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ON MULTI-RATE SEQUENTIAL DATA TRANSMISSION

CHEUK TING LI

Abstract. In this report, we investigate the data transmission model in which
a sequence of data is broadcasted to a number of receivers. The receivers,
which have different channel capacities, wish to decode the data sequentially
at different rates. Our results are applicable to a wide range of scenarios.
For instance, it can be employed in the broadcast streaming of a video clip
through the internet, so that receivers with different bandwidths can play the
video at different speed. Receivers with greater bandwidths can provide a
smooth playback, while receivers with smaller bandwidths can play the video
at a slower speed, or with short pauses or rebuffering.

1. Introduction

Consider the scenario in which a long video clip has to be transmitted to a
number of receivers having different packet loss ratios. One approach is to divide the
video data into blocks ofK packets, encode each block into L ≥ K encoding packets,
and then transmit the blocks to the receiver sequentially. Using random linear
projections or any capacity-achieving erasure code, the receiver can decode the block
if about K out of L packets are received. This method, which we call a blockwise
code, can only cater for the need of the receiver with packet loss probability less
than 1−K/L.

To suit the need of different receivers, we can perform time multiplexing on two
blockwise codes at different rates. Cosider Blockwise code 1 and Blockwise code
2, which use random linear projections to encode each block of K packets into
L1 and L2 packets respectively (L1 < L2). Denote the i-th packet generated using
Blockwise code k by Pk,i. We transmit the packets of the two codes in an interleaved
manner (in the sequence P1,1, P2,1, P1,2, P2,2, P1,3, ...). Receiver 1, which uses only
the packets generated using Blockwise code 1, can decode a block using K out of
the L1 packets encoded from the block, and therefore can tolerate a packet loss
probability 1 −K/L1. As Blockwise code 1 transmits a block of K packet per L1
channel uses, taking interleaving into account, Receiver 1 can decode at a rate of
K/(2L1) packets per channel use. Receiver 2 uses packets generated by both codes.
It can decode a block using K out of the L1 + L2 packets encoded from the block,
and allows a higher packet loss probability 1 −K/(L1 + L2). However, to use the
packets generated by both codes, Receiver 2 has to wait for the slower Blockwise
code 2, which transmits a block of K packet per L2 channel uses. Receiver 2 can
decode at a rate K/(2L2).

In the scenario, the receivers with different channel conditions wish to decode the
same sequence of data. Each receiver will decode the data sequentially at a roughly
constant rate which depends on the channel condition. We call these settings as
multi-rate sequential data transmission. It can be viewed as multilevel diversity
coding [1] with an additional sequential decoding constraint. In the following sec-
tions, we will discuss various cases of the problem. The case of one transmitter is
described in Section 3. The main contribution lies in Section 6 concerning multi-
ple transmitters, in which multi-rate sequential data transmission has apparently
dissimilar behavior compared to its non-sequential counterpart.
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Figure 1.1. Encoding process of blockwise and multiplexed codes

2. Formulation of Multi-rate Sequential Data Transmission

We consider the transmission of a sequence of data through an erasure channel.
To simplify the setting, we assume that one bit is sent at a time through the erasure
channel. Assume the sender is going to transmit a sequence of bits M1,M2, ....
We assume Mi

i.i.d.∼ Bern(1/2). The sender will encode it into a sequence of bits
X1, X2, ... and transmit them through an erasure channel. The symbols arrive
at the receiver as Y1, Y2, ..., where some of them may be erased (denoted by e,
Yi ∈ {0, 1, e}). Based on these symbols, the receiver tries to decode M1,M2, ....

Definition 1 (MRS code). A multi-rate sequential code (MRS code) is specified
by a pair of encoding and decoding functions. The encoding function is a function
mapping the message {Mi} to the encoding symbols {Xj}. There is a random
variable Q supported in Q which is known by both the sender and the receiver,
and independent of the message and the channel erasure, to allow random coding
scheme. The encoding function is a function

Enc : Q× {0, 1}N × N → {0, 1}
(Q, {Mi} , j) 7→ Xj .

Note that this definition allows the encoder to look at all blocks.
The decoding function maps the received symbols {Yj}, where some of them may

be erased, to the recovered blocks
{
M̃i

}
. Let Y =

⋃
n∈N{0, 1, e}n be the space of

received symbols. The decoding function is a function
Dec : Q× Y × N → {0, 1}

(Q,Y n1 , i) 7→ M̃i.

We use the notation Y ba = (Ya, Ya+1, ..., Yb). For simplicity, we writeXj (Q, {Mi})) =
Enc (Q, {Mi} , j), and M̃i (Q,Y n1 ) = Dec (Q,Y n1 , i).

The MRS code does not admit a fixed rate like other block codes. Instead its
rate depends on the channel capacity.

Definition 2 (admissible pair). A rate-capacity pair (r, c) is called ε-admissible by
a code if there exist N0 such that when Xi → Yi is an erasure channel with capacity
c (i.e. erasure channel with erasure probability 1− c),

P
{
Mm 6= M̃m

(
Q,Y N1

)}
≤ ε for any N ≥ N0 and m ≤ N(r − ε).

In other words, any receiver with channel capacity c can decode the first N(r−ε)
bits MN(r−ε)

1 with bit error probability less than ε when the first N symbols Y N1
are received, for sufficiently large N .
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Figure 2.1. Rate-capacity functions of blockwise and multiplexed
blockwise code

It is clear that if (c, r) is ε-admissible, then all pairs in {(c′, r′)|c′ ≥ c, r′ ≤ r} are
ε-admissible. Therefore we can use a function to characterize the rate of a code.
We call r : [0, 1]→ [0,∞) a rate-capacity function if it is monotonically increasing,
right continuous, and there exists an η > 0 such that r(c) = 0 for c ≤ η.

Definition 3 (rate of MRS code). A rate-capacity function r(c) is called ε-admissible
by a code if all of the pairs (c, r(c)) are ε-admissible by the code.

The rate-capacity functions of the blockwise code and the multiplexed blockwise
code described in the introduction can be given by Figure 2.1.

Definition 4 (achievable rate-capacity functions). A rate-capacity function r(c) is
achievable if for any ε > 0, there exist a code where r(c) is ε−admissible by that
code.

3. Superposition Coding for Single Transmitter

In this section, we will present the design of superposition multi-rate sequen-
tial codes, and prove their optimality by giving the set of achievable rate-capacity
functions explicitly.

Definition 5 (superposition MRS code). A superposition MRS code is character-
ized by the block size K and the parameter g : [0,∞)→ [0,∞) which is bounded,
monotonically decreasing and left continuous with

∫∞
0 g(α)dα = 1. The message

{Mi} is divided into blocks of K bits, Bi = M iK
(i−1)K+1. In the encoding process

of the code, we first sample a sequence of non-negative random variables A1, A2, ...
i.i.d. according to the cumulative distribution function

FA(α) =
∫ α

0
g(x)dx− αg(α)

= −
∫ α

0
xdg(x).(3.1)

Note that FA(α) is increasing as g(α) is decreasing. The sequence is known by
both the sender and the receiver (we may let Q = (A1, A2, ...)). At time instance i,
the sender generate an encoding symbol Xi from the block Bdi·Ai/Ke using random
linear projections and transmit it to the receiver.

