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Abstract—We consider the problem of recovering signals from (locations where the value is non-zero), and more recently

their power spectral density. This is a classical problem reerred sparsity [9], are commonly used as prior information.
to in literature as the phase retrieval problem, and is of

paramount importance in many fields of applied sciences. In Considerable amount of research has been done over the

general, additional prior information about the signal is required last few decades[([1][]2]) and a wide range of heuristiceshav
to guarantee unique recovery as the mapping from signals to 9

power spectral density is not one-to-one. In this paper, wessume D€€n proposed (seel[6]), a comprehensive survey of which
that the underlying signals are sparse. Recently, semidefte can be found in[[7].[[8] provides a theoretical framework to
programming (SDP) based approaches were explored by varisu understand the heuristics, which are in essence an aitegnat
researchers. Simulations of these algorithms strongly suggst projection between a convex set and a non-convex set. Such

that signals upto o(y/n) sparsity can be recovered by this o,y often converge to a local minimum, hence drasicall
technique. In this work, we develop a tractable algorithm baed

on reweighted!; -minimization that recovers a sparse signal from reducing the chances of successful signal recovery.

its power spectral density for significantly higher sparsites, which . .
is unprecedented. Recently, the phase retrieval problem was recast as a semi-

We discuss the square-root bottleneck of the existing conve definite programming problem (see [10[, [11] and|[12]). In
algorithms and show that a k-sparse signal can be efficiently [I0], additional measurements with different illuminat#
recovered usingO (k*logn) phaseless Fourier measurements. We which is possible in an optical setup, are used to make unique

also show that ak-sparse signal can be recovered using only . . .
O (klogn) phaseless measurements if we are allowed to designrecovery feasible. I [11].[12] andL3], the underlyingrsals

the measurement matrices. are assumed to be sparse, which is a reasonable assumption
Index Terms—Phase Retrieval, Semidefinite Programming in applications like X-ray crystallography, microscopydan
(SDP), Reweighted!; -minimization astronomical imaging.
. INTRODUCTION Numerical simulations of the existing techniques based on

) SDP strongly suggest that signals uptq/n) sparsity can be
In many practical measurement systems, the power Specfalyyered with an arbitrarily high probability. This bekav

density of the signal, i.e. the magnitude square of the Bourt, yhe phase retrieval problem was rigorously explained in
transform, is the measurable quantity. Phase information . [8]. [1], [20] consider the "generalized” phaserietal
the Fourier transform is completely lost, because of whi oblem and observe a similar behavior. In this work, we
signal recovery is_difficult. This problem occurs ?n man36Ievelop an algorithm based on the idea of reweighted
areas of engineering and applied physics, including X-rayi,imization to solve the phase retrieval problem for signi
crystallography [[B], astronomical imaging][4], microsgop caniy higher sparsities. We also provide certain thecat
optics [3], _bl'nd channel estlmatlon gnd SO on. . guarantees and discuss the limitations of the SDP based tech

Recovering a signal from its Fourier transform magnitud@jq es and develop a combinatorial technique which reguir
or equivalently its autocorrelation, is known as phase res; tewer measurements to guarantee recovery.
trieval. The mapping from signals to their Fourier transfor
magnitude is not one-to-one, and hence unique recovery isThe remainder of the paper is organized as follows. In
not possible in general. Additional measurements or priSection 2, we formulate the phase retrieval problem andsteca
information about the signal is required in order to unigueit as a SDP problem. In Section 3, we discuss the limitatidns o
recover the underlying signal. Constraints on the signalie existing SDP-based techniques and develop an algorithm
values like non-negativity, bounds on the signal’s suppdshsed on reweighteld minimization in Section 4. In Section

5, we develop a measurement system using a combinatorial

This work was Supported in part by the National Science Fatiod under approach which requ"'es far fewer measurements to guaante
grants CCF-0729203, CNS-0932428 and CCF-1018927, by tlieeObf

Naval Research under the MURI grant N00014-08-1-0747, an@ditech’s r(.acover.y. Section 6 presents the results of the numerical
Lee Center for Advanced Networking. simulations and concludes the paper.
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Il. PROBLEM FORMULATION IIl. BACKGROUND

