowledge of delayed CSIT to reconstruct{ι̌

(2)
ℓ,t , ℓ ∈ Bs}

T
t=1,

quantizes these into{¯̌ι(2)ℓ,t , ℓ ∈ Bs}
T
t=1 with φ(¯̌ι

(2)
ℓ,t ) = α

(1)
t −

α
(2)
t , and evenly distributes theTsT (ᾱ

(1) − ᾱ(2)) logP quan-
tization bits across the set{cℓ,t, ℓ ∈ Bs+1}

T
t=1, to be sent in

the next phase (phases+ 1).
3) PhaseS: The transmitter sends

xℓ,t = wℓ,tcℓ,t + uℓ,taℓ,t + vℓ,tbℓ,t (53)

ℓ ∈ BS, t = 1, · · · , T , with power and rates

P
(c)
ℓ,t

.
= P, r

(c)
ℓ,t = 1− α

(2)
t

P
(a)
ℓ,t

.
= Pα

(2)
t , r

(a)
ℓ,t = α

(2)
t

P
(b)
ℓ,t

.
= Pα

(2)
t , r

(b)
ℓ,t = α

(2)
t .

(54)

As before, both receivers decodecℓ,t, user 1 removes
hT

ℓwℓ,tcℓ,t from y
(1)
ℓ,t and decodesaℓ,t, and user 2 removes

gT

ℓwℓ,tcℓ,t from y
(2)
ℓ,t and decodesbℓ,t. Then after reconstruct-

ing {¯̌ι
(2)
ℓ,t , ℓ ∈ BS−1}

T
t=1, user 1 goes back one phase and

decodesaℓ,t and a
′

ℓ,t, and the same is done by user 2 to
decodebℓ,t, ℓ ∈ BS−1, t = 1, 2, · · · , T , all as described in
the previous phases (see Appendix VI-C for more details).

Table IV summarizes the parameters of schemeX12.
The DoF calculation, which is relegated to Appendix VI-A,

shows that schemeX12 achieves DoF pair(1, ᾱ(1)) for case 1,
and (1, 1+ᾱ(2)

2 ) for case 2.

D. SchemeX13: utilizing asymmetric and evolving CSIT to
achieve DoF pointB = (ᾱ(2), 1)

Towards achieving DoF pair(ᾱ(2), 1) for both case 1 and
case 2, schemeX13 is truncated to consist only of the last block
of the last phase of schemeX12. During theseT time slots,
we have seenX12 being able to deliverT (1 − ᾱ(2)) logP −



TABLE IV
SUMMARY OF SCHEMEX12 .

Phase 1 Ph.s (2≤s≤S−1) PhaseS
Duration T1 T1ϕ1ηs−2 T1ϕ1ηS−3ϕ2

r
(a)
ℓ,t

1 α
(1)
t α

(2)
t

r
(a′)
ℓ,t

1− α
(2)
t α

(1)
t − α

(2)
t -

r
(b)
ℓ,t

α
(1)
t α

(1)
t α

(2)
t

r
(c)
ℓ,t

- 1− α
(1)
t 1−α

(2)
t

P
(a)
ℓ,t

⊥ P Pα
(1)
t Pα

(2)
t

P
(a′)
ℓ,t

P 1−α
(2)
t Pα

(1)
t −α

(2)
t -

P
(b)
ℓ,t

⊥ Pα
(1)
t Pα

(1)
t Pα

(2)
t

P
(c)
ℓ,t

- P P

Quant. 1− ᾱ(2) ᾱ(1) − ᾱ(2) 0

o(logP ) bits that are common to the two users, as well as
T ᾱ(2) logP − o(logP ) bits for user 1, andT ᾱ(2) logP −
o(logP ) bits to user 2 (cf. (53),(54)). As a result, the DoF
point (d1 = ᾱ(2), d2 = 1) can be achieved by associating
common information only to the second user.

E. SchemeX2: symmetric and partially symmetric evolving
CSIT and perfect delayed CSIT

For the partially symmetric setting where the two users’
quality exponentsα(1)

t , α
(2)
t might or might not be the

same, but share a common averageᾱ =
∑T

t=1 α
(1)
t /T =

∑T
t=1 α

(2)
t /T , and where delayed CSIT is perfect, schemeX2

is first designed to achieve the optimal symmetric DoF point
(2+ᾱ

3 , 2+ᾱ
3 ), while with a small modification it will achieve

the other DoF corner points(ᾱ, 1) and (1, ᾱ) and the entire
optimal DoF region in Theorem 1 and Theorem 3. The scheme
has two phases, with the first phase spanning one coherence
block, and the second phase spanning two blocks.

During the first phase, the transmitter sends

x1,t = u1,ta1,t + u
′

1,ta
′

1,t + v1,tb1,t + v
′

1,tb
′

1,t (55)

for t = 1, 2, · · · , T , with power and rates set as

P
(a)
1,t

.
= P

(b)
1,t

.
= P, P

(a′)
1,t

.
= P 1−α

(2)
t P

(b′)
1,t

.
= P 1−α

(1)
t

r
(a)
1,t = r

(b)
1,t = 1, r

(a′)
1,t = 1− α

(2)
t r

(b′)
1,t = 1− α

(1)
t .

(56)
After the end of the phase, the transmitter constructs
{ι̌

(2)
1,t , ι̌

(1)
1,t}

T
t=1. Given perfect delayed CSIT and given that the

order of the power ofι(1)1,t (and respectivelyι(2)1,t ) is no bigger

thanP 1−α
(1)
t (respectivelyP 1−α

(2)
t ), allows for quantization

of {ι̌(2)1,t , ι̌
(1)
1,t}

T
t=1 into {¯̌ι

(2)
1,t , ¯̌ι

(1)
1,t}

T
t=1 (cf. (24)) with

φ(¯̌ι
(1)
1,t ) = 1− α

(1)
t , φ(¯̌ι

(2)
1,t ) = 1− α

(2)
t (57)

which in turn allows forE|ι̃(2)1,t |
2 .
= E|ι̃

(1)
1,t |

2 .
= 1 (cf. [18]).

Then theφ({¯̌ι
(2)
1,t , ¯̌ι

(1)
1,t}

T
t=1) logP = 2T (1 − ᾱ) logP bits

representing{¯̌ι(2)1,t , ¯̌ι
(1)
1,t}

T
t=1, are split across the common in-

formation vectors[c2,1, · · · , c2,T ]T and [c3,1, · · · , c3,T ]
T that

will be transmitted during the next phase.