Note that we employ a random coding scheme. Random linear projections allow
us to decode a block of K bits using K + o(K) encoding bits with an arbitrarily
small error probability. The superposition MRS code is essentially performing time
multiplex on blockwise codes at different rates.
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The parameter g(α) roughly corresponds to the proportion of the encoding sym-
bols dedicated to satisfying the need of the receivers which wish to decode at rate
α. When we send encoding symbols encoded at rate γ (i.e. Ai = γ), a receiver
which decodes at rate α ≤ γ can use a portion of α/γ of the encoding symbols. The
parameter g(α) describes the proportion of the symbols which can be used, divided
by the proportion needed (which is α), given by

g(α) = 1
α

∫ ∞
α

α

γ
dFA(γ),

which can be verified using (3.1):
1
α

∫ ∞
α

α

γ
dFA(γ) =

∫ ∞
α

1
γ
dFA(γ)

= −
∫ ∞
α

1
γ
· γdg(γ)

= −
∫ ∞
α

dg(γ) = g(α).

The blockwise code and the multiplexed blockwise code described in the intro-
duction are examples of superposition MRS codes. For the blockwise code, the
parameter is taken to be

g(α) =
{
L/K when α ≤ K/L
0 when α > K/L.

For the multiplexed blockwise code, the parameter is taken to be

g(α) =


L1+L2
K when α ≤ K

2L2
L1
K when K

2L2
< α ≤ K

2L1

0 when α > K
2L1

.

The choice of the parameter is closely related to the rate-capacity function we
would like to achieve. The following theorem describes the relationship between
the two functions.

Theorem 6. For a fixed ε, the rate-capacity function r(c) is ε-admissible by the
superposition MRS code with block size K and parameter g(α) for all sufficiently
large K, if there exists ξ > 0 satisfying

c · g (r(c)) ≥ 1 + ξ for all c > 0 with r(c) > 0.

Proof. Fix ε > 0. Let r(c) be a rate-capacity function, and let g(α) be a bounded
and monotonically decreasing function (let g(α) ≤ ζ for all α ≥ 0). Assume
the condition c · g (r(c)) ≥ 1 + ξ is satisfied for some ξ > 0. We take K ≥
max (4/ξ, 32 · (ζ + 1)/(εξ)). We now consider the superposition MRS code with
block size K and parameter g(α).

Fix any channel capacity c with r(c) > 0. Let α1 = r(c), and α0 = r(c)− ε. At
time instance i, the sender generate an encoding symbol from the block Bdi·Ai/Ke
(note that Bi = M iK

(i−1)K+1). Let FA(α) =
∫ α

0 g(x)dx − αg(α). The probability
that Bj is chosen is

P
{
Ai ∈

(
K(j − 1)

i
,
Kj

i

]}
= FA

(
Kj

i

)
− FA

(
K(j − 1)

i

)
.

Let n ≥ K
ε , and j ≤ nα0

K + 1. We will study whether the block Bj can be
decoded using Y n1 with error probability less than ε when the channel capacity is c.
If so, then Mbα0nc

1 can be decoded using Y n1 with bit error probability less than ε
whenever n ≥ K

ε , and thus the rate-capacity pair (α1, c) is ε−admissible. Let S be
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the random variable representing the number of times Bj is chosen in the encoding
of Xi, and Xi is not erased, for i = 1, ..., n. Its expected value is given by

E[S] = c ·
n∑
i=1

(
FA

(
Kj

i

)
− FA

(
K(j − 1)

i

))
.

Note that FA is monotonically increasing and not greater than 1 (and therefore
FA

(
Kj
nx

)
is monotonically decreasing with respect to x), we have

n∑
i=1

FA

(
Kj

i

)
≥ n

(∫ 1

1/n
FA

(
Kj

nx

)
dx

)

≥ n

(∫ 1

0
FA

(
Kj

nx

)
dx

)
− 1,

n∑
i=1

FA

(
K(j − 1)

i

)
≤ n

(∫ 1

0
FA

(
K(j − 1)

nx

)
dx

)
.

Therefore

E[S] ≥ cn

(∫ 1

0

(
FA

(
Kj

nx

)
− FA

(
K(j − 1)

nx

))
dx

)
− c

≥ cn

(∫ 1

0

(
FA

(
Kj

nx

)
− FA

(
K(j − 1)

nx

))
dx

)
− 1,

where ∫ 1

0
FA

(α
x

)
dx = FA(α)−

∫ 1

0
xdFA

(α
x

)
= FA(α) + α

∫ ∞
α

1
x
dFA (x)

= FA(α) + α

∫ ∞
α

1
x
· −xdg(x)

= FA(α)− α
∫ ∞
α

1dg(x)

= FA(α) + αg(α)

=
∫ α

0
g(x)dx.

Hence, as g(x) is monotonically decreasing,

E[S] ≥ cn ·

(∫ Kj/n

0
g(x)dx−

∫ K(j−1)/n

0
g(x)dx

)
− 1

= cn ·
∫ Kj/n

K(j−1)/n
g(x)dx− 1

≥ cK · g
(
Kj

n

)
− 1

≥ cK · g
(
α0 + K

n

)
− 1

≥ cK · g (α0 + ε)− 1
= cK · g (α1)− 1
≥ K(1 + ξ)− 1.
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On the other hand,
n∑
i=1

FA

(
Kj

i

)
≤ n

(∫ 1

0
FA

(
Kj

nx

)
dx

)
,

and
n∑
i=1

FA

(
K(j − 1)

i

)
≥ n

(∫ 1

1/n
FA

(
K(j − 1)

nx

)
dx

)

≥ n

(∫ 1

0
FA

(
K(j − 1)

nx

)
dx

)
− 1.

Let
pi = c

(
FA

(
Kj

i

)
− FA

(
K(j − 1)

i

))
.

The variance of S can be given by

Var[S] =
n∑
i=1

(
pi − p2

i

)
≤

n∑
i=1

pi

≤ cn ·
(∫ 1

0

(
FA

(
Kj

nx

)
− FA

(
K(j − 1)

nx

))
dx

)
+ c

≤ n ·
(∫ 1

0

(
FA

(
Kj

nx

)
− FA

(
K(j − 1)

nx

))
dx

)
+ 1

= n ·

(∫ Kj/n

0
g2(x)dx−

∫ K(j−1)/n

0
g2(x)dx

)
+ 1

= n ·
∫ Kj/n

K(j−1)/n
g2(x)dx+ 1

≤ Kζ + 1,

σS ≤
√
K ·

√
ζ + 1.

As a result, for K large enough, S is close to E[S] with high probability. Cheby-
shev’s inequality gives

P

{
S < K(1 + ξ)− 1−

√
K ·
√
ζ + 1√

ε/2

}
≤ ε/2,

where

K(1 + ξ)− 1−
√
K ·
√
ζ + 1√

ε/2

= K

(
1 + ξ − 1

K
−
√
ζ + 1√
Kε/2

)
≥ K (1 + ξ/2)

by the assumption K ≥ max (4/ξ, 32 · (ζ + 1)/(εξ)). When random linear projec-
tions are used, for a fixed probability of error ε/2, the number of symbols needed
to decode a block of K bits is K + o(K), which is smaller than K (1 + ξ/2) for
sufficiently large K. Therefore the rate function r(c) is ε-admissable by the super-
position MRS code with parameter g(α) for K large enough. �
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The following theorem gives the achievable region for the rate-capacity function,
which coincides with the region attained by superposition MRS code.

Theorem 7. A rate-capacity function r(c) is achievable if and only if∫ 1

0

1
c
dr(c) ≤ 1.