SUppPosex — (20,21, ...n_1) is a real-valued discrete- The program[{¥4) can be reformulated as a rank minimization

time signal of lengtm and sparsityk, where sparsity is defined problem as follows
as the number of non-zero entries. lyet= (o, Y1, ---Yn—1) minimize rank(X)

be its Fourier transform, i.e., subject to 2 = trace(MLX) 0<i<n—1

y=Fx (1) X =0 (6)

h is th . . ‘ . Thisis a non-convex problem as rank is a non-convex function
whereF is then xn Discrete Fourier Transform (DFT) matrix. It has been shown in[14] that trace minimization is the

The phase retrieval problem can be mathematically stated @htest convex relaxation of rank minimization for positi

semidefinite matrices. This relaxation is not useful in the
phase retrieval setup dsace(X) corresponds to the energy
subjectto  |y| = |[Fx| (2) of the signalx, which is fixed by the magnitude of the
Fourier transform.[[15] proposes log-determinant functas
Since magnitude square of Fourier transform and autocaersurrogate for rank in such problems, i.e.,
relation are Fourier pairs, the phase retrieval problemhbmn

find x

reformulated as recovering signals from their autocotiaia minimize  log det(X + I) ()
i.e., subjectto  |y;|> = trace(M;X) 0<i<n—1 (8)
X 0 ©)

find x 3

. . & This heuristic tries to minimize a concave function in a v

subjectto  a; = inxiﬂ O<isn-—1 domain, which can be done using gradient descent approach.
J This method was explored for the phase retrieval setup ih [10

[11]. Simulations suggest that the algorithm converges to a

wherea = (ag, a1, ....,a,—1) iS the autocorrelation of. . . : e . .
Observe that the operations of time-shift, flipping and glob.rank 1 solution with high probability if the underlying sigi

. : is n) sparse.
sign-change do not affect the autocorrelation, because Ofn(\/[lﬁ] we explored a two-Stage recovery process to prov-
which there is a trivial ambiguity. The signals resultingrfr '

these operations are considered equivalent, and in all @le solve ). In the first stage, we use information about

e :
applications it is considered good enough if any equivale{he support of the autocorrelation to recover the support of
signal is recovered.

e signal (se€[17]). In the second stage, we solve the SDP
The problem[(R) is hard to solve due to non-convex co

with known support[[18]. It was empirically observed and

. ) i lE‘ﬁeoretically shown that signals were recovered with ealily
straints. We can relax the constraints into a set of convgibh probability if the sparsity was(y/77). However, if the
constraints by e_mbedding the problem in a}higherdimenkio%pport information was available by other means, it was
space, a techmql_Je popularly known ag lifting. NOt? that (%)oserved that the program recovered signals up to roughly
containsn constraints of the fornfy;| = |f;" x|, wheref; is the o(n) sparsity
it" column of F. Squaring both sides, the constraints can be '
rewritten asy;|* = [x”f; £ x|. Suppose we defink = xx”, IV. RECOVERY ALGORITHM

the problem can be recast in termsXfas . . . : .
In this section, we develop an iterative algorithm based

find X on reweightedl/;-minimization to solve the phase retrieval
problem outside the(./n) sparsity regime.

; 2 __ i ; _ .
subjectto  |y;[” = trace(M;X) 0 <i<n—1 A two-stage approach like [12] wouldn’t work as the support

rank(X)=1 & X >0 (4) of the autocorrelation becomes full if the signal has sparsi
greater tharO(y/nlog(n)). Trace minimization in the phase
whereM; = f7f]. retrieval setup has two issues: trivial ambiguities havaesa
In terms of the autocorrelatiom, the lifted problem can be objective function, trace is fixed because of which we will be
formulated as solving a feasibility problem only. Weighteld minimization
(I0) intuitively overcomes these issues and promotes spars
solutions.
find X
n
subject to ijjjﬂ. g 0<i<n—1 minimize trace(V|X])
=1 subjectto  |y;|* = trace(M;X) 0<i<n-—1

rank(X)=1 & X 3=0 (5) X =0 (10)



whereV is a weight matrix, which can be designed to promof€heorem V.2 (Candes, Romberg, Tad, [23])et F be the
the necessary structure in the solution. n x n DFT matrix. Consider the random matrix A obtained
Simulations suggest thaf{10) has rank 1 solutions witly choosing m rows of F uniformly at random (without
high probability if the sparsity is(y/n) and V is chosen replacement). If x is a k sparse vector, x can be recovered
randomly, but fails outside the(,/n) region. However, the from observations Ax with arbitrarily high probability if
largest eigenvalue turns out to be considerably strongar thn > O(klogn) via the following ¢; minimization:
the other eigenvalues, and the eigenvector correspondiitg t ) .
happens to contain a lot of information about the support of i %11 (12)
the signal even significantly outside thé,/n) region, which subject to Ak = Ax
iS not very surprising.
This strongly suggests the possibility of an iterative algo The following theorem gives a useful result for the recovery
rithm, which at every iteration also knows "a lot” about wlerof a sparse signal from its partial power spectral density.