During the second phase (two blocks,T time slots each),
the transmitter sends

xℓ,t = wℓ,tcℓ,t + uℓ,taℓ,t + vℓ,tbℓ,t (58)

t = 1, 2, · · · , T , ℓ = 2, 3, with power and rates set as

P
(c)
ℓ,t

.
= P, P

(a)
ℓ,t

.
= Pα

(2)
t , P

(b)
ℓ,t

.
= Pα

(1)
t

r
(a)
ℓ,t = α

(2)
t , r

(b)
ℓ,t = α

(1)
t (59)

and with eachT -length vector[cℓ,1, cℓ,2, · · · , cℓ,T ]T, ℓ = 2, 3
carryingT (1− ᾱ) logP − o(logP ) bits. The received signals
are then of the form

y
(1)
ℓ,t=h

T

ℓwℓ,tcℓ,t
︸ ︷︷ ︸

P

+hT

ℓuℓ,taℓ,t
︸ ︷︷ ︸

Pα
(2)
t

+h̃
T

ℓ,tvℓ,tbℓ,t
︸ ︷︷ ︸

P 0

+z
(1)
ℓ,t

︸︷︷︸

P 0

, (60)

y
(2)
ℓ,t=g

T

ℓwℓ,tcℓ,t
︸ ︷︷ ︸

P

+ g̃T

ℓ,tuℓ,taℓ,t
︸ ︷︷ ︸

P 0

+gT

ℓvℓ,tbℓ,t
︸ ︷︷ ︸

Pα
(1)
t

+ z
(2)
ℓ,t

︸︷︷︸

P 0

. (61)

At this point, taking into consideration the possibility that
α
(1)
t 6= α

(2)
t , we deviate from scalar decoding and consider

decoding of the entire vector[cℓ,1, · · · , cℓ,T ]T. As a result, at
the end of the blockℓ (ℓ = 2, 3), useri, i = 1, 2, decodes the
common information vector[cℓ,1, · · · , cℓ,T ]T from its received
signal vector[y(i)ℓ,1, · · · , y

(i)
ℓ,T ]

T by treating the other signals as
noise. Consequently, in terms of the achievability, we notethat
the mutual information satisfies

I([cℓ,1, · · · , cℓ,T ]
T; [y

(1)
ℓ,1 , · · · , y

(1)
ℓ,T ]

T,hℓ)

= log

T∏

t=1

P 1−α
(1)
t − o(logP ) = T (1− ᾱ) logP − o(logP ),

I([cℓ,1, · · · , cℓ,T ]
T; [y

(2)
ℓ,1 , · · · , y

(2)
ℓ,T ]

T, gℓ)

= log

T∏

t=1

P 1−α
(2)
t − o(logP ) = T (1− ᾱ) logP − o(logP )

(62)

to conclude that both users can reliably decode each common
information vector[cℓ,1, · · · , cℓ,T ]T, where each such vector
contains

T (1− ᾱ) logP − o(logP ) (63)

bits. The encoding and decoding details for this step, can be
found in Appendix VI-B.

After decoding each common vector, user 1 removes
hT

ℓwℓ,tcℓ,t to decodeaℓ,t, and user 2 removesgT

ℓwℓ,tcℓ,t to
decodebℓ,t, all corresponding to the aforementioned rates.

With {c2,t, c3,t}
T
t=1 at hand, each user goes back one phase

and reconstructs{¯̌ι(2)1,t , ¯̌ι
(1)
1,t}

T
t=1. Then user 1 subtractš̄ι(1)1,t

from y
(1)
1,t to remove, up to bounded noise, the interference

corresponding toι(1)1,t , for all t = 1, 2, · · · , T , and then also

the same user employs the estimate¯̌ι
(2)
1,t of ι

(2)
1,t as an extra

observation which, together with the observationy
(1)
1,t − ¯̌ι

(1)
1,t ,

allow for decoding of botha1,t anda
′

1,t. Specifically user 1,

using its knowledge of̌̄ι(2)1,t , and y
(1)
1,t − ¯̌ι

(1)
1,t , is presented, at



this instance, with a2 × 2 equivalent MIMO channel of the
form

[

y
(1)
1,t − ¯̌ι

(1)
1,t

¯̌ι
(2)
1,t

]

=

[
hT

1

gT

1

]
[

u1,t u
′

1,t

]
[
a1,t
a

′

1,t

]

+

[

z
(1)
1,t + ι̃

(1)
1,t

−ι̃
(2)
1,t

]

(64)

which allows for decoding ofa1,t and a
′

1,t with r
(a)
1,t =

1, r
(a′)
1,t = 1− α

(2)
t , for t = 1, 2, · · · , T .

Similar actions are taken by user 2 which utilizes the
knowledge of¯̌ι(1)1,t , and y

(2)
1,t − ¯̌ι

(2)
1,t to decode bothb1,t and

b
′

1,t with r
(b)
1,t = 1, r

(b′)
1,t = 1− α

(1)
t , for t = 1, 2, · · · , T .

An easy DoF calculation shows that

d1 = d2 =
T (2− ᾱ) + 2T ᾱ

3T
=

2+ ᾱ

3
.

To achieve DoF pairs(ᾱ, 1) and (1, ᾱ), we consider that
over the third block, the above scheme was able to deliver
T (1 − ᾱ) logP − o(logP ) bits that are common to the two
users, as well as deliverT ᾱ logP − o(logP ) bits for user 1,
andT ᾱ logP−o(logP ) bits to user 2 (cf. (58),(59),(60),(61)).
Consequently the DoF point(d1 = ᾱ, d2 = 1) can be
achieved by associating common information only to the
second user, while(d1 = 1, d2 = ᾱ) can be achieved by
associating common information only to the first user.

F. SchemeX3: symmetric and partially symmetric evolving
CSIT and imperfect delayed CSIT

Remaining in the symmetric and partially symmetric set-
tings, we now allow for imperfect delayed CSIT, and proceed
to present schemeX3 which, forβ < 1+2ᾱ

3 achieves the afore-
mentioned DoF points(2β−ᾱ, 1+ᾱ−β), (1+ᾱ−β, 2β−ᾱ),
and (1+β

2 , 1+β
2 ), while for any β ≥ 1+2ᾱ

3 , it achieves the
optimal (2+ᾱ

3 , 2+ᾱ
3 ). Furthermore, with minor modifications,

the same scheme will allow for the remaining DoF points
(ᾱ, 1) and (1, ᾱ) for anyβ.

SchemeX3 is designed to haveS phases, with phases
(s = 1, 2, · · · , S) spanningTs blocks with labels from setBs

in (20), whereT1, T2, · · · , TS are integers satisfying

Ts = Ts−1ξ = T1ξ
s−1, ∀s ∈ {2, 3, · · · , S − 1},

TS = TS−1ζ = T1ξ
S−2ζ (65)

and whereξ = 2(β−ᾱ)
1−β , ζ = 2(β−ᾱ)

1−ᾱ .
We proceed to provide an outline of the scheme, leaving

many of the details to be presented in Appendix VI-C.
1) Phase 1:During phase 1 the transmitter sends

xℓ,t=wℓ,tcℓ,t+uℓ,taℓ,t + u
′

ℓ,ta
′

ℓ,t + vℓ,tbℓ,t + v
′

ℓ,tb
′

ℓ,t (66)

ℓ ∈ B1, t = 1, 2, · · · , T , with power and rates set as

P
(c)
ℓ,t

.
= P, r

(c)
ℓ,t = 1− β

P
(a)
ℓ,t

.
= P

(b)
ℓ,t

.
= P β , r

(a)
ℓ,t = r

(b)
ℓ,t = β

P
(a′)
ℓ,t

.
= P β−α

(2)
t , r

(a′)
ℓ,t = β − α

(2)
t

P
(b′)
ℓ,t

.
= P β−α

(1)
t , r

(b′)
ℓ,t = β − α

(1)
t .

