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Abstract

The paper establishes the optimal generalized degrees of freedom (GDOF) of 3-userM × N multiple-input

multiple-output (MIMO) Gaussian interference channel (GIC) in which each transmitter hasM antennas and each

receiver hasN antennas. A constraint of2M ≤ N is imposed so that random coding with message-splitting achieves

the optimal GDOF. Unlike symmetric case, two cross channelsto unintended receivers from each transmitter can

have different strengths, and hence, well known Han-Kobayashi common-private message splitting would not achieve

the optimal GDOF. Instead, splitting each user’s message into three parts is shown to achieve the optimal GDOF. The

capacity of the corresponding deterministic model is first established which provides systematic way of determining

side information for converse. Although this deterministic model is philosophically similar to the one considered by

Gou and Jafar, additional constraints are imposed so that capacity description of the deterministic model only contains

the essential terms for establishing the GDOF of Gaussian case. Based on this, the optimal GDOF of Gaussian case

is established withO(1) capacity approximation. The behavior of the GDOF is interestingly different from that of

the corresponding symmetric case. Regarding the converse,several multiuser outer bounds which are suitable for

asymmetric case are derived by non-trivial generalizationof the symmetric case.

I. I NTRODUCTION

Interference plays a central role in today’s wireless communications systems. In information theory, the efforts of

finding the performance limit of interference channel (IC) in terms of capacity started more than 30 years ago [1]–

[3]. Unfortunately, the complete capacity region for even asimple 2-user IC is known only forstrong interference

regime [1]–[3].

Although the problem of finding the exact capacity has been open for more than 30 years, the notion ofdegrees

of freedom (DOF) defined for high signal-to-noise ratio (SNR) has opened a new direction of understanding IC.

One surprising result was obtained by Cadambe and Jafar [4] which states that the per-user DOF ofK-user IC is

the same as that of 2-user IC for arbitraryK, which seems counter-intuitive given the fact that more users would

result in more overall interference in the system. The DOF provides valuable understanding of IC with a form of
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conclusive answer, but it does not capture the relationshipbetween signal strength and interference strength which

has crucial importance in understanding IC.

In [5], Etkin et al. came up with the notion of the generalized DOF (GDOF) which incorporates signal-to-

interference ratio (SIR) in it. As the DOF does, the GDOF alsoassumes high SNR, and this not only makes

analysis more tractable, but also provides a valuable viewpoint in understanding IC. In IC, there are two important

factors which are background noise and interference. Although their combined effect likely needs to be studied

thoroughly for complete understanding of IC, one may want toisolate the effect of interference given that the effect

of background noise has been fairly well studied through point-to-point (p2p) channel analysis. High SNR regime

can essentially be considered asinterference-limited regime, and thus provides such isolation. It turns out that the

GDOF provides tremendous insight on 2-user single-input single-output (SISO) Gaussian IC (GIC) through its so

called ‘W’ shape, and rather surprising 1-bit gap to the capacity result is also given in [5].

An important observation made in [5] is that a simple versionof the Han-Kobayashi (HK) scheme [3] turns out

to be the GDOF optimal. Intuition behind why the HK scheme is the GDOF optimal for 2-user SISO GIC can be

found through its deterministic modeling which was originally studied by El Gamal and Costa [6]. Simply speaking,

deterministic modeling assumes non-random noise or deterministic loss of transmitted signal which the transmitter

is aware of. Therefore, the optimal strategy of the transmitter is easily given by not transmitting any valuable data

on the part of the signal which will be lost. This strategy is indeed a special case of the HK scheme, and it is shown

to achieve the capacity of this 2-user deterministic model.An important assumption in [6] for capacity achievability

is that common information of interference must be clearly observable after decoding the intended message. This

assumption is discussed in Section VII of [5], and it will also be discussed later in this paper. By this assumption,

a class of multiple-input multiple-output (MIMO) IC in which the HK scheme must be the GDOF optimal can be

characterized. Gou and Jafar [7] found the optimal GDOF of a certain class of single-input multiple-output (SIMO)

IC by extending the deterministic model of [6]. Corresponding MIMO results are obtained in [8]–[11].

For cases in which the HK scheme is not GDOF optimal, the optimal GDOF was found by using ‘signal-level

alignment’ [12], [13]. For these cases, we may think of a specific form of deterministic modeling for Gaussian

channels which are proposed in [14]. Although this ‘signal-level alignment’ can possibly provide a valuable way

of solving more general cases, it can only be applied for SISOsymmetric cases so far. Extending this to general

cases still remains to be seen.

One thing to note is that the aforementioned GDOF results only deal with symmetric IC except for 2-user

results in [5], [9], [10]. Since aforementioned assumptionof clearly observable interference has nothing to do with

symmetric nature of the channel, it is reasonable to believethat there must be a kind of message-splitting with

random coding schemes which achieves the optimal GDOF of asymmetric IC, and this is the main focus of this

paper.

A simpler case than asymmetric MIMO GIC was considered in [12]. In [12], one-to-many IC was considered in

which one transmitter causes interferences to all receivers, and all the other transmitters do not cause interference.

In this channel, a generalization of the HK scheme which splits the message into multiple layers achieves a constant
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gap to the capacity. At the transmitter’s view point, this one-to-many channel is equivalent to the channel considered

in this paper. In this paper, therefore, we use this generalization of the HK scheme and show that it achieves the

optimal GDOF of 3-userpartially asymmetric MIMO GIC. The reason why multiple splitting is necessary is because

cross channels for a given transmitter have different channel qualities unlike symmetric case.

Finding the optimal GDOF involves derivation of tight-enough upper bounds. In [5], a technique of giving

appropriate side information is developed to derive such upper bounds. As mentioned in [7], appropriate side

information can easily be determined through deterministic modeling for certain cases. One thing to note is that

the capacity region of the deterministic model given in [7] is much more complicated than the GDOF of the

corresponding Gaussian model. For efficient computation, we propose more specific form of deterministic model

which is closer to the corresponding Gaussian model for the GDOF analysis. By using this, the minimal number

of tight upper bounds with appropriate side information caneasily be determined. It will be seen that new type of

upper bounds emerge, and they are non-trivial generalization of the symmetric case.

The remainder of this paper is organized as follows. SectionII defines the channel model as well as achievable

rate terms. Section III provides analysis on the symmetric capacity of the deterministic models which correspond

to the GDOF of Gaussian case. Section IV establishes the optimal GDOF of the 3-user MIMO GIC. Section V

concludes the paper.

a) Notation: A matrix is represented with a capital letter likeX , and a vector is represented asx. I represents

an identity matrix or mutual information, and they can be easily differentiated from the context. For a matrixX or

a vectorx, XH or xH represents conjugate transpose.Tr(X) represents the trace ofX .