the signal’'s non-zero entries can be. Algorithm 1 uses thﬁﬁeorem V3. Let x be a k sparse vector satisfying the

b e arelac rnzalon ot &oncitons of Toren I Sipposs e cbsve 15 pove
) 9 P 9 prosp tpp ectral density at m distinct frequencies chosen uniformly

locations are set to zero to encourage the signal to chogse

. . : . . . i . > 2
those locations in the next iteration, and the weights dat5|a random (without replacerrgnt) It m > Ok 1Og.n)’ X
. S " can be recovered from its partial power spectral density, in
this region is chosen to be positive.

polynomial time, with arbitrarily high probability.

Algorithm 1 Phase Retrieval Algorithm Proof: If x is a k-sparse signal, its autocorrelation can
Input: The magnitude of the Fourier transfotgl, maximum have at mosk? non-zero entries. Since power spectral density
number of iterations is the Fourier transform of the autocorrelation, using Tkeeo
Output: The underlying signak V2, whenevemn > O(k?logn), the autocorrelation ok can

be recovered from partial power spectral density obsemati
1. Initialize V by by choosing its entries frof, 1] uniformly Vi@ £1 minimization with arbitrarily high probability. Now that

at random the autocorrelation is found, TheorémM.1 completes thefpro
2. Solve the optimization problem u
While Theorem[\/B, gives a tractable algorithm for the
minimize  trace(V|X]) recovery ofa from partial power spectral density observations
subject to  |y;|* = trace(M;X) 0<i<n-—1 s = Aa, one can consider a more sophisticated approach . The
X =0 (11) Program [(IR) tries to solve for &A%-sparse solution without

using the extra information that the resulting signal stoul
3. If rank(X) = 1, returnX, else calculateX; = x1x{, be a valid autocorrelation. We propose the following method

whereX; is the best rank-1 approximation & which might be of interest for future directions.
4. UpdateV as follows:V;; = 0 if |x;| and|x;| are greater .
than a certain threshold, choose the remaining entries from  mn [allx (13)
[0, 1] uniformly at random subject to Aa—s
5. lterate until convergence or maximum number of iteragion n
6. CalculateX; and returnx; ZXJ’ i1=a; 0<i<n-—1
=1
V. PHASE RETRIEVAL AS A COMPRESSION PROBLEM rank(X)=1 & X0 (14)

Theorenf V1 was proved for the phase retrieval problem in Observe that the only nonconvex constraint[inl (1313 (14).
[17], [18]. We believe that solving[{13) can substantially increase the
performance and instead @#(k%logn) measurements, just
O(klogn) measurements might suffice which is similar to
that of typical compressed recovery of kasparse vector.
However, further investigation is required to reléx](14)an

1) k= o(vn) ful manner as opposed to dropping it

2) k entries are chosen uniformly at random usetu PpOse ropping it .

3) n > n(o) Overall, Theorenfi VI3 is subject to &./n)-sparsity bot-

tleneck since the full power spectral density corresponds t

We can instead fix the sparsify and consider the phasemeasurements. While we do not provide theoretical guagante
retrieval problem with partial power spectral density imf@- for Algorithm 1, when full power spectral density is avai@b
tion (for example[[2R]). In particular, one might have acce®ur algorithm seemingly beats tl¢,/n)-sparsity bottleneck.
to only certain frequencies. To solve this problem, we wééu In section[V], we see that the recoverable sparsity is much
some classical results in the compressed sensing literatur higher thano(y/n).

Theorem V.1. Sgnals can be recovered from their power
spectral densities up to time-shift, reversal and global sign,
in polynomial time, with probability 1 — § for any § > 0 if



A. Two-stage recovery [12] illustrates a similar gap for the phase retrieval peobl

In [12], we try to solve the sparse phase retrieval problef§th Fourier measurements. .
via a two-stage approach where the first step involves ﬁndin%OveraII, we have seen that for the two important class of
the support of the signal from the support of the autocorrelgNaseléss measurements (Fourier and Gaussian), the tcurren
tion. We will now argue that such an approach is inherent{€oretical guarantees for the existing algorithms argestib
subject to thep(/n) bottleneck, as there is no way of findingto a strongo(y/n)-sparsity bottleneck. A natural question is

the support of the signal when its sparsity is greater th¥¢pether it is possible at all to do sparse phase retrieval in a
O(v/n). tractable way with small number of measurements.