(67)

The received signals then take the form

y
(1)
ℓ,t = hT

ℓwℓ,tcℓ,t
︸ ︷︷ ︸

P

+hT

ℓuℓ,taℓ,t
︸ ︷︷ ︸

Pβ

+hT

ℓu
′

ℓ,ta
′

ℓ,t
︸ ︷︷ ︸

Pβ−α
(2)
t

+z
(1)
ℓ,t

︸︷︷︸

P 0

+

ι̌
(1)
ℓ,t

︷ ︸︸ ︷

ȟ
T

ℓ(vℓ,tbℓ,t + v
′

ℓ,tb
′

ℓ,t)
︸ ︷︷ ︸

Pβ−α
(1)
t

+

ι
(1)
ℓ,t

−ι̌
(1)
ℓ,t

︷ ︸︸ ︷

ḧ
T

ℓ(vℓ,tbℓ,t + v
′

ℓ,tb
′

ℓ,t)
︸ ︷︷ ︸

P 0

, (68)

y
(2)
ℓ,t = gT

ℓwℓ,tcℓ,t
︸ ︷︷ ︸

P

+ gT

ℓvℓ,tbℓ,t
︸ ︷︷ ︸

Pβ

+ gT

ℓv
′

ℓ,tb
′

ℓ,t
︸ ︷︷ ︸

Pβ−α
(1)
t

+z
(2)
ℓ,t

︸︷︷︸

P 0

+

ι̌
(2)
ℓ,t

︷ ︸︸ ︷

ǧT

ℓ(uℓ,taℓ,t+u
′

ℓ,ta
′

ℓ,t)
︸ ︷︷ ︸

Pβ−α
(2)
t

+

ι
(2)
ℓ,t

−ι̌
(2)
ℓ,t

︷ ︸︸ ︷

g̈T

ℓ(uℓ,taℓ,t+u
′

ℓ,ta
′

ℓ,t)
︸ ︷︷ ︸

P 0

(69)

where

E|ι̌
(1)
ℓ,t |

2=E|ȟ
T

ℓvℓ,tbℓ,t|
2 + E|ȟ

T

ℓv
′

ℓ,tb
′

ℓ,t|
2

=E|(h̃
T

ℓ,t−ḧ
T

ℓ)vℓ,tbℓ,t|
2+E|ȟ

T

ℓv
′

ℓ,tb
′

ℓ,t|
2 .
=P β−α

(1)
t ,

E|ι̌
(2)
ℓ,t |

2=E|(g̃T

ℓ,t−g̈T

ℓ)uℓ,taℓ,t|
2+E|ǧT

ℓu
′

ℓ,ta
′

ℓ,t|
2 .
=P β−α

(2)
t

(70)

and

E|ι
(1)
ℓ,t − ι̌

(1)
ℓ,t |

2=E|ḧ
T

ℓ(vℓ,tbℓ,t + v
′

ℓ,tb
′

ℓ,t)|
2 .
=P 0,

E|ι
(2)
ℓ,t − ι̌

(2)
ℓ,t |

2=E|g̈T

ℓ(uℓ,taℓ,t + u
′

ℓ,ta
′

ℓ,t)|
2 .
=P 0. (71)

At this point each user decodescℓ,t (details in Ap-
pendix VI-C). Then user 1 removeshT

ℓwℓ,tcℓ,t from y
(1)
ℓ,t , and

user 2 removesgT

ℓwℓ,tcℓ,t from y
(2)
ℓ,t . Then, at the end of the

first phase, the transmitter reconstructs{ι̌
(1)
ℓ,t , ι̌

(2)
ℓ,t , ℓ ∈ B1}

T
t=1

(cf. (23)), quantizes into{¯̌ι(1)ℓ,t , ¯̌ι
(2)
ℓ,t , ℓ ∈ B1}

T
t=1 (cf. (24)) with

φ(¯̌ι
(1)
ℓ,t ) = β − α

(1)
t , φ(¯̌ι

(2)
ℓ,t ) = β − α

(2)
t

φ({¯̌ι
(2)
ℓ,t , ¯̌ι

(1)
ℓ,t , ℓ ∈ B1}

T
t=1) = 2T1T (β − ᾱ) (72)

gets bounded quantization noise sinceE|ι̌(2)ℓ,t |
2 .

=

P β−α
(2)
t , E|ι̌

(1)
ℓ,t |

2 .
= P β−α

(1)
t , and then evenly splits the

2T1T (β− ᾱ) logP quantization bits into set{cℓ,t, ℓ ∈ B2}
T
t=1

that will be transmitted in the second phase.
2) Phases, 2 ≤ s ≤ S − 1: Phases is similar to phase 1

(same signal structure, same power and rate allocation), upto
and including the point where the two users decodecℓ,t. Hav-
ing done that, each user goes back one phase and reconstructs
the quantized delayed estimates{¯̌ι

(2)
ℓ−1,t, ¯̌ι

(1)
ℓ−1,t, ℓ ∈ Bs−1}

T
t=1

of all the interference accumulated during the previous phase
s−1. User 1 then subtractš̄ι(1)ℓ,t and also employs the estimate
¯̌ι
(2)
ℓ,t of ι̌(2)ℓ,t as an extra observation which, together with the

observationy(1)ℓ,t − hT

ℓwℓ,tcℓ,t − ¯̌ι
(1)
ℓ,t , allow for decoding of

both aℓ,t anda
′

ℓ,t, again corresponding to the phase(s − 1).
Similar actions are taken by user 2. As will be argued further
in Appendix VI-C, the above MIMO decoding allows for
r
(a)
ℓ,t = r

(b)
ℓ,t = β, r

(a′)
ℓ,t = β−α

(2)
t , r

(b′)
ℓ,t = β−α

(1)
t , ℓ ∈ Bs−1,

t = 1, · · · , T .



As before, after the end of phases, the transmitter
reconstructs{ι̌(2)ℓ,t , ι̌

(1)
ℓ,t , ℓ ∈ Bs}

T
t=1, quantizes that into

{¯̌ι
(2)
ℓ,t , ¯̌ι

(1)
ℓ,t , ℓ ∈ Bs}

T
t=1 with 2TsT (β − ᾱ) logP quantization

bits, which are evenly split to form set{cℓ,t, ℓ ∈ Bs+1}
T
t=1, to

be transmitted in the next phase (phases+ 1).
3) PhaseS: During the last phase the transmitter sends

xℓ,t = wℓ,tcℓ,t + uℓ,taℓ,t + vℓ,tbℓ,t (73)

ℓ ∈ BS , t = 1, · · · , T , with power and rates set as

P
(c)
ℓ,t

.
= P, P

(a)
ℓ,t

.
= Pα

(2)
t , P

(b)
ℓ,t

.
= Pα

(1)
t

r
(a)
ℓ,t = α

(2)
t , r

(b)
ℓ,t = α

(1)
t ,

(74)

and with the entire common information vector
[cℓ,1, cℓ,2, · · · , cℓ,T ]

T carryingT (1− ᾱ) logP − o(logP ) bits.
Then each user waits until the end of the block to decode the

entire common information vector (treating all other signals as
noise); this can be done since

I([cℓ,1, · · · , cℓ,T ]
T; [y

(1)
ℓ,1 , · · · , y

(1)
ℓ,T ]

T,hℓ)

= log

T∏

t=1

P 1−α
(1)
t − o(logP ) = T (1− ᾱ) logP − o(logP ),

I([cℓ,1, · · · , cℓ,T ]
T; [y

(2)
ℓ,1 , · · · , y

(2)
ℓ,T ]

T, gℓ)

= log

T∏

t=1

P 1−α
(2)
t − o(logP ) = T (1− ᾱ) logP − o(logP ).