II. CHANNEL MODEL AND PRELIMINARIES

Consider a following model with channel outputy
i

for the receiveri, channel inputxi for the transmitteri, and

the channelHij from the transmitteri to the receiverj.

y
1

= ρH11x1 + ρα2H21x2 + ρα1H31x3 + z1

y
2

= ρα1H12x1 + ρH22x2 + ρα2H32x3 + z2

y
3

= ρα2H13x1 + ρα1H23x2 + ρH33x3 + z3, (1)

where background noisezi ∼ CN (0, I) and ρ > 0, α1 > α2 > 0. xi satisfies the average power constraint

Tr(E[xix
H
i ]) ≤ Tr(I). We considerM ×N MIMO channel in which each transmitter hasM antennas and each

receiver hasN antennas. Although every result obtained in this paper with3 user can be directly generalized into

K-user case, we only consider 3 user case in this paper due to computational complexity. We call the above model

partially asymmetric due to its symmetric nature that every transmitter sees channels with strengthsρ, ρα1 , ρα2 and

every receiver sees channels with strengthsρ, ρα1 , ρα2 . Again, a general asymmetric case is essentially no different

from this partially asymmetric case, but we do not consider ageneral model due to complexity. Because of the

symmetric nature of the channel, the achievable GDOF can be characterized by a single number as in the fully
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symmetric case while the asymmetric nature is enough to capture essential difference from the fully symmetric

case. We assume that there is no degenerate case of channel coefficients, i.e., allHij ’s are full-rank. We define the

capacity regionC of this channel in the standard Shannon sense. Because of symmetry, the maximum achievable

total GDOF of the system is attained when the rate of each useris the same. Therefore, we define the symmetric

capacity as

Csym = max
(R1,R2,R3)∈C

min{R1, R2, R3}, (2)

whereRi is the rate of useri. We may defineCsym as a function ofρ, α1 and α2. Then, per user GDOF

dsym(α1, α2) is given as

dsym(α1, α2) = lim
ρ→∞

Csym(ρ, α1, α2)

log2 ρ
. (3)

To satisfy the assumption of clearly observable interference, we only consider the case where2M ≤ N < 3M .

This will be discussed in more detail in Section III.

III. D ETERMINISTIC MODELING

A. Case of α1 < 1

Deterministic modeling gives an insight for a corresponding Gaussian model with simpler analysis. As mentioned

earlier, one of the most important benefits of deterministicmodeling is systematic determination of necessary side

information. Figure 1 shows the deterministic model corresponding to the channel defined in Section II withα1 < 1.

There are two other possible cases ofα1 > 1 > α2 andα2 > 1, and slightly different deterministic models from

one in Figure 1 need to be considered for those cases.Vij is interference from the transmitteri to the receiverj,

X1

X2

X3

f1

f2

f3

g1

g1

Y1

Y2

Y3

g2◦ g1

g2◦ g1

g2◦ g1

V21

V31

V12

V32

V13

V23

g1

Fig. 1. Deterministic model of partially asymmetric IC
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Yi is channel output at the receiveri, andXi is channel input from the transmitteri, which are given as

V12 = g1(X1), V13 = g2 ◦ g1(X1), (4a)

V21 = g2 ◦ g1(X2), V23 = g1(X2), (4b)

V31 = g1(X3), V32 = g2 ◦ g1(X3), (4c)

Y1 = f1(X1, V21, V31), (4d)

Y2 = f2(X2, V12, V32), (4e)

Y3 = f3(X3, V13, V23), (4f)

wherefi andgi are deterministic functions. The term ‘deterministic’ comes from this property of channel functions

especiallygi. This is similar to what is defined in [7], but an important difference is that the functions representing

two interference channels from one transmitter are different, which reflects asymmetric nature of the channel. In [7],

functions representing interference channels from one transmitter are different from those from the other transmitters,

and in that sense, the model in [7] is more general than the onedescribed in Figure 1. Note that a model with

the same functions from all the transmitters would have beenenough to show the intended results of Gaussian

case in [7], and we only consider this simpler model which is enough due to symmetry of the channel. Another

difference from [7] is that one interference from each transmitter is a degraded version of the other interference.

Because of degraded nature of Gaussian interference channel which is explained in [15, Ch. 15.6.3] for broadcast

channel, this deterministic model is sufficient to reflect the GDOF behavior of Gaussian model. If we consider a

more general deterministic model, then superposition coding which is enabled by degraded nature of the channel

would likely be insufficient to achieve the capacity, and theresulting capacity achieving scheme, if possible to find,

would look quite different from the GDOF achieving scheme for Gaussian IC. For that reason, we only consider a

degraded deterministic model. An important property whichneeds to be satisfied to show that the HK-like scheme

achieves the capacity is given as

H(Y1|X1) = H(V21, V31) = H(V21) +H(V31), (5a)

H(Y2|X2) = H(V12, V32) = H(V12) +H(V32), (5b)

H(Y3|X3) = H(V13, V23) = H(V13) +H(V23). (5c)

Note that the second equality of each line in the above equation automatically holds due to independence, and

hence the assumption essentially is the first inequality of each line. When this holds, each interference is decodable

given the intended message which implies that there is enough dimension to resolve interference uncertainty. (5)

is equivalent to restricting functionfi from (vji, vki) to yi for given xi to be injective. In MIMO Gaussian case,

it is not difficult to see thatN ≥ 2M must be satisfied to ensure enough dimension although there is no formal

proof that the HK-like scheme will not be GDOF optimal when this does not hold. We also consider only the case

of N < 3M since the DOF ofM per user can be easily achieved by IAN ifN ≥ 3M .
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As mentioned earlier, the capacity region of the deterministic model in [7] is considerably more complicated

than the GDOF of the corresponding Gaussian model. This is due to the deterministic model being more general

than the corresponding Gaussian model. Although the capacity result of a general deterministic model has value

by itself, we will consider a special case of the deterministic model which resembles Gaussian model more closely

to reduce amount of analysis. The deterministic model described in Figure 1 additionally satisfies the following

properties. For alli andj, let

Aij =























{Vji} if Vji = g2 ◦ g1(Xj)

{Vjk for all k} if Vji = g1(Xj)

{Xj, Vjk for all k} if Vji does not exist.

(6)

Simply speaking,Aij is the set of messages from transmitterj which need to be decoded at receiveri. Let A be a

subset of the set of messages{V12, V13, V21, V23, V31, V32}. Then, we have for alli andj such thatVij = g1(Xi)

I(Vij ;Yi|A) = I(Vij ;Yi|Vki for all k,A ∩ Aii) = H(Vij |A ∩ Aii), (7)

if Ail ⊂ A for l 6= i. This condition means that the maximum transmittable rate of the messageVij from transmitter

i to receiveri is not changed by giving one of interferer’s message to receiver i as side information if another

interferer’s message is already given to receiveri. Since we only considerN ≥ 2M in Gaussian case, presence

of interference whose dimension isM does not affect decodability ofM dimensional message much in high SNR

regime. This phenomenon is essentially described in Lemma 1, and it governs the GDOF behavior. (7) assumes

similar condition in deterministic model such that the symmetric capacity of this model more closely resembles the

GDOF of Gaussian case. We also assumes the following. For alli andj andk 6= i, j, we have

I(Vji;Yi|A) = I(Vji;Yi|Xi, Vki, A ∩ Aij) = H(Vji|A ∩Aij), (8)

if Aik ⊂ A. This condition is the counter part of (7) for the message from transmitterj to receiveri. It will be seen

that these assumptions result in significant reduction of analysis and give right amount of insight for Gaussian case.