Proof of achievability. Assume r(c) is a rate-capacity function satisfying
∫ 1

0
1
cdr(c) ≤

1. We can find η > 0 such that r(c) = 0 for c ≤ η. Let g(α) = 1/r−1(α), where
r−1(α) = inf{c|r(c) ≥ α}. Then g(α) is monotonically decreasing and bounded
above by 1/η. It is implied by

∫ 1
0

1
cdr(c) ≤ 1 that

∫∞
0 g(α)dα ≤ 1. As r−1(r(c)) ≤ c,

we also have c · g (r(c)) ≥ 1 for all c > 0 with r(c) > 0.
Fix ε > 0. Note that

∫∞
0 g(α+ ε/2)dα < 1. We can define a function g2(α) by

g2(α) = (1 + ξ) · g(α+ ε/2),

where ξ > 0 such that
∫∞

0 g2(α)dα = 1. We know g2 is bounded above by (1+ξ)/η.
Define a new rate-capacity function r2(c) = max(r(c)− ε/2, 0). We have, for any c
with r2(c) > 0,

c · g2 (r2(c)) = c · (1 + ξ)g (r(c)) ≥ 1 + ξ.

Consider the superposition MRS code with parameter g2(α). By Theorem 6,
the rate-capacity function r2(c) is ε/2-admissible by the code for sufficiently large
block size, which implies that r(c) is ε-admissible by the code. �

Proof of converse. The proof employs a similar idea as in [2]. As r(c) is a rate-
capacity function, we can find η > 0 such that r(c) = 0 for c ≤ η. For any ε > 0,
consider a code where r(c) is ε-admissible. The message {Mi} are encoded into
binary symbols {Xi}, and sent through an erasure channel with capacity c (we call
it Channel c) to give {Yc,i} for all c > 0. Assume we have the following for any c,

max
m≤n(r(c)−ε)

P
{
Mm 6= M̃m

(
Q,Y nc,1

)}
< ε for any n ≥ N0.

Let N ≥ N0. Let Ec,i be the indicator of the events of erasure in Chan-
nel c (Ec,i = 1 means that Yc,i = e). Note that whether the message can be
decoded at the receiver with Channel c depends only on the marginal distribu-
tion of {Ec,i, Xi,Mi, Q}i∈N, and is conditional independent of Ec2,i for c2 6= c
given {Ec,i, Xi,Mi, Q}i∈N. Therefore, we may modify the joint distribution of
{Ec,i}c∈(0,1],i∈N without affecting the result as long as the distributions of {Ec,i, Xi,Mi, Q}i∈N
are preserved. From now on, we assume the channels are cascaded, i.e. whenever
c0 < c1 ≤ 1, the Markov chain Xi → Yc1,i → Yc0,i holds, and

Ec0,i =
{
Ec1,i w.p. c0/c1

1 w.p. 1− c0/c1.

Let

(3.2) r2(c) = max(r(c)− ε, 0).

Define

(3.3) f(c) = 1
Nc
·H(Y Nc,1|Q,M

bNr2(c)c
1 , ENc,1).
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The common random variable Q will be omitted for simplicity. Consider Channel
c0 and Channel c1 where η/2 ≤ c0 < c1 ≤ 1. Let k0 = bNr2(c0)c, and k1 =
bNr2(c1)c. Note that

H(Y Nc1,1|M
k1
1 , ENc1,1)

= H(Y Nc1,1,M
k1
k0+1|M

k0
1 , ENc1,1)−H(Mk1

k0+1|M
k0
1 , ENc1,1),(3.4)

where, due to the assumption that Mi are i.i.d. uniform in {0, 1},

H(Mk1
k0+1|M

k0
1 , ENc1,1) = H(Mk1

k0+1) = k1 − k0 ≥ N(r2(c1)− r2(c0))− 1.

As Mk1
1 can be decoded using Y Nc1,1 with bit error probability less than ε, by

Fano’s inequality,

H(Y Nc1,1,M
k1
k0+1|M

k0
1 , ENc1,1)

= H(Y Nc1,1|M
k0
1 , ENc1,1)

+H(Mk1
k0+1|Y

N
c1,1,M

k0
1 , ENc1,1)

≤ H(Y Nc1,1|M
k0
1 , ENc1,1)

+
k1∑

i=k0+1
H(Mi|Y Nc1,1,M

k0
1 , ENc1,1)

≤ H(Y Nc1,1|M
k0
1 , ENc1,1) + (k1 − k0) ·H(ε)

≤ H(Y Nc1,1|M
k0
1 , ENc1,1) + (N(r2(c1)− r2(c0)) + 1) ·H(ε)

≤ H(Y Nc1,1|M
k0
1 , ENc1,1) + (N(r2(c1)− r2(c0))) ·H(ε) + 2.

Let E′i
i.i.d.∼ Bern(1− c0/c1) with

Ec0,i =
{
Ec1,i if E′i = 0
1 if E′i = 1.

We can obtain
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H(Y Nc0,1|M
k0
1 , ENc0,1)

=
N∑
i=1

H(Yc0,i|M
k0
1 , Y i−1

c0,1 , E
N
c0,1)

(i)
≥

N∑
i=1

H(Yc0,i|M
k0
1 , Y i−1

c1,1 , E
N
c0,1)

(ii)=
N∑
i=1

H(Yc0,i|M
k0
1 , Y i−1

c1,1 , Ec0,i)

≥
N∑
i=1

H(Yc0,i|M
k0
1 , Y i−1

c1,1 , Ec0,i, E
′
i)

(iii)=
N∑
i=1

(
c0

c1
·H(Yc0,i|M

k0
1 , Y i−1

c1,1 , Ec0,i, E
′
i = 0)

)

=
N∑
i=1

(
c0

c1
·H(Yc1,i|M

k0
1 , Y i−1

c1,1 , Ec1,i, E
′
i = 0)

)
(iv)=

N∑
i=1

(
c0

c1
·H(Yc1,i|M

k0
1 , Y i−1

c1,1 , Ec1,i)
)

(v)
≥

N∑
i=1

(
c0

c1
·H(Yc1,i|M

k0
1 , Y i−1

c1,1 , E
N
c1,1)

)
= c0

c1
·H(Y Nc1,1|M

k0
1 , ENc1,1),

where (i) is due toH(Y i−1
c0,1 |Y

i−1
c1,1 , E

N
c0,1) = 0, (ii) is due to (Ei−1

c0,1, E
N
c0,i+1) ⊥⊥ Yc0,i

∣∣ (Mk0
1 , Y i−1

c1,1 ),
(iii) is obtained by conditioning on E′i and by Yc0,i = e when E′i = 1, (iv) is
due to E′i ⊥⊥ (Yc1,i,M

k0
1 , Y i−1

c0,1 , Ec1,i), and (v) is due to H(Ei−1
c1,1|Y

i−1
c1,1 ) = 0 and

ENc1,i+1 ⊥⊥ Yc1,i

∣∣ (Mk0
1 , Y i−1

c1,1 ).
Hence by (3.4),

H(Y Nc1,1|M
k1
1 , ENc1,1)

≤ c1

c0
·H(Y Nc0,1|M

k0
1 , ENc0,1) + (N(r2(c1)− r2(c0))) ·H(ε) + 2

− (N(r2(c1)− r2(c0))− 1) ,

After replacing the terms by f(c) using (3.3),

1
c1

(r2(c1)− r2(c0)) ≤
f(c0)− f(c1) + 3

Nc1

1−H(ε) ≤
f(c0)− f(c1) + 6

Nη

1−H(ε) .
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Due to the monotonicity of r2(c),∫ c1

c0

1
c
dr2(c)−

(
1
c0
− 1
c1

)
(r2(c1)− r2(c0))

≤ 1
c0

(r2(c1)− r2(c0))−
(

1
c0
− 1
c1

)
(r2(c1)− r2(c0))

= 1
c1

(r2(c1)− r2(c0))

≤
f(c0)− f(c1) + 6

Nη

1−H(ε) .