(75)

After decoding[cℓ,1, · · · , cℓ,T ]T, user 1 removeshT

ℓwℓ,tcℓ,t
to decodeaℓ,t, and user 2 removesgT

ℓwℓ,tcℓ,t to decodebℓ,t.
With {cℓ,t, ℓ ∈ BS}

T
t=1 in hand, each user goes back one

phase and reconstructs{¯̌ι(2)ℓ,t , ¯̌ι
(1)
ℓ,t , ℓ ∈ BS−1}

T
t=1, which in turn

allows for decoding ofaℓ,t anda
′

ℓ,t at user 1, and ofbℓ,t and
b
′

ℓ,t at user 2,ℓ ∈ BS−1, t = 1, 2, · · · , T , all as described in
the previous phases (see Appendix VI-C for more details).

Table V summarizes the parameters of schemeX3.
As shown in Appendix VI-C, forβ

′′

= min{β, 1+2ᾱ
3 },

X3 achieves DoF point(2β
′′

− ᾱ, 1 + ᾱ − β
′′

) by allocating
the common information of the first phase{cℓ,t, ℓ ∈ B1}

T
t=1

entirely for user 2. The same scheme achieves the point
(1+ᾱ−β

′′

, 2β
′′

−ᾱ) by assigning all the common information

to user 1, as well as achieves DoF point(1+β
′′

2 , 1+β
′′

2 ) by
evenly splitting this information between the two users. The
three DoF points converge to the optimal DoF corner point
(2+ᾱ

3 , 2+ᾱ
3 ) for anyβ ≥ 1+2ᾱ

3 .
Towards achieving DoF pairs(ᾱ, 1) and (1, ᾱ) for any β,

schemeX3 is truncated to consist only of the last block of
the last phase. During theseT time slots, we have seenX3

being able to deliverT (1− ᾱ) logP − o(logP ) bits that are
common to the two users, as well asT ᾱ logP − o(logP )
bits for user 1, andT ᾱ logP − o(logP ) bits to user 2 (cf.
(73),(74)). As a result, the DoF point(d1 = ᾱ, d2 = 1) can
be achieved by associating common information only to the
second user, while(d1 = 1, d2 = ᾱ) can be achieved by
associating common information to the first user.

TABLE V
SUMMARY OF SCHEMEX3 . SCHEMEX3 ACHIEVING OPTIMAL DOF

( 2+ᾱ
3

, 2+ᾱ
3

) FOR ANY β ≥ 1+2ᾱ
3

.

Phase 1 Ph.s (2≤s≤S−1) PhaseS
ℓ ∈ B1 ℓ ∈ Bs ℓ ∈ BS

Duration TT1 TT1ξs−1 TT1ξS−2ζ

r
(a)
ℓ,t

β β α
(2)
t

r
(b)
ℓ,t

β β α
(1)
t

r
(a′)
ℓ,t

β − α
(2)
t β − α

(2)
t -

r
(b′)
ℓ,t

β − α
(1)
t β − α

(1)
t -

r
(c)
ℓ,t

1− β 1− β *

P
(a)
ℓ,t

⊥ Pβ Pβ Pα
(2)
t

P
(b)
ℓ,t

⊥ Pβ Pβ Pα
(1)
t

P
(a′)
ℓ,t

Pβ−α
(2)
t Pβ−α

(2)
t -

P
(b′)
ℓ,t

Pβ−α
(1)
t Pβ−α

(1)
t -

P
(c)
ℓ,t

P P P

Quant. 2(β − ᾱ) 2(β − ᾱ) 0

a) An example:We describeX3 for the specific case
where α

(1)
t = α

(2)
t = αt, t = 1, · · · , T , α1 = · · · =

αT/3 = 0, α1+T/3 = · · · = α2T/3 = 4/9, α1+2T/3 = · · · =
αT = β = 5/9, and ask that the scheme achieves the optimal
symmetric DoFd′ = 7

9 . Plugging in the values ofβ, αt, we
see thatTs = 3, s = 1, 2, · · · , S− 1, TS = 2. During phases
(consisting of blockℓ, ℓ ∈ Bs), the transmitter sends

xℓ,t=wℓ,tcℓ,t+uℓ,taℓ,t + u
′

ℓ,ta
′

ℓ,t + vℓ,tbℓ,t + v
′

ℓ,tb
′

ℓ,t

ℓ ∈ Bs, t = 1, 2, · · · , T , with power and rate set as

P
(c)
ℓ,t

.
= P, P

(a)
ℓ,t

.
= P

(b)
ℓ,t

.
= P 5/9, P

(a′)
ℓ,t

.
=P

(b′)
ℓ,t

.
=P 5/9−αt

r
(c)
ℓ,t = 4/9, r

(a)
ℓ,t = r

(b)
ℓ,t = 5/9, r

(a′)
ℓ,t =r

(b′)
ℓ,t =5/9− αt.

Then at the end of phases, the transmitter reconstructs
{ι̌

(1)
ℓ,t , ι̌

(2)
ℓ,t , ℓ ∈ Bs}

T
t=1, which it quantizes to{¯̌ι(1)ℓ,t ,

¯̌ι
(2)
ℓ,t , ℓ ∈

Bs}
T
t=1 with

φ({¯̌ι
(2)
ℓ,t , ¯̌ι

(1)
ℓ,t , ℓ ∈ Bs}

T
t=1) = 6T (β − ᾱ) = 4T/3,

which (for this example) matches the common information rate
to be sent in the next phase. During the last phase (consisting
of block ℓ, ℓ ∈ BS), the transmitter sends

xℓ,t = wℓ,tcℓ,t + uℓ,taℓ,t + vℓ,tbℓ,t

with power and rates set as

P
(c)
ℓ,t

.
= P, r

(c)
ℓ,t = 1− αt

P
(a)
ℓ,t

.
= P

(b)
ℓ,t

.
= Pαt , r

(a)
ℓ,t = r

(b)
ℓ,t = αt.

From the exposition ofX3 we know that with increasingS,
the achieved DoF converges quickly to the optimald′ = 7

9 .

IV. OUTER BOUND

Extending the work in [6] that focused on the specific
instance of non-evolving and symmetric CSIT, we proceed to
construct a new DoF outer bound that supports the general case
of having evolving current CSIT with any feedback quality
asymmetry. The bound, in terms of the quality exponentsα

(1)
t



and α
(2)
t in (6), will directly serve as the outer proof for

Theorem 4. Settinḡα(1) = ᾱ(2) allows for this bound to apply
directly as the outer bound proof for Theorem 3, while setting
α
(1)
t = α

(2)
t , t = 1, 2, · · · , T and considering perfect delayed

CSIT, allows for this bound to apply for Theorem 1 as well
as Theorem 2.