As will be seen in Section IV, the GDOF of Gaussian case is irrelevant to the input covariance as long as input is

Gaussian satisfying power constraint. The capacity regionof the deterministic model, however, would depend on

input distribution. Again, to reduce amount of analysis, weonly consider the case whenp(x1) = p(x2) = p(x3) =

p(x).

Theorem 1. The symmetric capacity of the deterministic model given in (4) with p(q, x1, x2, x3) = p(q)p(x1|q)
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×p(x2|q)p(x3|q) and p(x1|q) = p(x2|q) = p(x3|q) = p(x|q) is given as

Csym

= min

{

I(V31, V21;Y1|V12, V32, Q) + I(X1;Y1|V12, V21, V31, Q),

I(V21;Y1|V12, V31, Q) + I(V12, V21, V31;Y1|V13, V32, Q)

2
+ I(X1;Y1|V12, V21, V31, Q),

I(V21, V31;Y1|V12, Q) + I(V12;Y1|V13, V21, V31, Q)

2
+ I(X1;Y1|V12, V21, V31, Q),

1

2
I(V12, V21, V31;Y1|V32, Q) + I(X1;Y1|V12, V21, V31, Q),

1

2
I(V12, V21, V31;Y1|V13, Q) + I(X1;Y1|V12, V21, V31, Q),

I(V12, V21, V31;Y1|Q) + I(V12;Y1|V13, V21, V31, Q)

3
+ I(X1;Y1|V12, V21, V31, Q)

}

. (9)

Proof:

1) Achievability

a) Codebook generation

Givenp(xi|q), the joint probability mass function ofp(xi, vij , vik|q) can be defined wherevij = g1(xi) and

vik = g2 ◦ g1(xi) . First, a time-sharing sequenceqn is generated by choosing each element independently

according top(q). Thisqn is shared by all transmitters and receivers. Transmitteri generates2nRc1 codewords

vnik(lik), lik ∈ {1, 2, ..., 2nRc1} of length n by selecting themth element of each codeword according to

p(vik|qnm) whereqnm is themth element ofqn. For each codewordvnik(lik), transmitteri generates2nRc2

codewordsvnij(lik, lij), lij ∈ {1, 2, ..., 2nRc2} of lengthn by selecting themth element of each codeword

according top(vij |vnik,m(lik), q
n
m) where vnik,m(lik) is the mth element ofvnik(lik). For each codeword

vnij(lik, lij), transmitteri generates2nRp codewordsxn
i (lik, lij , li), li ∈ {1, 2, ..., 2nRp} of length n by

selecting themth element of each codeword according top(xi|vnik,m(lik), v
n
ij,m(lij), q

n
m). Note that this

codebook generation implies thatR1 = R2 = R3 = R = Rc1 +Rc2 +Rp. We only consider this symmetric

rate allocation since we are interested in the maximum sum rate. Note that the maximum sum rate is obtained

by the symmetric rate allocation due to symmetric nature of the channel.

b) Encoding

Transmitteri sends codewordxn
i (lik, lij , li) corresponding to the message indexed by(lik, lij , li).

c) Decoding

Decoding is done by checking typicality. Detailed mathematical description about decoding will not be

considered here since it would require proper definition of every quantity involved which could be exhausting.

Detailed description about typical decoding can be found in[15]. We also assume successive decoding. All

common messages are jointly decoded first while treating allprivate messages as noise, and the private

message of the intended transmitter is decoded successively by considering other private messages as noise.
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Note thatVjk , k 6= i for j such thatVji = g2 ◦ g1(Xj) is not common message at receiveri, i.e.,V23 is not

common message at receiver 1.

d) Error analysis

By using standard error event analysis for typical decodingwe get the following rate bounds at receiver 1.

Note that we only need to consider receiver 1 due to symmetry.

Rp < I(X1;Y1|V12, V21, V31, Q) (10a)

Rc2 < I(V12;Y1|V13, V21, V31, Q) (10b)

Rc1 < I(V21;Y1|V12, V31, Q) (10c)

Rc2 < I(V31;Y1|V12, V21, V32, Q) (10d)

Rc1 +Rc2 < I(V12;Y1|V21, V31, Q) (10e)

Rc1 +Rc2 < I(V31;Y1|V12, V21, Q) (10f)

Rc1 +Rc2 < I(V12, V21;Y1|V13, V31, Q) (10g)

Rc1 +Rc2 < I(V31, V21;Y1|V12, V32, Q) (10h)

Rc1 +Rc2 < I(V12, V31;Y1|V13, V21, V32, Q) (10i)

2Rc1 +Rc2 < I(V12, V21;Y1|V31, Q) (10j)

Rc1 + 2Rc2 < I(V12, V31;Y1|V21, V32, Q) (10k)

Rc1 + 2Rc2 < I(V12, V21, V31;Y1|V13, V32, Q) (10l)

Rc1 + 2Rc2 < I(V12, V31;Y1|V13, V21, Q) (10m)

2Rc1 +Rc2 < I(V21, V31;Y1|V12, Q) (10n)

2Rc1 + 2Rc2 < I(V12, V31;Y1|V21, Q) (10o)

2Rc1 + 2Rc2 < I(V12, V21, V31;Y1|V32, Q) (10p)

2Rc1 + 2Rc2 < I(V12, V21, V31;Y1|V13, Q) (10q)

3Rc1 + 2Rc2 < I(V12, V21, V31;Y1|Q). (10r)
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By using (7) and (8), we can further reduce the number of relevant bounds for the symmetric rate as

Rp < I(X1;Y1|V12, V21, V31, Q) (11a)

Rc2 < I(V12;Y1|V13, V21, V31, Q) (11b)

Rc1 < I(V21;Y1|V12, V31, Q) (11c)

Rc1 +Rc2 < I(V31, V21;Y1|V12, V32, Q) (11d)

Rc1 + 2Rc2 < I(V12, V21, V31;Y1|V13, V32, Q) (11e)

2Rc1 +Rc2 < I(V21, V31;Y1|V12, Q) (11f)

2Rc1 + 2Rc2 < I(V12, V21, V31;Y1|V32, Q) (11g)

2Rc1 + 2Rc2 < I(V12, V21, V31;Y1|V13, Q) (11h)

3Rc1 + 2Rc2 < I(V12, V21, V31;Y1|Q). (11i)