Let m =
⌊√

N
⌋
, and c0 = c′0 < c′1 < ... < c′m = c1 such that r2(c) is continuous

at c = c′1, ..., c
′
m−1 and

1
c′i
− 1
c′i+1

<
2
m

(
1
c0
− 1
c1

)
for i = 0, ...,m− 1.

We can always find such c′i as a monotonic function has at most countable
discontinuities. Note that for i = 0, ...,m− 1,

1
c′i
− 1
c′i+1

<
2
m

(
1
c0
− 1
c1

)
≤ 4
mη

as η/2 ≤ c0 < c1. Then we have∫ c1

c0

1
c
dr2(c)

=
m−1∑
i=0

∫ c′i+1

c′
i

1
c
dr2(c)

≤
m−1∑
i=0

(
f(c′i)− f(c′i+1) + 6

Nη

1−H(ε) +
(

1
c′i
− 1
c′i+1

)(
r2(c′i+1)− r2(c′i)

))

≤
f(c0)− f(c1) + 6m

Nη

1−H(ε) + 4
mη

(r2(c1)− r2(c0))

≤
f(c0)− f(c1) + 6m

Nη

1−H(ε) + 4
mη

r(1).

Note that

f(c) = 1
Nc
·H(Y Nc,1|Q,M

bN(r(c)−ε)c
1 , ENc,1)

≤ 1
Nc
·H(Y Nc,1|, ENc,1)

≤ 1.

Thus we have, for any η/2 ≤ c0 < c1 ≤ 1,

∫ c1

c0

1
c
dr2(c) ≤

1 + 6m
Nη

1−H(ε) + 4
mη

r(1).
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Therefore we can obtain an inequality on r(c) using (3.2) by∫ c1

c0

1
c
dr(c) =

∫ c1

c0

1
c
d (r(c)− ε)

≤
∫ c1

c0

1
c
dr2(c) + ε

η

≤
1 + 6m

Nη

1−H(ε) + 4
mη

r(1) + ε

η
.

The inequality holds for arbitrarily large N and arbitrarily small ε. We can
conclude that ∫ 1

0

1
c
dr(c) =

∫ 1

η/2

1
c
dr(c) ≤ 1.

�

Remark. It is shown in the theorem that the achievable region of MRS codes co-
incides with that of priority encoding transmission or multilevel diversity coding.
When there are more than one transmitters, the MRS codes no longer admit the
same region as priority encoding transmission or multilevel diversity coding in gen-
eral.

4. The Multiple Transmitter Setting

In this section, we will discuss the case where there are d transmitters which
cooperate to send the same sequence of data {Mi}, but they may or may not be
transmitting the same sequence of encoding symbols. There are multiple receivers
that wish to decode {Mi} sequentially at different rates. A receiver has an erasure
channel connected to each of the d transmitters, and the channels may have different
capacities. The central question of this section is that, given a set of receivers with
different capacities and different rate requirements, is it possible to design a code
which can satisfy the need of all receivers?

We call the transmitters as Transmitter k, where k = 1, ..., d. We denote the
symbol sent by Transmitter k at time n by Xk,n ∈ {0, 1}. For a receiver with
a channel from Transmitter k with capacity c, denote the symbol received from
Transmitter k by Yk,c,n ∈ {0, 1, e}, and the indicator of erasure Ek,c,n ∈ {0, 1}
(Ek,c,n = 1 indicates an erasure). The definition of a multi-transmitter multi-rate
sequential code is similar to that in the single transmitter case, and will be omitted.

For a vector of channel capacities c ∈ [0, 1]d, where ck is the capacity of the
channel to Transmitter k, we write

Xn = (X1,n, ..., Xd,n) ,
Yc,n = (Y1,c1,n, ..., Yd,cd,n) ,
Ec,n = (E1,c1,n, ..., Ed,cd,n) .

We use the notation Y bc,a = (Yc,a, Yc,a+1, ..., Yc,b). From now on, we refer to the
receiver with channel capacities c as Receiver c. We write the sum of capacities in
c by Σ(c) =

∑d
i=1 ci.

Definition 8 (admissible pair). A rate-capacity pair (r, c) is called ε-admissible
by a code if Receiver c can decode the first N(r − ε) bits MN(r−ε)

1 with bit error
probability less than ε when the first N symbols Y Nc,1 are received, for sufficiently
large N . More precisely, there exist N0 such that

P
{
Mm 6= M̃m

(
Q,Y Nc,1

)}
≤ ε for any N ≥ N0,m ≤ N(r − ε).
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We use a function to characterize the rate of a code. We call r : [0, 1]d → [0,∞)
a rate-capacity function if it is monotonically increasing and right continuous along
each of the d dimensions, and there exist an η > 0 such that r(c) = 0 for Σ(c) ≤ η.

Definition 9 (rate of MRS code). A rate-capacity function r(c) is called ε-admissible
by a code if all of the pairs (c, r(c)) are ε-admissible by the code.

Definition 10 (achievable rate-capacity functions). A rate-capacity function r(c)
is achievable if for any ε > 0, there exist a code where r(c) is ε−admissible by that
code.

The superposition MRS code for multiple transmitters is similar to that for single
transmitter.

Definition 11 (superposition MRS code). A superposition MRS code is char-
acterized by the block size K and the parameter g : [0,∞) → [0,∞)d which is
bounded, monotonically decreasing and left continuous along each dimension with∫∞

0 gk(α)dα = 1 for k = 1, ..., d (write gk(α) for the k-th entry of g(α)). Transmit-
ter k generates encoding symbols using the single transmitter superposition MRS
code with block size K and parameter gk(α).

We say that a rate-capacity function is achievable by superposition MRS code if
it is ε−admissible by a superposition MRS code for arbitrarily small ε. We give the
necessary and sufficient condition on the achievability by superposition MRS code.

Theorem 12. The rate-capacity function r(c) is achievable by superposition MRS
code if and only if there exists a function g : [0,∞) → [0,∞)d which is bounded,
monotonically decreasing and left continuous along each of the d dimensions satis-
fying ∫ ∞

0
gk(α)dα = 1 for k = 1, ..., d, and

c · g (r(c)) ≥ 1 for any c ∈ [0, 1]d with r(c) > 0.

Proof. The “if” part is similar to the proof of achievability in Theorem 7. Fix any
ε > 0. Let η > 0 such that r(c) = 0 for Σ(c) ≤ η. Define g′ : [0,∞)→ [0,∞)d by

g′k(α) = (1 + ξk) · gk(α+ ε/2),

where ξk > 0 such that
∫∞

0 g′k(α)dα = 1. Define a new rate-capacity function
r2(c) = max(r(c)− ε/2, 0). We have, for any c with r2(c) > 0,

c · g′ (r2(c)) = c · (1 + ξ)g′ (r2(c)) ≥ 1 + ξ.

Consider the multiple transmitter superposition MRS code with parameter g(α).
Applying Theorem 6 on each dimension, the rate-capacity function r2(c) is ε/2-
admissible by the code for sufficiently large block size, which implies that r(c) is
ε-admissible by the code.