Lemma 1:The DoF region of the two-user MISO BC with
asymmetrically evolving CSIT, is upper bounded as

d1 ≤ 1, d2 ≤ 1 (76)

2d1 + d2 ≤ 2 + ᾱ(1) (77)

2d2 + d1 ≤ 2 + ᾱ(2). (78)

Proof: Let W1,W2 respectively denote the messages for
the first and second user, and letR1, R2 denote the two users’
rates. Each user sends their message overL coherence blocks,
corresponding ton = LT channel uses, whereL is large. For
ease of exposition we also introduce the following notation.

Sℓ ,

[
hT

ℓ

gT

ℓ

]

, Šℓ ,

[

ȟ
T

ℓ

ǧT

ℓ

]

, Ŝℓ,t ,

[

ĥ
T

ℓ,t

ĝ
T

ℓ,t

]

,

S[l] , {Sℓ}
l
ℓ=1,

Š[l] , {Šℓ}
l
ℓ=1,

Ŝ[l,τ ], {Ŝl,t}
τ
t=1 ∪ {Ŝℓ,t}

l−1,T
ℓ=1,t=1,

y
(i)
[l,τ ], {y

(i)
l,t }

τ
t=1 ∪ {y

(i)
ℓ,t}

l−1,T
ℓ=1,t=1

x[l,τ ], {xl,t}
τ
t=1 ∪ {xℓ,t}

l−1,T
ℓ=1,t=1

Ω[l,τ ], {S[l], Š[l], Ŝ[l,τ ]}.

The first step is to construct a degraded BC by providing the
first user with complete and immediately available information
on the second user’s received signal. In this improved scenario,
the following bounds hold.

nR1

= H(W1)

= H(W1|Ω[L,T ])

≤ I(W1; y
(1)
[L,T ], y

(2)
[L,T ]|Ω[L,T ]) + nǫn (79)

≤ I(W1;W2, y
(1)
[L,T ], y

(2)
[L,T ]|Ω[L,T ]) + nǫn

= I(W1; y
(1)
[L,T ], y

(2)
[L,T ]|W2,Ω[L,T ]) + nǫn

=

L∑

ℓ=1

T∑

t=1

I(W1; y
(1)
ℓ,t , y

(2)
ℓ,t |y

(1)
[ℓ,t−1], y

(2)
[ℓ,t−1],W2,Ω[L,T ]) + nǫn

≤

L∑

ℓ=1

T∑

t=1

I(xℓ,t; y
(1)
ℓ,t , y

(2)
ℓ,t |y

(1)
[ℓ,t−1], y

(2)
[ℓ,t−1],W2,Ω[L,T ]) + nǫn

(80)

=
L∑

ℓ=1

T∑

t=1

I(xℓ,t; y
(1)
ℓ,t , y

(2)
ℓ,t |y

(1)
[ℓ,t−1], y

(2)
[ℓ,t−1],W2,Ω[ℓ,t]) + nǫn

(81)

=

L∑

ℓ=1

T∑

t=1

(h(y
(1)
ℓ,t , y

(2)
ℓ,t |y

(1)
[ℓ,t−1], y

(2)
[ℓ,t−1],W2,Ω[ℓ,t])

− h(y
(1)
ℓ,t , y

(2)
ℓ,t |xℓ,t, y

(1)
[ℓ,t−1], y

(2)
[ℓ,t−1],W2,Ω[ℓ,t])) + nǫn

=

L∑

ℓ=1

T∑

t=1

(h(y
(1)
ℓ,t , y

(2)
ℓ,t |T[ℓ,t],Sℓ)− h(z

(1)
ℓ,t , z

(2)
ℓ,t )) + nǫn

≤
L∑

ℓ=1

T∑

t=1

h(y
(1)
ℓ,t , y

(2)
ℓ,t |T[ℓ,t],Sℓ) + nǫn (82)

where

T[ℓ,t],{y
(1)
[ℓ,t−1], y

(2)
[ℓ,t−1],W2,S[ℓ−1], Š[ℓ], Ŝ[ℓ,t]},

where (79) results from Fano’s inequality, where
limn→∞ ǫn = 0, where in (80) we employ the data
processing inequality property of the Markov chain
(W1,W2) ↔ xℓ,t ↔ (y

(1)
ℓ,t , y

(1)
ℓ,t ), where (81) is due to

the fact that inputxℓ,t and outputsy(1)ℓ,t , y
(2)
ℓ,t do not depend

on the future channel states given the past and current states,
and where the last inequality is because differential entropy
h(z

(1)
ℓ,t , z

(2)
ℓ,t ) is non negative.

Similarly

nR2

= H(W2)

≤ I(W2; y
(2)
[L,T ]|Ω[L,T ]) + nǫn (83)

=

L∑

ℓ=1

T∑

t=1

I(W2; y
(2)
ℓ,t |y

(2)
[ℓ,t−1],Ω[L,T ]) + nǫn

=

L∑

ℓ=1

T∑

t=1

I(W2; y
(2)
ℓ,t |y

(2)
[ℓ,t−1],Ω[ℓ,t]) + nǫn (84)

=

L∑

ℓ=1

T∑

t=1

(h(y
(2)
ℓ,t |y

(2)
[ℓ,t−1],Ω[ℓ,t])− h(y

(2)
ℓ,t |W2, y

(2)
[ℓ,t−1],Ω[ℓ,t]))

+ nǫn

≤

L∑

ℓ=1

T∑

t=1

(h(y
(2)
ℓ,t |Sℓ)− h(y

(2)
ℓ,t |W2, y

(1)
[ℓ,t−1], y

(2)
[ℓ,t−1],Ω[ℓ,t]))

+ nǫn (85)

=

L∑

ℓ=1

T∑

t=1

(h(y
(2)
ℓ,t |Sℓ)− h(y

(2)
ℓ,t |T[ℓ,t],Sℓ)) + nǫn (86)

where again (83) results from Fano’s inequality, where (84)
follows in the same way as (81), and where (85) is due to the
fact that conditioning reduces entropy.

Now given (82) and (86), we upper boundR1 + 2R2 as

n(R1 + 2R2) ≤
L∑

ℓ=1

T∑

t=1

(h(y
(1)
ℓ,t , y

(2)
ℓ,t |T[ℓ,t],Sℓ)

− 2h(y
(2)
ℓ,t |T[ℓ,t],Sℓ) + 2h(y

(2)
ℓ,t |Sℓ)) + 3nǫn. (87)

For a given time index(ℓ, t), each of the above summands
can be upper bounded as

h(y
(1)
ℓ,t , y

(2)
ℓ,t |T[ℓ,t],Sℓ)− 2h(y

(2)
ℓ,t |T[ℓ,t],Sℓ) + 2h(y

(2)
ℓ,t |Sℓ)

≤ max
PT[ℓ,t]

,P
xℓ,t|T[ℓ,t]

(h(y
(1)
ℓ,t , y

(2)
ℓ,t |T[ℓ,t],Sℓ)− 2h(y

(2)
ℓ,t |T[ℓ,t],Sℓ)

+ 2h(y
(2)
ℓ,t |Sℓ))