The above inequalities can be written as

(11d)+ (11a): R < I(V31, V21;Y1|V12, V32, Q) + I(X1;Y1|V12, V21, V31, Q) (12a)

(11c)+ (11e)+ 2× (11a): 2R < I(V21;Y1|V12, V31, Q) + I(V12, V21, V31;Y1|V13, V32, Q)

+2I(X1;Y1|V12, V21, V31, Q) (12b)

(11f)+ (11b)+ 2× (11a): 2R < I(V21, V31;Y1|V12, Q) + I(V12;Y1|V13, V21, V31, Q)

+2I(X1;Y1|V12, V21, V31, Q) (12c)

(11g)+ 2× (11a): 2R < I(V12, V21, V31;Y1|V32, Q) + 2I(X1;Y1|V12, V21, V31, Q) (12d)

(11h)+ 2× (11a): 2R < I(V12, V21, V31;Y1|V13, Q) + 2I(X1;Y1|V12, V21, V31, Q) (12e)

(11i)+ (11b)+ 3× (11a): 3R < I(V12, V21, V31;Y1|Q) + I(V12;Y1|V13, V21, V31, Q)

+3I(X1;Y1|V12, V21, V31, Q), (12f)

which determines the expression for the maximum symmetric rate given as (9).

2) Converse

It is sufficient to show thatR1 + R2 + R3 must be smaller than3Csym for reliable communication which

corresponds to show thatR1 +R2 +R3 must be smaller than 3 times of each term in (9). Let us consider the
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last term of (9) and rewrite it as

R1 +R2 +R3

< I(V12, V21, V31;Y1|Q) + I(V12;Y1|V13, V21, V31, Q) + 3I(X1;Y1|V12, V21, V31, Q) (13a)

= I(V12, V21, V31;Y1|Q) + I(V23;Y2|V12, V21, V32, Q)

+I(X1;Y1|V12, V21, V31, Q) + I(X2;Y2|V12, V23, V32, Q) + I(X3;Y3|V13, V23, V31, Q) (13b)

= H(Y1|Q) +H(Y2|V12, V21, V32, Q) +H(Y3|V13, V23, V31, Q). (13c)

The above expression implies that receiver 2 needs to have side informationV12, V21, V32, and receiver 3 needs

side informationV13, V23, V31. Now we proceed to converse. From Fano’s inequality, we have

n(R1 +R2 +R3)

≤ I(Xn
1 ;Y

n
1 ) + I(Xn

2 ;Y
n
2 ) + I(Xn

3 ;Y
n
3 ) (14a)

≤ I(Xn
1 ;Y

n
1 ) + I(Xn

2 ;Y
n
2 , V n

12, V
n
21, V

n
32) + I(Xn

3 ;Y
n
3 , V n

13, V
n
23, V

n
31) (14b)

= H(Y n
1 )−H(V n

21)−H(V n
31) +H(V n

21) +H(Y n
2 |V n

12, V
n
21, V

n
32)

+H(V n
31) +H(Y n

3 |V n
13, V

n
23, V

n
31) (14c)

= H(Y n
1 ) +H(Y n

2 |V n
12, V

n
21, V

n
32) +H(Y n

3 |V n
13, V

n
23, V

n
31) (14d)

≤
n
∑

i=1

(

H(Y1i) +H(Y2i|V12i, V21i, V32i) +H(Y3i|V13i, V23i, V31i)
)

(14e)

=

n
∑

i=1

(

H(Y1q|Q = i) +H(Y2q|V12q, V21q , V32q, Q = i) +H(Y3q|V13q , V23q, V31q, Q = i)
)

(14f)

= n
(

H(Y1|Q) +H(Y2|V12, V21, V32, Q) +H(Y3|V13, V23, V31, Q)
)

. (14g)

,whereQ = i ∈ {1, 2, ..., n} with probability 1/n, andY1 = Y1Q and all other similar terms are new random

variables whose distributions depend onQ in the same way as the distributions ofY1i and all other similar

terms depend oni. We can do similarly for each element of (9) which completes converse.

In the proof of the above theorem, successive decoding is used. The optimal way of decoding would be jointly

decoding every message which needs to be decoded, i.e.,X1, V12, V13, V21, V31, V32 needs to be jointly decoded at

receiver 1. It is not difficult to see that every bound of (12) must be a bound for joint decoding as well, and hence,

joint decoding is not better than successive decoding in terms of the symmetric capacity. In fact, joint decoding

is not better even in terms of achievable region, i.e., successive decoding achieves the capacity region. The key

reason is from sequential superposition encoding at the transmitter. Supposexn
1 (1, 1, 1) was transmitted. An error

event of decoded messagexn
1 (i, j, 1) for i, j 6= 1 cannot be evaluated differently from an error event of decoded

messagexn
1 (i, j, k) for i, j, k 6= 1, since no part ofxn

1 (i, j, 1) is the actually transmitted message. As a result,
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error events which can be evaluated with joint decoding are the same as those with successive decoding. In this

deterministic model, however, all common messages still need to be jointly decoded, since only messages from

the same transmitter are superposition encoded. Successive decoding of common and private messages are allowed

even in this case due to the fact that incorrect decoding of interferers’ messages with correct decoding of intended

messages is not an error in interference channel.

The reason why sequential superposition encoding is neededin the proof of the above theorem is due to degraded

nature of the deterministic model. It is well known that sequential superposition encoding is optimal for degraded

broadcast channel (BC) [15, Ch. 15.6.3], and this carries over to the deterministic model in this paper. One thing

to note is that simultaneous superposition encoding can be used in Gaussian BC even though every Gaussian BC

is degraded [15, Ch. 15.6.3]. Since simultaneous superposition encoding is used for MIMO GIC in this paper,

successive decoding does not fully achieve the capacity region, which implies that terms in (9) would not fully

cover bounds defining the GDOF region. In this paper, however, we are interested in the GDOF defined by the

symmetric capacity, and hence this does not cause a problem.In the same reason, successive decoding will also be

used for GIC.

As seen in the proof of the above theorem, the form of achievability bounds in (12) directly determines side

information for each receiver. This is one of the benefits of deterministic modeling as mentioned earlier. As will

be seen, we can directly apply this to corresponding Gaussian model. We should also note that converse is enabled

by the assumption given in (5).

B. Case of α2 < 1 < α1

The corresponding deterministic model is given as follows.