For the “only if” part, let ε > 0 and consider a superposition MRS code with
block sizeK and parameter g(α) in which r(c) is ε-admissible. Consider the receiver
with capacities c which decode at rate r(c) − ε. Using similar arguments as in 6,
fixing any block with sufficiently large index, the expected number of times when
a received symbol from Transmitter k is encoded from the block can be given by
ckK · gk (r(c)− ε). As at least K received symbols is required to decode the block,
we have

c · g (r(c)− ε) =
∑
k

ckgk (r(c)− ε) ≥ 1.

As g(α) is left continuous, the proof can be completed by taking ε→ 0. �
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5. General Non-optimality of Superposition Codes

We have shown in Section 3 that superposition codes are optimal for single
transmitter. However, in the multiple transmitter setting, the superposition MRS
codes are not optimal in general. We will provide a counter example.

Example 13. Consider the two transmitter case. Given the block size K and
0 < r < 2/3, the code is constructed by the following process. For Transmitter k
(k = 1, 2), at time i, we generate Xk,i by taking a random linear combination of
the bits in the blocksM ′2·di/(4K)e−2+k,M ′4·di/(4K)e−1−k, andM ′4·di/(4K)e+1−k, where
M ′i = M iK

(i−1)K+1.

Consider Transmitter 1, which generates 4K encoding bits from the three blocks
M ′2·di/(4K)e−1, M ′4·di/(4K)e−2, and M ′4·di/(4K)e, with a total of 3K bits. Hence, a
receiver which can only receive from Transmitter 1 with channel capacity 3/4 can
decode the three blocks. When di/(4K)e = n, the blocks M ′2n−1, M ′4n−2, and M ′4n
can be decoded, which covers all the blocks. The rate-capacity pair

( 1
2 , (

3
4 , 0)

)
is

admissible. Similar for
( 1

2 , (0,
3
4 )
)
.

Consider a receiver which receives from Transmitter 1 and 2, each with chan-
nel capacity 1/2. It receives 2K bits encoding the three blocks M ′2·di/(4K)e−1,
M ′4·di/(4K)e−2, M ′4·di/(4K)e, and also 2K bits encoding the three blocks M ′2·di/(4K)e,

M ′4·di/(4K)e−3, M ′4·di/(4K)e−1. When n def= di/(4K)e = 1, the 4K bits encoding the
blocks M ′1 to M ′4 are sufficient to decode the blocks. When n ≥ 2, assume the
blocks M ′m for m ≤ 4n − 4 are already decoded, then there are 2K bits encoding
the two blocks M ′4n−2 and M ′4n (M ′2n−1 is already decoded) which are sufficient to
decode the blocks, and 2K bits encoding the two blocks M ′4n−3 and M ′4n−1 which
are sufficient to decode the blocks.The rate-capacity pair

(
1, ( 1

2 ,
1
2 )
)
is admissible.

However, the rate-capacity pairs
( 1

2 , (
3
4 , 0)

)
and

(
1, ( 1

2 ,
1
2 )
)
cannot be simulta-

neously achieved by superposition MRS code. If it can be achieved by superpo-
sition MRS code, by Theorem 12, there is a monotonically decreasing function
g : [0,∞) 7→ [0,∞)2 satisfying

∫∞
0 g1(α)dα =

∫∞
0 g2(α)dα = 1 and 3

4g1( 1
2 ) ≥ 1,

1
2g1(1) + 1

2g2(1) ≥ 1. As g1(1), g2(1) ≤ 1, we have g1(1) = g2(1) = 1, and
g1(α) = g2(α) = 1 when α ≤ 1, which contradicts with 3

4g1( 1
2 ) ≥ 1.

In the following sections, we will study some special cases in which superposition
codes are optimal.

6. Some Useful Tools

We will present some tools which are used to find the admissible region in certain
special cases.

For the sake of simplicity, we write

J∞Nα(Y Nc,1) = H(Y Nc,1|M
bNαc
1 , ENc,1, Q), and

JNβNα(Y Nc,1) = I(MbNβcbNαc+1;Y Nc,1|M
bNαc
1 , ENc,1, Q).

We use the infinity sign “∞” in J∞Nα(Y Nc,1) as the encoding symbols Xi are en-
coded from M∞1 and Q, and Yc,i can be determined by Xi and Ec,i. As a result,

H(Y Nc,1|M∞1 , ENc,1, Q) = 0,

and therefore

J∞Nα(Y Nc,1) = H(Y Nc,1|M
bNαc
1 , ENc,1, Q)

= I(M∞bNαc+1;Y Nc,1|M
bNαc
1 , ENc,1, Q).
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(Note that the support of M∞1 is uncountable. The above equations only serve as
the intuition behind the definition.)

The quantity JNβNα(Y Nc,1) roughly corresponds to the amount of information in
the first N encoding symbols dedicated to encode the interval of data MbNβcbNαc+1.
Furthermore, we define

J
∞
α (Yc, T ) = 1

T
·
∫ T

0
J∞αbexc(Y

bexc
c,1 ) · e−xdx,

J
β

α(Yc, T ) = 1
T
·
∫ T

0
J
βbexc
αbexc(Y

bexc
c,1 ) · e−xdx.

By observing H(Y Nc,1|ENc,1) ≤ NΣ(c), we know the limits are finite as

1
T
·
∫ T

0
J
βbexc
αbexc(Y

bexc
c,1 ) · e−xdx

≤ 1
T
·
∫ T

0
Σ(c) bexc · e−xdx

≤ Σ(c),
and thus
(6.1) J

β

α(Yc, T ) ≤ Σ(c).

Similarly, by considering Jβbe
xc

αbexc(Y
bexc

c,1 ) ≤ (β − α) bexc, we can obtain

(6.2) J
β

α(Yc, T ) ≤ β − α.

If (c, r) is ε-admissible, then whenever r ≥ β > α ≥ 0,MbN(β−ε)c
bNαc+1 can be decoded

using Y Nc,1 for sufficiently large N . By Fano’s inequality (note that the case where
β − ε ≤ α is obvious),

lim inf
T→∞

1
T
·
∫ T

0
J
βbexc
αbexc(Y

bexc
c,1 ) · e−xdx

≥ lim inf
T→∞

1
T
·
∫ T

0
(β − α− ε)(1−H(ε)) bexc · e−xdx

= (β − α− ε)(1−H(ε)),
and therefore
(6.3) lim inf

T→∞
J
β

α(Yc, T ) ≥ (β − α− ε)(1−H(ε)).

Also it is clear that for γ < α < β,

(6.4) J
β

γ (Yc, T ) = J
α

γ (Yc, T ) + J
β

α(Yc, T )
The following lemma can be readily observed.

Lemma 14. For c = c1 + c2, c1, c2 ≥ 0, we have

J
β

α(Yc1 , T ) ≤ Jβα(Yc, T ) ≤ Jβα(Yc1 , T ) + J
∞
α (Yc2 , T ).