≤ max
PT[ℓ,t]

,P
xℓ,t|T[ℓ,t]

(h(y
(1)
ℓ,t , y

(2)
ℓ,t |T[ℓ,t],Sℓ)− 2h(y

(2)
ℓ,t |T[ℓ,t],Sℓ))



+ 2 logP + o(logP ) (88)

where the above maximization is over all probability density
functionsPT[ℓ,t]

, P
xℓ,t|T[ℓ,t]

, and where (88) is due to the single
receive antenna constraint. At this point, one can follow the
work in [6] (specifically the steps involving equation (25) in
[6]), and get the upper bound

max
PT[ℓ,t]

,P
xℓ,t|T[ℓ,t]

(h(y
(1)
ℓ,t , y

(2)
ℓ,t |T[ℓ,t],Sℓ)− 2h(y

(2)
ℓ,t |T[ℓ,t],Sℓ))

≤ α
(2)
t logP + o(logP ) (89)

which combines with (88) to give

h(y
(1)
ℓ,t , y

(2)
ℓ,t |T[ℓ,t],Sℓ)− 2h(y

(2)
ℓ,t |T[ℓ,t],Sℓ) + 2h(y

(2)
ℓ,t |Sℓ)

≤ (2 + α
(2)
t ) logP + o(logP ). (90)

Finally combining (87) and (90), gives that

n(R1 + 2R2) ≤

L∑

ℓ=1

T∑

t=1

((2 + α
(2)
t ) logP + o(logP )) + 3nǫn

and consequently that

d1 + 2d2 ≤ 2 + ᾱ(2).

Similarly, interchanging the roles of the two users, gives

d2 + 2d1 ≤ 2 + ᾱ(1).

Finally the single antenna constraint gives thatd1 ≤ 1, d2 ≤ 1.

V. CONCLUSIONS

This work considered the two user MISO BC setting with
gradually accumulated feedback that incrementally improves
CSIT quality. This was done for the cases of perfect and
imperfect delayed CSIT, as well as for the case of statistical
asymmetry in the quality of CSIT at the different users. The
many corollaries and examples aimed to offer insight on many
questions relating to the delay-and-quality effects of feedback.

VI. A PPENDIX - FURTHER DETAILS ONX12, X2 AND X3

A. DoF calculation for schemeX12

We proceed to add up the total amount of information
transmitted during schemeX12.

In accordance to the declared pre-log factors for the first
user (see Table IV), and irrespective of whetherᾱ(1), ᾱ(2) fall
under case 1 or case 2, we have that

d1=
T1(2−ᾱ(2))+

∑S−1
i=2 Ti(2ᾱ

(1)−ᾱ(2))+TSᾱ
(2)

∑S
i=1 Ti

=
T1+T1(1−ᾱ(2))+

∑S−1
i=2 (Tiᾱ

(1)+Ti(ᾱ
(1)−ᾱ(2)))+TSᾱ

(2)

∑S
i=1Ti

=
T1+

∑S−1
i=2 (Ti(1−ᾱ(1))+Tiᾱ

(1))+TS(1−ᾱ(2))+TSᾱ
(2)

∑S
i=1 Ti

(91)

=
T1 + T2 + T3 + · · ·+ TS−1 + TS

T1 + T2 + · · ·+ TS
= 1 (92)

where (91) is due to (48).
Regarding the second user, for case 1 where2ᾱ(1)− ᾱ(2) <

1 (η < 1), we see that

d2 =

∑S−1
i=1 Tiᾱ

(1) + TSᾱ
(2)

∑S
i=1 Ti

= ᾱ(1) −
TS(ᾱ

(1) − ᾱ(2))
∑S

i=1 Ti

= ᾱ(1) −
T1ϕ1η

S−3ϕ2(ᾱ
(1) − ᾱ(2))

T1 + T1ϕ1

∑S−3
i=0 ηi + T1ϕ1ηS−3ϕ2

(93)

= ᾱ(1) −
ηS−3ϕ2(ᾱ

(1) − ᾱ(2))
1
ϕ1

+ 1
1−η + ηS−3(ϕ2 −

η
1−η )

(94)

which, for largeS, gives thatd2 = ᾱ(1). For the case of
2ᾱ(1) − ᾱ(2) > 1 (η > 1), then (93) gives that

d2 = ᾱ(1) −
ηS−3ϕ2(ᾱ

(1) − ᾱ(2))
1
ϕ1

+ 1
1−η + ηS−3(ϕ2 −

η
1−η )

which, in the highS regime, gives that

d2 = ᾱ(1) −
ϕ2(ᾱ

(1) − ᾱ(2))

ϕ2 −
η

1−η

=
1+ᾱ(2)

2
. (95)

For the case of2ᾱ(1) − ᾱ(2) = 1 (η = 1), then (93) gives that
d2 = ᾱ(1) − ϕ2(ᾱ

(1)−ᾱ(2))
1

ϕ1
+S−2+ϕ2

which, for largeS, gives

d2 = ᾱ(1) =
1 + ᾱ(2)

2
. (96)

In conclusion, schemeX12 achieves DoF pair(1, ᾱ(1)) for
case 1, and(1, 1+ᾱ(2)

2 ) for case 2.

B. Encoding and decoding details for step in equation(63)
regarding schemeX2

We here present the encoding for theT -length vectors
cℓ, ℓ = 2, 3, which are transmitted during phase 2 ofX2. This
encoding guarantees successful decoding of these vectors,at
both users, at a rateR = r logP−o(logP ), wherer, 1−ᾱ−δ
(recall (63)) for some positiveδ which will be eventually
chosen to be arbitrarily small.

We will draw each vectorcℓ, ℓ = 2, 3, from a lattice code
of the form

{θMq | q ∈ ℵ} (97)

whereℵ ⊂ CT is theT -dimensional2R-QAM constellation,
whereM ∈ CT×T is a specifically constructed unitary matrix
of algebraic conjugates that allows for thenon vanishing
product distanceproperty (to be described later on - see for
example [22]), and where

θ = P
1−r
2 = P (ᾱ+δ)/2 (98)

is designed to guarantee thatE||cℓ||
2 .
= P (to derive this value

of θ, just recall the QAM property thatE||q||2
.
= 2R

.
= P r).

Specifically for any two codevectorsc = [c1, · · · , cT ]
T, c

′

=
[c

′

1, · · · , c
′

T ]
T, M is designed to guarantee that

T∏

t=1

|(ct − c
′

t)|
2 ≥̇ θ2T . (99)



This can be readily done for all dimensions by, for example,
using the proper roots of unity as entries of a circulantM

( [22]), which in turn allows the vectorsMq to consist of
non-zero integers.