V11 = g1(X1), V13 = g2 ◦ g1(X1), (15a)

V21 = g2 ◦ g1(X2), V22 = g1(X2), (15b)

V32 = g2 ◦ g1(X3), V33 = g1(X3), (15c)

Y1 = f1(V11, V21, X3), (15d)

Y2 = f2(V22, X1, V32), (15e)

Y3 = f3(V33, V13, X2), (15f)

wherefi andgi are deterministic functions. We assume

H(Y1|V11) = H(V21, X3) = H(V21) +H(X3), (16a)

H(Y2|V22) = H(X1, V32) = H(X1) +H(V32), (16b)

H(Y3|V33) = H(V13, X2) = H(V13) +H(X2). (16c)
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As in the case ofα < 1, we assume the following. First, defineAij as in (6). LetA be a subset of sets of messages

{X1, V11, V13, X2, V22, V21, X3, V32, V33}. Then, we have for alli andj such thatXj ∈ Aij

I(Xj ;Yi|A) = I(Xj ;Yi|Vki for all k,A ∩Aij) = H(Xj |A ∩Aij), (17)

if Ail ⊂ A for l 6= j. For all i andj andk, l such thatXk ∈ Aik and l 6= k, j, we have

I(Vji;Yi|A) = I(Vji;Yi|Vli, Xk, A ∩ Aij) = H(Vji|A ∩Aij), (18)

if Aik ⊂ A or Ail ⊂ A. We now present the symmetric capacity of the deterministicmodel.

Theorem 2. The symmetric capacity of the deterministic model given in (15) with p(q, x1, x2, x3) = p(q)p(x1|q)

×p(x2|q)p(x3|q) and p(x1|q) = p(x2|q) = p(x3|q) = p(x|q) is given as

Csym

= min

{

I(V11, V21;Y1|V13, X3, Q),

I(V21;Y1|V11, X3, Q) + I(V11, V21, X3;Y1|V13, V32, Q)

2
,

1

2
I(V11, V21, X3;Y1|V32, Q),

1

2
I(V11, V21, X3;Y1|V13, Q),

I(V11, V21, X3;Y1|Q) + I(V11;Y1|V13, V21, X3, Q)

3

}

. (19)

Proof:

1) Achievability

a) Codebook generation

Given p(xi|q), the joint probability mass function ofp(xi, vii, vij |q) can be defined wherevii = g1(xi)

and vij = g2 ◦ g1(xi) . First, a time-sharing sequenceqn is generated by choosing each element in-

dependently according top(q). This qn is shared by all transmitters and receivers. Transmitteri gener-

ates2nRc1 codewordsvnij(lij), lij ∈ {1, 2, ..., 2nRc1} of length n by selecting themth element of each

codeword according top(vij |qnm). For each codewordvnij(lij), transmitteri generates2nRc2 codewords

vnii(lij , lii), lii ∈ {1, 2, ..., 2nRc2} of length n by selecting themth element of each codeword according

to p(vii|v
n
ij,m(lij), q

n
m). For each codewordvnii(lij , lii), transmitteri generates one codewordxn

i (lij , lii) by

selecting themth element of each codeword according top(xi|vnij,m(lij), v
n
ii,m(lii), q

n
m).

b) Encoding

Transmitteri sends codewordxn
i (lij , lii) corresponding to the message indexed by(lij , lii).

c) Decoding

All messages are decoded jointly, i.e.,V11, V13, V21, X3, V33, V32 are jointly decoded at the receiver 1.
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d) Error analysis

By using standard error event analysis for typical decodingand (17) and (18), we get the relevant bounds

for the symmetric rate as

Rc2 < I(V11;Y1|V13, V21, X3, Q) (20a)

Rc1 < I(V21;Y1|V11, X3, Q) (20b)

Rc1 +Rc2 < I(V11, V21;Y1|V13, X3, Q) (20c)

Rc1 + 2Rc2 < I(V11, V21, X3;Y1|V13, V32, Q) (20d)

2Rc1 + 2Rc2 < I(V11, V21, X3;Y1|V32, Q) (20e)

2Rc1 + 2Rc2 < I(V11, V21, X3;Y1|V13, Q) (20f)

3Rc1 + 2Rc2 < I(V11, V21, X3;Y1|Q). (20g)

The above inequalities can be written as

R < I(V11, V21;Y1|V13, X3, Q) (21a)

2R < I(V21;Y1|V11, X3, Q) + I(V11, V21, X3;Y1|V13, V32, Q) (21b)

2R < I(V11, V21, X3;Y1|V32, Q) (21c)

2R < I(V11, V21, X3;Y1|V13, Q) (21d)

3R < I(V11, V21, X3;Y1|Q) + I(V11;Y1|V13, V21, X3, Q), (21e)

which determines the expression for the maximum symmetric rate given as (19).

2) Converse

Converse is proven in similar ways to the case ofα1 < 1, i.e., show thatR1 +R2 +R3 must be smaller than

3 times of each term in (19). There are several bounds which are proven through slightly different ways from

the case ofα1 < 1. Let us consider the third term of (19). It can be written as

2(R1 +R2 +R3)

< I(V11, V21, X3;Y1|V32, Q) + I(X1, V22, V32;Y2|V13, Q) + I(V13, X2, V33;Y3|V21, Q) (22a)

= H(Y1|V32, Q) +H(Y2|V13, Q) +H(Y1|V21, Q). (22b)

Although the above expression only implies that receiver 1 needs to have side informationV32, the actual
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converse requires more effort than that. From Fano’s inequality, we have

2n(R1 +R2 +R3)

≤ 2I(Xn
1 ;Y

n
1 ) + 2I(Xn

2 ;Y
n
2 ) + 2I(Xn

3 ;Y
n
3 ) (23a)

≤ I(Xn
1 ;Y

n
1 , V n

32) + I(Xn
1 ;Y

n
1 , Xn

1 ) + I(Xn
2 ;Y

n
2 , V n

13) + I(Xn
2 ;Y

n
2 , Xn

2 )

+I(Xn
3 ;Y

n
3 , V n

21) + I(Xn
3 ;Y

n
3 , Xn

3 ) (23b)

= H(Y n
1 |V n

32)−H(V n
21)−H(Xn

3 |V
n
32) +H(Xn

1 )

+H(Y n
2 |V n

13)−H(V n
32)−H(Xn

1 |V
n
13) +H(Xn

2 )

+H(Y n
3 |V n

21)−H(V n
13)−H(Xn

2 |V
n
21) +H(Xn

3 )

= H(Y n
1 |V n

32) +H(Y n
2 |V n

13) +H(Y n
3 |V n

21) (23c)

≤
n
∑

i=1

(

H(Y1i|V32i) +H(Y2i|V13i) +H(Y3i|V21i)
)

(23d)

= n
(

H(Y1|V32, Q) +H(Y2|V13, Q) +H(Y3|V21, Q)
)

. (23e)

Remaining bounds can be evaluated similarly.

C. Case of α2 > 1

The corresponding deterministic model is given as follows.

V11 = g2 ◦ g1(X1), V13 = g1(X1), (24a)

V21 = g1(X2), V22 = g2 ◦ g1(X2), (24b)

V32 = g1(X3), V33 = g2 ◦ g1(X3), (24c)

Y1 = f1(V11, V21, X3), (24d)

Y2 = f2(V22, X1, V32), (24e)

Y3 = f3(V33, V13, X2), (24f)

wherefi and gi are deterministic functions. We assume (16), (17), (18) in exactly the same ways to the case of

α2 < 1 < α1. We now present the symmetric capacity of the deterministicmodel.