Proof. As the quantities depend only on the marginal distributions of {Ec,i, Xi,Mi, Q},
{Ec1,i, Xi,Mi, Q} and {Ec2,i, Xi,Mi, Q}, but not the joint distribution between
Ec,i and Ec1,i and so on. For the purpose of analysis, we assume the non-erasure
positions of Receiver c1 do not overlap with those of Receiver c2, and erasure hap-
pens in Receiver c if an only if erasure happens in both Receiver c1 and Receiver
c2. Then Y Nc,1 has the same information as

(
Y Nc1,1, Y

N
c2,1
)
. We can deduce from

I(X;Z) ≤ I(X,Y ;Z) ≤ I(X;Z) +H(Y ) that

JNβNα(Y Nc1,1) ≤ JNβNα(Y Nc,1) ≤ JNβNα(Y Nc1,1) + J∞Nα(Y Nc2,1).
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The result follows. �

As the message is transmitted in a sequential manner, the received symbols Y Nc,1
should contain more information about the older messages (the Mi with smaller i)
than newer messages, and therefore the average information (β − α)−1 · Jβα(Yc, T )
should increase when α decrease. This property is proved in the following lemma.

Lemma 15. Let 0 ≤ γ ≤ α < β. We have

lim inf
T→∞

(
1

β − γ
· Jβγ (Yc, T )− 1

β − α
· Jβα(Yc, T )

)
≥ 0.

Proof. Consider

J
βbexc
γbexc (Y

bexc
c,1 ) = J

βbexc
αbexc(Y

bexc
c,1 ) + J

αbexc
γbexc (Y be

xc
c,1 )

≥ J
βbexc
αbexc(Y

bexc
c,1 ) + Jαe

x

γex (Y be
xc

c,1 )− α.

After integrating the second term, we get, for any x0,∫ x0+log(β/α)

x0

Jαe
x

γex (Y be
xc

c,1 )dx

≥
∫ x0+log(β/α)

x0

Jαe
x

γex (Y be
x0c

c,1 )dx

=
∫ x0+log(β/α)

x0

J∞γex(Y be
x0c

c,1 )dx−
∫ x0+log(β/α)

x0

J∞αex(Y be
x0c

c,1 )dx

=
∫ x0−log(α/γ)+log(β/α)

x0−log(α/γ)
J∞γex+log(α/γ)(Y be

x0c
c,1 )dx−

∫ x0+log(β/α)

x0

J∞αex(Y be
x0c

c,1 )dx

=
∫ x0+log(βγ/α2)

x0−log(α/γ)
J∞αex(Y be

x0c
c,1 )dx−

∫ x0+log(β/α)

x0

J∞αex(Y be
x0c

c,1 )dx

=
∫ x0

x0−log(α/γ)
J∞αex(Y be

x0c
c,1 )dx−

∫ x0+log(β/α)

x0+log(βγ/α2)
J∞αex(Y be

x0c
c,1 )dx

=
∫ x0

x0−log(α/γ)
J∞αex(Y be

x0c
c,1 )dx−

∫ x0

x0−log(α/γ)
J∞βex(Y be

x0c
c,1 )dx

=
∫ x0

x0−log(α/γ)
Jβe

x

αex (Y be
x0c

c,1 )dx

≥
∫ x0

x0−log(α/γ)
Jβe

x

αex (Y be
xc

c,1 )dx

≥
∫ x0

x0−log(α/γ)
J
βbexc
αbexc(Y

bexc
c,1 )dx− α log α

γ
.

As a result,∫ x0

x0−log(β/α)
J
βbexc
γbexc (Y

bexc
c,1 )dx

≥
∫ x0

x0−log(β/α)
J
βbexc
αbexc(Y

bexc
c,1 ) +

∫ x0

x0−log(β/α)
Jαe

x

γex (Y be
xc

c,1 )− α log β
α

≥
∫ x0

x0−log(β/α)
J
βbexc
αbexc(Y

bexc
c,1 ) +

∫ x0−log(β/α)

x0−log(β/γ)
J
βbexc
αbexc(Y

bexc
c,1 )dx− α log β

γ

≥
∫ x0

x0−log(β/γ)
J
βbexc
αbexc(Y

bexc
c,1 )− α log β

γ
.(6.5)



ON MULTI-RATE SEQUENTIAL DATA TRANSMISSION 17

Fix any T > 0. For each term in (6.5), multiply it with e−x0 and integrate it
from 0 to T , we get∫ T

0
e−x0

∫ x0

x0−log(β/α)
J
βbexc
γbexc (Y

bexc
c,1 )dxdx0

=
∫ T

0

∫ min(T,x+log(β/α))

x

e−x0J
βbexc
γbexc (Y

bexc
c,1 )dx0dx

≤
∫ T

0

∫ x+log(β/α)

x

e−x0J
βbexc
γbexc (Y

bexc
c,1 )dx0dx

=
(

1− α

β

)∫ T

0
e−xJ

βbexc
γbexc (Y

bexc
c,1 )dx.

And also∫ T

0
e−x0

∫ x0

x0−log(β/γ)
J
βbexc
αbexc(Y

bexc
c,1 )dxdx0

=
∫ T

0

∫ min(T,x+log(β/γ))

x

e−x0J
βbexc
αbexc(Y

bexc
c,1 )dx0dx

≥
∫ T−log(β/γ)

0

∫ x+log(β/γ)

x

e−x0J
βbexc
αbexc(Y

bexc
c,1 )dx0dx

=
(

1− γ

β

)∫ T−log(β/γ)

0
e−xJ

βbexc
αbexc(Y

bexc
c,1 )dx

≥
(

1− γ

β

)∫ T

0
e−xJ

βbexc
αbexc(Y

bexc
c,1 )dx−

(
1− γ

β

)
(β − α) log β

γ
.

Therefore, by (6.5),(
1− α

β

)∫ T

0
e−xJ

βbexc
γbexc (Y

bexc
c,1 )dx

≥
(

1− γ

β

)∫ T

0
e−xJ

βbexc
αbexc(Y

bexc
c,1 )dx−

(
1− γ

β

)
(β − α) log β

γ
−
∫ T

0
e−x0α log β

γ
dx0

=
(

1− γ

β

)∫ T

0
e−xJ

βbexc
αbexc(Y

bexc
c,1 )dx−

(
1− γ

β

)
(β − α) log β

γ
−
(
1− e−T

)
α log β

γ

≥
(

1− γ

β

)∫ T

0
e−xJ

βbexc
αbexc(Y

bexc
c,1 )dx−

(
(β − α)(β − γ)

β
+ α

)
· log β

γ

Multiply β/ (T · (β − α)(β − γ)) to both sides, we can obtain

1
β − γ

· 1
T
·
∫ T

0
e−xJ

βbexc
γbexc (Y

bexc
c,1 )dx

≥ 1
β − α

· 1
T
·
∫ T

0
e−xJ

βbexc
αbexc(Y

bexc
c,1 )dx− 1

T
·
(

1 + αβ

(β − α)(β − γ)

)
· log β

γ
.

Note that the second term vanishes when T →∞. The result follows. �

We now proceed to prove an inequality on achievable rate-capacity functions.

Lemma 16. If a rate-capacity function r(c) is achievable, then for any c = c1 +
c2 + ...+ cn, where ck ≥ 0 and r(c) > r(ck) for k = 1, ..., n, we have

n∑
k=1

Σ(ck)− r(ck)
r(c)− r(ck) ≥ 1.
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Proof. Without loss of generality, assume r(c1) ≤ ... ≤ r(cn) < r(c). Let c0 = 0.
Consider a code in which r(c) is ε−admissible. Fix any k ∈ {1, ..., n}. By (6.1), for
any T ≥ 0,

J
∞
0 (Yck , T ) ≤ Σ(ck).

By (6.4),

J
∞
r(ck)(Yck , T ) = J

∞
0 (Yck , T )− Jr(ck)

0 (Yck , T )

≤ Σ(ck)− Jr(ck)
0 (Yck , T ).