In the post-whitened channel model corresponding to user
i = 1, 2,

ȳ
(i)
ℓ = diag(P−α

(i)
1 /2, · · · , P−α

(i)
T /2)cℓ + z̄

(i)
ℓ (100)

the noisez̄(i)
ℓ has finite power, which means that

Pr(||z̄
(i)
ℓ ||2 > P δ) → 0. (101)

At the same time, after whitening at useri = 1, 2, the
codeword distance for any two codewordsc, c

′

is lower
bounded as

||diag(P−α
(i)
1 /2, · · · , P−α

(i)
T /2)(c− c

′

)||2

=

T∑

t=1

|P−α
(i)
t /2(ct − c

′

t)|
2

.
≥

T∏

t=1

|P−α
(i)
t /2(ct − c

′

t)|
2/T (102)

= P− 1
T

∑T
t=1 α

(i)
t

T∏

t=1

|(ct − c
′

t)|
2/T

.
≥ θ2P−ᾱ (103)

= P−ᾱP ᾱ+δ = P δ (104)

where (102) results from the arithmetic-mean geometric-mean
inequality, and where (103) stems from (99). Settingδ positive
but vanishingly small, combined with (101), proves the result.

C. Further details onX3

We describe some of the details left over from the descrip-
tion of schemeX3. The clarifications of these details carry
over easily to the other schemes.

Regardingr(c)ℓ,t of phases (1 ≤ s ≤ S − 1), ℓ ∈ Bs,
t = 1, 2, · · · , T , we recall that during phases, both users
decodecℓ,t from y

(1)
ℓ,t , y

(2)
ℓ,t by treating all other signals as

noise (cf. (67),(68),(69)). Consequently, in terms of the mutual
information, we note that

I(cℓ,t; y
(1)
ℓ,t ,hℓ)=I(cℓ,t; y

(2)
ℓ,t ,gℓ)=(1−β) logP+o(logP )

to get, for largeP , that

r
(c)
ℓ,t =

1

logP
min{I(cℓ,t; y

(1)
ℓ,t ,hℓ), I(cℓ,t; y

(2)
ℓ,t , gℓ)}=1−β

ℓ ∈ Bs, t = 1, · · · , T .
Regarding the achievability of vector[cℓ,1, · · · , cℓ,T ]T dur-

ing phaseS, we note that

I([cℓ,1, · · · , cℓ,T ]
T; [y

(1)
ℓ,1 , · · · , y

(1)
ℓ,T ]

T,hℓ)

= log

T∏

t=1

P 1−α
(1)
t − o(logP ) = T (1− ᾱ) logP − o(logP ),

I([cℓ,1, · · · , cℓ,T ]
T; [y

(2)
ℓ,1 , · · · , y

(2)
ℓ,T ]

T, gℓ)

= log

T∏

t=1

P 1−α
(2)
t − o(logP ) = T (1− ᾱ) logP − o(logP )

(105)

to conclude that theT (1 − ᾱ) logP − o(logP ) bits of the
common information vector[cℓ,1, · · · , cℓ,T ]T (ℓ ∈ BS) can be
decoded.

Regarding the achievability ofr(a)ℓ,t = β, of r(a
′)

ℓ,t = β−α
(2)
t ,

of r
(b)
ℓ,t = β and of r(b

′)
ℓ,t = β − α

(1)
t during phases (1 ≤

s ≤ S − 1), ℓ ∈ Bs, t = 1, · · · , T , we note that during
phases, both users can decodecℓ,t, and as a result user 1 can
removehT

ℓwℓ,tcℓ,t from y
(1)
ℓ,t , and user 2 can removegT

ℓwℓ,tcℓ,t

from y
(2)
ℓ,t (cf. (66),(67),(68),(69)). Furthermore, after phases+

1, each user can use its knowledge of{cℓ,t, ℓ ∈ Bs+1}
T
t=1

to reconstruct the quantized delayed estimates{¯̌ι
(2)
ℓ,t , ¯̌ι

(1)
ℓ,t , ℓ ∈

Bs}
T
t=1 of all the interference accumulated during phases. As

a result, corresponding to phases, user 1 is presented with
TTs linearly independent2× 2 equivalent MIMO channels of
the form

[

y
(1)
ℓ,t − hT

ℓwℓ,tcℓ,t−¯̌ι
(1)
ℓ,t

¯̌ι
(2)
ℓ,t

]

=

[
hT

ℓ

ǧT

ℓ

][

uℓ,t u
′

ℓ,t

][aℓ,t
a

′

ℓ,t

]

+

[

z̃
(1)
ℓ,t

−ι̃
(2)
ℓ,t

]

ℓ ∈ Bs, t = 1, · · · , T , where

z̃
(1)
ℓ,t = ḧ

T

ℓ(vℓ,tbℓ,t + v
′

ℓ,tb
′

ℓ,t) + z
(1)
ℓ,t + ι̃

(1)
ℓ,t .

We here note that

E|ḧ
T

ℓ(vℓ,tbℓ,t + v
′

ℓ,tb
′

ℓ,t)|
2 .
= P 0,

(see (67),(68)). Furthermore, the rate associated to{cℓ,t, ℓ ∈

Bs+1}
T
t=1, matches the quantization rate for{¯̌ι(2)ℓ,t ,

¯̌ι
(1)
ℓ,t , ℓ ∈

Bs}
T
t=1, allowing for a bounded variance of the quantization

noise, i.e.,

E|ι̃
(2)
ℓ,t |

2 .
= E|ι̃

(1)
ℓ,t |

2 .
= 1, ℓ ∈ Bs, t = 1, · · · , T.

Therefore, the equivalent noise term of the above MIMO chan-
nel has bounded average power, which allows for decoding of
{aℓ,t, a

′

ℓ,t, ℓ ∈ Bs}
T
t=1 at a rate corresponding tor(a)ℓ,t = β and

r
(a

′
)

ℓ,t = β − α
(2)
t , ℓ ∈ Bs, t = 1, · · · , T .

Similarly user 2 is presented withTsT linearly independent
2× 2 MIMO channels of the form

[
¯̌ι
(1)
ℓ,t

y
(2)
ℓ,t − gT

ℓwℓ,tcℓ,t−¯̌ι
(2)
ℓ,t

]

=

[

ȟ
T

ℓ

gT

ℓ

][

vℓ,t v
′

ℓ,t

][bℓ,t
b
′

ℓ,t

]

+

[

−ι̃
(1)
ℓ,t

z̃
(2)
ℓ,t

]

ℓ ∈ Bs, t = 1, · · · , T , wherez̃(2)ℓ,t = g̈T

ℓ(uℓ,taℓ,t + u
′

ℓ,ta
′

ℓ,t) +

z
(2)
ℓ,t + ι̃

(2)
ℓ,t , and whereE|g̈T

ℓ(uℓ,taℓ,t + u
′

ℓ,ta
′

ℓ,t)|
2 .

= P 0,

E|z̃
(2)
ℓ,t |

2 .
= E|ι̃

(1)
ℓ,t |

2 .
= P 0, thus allowing for decoding of



{bℓ,t, b
′

ℓ,t, ℓ ∈ Bs}
T
t=1 at rates corresponding tor(b)ℓ,t = β and

r
(b

′
)

ℓ,t = β − α
(1)
t , ℓ ∈ Bs, t = 1, · · · , T .