Theorem 3. The symmetric capacity of the deterministic model given in (24) with p(q, x1, x2, x3) = p(q)p(x1|q)

×p(x2|q)p(x3|q) and p(x1|q) = p(x2|q) = p(x3|q) = p(x|q) is given as

Csym

= min

{

I(V11;Y1|V21, X3, Q),
1

3
I(V11, V21, X3;Y1|Q)

}

. (25)



15

Proof:

1) Achievability

a) Codebook generation

Given p(xi|q), the joint probability mass function ofp(xi, vii, vij) can be defined wherevii = g2 ◦ g1(xi)

andvij = g1(xi). First, a time-sharing sequenceqn is generated by choosing each element independently

according top(q). This qn is shared by all transmitters and receivers. Transmitteri generates2nR codewords

vnii(lii), lii ∈ {1, 2, ..., 2nR} of length n by selecting themth element of each codeword independently

according top(vii|qnm). For each codewordvnii(lii), transmitteri generates one codewordvnij(lii) of lengthn

by selecting themth element of each codeword according top(vij |vnii,m(lii), q
n
m). For each codewordvnij(lii),

transmitteri generates one codewordxn
i (lii) by selecting themth element of each codeword according to

p(xi|vnii,m(lii), v
n
ij,m(lii), q

n
m).

b) Encoding

Transmitteri sends codewordxn
i (lii) corresponding to the message indexed bylii.

c) Decoding

All messages are decoded jointly, i.e.,V11, V21, V22, X3, V33, V32 are jointly decoded at the receiver 1.

d) Error analysis

By using standard error event analysis for typical decodingand (17), (18), we get the relevant bounds for

the symmetric rate as

R < I(V11;Y1|V21, X3, Q) (26a)

3R < I(V11, V21, X3;Y1|Q), (26b)

which determines the expression for the maximum symmetric rate given as (25).

2) Converse

Converse is proven in similar ways to the previous cases. Letus consider the second term of (25). It can be

written as

3(R1 +R2 +R3)

< I(V11, V21, X3;Y1|Q) + I(X1, V22, V32;Y2|Q) + I(V13, X2, V33;Y3|Q) (27a)

= H(Y1|Q) +H(Y2|Q) +H(Y3|Q). (27b)

Hence, no side information is given to any receiver. Fano’s inequality, however, starts from more than three

terms which implies appropriate side information for the additional terms need to be given. The appropriate
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side information is the message from the intended transmitter. From Fano’s inequality, we have

3n(R1 +R2 +R3)

≤ 3I(Xn
1 ;Y

n
1 ) + 3I(Xn

2 ;Y
n
2 ) + 3I(Xn

3 ;Y
n
3 ) (28a)

≤ I(Xn
1 ;Y

n
1 ) + 2I(Xn

1 ;Y
n
1 , V n

11) + I(Xn
2 ;Y

n
2 ) + I(Xn

2 ;Y
n
2 , V n

22)

+I(Xn
3 ;Y

n
3 ) + I(Xn

3 ;Y
n
3 , V n

33) (28b)

= H(Y n
1 )−H(V n

21)−H(Xn
3 ) + 2H(V n

11) +H(Y n
2 )−H(V n

32)−H(Xn
1 ) + 2H(V n

22)

+H(Y n
3 )−H(V n

13)−H(Xn
2 ) + 2H(V n

33) (28c)

= H(Y n
1 ) +H(Y n

2 ) +H(Y n
3 ) + 2H(V n

11)−H(V n
13)−H(Xn

1 )

+2H(V n
22)−H(V n

21)−H(Xn
2 ) + 2H(V n

33)−H(V n
32)−H(Xn

3 ) (28d)

≤ H(Y n
1 ) +H(Y n

2 ) +H(Y n
3 ) (28e)

≤
n
∑

i=1

(

H(Y1i) +H(Y2i) +H(Y3i)
)

(28f)

= n
(

H(Y1|Q) +H(Y2|Q) +H(Y3|Q)
)

. (28g)

Remaining bounds can be evaluated similarly.

IV. GAUSSIAN IC

We now consider the GDOF of GIC defined in (1). To derive the GDOF, we will useO(1) approximation. We

say thatf(x) = g(x)+O(1) whenlimx→∞ |f(x)−g(x)| < ∞. Note that the GDOF optimality still allows infinite

gap to capacity, butO(1) gap implies the finite gap. Similar to the result in [7], the result obtained in this report is

actually stronger than the GDOF because of thisO(1) nature. To analyze behavior of MIMO IC with high SNR,

we need the following lemma which is given in [9], [11].

Lemma 1. [11] Suppose H1, H2, H3 are N × r matrices with rank r. When α > β > γ, we have

log |I + ραH1H
H
1 + ρβH2H

H
2 + ργH3H

H
3 |

= rα log ρ+min(r, (N − r)+)β log ρ+min(r, (N − 2r)+)γ log ρ+O(1). (29)

The above lemma essentially says that we can retain full DOF provided by exponents ofρ if there is enough

dimension. This is an important property in high SNR regime,and this is why we have (7) and (8) for the

deterministic model. Now we are ready to present the GDOF of GIC.
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A. Case of α1 < 1

Theorem 4. GDOF of Gaussian IC with 2M ≤ N < 3M and α1 < 1 is given as

dsym(α1, α2) =

min

{

max
{

M + (N − 3M)α2,M + (N − 3M)α1 + (3M −N)α2, (3M −N)α1 +N − 2M
}

,

max
{

M +
1

2
(N − 3M)α2,

1

2
(N −M) +

1

2
(3M −N)α2

}

,

M +
1

3
(N − 3M)α2

}

. (30)

Proof:

1) Achievability

a) Codebook generation and encoding

The idea essentially the same as the deterministic model. Transmitteri splits its messageWi into Wic1 ,Wic2 ,

Wip. Wic1 is encoded using a Gaussian codebook with rateRc1 and covariance(1−ρ−α2)I. Wic2 is encoded

using a Gaussian codebook with rateRc2 and covariance(ρ−α2 −ρ−α1)I. Wip is encoded using a Gaussian

codebook with rateRp and covarianceρ−α1I. This power splitting is essentially the same as in [5], [7].

It can be easily seen thatWip will reach the receiver with the channel strengthρα1 at the noise level, and

Wic2 +Wip will reach the receiver with the channel strengthρα2 at the noise level. Therefore, each receiver

treats those messages as noise.

b) Decoding

Similar to deterministic model, we consider successive decoding. Common messages jointly decoded first

while treating other messages as noise, and the private message of the intended transmitter is decoded.

c) Error analysis

We obtain bounds on achievable rate by analyzing error events. It suffices to consider receiver 1 only due

to symmetric nature of the channel. First, we have the following relevant single rate bounds.