Lemma V.1. Suppose x is a k-sparse signal whose support C. Combinatorial Approach

is chosen uniformly at random, and whose nonzero entries  To address this question, we consider the problem of re-
are continuous i.i.d. random variables. Then, there exists @ coveringx from phaseless measurements by making use of a
constant ¢ such that whenever k > cy/nlog(n), support of  gpecific choice of measurements. In particular, we show that
the autocorrelation is full with arbitrarily high probability. one can tractably recover e-sparse signal from phaseless

Proof: Without loss of generality, we can assume thdp€asurements by using on{y(klogn) measurements with
each location belongs to the support of the signal with prok€ry high probability. This shows that phase retrieval with
ability % independently as the same proof will apply for optimal n.umber of measurements (up tdogn factor) is in
sparse signals with standard modifications. fact possible.

For a particular distance, if no two non-zero entries in Theorem V.4. Suppose x is an arbitrary k-sparse vector
the signal are separated by a distantewe can say that where & > 2. Let {z;}™, be i.i.d. vectors with i.i.d. entries
d doesn't belong to the support of the autocorrelation. Thigstributed as: a

probability can be bounded iyt — £2/n?)™/2 which is upper _ N

bounded by ~**/2"_ Union bound tells us that the probability 0 with probability 1—1/k (16)

of the support of the autocorrelation not being full is less N(0,1)  with probability 1/k

than ne=*/2", which goes to zero it > cy/nlog(n) for
[ ]

sufficiently largen. Let {a;,b;}7, bei.i.d. vectors with i.i.d. entries distributed

as exp(if) where 6 is uniformly distributed in [0, 27r). Denote
B. Relation to Gaussian Phase Retrieval the function R™ x R™ — R™ that returns entrywise products

. . of two vectors by -. Assume, we observe the measurements:
Our results on partial power spectral density can be related

to the "generalized” phase retrieval problem, where the ob- | (a; - 2zi,%) |2, | (b; - 24, %) |2 (17)
servations are of the forng? x| for i.i.d. complex standard

normal vectors{g;},. While this problem is structurally for 1 <i <m.

similar to phase retrieval, it is considerably simpler asrén  Then, xx* can be recovered with high probability in O(mn)
are no trivial ambiguities like time-shift and flipping. time, whenever m > ck logn for some constant ¢ > 0.

Assumingx is a sparse vector. [19] and [20] analyze the pemark: In general, we don't need the knowledge of
following semidefinite program for the tractable recovefy %parsity k for the design of the measurement operator.

x up to a global phase ambiguity. This can be handled by introducing an extra factor
min HXH* n )\HXH1 (15) of 1ggn in the required number o_f measurements, i.e.
X klog#(n) measurements. The reason is we can t@kkgn
subject to <gig?,x> _ <gig;_f7xx:r> 1<i<m measurements 'designed f(_)r each o_f the spars?ty levels of
k; = 2¢ for 1 <4 < [logn], i.e. usek; instead ofk in (18).

Naturally, one would wish that the unique minimizer pfl(15yhen, & will lie betweenk; and k4, for somei and the

to be xx” to be able to recovex up to phase ambiguity. Same proof argument will work.

(I9) tries to capture both sparsity and low rankness of the

underlying matrix xx”. Interestingly, both [[19] and[[20] The proof of Theoreni Vl4 can be found in the appendix.
suggest that as long a8 < O(min{k?2,n}), recovery using While our proposed recovery algorithm requires a perfectly
(I3) is not possible with very high probability for any cheic sparse signal, we emphasize that, our intention with Theore
of regularizer\. To summarize, even k% < n, one would V4 is demonstrating the possibility of tractable recovery
still needQ(k?) measurements for recovery, which indicategather than coming up with a robust algorithm for artifigiall
ano(y/n) bottleneck for generic Gaussian measurements tatesigned measuremenis|(16).

On the other hand[[19]/[20] and [21] show that, if one
is able to search for a low rank and sparse matrix, then,
xx! can be recovered with onlylog %, measurements which  In order to demonstrate the performance of Algorithm 1,
illustrates a significant performance gap between tragtallumerical simulations were performed for different valoés
recovery and intractable combinatorial search. Intenghti signal lengthn and sparsities:.