Invoking Lemma 14, we obtain

J
r(c)
r(ck)(Yc1+...+ck−1 , T ) ≥ J

r(c)
r(ck)(Yc1+...+ck , T )− J∞r(ck)(Yck , T )

≥ J
r(c)
r(ck)(Yc1+...+ck , T )− Σ(ck) + J

r(ck)
0 (Yck , T ),

It can be deduced using Lemma 15 that

lim inf
T→∞

(
1

r(c)− r(ck−1)J
r(c)
r(ck−1)(Yc1+...+ck−1 , T )

− 1
r(c)− r(ck)J

r(c)
r(ck)(Yc1+...+ck−1 , T )

)
≥ 0,

and therefore

lim inf
T→∞

(
1

r(c)− r(ck−1)J
r(c)
r(ck−1)(Yc1+...+ck−1 , T )

− 1
r(c)− r(ck)J

r(c)
r(ck)(Yc1+...+ck , T ) + Σ(ck)− Jr(ck)

0 (Yck , T )
r(c)− r(ck)

)
≥ 0,

Summing through k = 1, ..., n,

lim inf
T→∞

(
1

r(c)− r(0)J
r(c)
r(0)(Yc0 , T )

− 1
r(c)− r(cn)J

r(c)
r(cn)(Yc, T ) +

n∑
k=1

Σ(ck)− Jr(ck)
0 (Yck , T )

r(c)− r(ck)

)
≥ 0,

and thus

lim inf
T→∞

(
n∑
k=1

Σ(ck)− Jr(ck)
0 (Yck , T )

r(c)− r(ck)

− 1
r(c)− r(cn)J

r(c)
r(cn)(Yc, T )

)
≥ 0,

Using (6.3), we have

lim inf
T→∞

J
r(ck)
0 (Yck , T ) ≥ (r(ck)− ε) (1−H(ε)) ,

and
lim inf
T→∞

J
r(c)
r(cn)(Yc, T ) ≥ (r(c)− r(cn)− ε) (1−H(ε)) .
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Hence,
n∑
k=1

Σ(ck)− (r(ck)− ε) (1−H(ε))
r(c)− r(ck)

− (r(c)− r(cn)− ε) (1−H(ε))
r(c)− r(cn) ≥ 0.

Let ε→ 0. We obtained the desired result as
n∑
k=1

Σ(ck)− r(ck)
r(c)− r(ck) ≥ 1.

�

We will discuss some cases in which superposition coding is provably optimal in
the next section.

7. On-Off Multicast Networks

In this section, we consider networks in which there are d transmitters and
2d−1 receivers, each having a different set of transmitters to which it is connected.
Transmitter k broadcasts the same information to the receivers it is connected to
at rate wk. Each receiver has to decode the information at a different rate. There is
no erasure in the network. We would like to formulate the criteria on the decoding
rates of the receivers in which sequential data transmission is possible.

We first convert the problem into the multi-transmitter MRS setting. Without
loss of generality, we assume wk ≤ 1 for k = 1, ..., d. We may replace a connec-
tion with rate w by an erasure channel with capacity w. Note that the decoding
requirement does not depend on the joint distribution of erasure events of differ-
ent receivers. Therefore, the problem can be translated to d-transmitter MRS. We
confine our study to the capacity vectors c ∈ {0, w1} × ...× {0, wd}.

Figure 7.1. A three-transmitter on-off multicast network

7.1. Non-optimality of superposition coding in general. We can construct
a network in which superposition coding is not optimal, using a similar idea as in
Example 13.

Example 17. The network contains 3 transmitters and 3 receivers, where Trans-
mitter 1 and 2 broadcast at rate 1, and Transmitter 3 broadcast at rate 2. Receiver
1 is connected to Transmitter 1 and 2. Receiver 2 is connected to Transmitter 1
and 3. Receiver 3 is connected to Transmitter 2 and 3. Non-superposition code
can achieve the decoding rate 3/2 for Receiver 1, and 3 for Receiver 2 and 3, which
are not achievable using superposition codes. Please refer to Subsection 7.3 for the
proof of achievability and further discussions.
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Figure 7.2. The network in which superposition codes are not optimal

Although superposition coding is not optimal for networks with 3 transmitters
in general, it is optimal for networks with 2 transmitters, which will be shown in
the following example.

7.2. One-or-all on-off multicast network.

Example 18 (One-or-all on-off multicast network). There are d transmitters and
d+ 1 receivers (numbered 0,...,d), where Transmitter k broadcasts the same infor-
mation to Receiver 0 and k at rate of wk bit/s for k = 1, ..., d. Receiver k has to
decode the data at rate rk bit/s for k = 0, ..., d. We would like to characterize the
achievable region of {rk} in terms of {wk}. Figure 7.3 shows the network when
d = 2.

Figure 7.3. The two-transmitter one-or-all on-off multicast network

The following theorem shows that superposition coding is optimal.

Theorem 19. Superposition coding is optimal in the one-or-all on-off multicast
network, which has an achievable region

r0 ≥ 0, 0 ≤ rk ≤ wk for k = 1, ..., d,

either r0 ≤ max(wk) or
d∑
k=1

wk − rk
r0 − rk

≥ 1.

Proof. The case where r0 ≤ max(wk) is trivial. We assume r0 > wk for all k.
Without loss of generality, assume r1 ≤ ... ≤ rd, then we have r1 ≤ ... ≤ rd ≤ wd <
r0.

Among the inequalities in the proposed achievable region, rk ≤ wk is obvious,
and

∑d
k=1

wk−rk
r0−rk ≥ 1 is due to Lemma 16. The converse follows.
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We now show superposition MRS code can achieve the region. Assume
∑d
k=1

wk−rk
r0−rk ≥

1. Consider the parameter

gk(α) =


1
wk

when α ≤ rk
wk−rk

wk(r0−rk) when rk < α ≤ r0

0 when α > r0.

Note that
wk − rk

wk(r0 − rk) ≤
1
wk

due to r0 ≥ wk. Therefore g(α) is monotonically decreasing along each dimension.
It can be easily checked that

∫∞
0 gk(α)dα = 1. It is left to check c · g(r(c)) ≥ 1.

wk · gk(rk) = wk ·
1
wk

= 1,

d∑
k=1

wk · gk(r0)

=
d∑
k=1

wk ·
wk − rk

wk(r0 − rk)

=
d∑
k=1

wk − rk
r0 − rk

≥ 1.

By Theorem 12, the region is achievable by superposition MRS code. �

Remark. The achievable region in the MRS setting is different from that in multi-
level diversity coding, which admits the larger region

r0 ≥ 0, 0 ≤ rk ≤ wk for k = 1, ..., d, r0 +
d∑
k=1

rk − max
k=1,...,d

(rk) ≤
d∑
k=1

wk.

7.3. Non-superposition codes. In Example 17, we presented a network in which
superposition codes are non-optimal. Even though non-superposition codes are
used, the tools described in Section 6 may still be used. We are going to prove the
achievable region of a generalized version of Example 17.
Example 20. There are 3 transmitters and 3 receivers numbered 1,2,3. Receiver
1 receives from Transmitter 1 and 2, and wish to decode at r1. Receiver 2 receives
from Transmitter 1 and 3, and wish to decode at r2 ≥ r1. Receiver 3 receives from
Transmitter 2 and 3, and wish to decode at r3 = r2.