Rp < log

∣

∣

∣

∣

I +
(

I +
∑

i6=1

Hi1H
H
i1

)−1

ρ1−α1H11H
H
11

∣

∣

∣

∣

(31a)

= M(1− α1) log ρ+O(1). (31b)

Rc2 < log

∣

∣

∣

∣

I +
(

I + ρ1−α1H11H
H
11 +

∑

i6=1

Hi1H
H
i1

)−1

(ρ1−α2 − ρ1−α1)H11H
H
11

∣

∣

∣

∣

(32a)

= M(α1 − α2) log ρ+O(1). (32b)
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Rc1 < log

∣

∣

∣

∣

I +
(

I + ρ1−α1H11H
H
11 +

∑

i6=1

Hi1H
H
i1

)−1

(ρα2 − 1)H21H
H
21

∣

∣

∣

∣

(33a)

= Mα2 log ρ+O(1). (33b)

Rc2 < log

∣

∣

∣

∣

I +
(

I + ρ1−α1H11H
H
11 +

∑

i6=1

Hi1H
H
i1

)−1

(ρα1−α2 − 1)H31H
H
31

∣

∣

∣

∣

(34a)

= M(α1 − α2) log ρ+O(1). (34b)

Note that prelog factors of two different bounds onRc2 are the same. This is similar to what happened in

deterministic model. The sum rate bound of all common messages is given as

3Rc1 + 2Rc2 < log

∣

∣

∣

∣

I +
(

I + ρ1−α1H11H
H
11 +

∑

i6=1

Hi1H
H
i1

)−1

×
(

(ρ− ρ1−α1)H11H
H
11 + (ρα2 − 1)H21H

H
21 + (ρα1 − 1)H31H

H
31

)

∣

∣

∣

∣

(35a)

= (2Mα1 + (N − 2M)α2) log ρ+O(1). (35b)

There are five more bounds on the achievable rate which are relevant to the GDOF, and the prelog factors

of those bounds vary depending on actual values ofα1 andα2. This is due to the fact that there is not

enough dimension to resolve all messages in those bounds. Bycarefully evaluating it, it turns out that only

two of them are relevant eventually, and they as given as follows.

Rc1 +Rc2 <






















(

Mα1 + (N − 3M)α2

)

log ρ+O(1), if α1 + α2 < 1, 2α2 < α1

(

(4M −N)α1 +N − 3M
)

log ρ+O(1), if α1 + α2 > 1, 2α1 − α2 > 1
(

(N − 2M)α1 + (3M −N)α2

)

log ρ+O(1), if 2α1 − α2 < 1, 2α2 > α1.

(36)

2Rc1 + 2Rc2 <










(

2Mα1 + (N − 3M)α2

)

log ρ+O(1), if α2 < 1
2

(

2Mα1 + (3M −N)α2 +N − 3M
)

log ρ+O(1), if α2 > 1
2 .

(37)

Then, we get the expression for the GDOF given as (30).

2) Converse

We proceed as deterministic model, i.e., we show each term of(30) is the upper bound. Let us consider the

first term. LetSn
B,i =

∑

j∈B HjiX
n
j + Zn

i . We first need to determine side information given to receivers.
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Note that the first term of (30) corresponds to the first term of(9). Consider now the first term of (9) as

R1 +R2 + R3

< I(V31, V21;Y1|V12, V32, Q) + I(X1;Y1|V12, V21, V31, Q)

+I(V12, V32;Y2|V13, V23, Q) + I(X2;Y2|V12, V23, V32, Q)

+I(V13, V23;Y3|V21, V31, Q) + I(X3;Y3|V13, V23, V31, Q) (38a)

= H(Y1|V12, V32, Q) +H(Y2|V13, V23, Q) +H(Y3|V21, V31, Q). (38b)

This suggests thatV12, V32 need to be given to the receiver 1 as side information, andV13, V23 to the receiver

2, V21, V31 to the receiver 3. Then, in Gaussian case,

n(R1 +R2 +R3)

≤ I(Xn
1 ;Y

n
1 ) + I(Xn

2 ;Y
n
2 ) + I(Xn

3 ;Y
n
3 ) (39a)

≤ I(Xn
1 ;Y

n
1 , Sn

{1,3},2) + I(Xn
2 ;Y

n
2 , Sn

{1,2},3) + I(Xn
3 ;Y

n
3 , Sn

{2,3},1). (39b)

Consider nowI(Xn
1 ;Y

n
1 , Sn

{1,3},2) only. Process for other terms are equivalent to that forI(Xn
1 ;Y

n
1 , Sn

{1,3},2).

I(Xn
1 ;Y

n
1 , Sn

{1,3},2)

= h(Sn
{1,3},2)− h(Sn

3,2) + h(Y n
1 |Sn

{1,3},2)− h(Sn
{2,3},1|S

n
3,2) +O(1) (40a)

= h(Y n
1 |Sn

{1,3},2) + h(Sn
{1,3},2)− h(Sn

{2,3},1, S
n
3,2) +O(1) (40b)

= h(Y n
1 |Sn

{1,3},2) + h(Sn
{1,3},2)− h(Sn

{2,3},1) +O(1). (40c)

By evaluating other terms in similar ways, we get

n(R1 +R2 +R3)

≤ h(Y n
1 |Sn

{1,3},2) + h(Sn
{1,3},2)− h(Sn

{2,3},1) + h(Y n
2 |Sn

{1,2},3) + h(Sn
{1,2},3)− h(Sn

{1,3},2)

+h(Y n
3 |Sn

{2,3},1) + h(Sn
{2,3},1)− h(Sn

{1,2},3) +O(1) (41a)

= h(Y n
1 |Sn

{1,3},2) + h(Y n
2 |Sn

{1,2},3) + h(Y n
3 |Sn

{2,3},1) +O(1) (41b)

≤ n(h(Y G
1 |SG

{1,3},2) + h(Y G
2 |SG

{1,2},3) + h(Y G
3 |SG

{2,3},1)) +O(1), (41c)

where the supersctiptG denotes the inputs are i.i.d. Gaussian withtr(E[XiX
H
i ]) < M . The last inequality

comes from the fact thath(Y n
1 |Sn

{1,3},2) ≤ nh(Y G
1 |SG

{1,3},2) from [16]. We have

h(Y G
1 |SG

{1,3},2) = log
∣

∣

∣
πΣY G

1
|SG

{1,3},2

∣

∣

∣
, (42)
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where

ΣY G
1

|SG
{1,3},2

= E[Y G
1 (Y G

1 )H ]− E[Y G
1 (SG

{1,3},2)
H ]E[SG

{1,3},2(S
G
{1,3},2)

H ]−1E[SG
{1,3},2(Y

G
1 )H ]. (43)