VI. NUMERICAL SIMULATIONS
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APPENDIX

Proof of Theorem[V.4
Proof: The proof provides a tractable recovery algorithm
and consists of two main steps.

Support recovery: Denote the support ok by S C [n]
and the support of; by S; and letec; = z; - a;. Now,
consider the inner produef x. Since nonzero entries @f
have continuous distribution N S; # 0, |cx| # 0 almost
surely. Hence whenever a measuremeiik|?> = 0 we can
deduce thats N S; = 0. Let:

I={1<i<m|SnS=0} (18)
Clearly,{S;}'s are i.i.d. supports and for ea¢hwe have:
P(SNS;i=0)=(1-1/k)* E (19)

Following (19), by the law of large numbers, w.h|@] >
m/8. Conditioned onI| > m/8, the probability thatj € S
is not contained inJ,; S; is at most(1 — 1/k)/l < (1 —
1/k)m/8.

Assumingm > 8klogn and using a union bound:

P(S ¢ U S;i) < exp(—%) <nt
iel
which will approach). Hence, the exact support of the signal

can be found by simply taking the union of sétssatisfying
cix = 0 and then complementing itO(mn) time). Next,

(20)

time). Observe that, each € [ picks an edge in this
graph uniformly at random. Overall, we perform at legst
picks with replacement. This graph is connected with high
probability whenever the chance of an edge being picked
is more than®°2*  [24]. This happens whem > cklog k

for ¢ > 10 smce

P(edge is pickep> 1 — (1 — %)m/ 10 (24)
2
m
Zl_eXp(_75k(k—1)) (25)
clogk clogk
>1—exp(—gp) e (26)

Now, w.h.p. the graph is connected. Find a spanning tree
T in this graph, which can be done @(k?) time, [25].

Set the phase of the initial node o Then, the rest of the
phases of the nodes are uniquely determined as follows.
Recovering relative phasesTo begin, consider an edge of
T between nodeg, [ where{j,l} = S;N.S for somei. Fix

x; = |z;| i.e. 0 phase. From measurements:

[ (@i - 20, %) 2, | (b; - 2i,%) |

and with the knowledge ofiz;|?,|z;|?>, we can find:
R(zjzaiaizjzy) and R(z; 2050z ) where R(-) returns
the real part of a number. This information is equivalent to:
R(az), R(bz) wherea = a;fal, b = b3b; have uniformly
random phases and= z;x;. We will argue that the phase

(27)

with the knowledge of support, we proceed with the recoveryOf z is uniquely determined Whem(afﬂ) R(bx), a,b, ||

of x up to an overall phase ambiguity.
Signal recovery:Recovery of the signal given its support will

be performed in two steps. We first show that magnitudes of

nonzero entries ok can be found.

Recovering magnitudes:AssumesS; N S is a singletony €

S. Since we already have the knowIedgeSUfrom revious
part, we can immediately deduck:;|* = Cl x| Then,

we simply need to ensure that w.h.p., for jiJE S there
exists1 < ¢ < m satisfying.S N S; = j. Probability of this
not happening for a fixed € S is:

(1= (= D)™ <exp(— ),

After union bounding over allj € S, wheneverm >
8klogn, all |z;|*> can be found with probability at least
1—kexp(—4)>1—-n"".
Recovering the relative phases:Next, we consider the
measurements satisfying; N S| = 2, 1 < i < m. For
fixed i we have:

19 S 1

P(|S; N S| = 2) = (’;)%(1 S

Overall, w.h.p. there aren/10 measurements satisfying
[S;NS|=2. Let:

(21)

L (@

I={1<i<ml(JI8inS|=2} (23)

Next, form thek vertex graph obtained by connecting the
nodesj, I wheneverj, 1} = S;N.S for somei € I (O(mn)

are known. Assumez
x = |z|exp(if). Then,

R(ax) = (28)
R(bx) = (29)

gives us two linearly independent equations (almost syrely
and two unknownss{n @, cos #). Overall, this would yield

0. Applying this over all edges of the tree recursively, we
can find the exact phase differences between all neighboring
nodes and since the graph is connected we can find the
phase of any € S by adding up the phase differences over
all edges on the path between the initial node andhis

can be done for all nodes iR (k?) time via DFS. Overall,

the original signalkx can be found up to an overall phase
ambiguity inO(mn) time.

exp(if1), b = exp(if2) and

|| cos(0 + 67)
|| cos(6 + 62)
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