Figure 7.4. The network specified in Example 20

The achievable region is given by the following theorem.



ON MULTI-RATE SEQUENTIAL DATA TRANSMISSION 22

Theorem 21. The achievable region in Example 20 can be given by
w1 + w2 ≥ r1

w1 + w3 ≥ r2

w2 + w3 ≥ r2

w1 + w2 + w3 ·
r2 − r1

r2
≥ r2.

Proof of converse. The first three inequalities clearly hold. For the last inequality,
consider a code in which the rate requirements are ε−admissible. Receiver 1 can
decode at rate r1. By (6.3),

Jr1
0 (Y(w1,w2,0)) ≥ (r1 − ε) (1−H(ε)) .

Invoking (6.1) and Lemma 14, we can obtain

Jr1
0 (Y(w1,0,0)) + w2 ≥ Jr1

0 (Y(w1,0,0)) + J
∞
0 (Y(0,w2,0))

≥ Jr1
0 (Y(w1,w2,0))

≥ (r1 − ε) (1−H(ε)) .(7.1)
Receiver 2 can decode at rate r2. By (6.3),

Jr2
r1

(Y(w1,0,w3)) ≥ (r2 − r1 − ε) (1−H(ε)) .
Invoking Lemma 14, we can obtain

J
∞
r1

(Y(w1,0,0)) + Jr2
r1

(Y(0,0,w3)) ≥ Jr2
r1

(Y(w1,0,w3))
≥ (r2 − r1 − ε) (1−H(ε)) .

By Lemma 15 and (6.1),

w3 ≥ Jr2
0 (Y(0,0,w3)) ≥

r2

r2 − r1
· Jr2

r1
(Y(0,0,w3)),

and therefore

(7.2) J
∞
r1

(Y(w1,0,0)) + r2 − r1

r2
· w3 ≥ (r2 − r1 − ε) (1−H(ε)) .

By (6.1) and (6.4),

w1 ≥ J
∞
0 (Y(w1,0,0))

≥ Jr1
0 (Y(w1,0,0)) + J

∞
r1

(Y(w1,0,0)).(7.3)
Adding (7.1), (7.2) and (7.3),

w1 + w2 + r2 − r1

r2
· w3 ≥ (r2 − 2ε) (1−H(ε)) .

The proof can be completed by taking ε→ 0. �

Proof of achievability. We will describe a coding scheme which can achieve the
proposed region. When r1 = r2, we may use all the transmitters to transmit at
rate r1. When w3 ≥ r2, then we can use Transmitter 3 alone to transmit the
message at rate r2, and Transmitter 1 together with Transmitter 2 to transmit at
rate r1. Therefore we assume r1 < r2 and w3 < r2.

The code is specified by the block size K, the super-block size L > K, and
the parameter γ. Divide the message {Mi}i=1,2,... into blocks of K bits Bi =
M iK

(i−1)K+1. Further divide each block Bi into two sub-blocks B1,i and B2,i, where
B1,i contains the first γK bits of the block, where γ is taken to be w3/r2 in this
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case, and B2,i contains the rest of the bits. Group the sub-blocks into super-blocks
by

Sa,b,i =
(
Bb,(i−1)·ra·L/K+1, ..., Bb,i·ra·L/K

)
for a, b ∈ {1, 2}. Assume r1 ·L/K and r2 ·L/K are integers. Each super-block Sa,1,i
contains ra · γL bits, and each super-block Sa,2,i contains ra · (1− γ)L bits.

Figure 7.5. The super-blocks when γ = 2/3 and r2 = 2r1

At time i, Transmitter 1 encodes the super-blocks S1,1,di/Le and S2,2,di/Le using
random linear projection (concatenate the bits in the super-blocks and transmit a
random projection of the resultant vector). Transmitter 2 uses the same encoding
scheme as Transmitter 1. Transmitter 3 encodes the super-block S2,1,di/Le using
random linear projection.

To see why Receiver 2 can decode at rate r2, assume that at time jL, the super-
blocks S2,1,k and S2,2,k are already decoded for k = 1, ..., j. During the time interval
jL+ 1, ..., (j + 1)L, Receiver 2 will receive w3L bits from Transmitter 3, and w1L
bits from Transmitter 1. For a bit encoded by Transmitter 1 at time i, as the
super-block S1,1,di/Le is already decoded (for j large enough), it can be treated
as a random linear projection of S2,2,di/Le. Therefore all together we have w3L
projections of S2,1,j+1, and w1L projections of S2,2,j+1. By definition of γ,

w3L = r2γL.

From the assumption w1 + w3 ≥ r2,

w1L ≥ (r2 − w3)L
= r2(1− γ)L.

Therefore both S2,1,j+1 and S2,2,j+1 can be decoded at time (j + 1)K/r2. By
induction, Receiver 2 can decode at rate r2. (Note that we may assume the first
few blocks are decoded, as we may allocate any extra amount of time to transmit
them without affecting the asymptotic behavior of the code). Similar result holds
for Receiver 3.

For Receiver 1, consider the time interval jL+1, ..., (j+1)L. In this time interval,
Receiver 2 receives w1L bits from Transmitter 1, and w2L bits from Transmitter 2.
All together there are (w1 +w2)L projections of S1,1,j+1 and S2,2,j+1. The number
of bits in S1,1,j+1 and S2,2,j+1 is given by

r1 · γL+ r2 · (1− γ)L =
(
r1w3

r2
+ r2 − w3

)
· L

=
(
r2 − w3 ·

r2 − r1

r2

)
· L
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which is smaller than (w1 + w2)L by the assumption w1 + w2 + w3 · r2−r1
r2
≥ r2.

Therefore Receiver 1 is able to decode at rate r1. �

Remark. Superposition codes can achieve a smaller region given by
w1 + w2 ≥ r1

w1 + w3 ≥ r2

w2 + w3 ≥ r2

w1 + w2 + 2w3 ·
r2 − r1

r2
≥ 2r2 − r1.

8. Conclusion and Discussions

In this report, we have investigated the achievable regions and coding schemes for
multi-rate data transmission. We have shown that superposition codes are optimal
for the single transmitter setting. However, in the multiple transmitter setting,
there are some non-superposition codes which outperform superposition codes.

Our results can be applied in various scenarios which requires the messages to
be decoded sequentially, for example, the broadcast streaming of video. The multi-
rate sequential data transmission setting can also be applied on messages divided
into several levels of importance. For example, in the transmission of an interlaced
image file, the data corresponding to the low-resolution part is transmitted before
the data corresponding to the high-resolution part. A sequential code can ensure
that, even when the receiver has variable channel condition, the low-resolution
part is decoded first, and therefore the receiver can display the image with lower
resolution before all data are received. If the connection might be stopped at any
time, using a sequential code can ensure the received message forms a continuous
segment from the beginning instead of fragmented data as in Fountain codes. In
the example of image transmission, if the connection is lost in the middle of the
transmission, the receiver can still decode a low-resolution version of the image.

In Example 20, we have studied a particular 3-transmitter network. Further in-
vestigation on the general 3-transmitter network, and the next step, N -transmitter
networks, may be carried out in the future. Ultimately, we may consider general
networks of interconnected nodes instead of only two layers of nodes (transmitters
and receivers). Another direction is to find a method to construct non-superposition
codes according to the network connections and decoding rate requirements. Ex-
ample 20 presents the construction of a non-superposition code using a sub-block
structure. It is left for future studies to find out whether this construction method
give the optimal code in more general settings.
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