Regarding achievability forr(a)ℓ,t = α
(2)
t and r

(b)
ℓ,t = α

(1)
t

during phaseS, ℓ ∈ BS , t = 1, · · · , T , we note that, after de-
codingcℓ,t, user 1 can removehT

ℓwℓ,tcℓ,t from y
(1)
ℓ,t , and user 2

can removegT

ℓwℓ,tcℓ,t from y
(2)
ℓ,t , (see (73),(74)). Consequently

during phaseS, user 1 seesTTS linearly independent SISO
channels of the form

ỹ
(1)
ℓ,t ,y

(1)
ℓ,t −hT

ℓwℓ,tcℓ,t=hT

ℓuℓ,taℓ,t+h̃
T

ℓ,tvℓ,tbℓ,t+z
(1)
ℓ,t

ℓ ∈ BS , t = 1, · · · , T , which can be readily shown to support
r
(a)
ℓ,t = α

(2)
t . A similar argument gives achievability forr(b)ℓ,t =

α
(1)
t , ℓ ∈ BS , t = 1, · · · , T .
1) DoF calculation for schemeX3: In accordance to the

pre-log factors and phase durations (see Table V), and after
splitting the common information of the first phase{cℓ,t, ℓ ∈
B1}

T
t=1 to user 1 and user 2 with ratioω and1−ω respectively

(0 ≤ ω ≤ 1), we have the two DoF values given by

d1 =
T1(ω(1− β) + 2β − ᾱ) +

∑S−1
i=2 Ti(2β − ᾱ) + TSᾱ

∑S
i=1 Ti

= 2β − ᾱ+
T1ω(1− β) + 2TS(ᾱ− β)

∑S
i=1 Ti

= 2β − ᾱ+
ω(1− β) + 2ξS−2ζ(ᾱ − β)

(
∑S−2

i=0 ξi) + ξS−2ζ
, (106)

d2 =
T1((1−ω)(1−β)+2β−ᾱ)+

∑S−1
i=2 Ti(2β − ᾱ) + TSᾱ

∑S
i=1 Ti

= 2β − ᾱ+
(1− ω)(1− β) + 2ξS−2ζ(ᾱ − β)

(
∑S−2

i=0 ξi) + ξS−2ζ
. (107)

For the case ofβ < 1+2ᾱ
3 (0 < ξ < 1, see (65)), from

(106),(107) we see that

d1 = 2β − ᾱ+
ω(1− β) + 2ξS−2ζ(ᾱ− β)

1−ξS−1

1−ξ + ξS−2ζ

= 2β − ᾱ+
ω(1− β) + 2ξS−2ζ(ᾱ− β)

1
1−ξ + ξS−2(ζ − ξ

1−ξ )
,

d2 = 2β − ᾱ+
(1− ω)(1− β) + 2ξS−2ζ(ᾱ − β)

1
1−ξ + ξS−2(ζ − ξ

1−ξ )

which, for asymptotically highS, gives that

d1 = 2β − ᾱ+ ω(1− 3β + 2ᾱ)

= β(2− 3ω) + ᾱ(2ω − 1) + ω, (108)

d2 = 2β − ᾱ+ (1− ω)(1− 3β + 2ᾱ)

= β(3ω − 1) + ᾱ(1− 2ω) + 1− ω. (109)

For the case ofβ = 1+2ᾱ
3 (ξ = 1), from (106),(107) we

have that

d1 = 2β − ᾱ+
ω(1− β) + 2ζ(ᾱ− β)

S − 1 + ζ
,

d2 = 2β − ᾱ+
(1− ω)(1− β) + 2ζ(ᾱ− β)

S − 1 + ζ

which, for increasingS, approach quickly the optimal value
2β − ᾱ = 2+ᾱ

3 .
For the case ofβ > 1+2ᾱ

3 (ξ > 1), from (106),(107) we get
that

d1 = 2β − ᾱ+
ω(1− β) + 2ξS−2ζ(ᾱ− β)

1−ξS−1

1−ξ + ξS−2ζ
,

d1 = 2β − ᾱ+
(1− ω)(1− β) + 2ξS−2ζ(ᾱ − β)

1−ξS−1

1−ξ + ξS−2ζ

which, for asymptotically highS, gives

d1 = d2 = 2β − ᾱ+
2ζ(ᾱ− β)

ζ − ξ
1−ξ

=
2 + ᾱ

3
. (110)

Consequently we see that, forβ
′′

= min{β, 1+2ᾱ
3 }, X3

achieves DoF points(2β
′′

− ᾱ, 1+ ᾱ− β
′′

) by settingω = 0,
(1 + ᾱ − β

′′

, 2β
′′

− ᾱ) by setting ω = 1, as well as

(1+β
′′

2 , 1+β
′′

2 ) by settingω = 1/2, all of which converge to the
optimal DoF corner point(2+ᾱ

3 , 2+ᾱ
3 ) wheneverβ ≥ 1+2ᾱ

3 .

VII. A PPENDIX - PROOF OF COROLLARIES

A. Proof of Corollary 1a

Let {α
′

t}
T
t=1 be any set of current CSIT quality exponents

with averageᾱ′ =
∑T

t=1 α
′

t < 1. Consider the better case of
having current CSIT quality exponents{αt}

T
t=1 whereαt =

α
′

t, t = 1, · · ·T−1, andαT = 1. In this latter case, the average
ᾱ =

∑T
t=1 αt must again be less than one, which also means

that 1+2ᾱ
3 < 1, and thatαT ≥ 1+2ᾱ

3 which, directly from
Theorem 2, implies that the optimal symmetric DoF point is
2+ᾱ
3 < 1, which completes the proof.

B. Proof of Corollary 2c

In the presence of a constraint onαT but not onβ, we
can raiseβ such thatβ ≥ 1+2ᾱ

3 , in which case we have that
ᾱ = 3d′ − 2 (cf., Theorem 2), and1+2ᾱ

3 = 2d′ − 1, which
allows us to reachα1 = · · · = αγT = 0, αγT+1 = · · · =
αT = 2d′ − 1 = β after setting(1− γ)αT = ᾱ = 3d′ − 2.

In the presence of a constraint onβ but not onαT , when
β < 1+2α

3 then Theorem 2 gives thatβ = 2d′ − 1, which
means that̄α ≥ 3β−1

2 = 3d′ − 2, which in turn allows us to
setαT = β = 2d′− 1 and getα1 = · · · = αγT = 0, αγT+1 =
· · · = αT = β = 2d′ − 1.

Finally in the absence of any constraint onαT andβ, we
can setαγT+1 = · · ·αγT = 1 = β for the maximumγ that
allows for the desired average to hold.

C. Proof of Corollary 4b

For ᾱ(1) = ᾱ(2) = ᾱ, the optimal symmetric DoF isd =
2+ᾱ
3 (cf. Theorem 4), while for̄α(1) = ᾱ(2) = ᾱ

′

< ᾱ, the

optimal symmetric DoF is reduced tod
′

= 2+ᾱ
′

3 < d. If after
decreasingᾱ(2) from ᾱ to ᾱ

′

, we maintain the first user’s
original DoF d, then from Theorem 4 the optimal DoF for

user 2 is2+ᾱ
′
−d

2 = 2
3+

ᾱ
′

2 − ᾱ
6 = 2+ᾱ

′

3 − ᾱ−ᾱ
′

6 = d
′

− ᾱ−ᾱ
′

6 <

d
′

, which completes the proof (see in Fig 3 for the illustration).
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Fig. 3. DoF regions with parameters̄α, ᾱ
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≤ ᾱ), where C =
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3

), C
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′
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