Therefore,h(Y G
1 |SG

{1,3},2) can be evaluated by using Woodbury matrix identity, which is

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1. (44)

By proceed in similar ways to [7], we eventually get

Dsym(α1, α2)

≤ max
{

M + (N − 3M)α2,M + (N − 3M)α1 + (3M −N)α2, (3M −N)α1 +N − 2M
}

.(45)

To resolve the second term of (30), consider the fifth term of (9) as

2(R1 +R2 +R3)

< I(V12, V21, V31;Y1|V13, Q) + 2I(X1;Y1|V12, V21, V31, Q)

+I(V12, V23, V32;Y2|V21, Q) + 2I(X2;Y2|V12, V23, V32, Q)

+I(V13, V23, V31;Y3|V32, Q) + 2I(X3;Y3|V13, V23, V31, Q) (46a)

= H(Y1|V13, Q) +H(Y1|V12, V21, V31, Q)

+H(Y2|V21, Q) +H(Y2|V12, V23, V32, Q)

+H(Y3|V32, Q) +H(Y3|V13, V23, V31, Q). (46b)
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In Gaussian case, we proceed as

2n(R1 +R2 +R3)

≤ 2I(Xn
1 ;Y

n
1 ) + 2I(Xn

2 ;Y
n
2 ) + 2I(Xn

3 ;Y
n
3 ) (47a)

≤ I(Xn
1 ;Y

n
1 , Sn

1,3) + I(Xn
1 ;Y

n
1 , Sn

1,2, S
n
{2,3},1)

+I(Xn
2 ;Y

n
2 , Sn

2,1) + I(Xn
2 ;Y

n
2 , Sn

2,3, S
n
{1,3},2)

+I(Xn
3 ;Y

n
3 , Sn

3,2) + I(Xn
3 ;Y

n
3 , Sn

3,1, S
n
{1,2},3) (47b)

= h(Sn
1,3) + h(Y n

1 |Sn
1,3)− h(Sn

{2,3},1) + h(Sn
1,2) + h(Y n

1 |Sn
1,2, S

n
{2,3},1)

+h(Sn
2,1) + h(Y n

2 |Sn
2,1)− h(Sn

{1,3},2) + h(Sn
2,3) + h(Y n

2 |Sn
2,3, S

n
{1,3},2)

+h(Sn
3,2) + h(Y n

3 |Sn
3,2)− h(Sn

{1,2},3) + h(Sn
3,1) + h(Y n

3 |Sn
3,1, S

n
{1,2},3) +O(1) (47c)

= h(Y n
1 |Sn

1,3) + h(Y n
1 |Sn

1,2, S
n
{2,3},1) + h(Y n

2 |Sn
2,1) + h(Y n

2 |Sn
2,3, S

n
{1,3},2)

+h(Y n
3 |Sn

3,2) + h(Y n
3 |Sn

3,1, S
n
{1,2},3) + h(Sn

2,1) + h(Sn
3,1)− h(Sn

{2,3},1)

+h(Sn
1,2) + h(Sn

3,2)− h(Sn
{1,3},2) + h(Sn

1,3) + h(Sn
2,3)− h(Sn

{1,3},2) +O(1). (47d)

Although we cannot usually say thath(Sn
2,1) + h(Sn

3,1)− h(Sn
{2,3},1) ≤ n

(

h(SG
2,1) + h(SG

3,1)− h(SG
{2,3},1)

)

,

this is true if Xi has identity covariance matrix as given in [17] and discussed in [16]. SISO version of

h(Sn
2,1) + h(Sn

3,1) − h(Sn
{2,3},1) ≤ n

(

h(SG
2,1) + h(SG

3,1) − h(SG
{2,3},1)

)

is given in Lemma 5 of [16], and

the corresponding MIMO version which is needed here can be easily obtained by following the exactly same

procedure with identity covariance matrix ofXi. Since replacing covariance matrix ofXi with an identity

matrix only results inO(1) gap, we can proceed as

2n(R1 +R2 +R3)

≤ n
(

h(Y G
1 |Sn

1,3) + h(Y G
1 |SG

1,2, S
G
{2,3},1) + h(Y G

2 |SG
2,1) + h(Y G

2 |SG
2,3, S

G
{1,3},2)

+h(Y G
3 |SG

3,2) + h(Y G
3 |SG

3,1, S
G
{1,2},3)

)

+ n
(

h(SG
2,1) + h(SG

3,1)− h(SG
{2,3},1)

+h(SG
1,2) + h(SG

3,2)− h(SG
{1,3},2) + h(SG

1,3) + h(SG
2,3)− h(SG

{1,3},2)
)

+O(1) (48a)

= n
(

h(Y G
1 |Sn

1,3) + h(Y G
1 |SG

1,2, S
G
{2,3},1) + h(Y G

2 |SG
2,1) + h(Y G

2 |SG
2,3, S

G
{1,3},2)

+h(Y G
3 |SG

3,2) + h(Y G
3 |SG

3,1, S
G
{1,2},3)

)

+O(1). (48b)

Now we can proceed in similar ways to to the first bound to get

Dsym(α1, α2) ≤ max
{

M +
1

2
(N − 3M)α2,

1

2
(N −M) +

1

2
(3M −N)α2

}

. (49)



22

Consider now the third term of (30). As seen in the proof of Theorem 1, the last term of (9) can be written as

R1 +R2 + R3

= H(Y1|Q) +H(Y2|V12, V21, V32, Q) +H(Y3|V13, V23, V31, Q). (50)

Given side information to receivers 2 and 3, messages decoded at these receivers are only from the intended

transmitters, and these messages do not contain common information to the receiver 1. Hence, we consider

a system in which only receiver 1 sees interference. LetY n
2 = H2X

n
2 + Z2, whereY n

2 = [Y n
2 Y n

3 ]T ,

Xn
2 = [Xn

2 Xn
3 ]

T , Zn
2 = [Zn

2 Zn
3 ]

T , and

H2 =





H22 0

0 H33



 . (51)

If we defineH21 = [H21 H31], then we haveY n
1 = H11X

n
1 +H21X

n
2 + Zn

1 . Let Sn = H21X
n
2 + Zn

1 . An

upper bound on achievable rate of this channel is also an upper bound of the channel in (1). Then,

n(R1 +R2 +R3)

≤ I(Xn
1 ;Y

n
1 ) + I(Xn

2 ;Y
n
2 , S

n) (52a)

= h(Y n
1 )− h(Sn) + h(Sn) + h(Y n

2 |S
n) +O(1) (52b)

= h(Y n
1 ) + h(Y n

2 |S
n) +O(1). (52c)

Now we can proceed in similar ways to the previous cases to get

Dsym(α1, α2) ≤ M +
1

3
(N − 3M)α2. (53)

It can be seen that evaluation ofI(Xn
1 ;Y

n
1 , Sn

{1,3},2) in (40) is more complicated than its deterministic counter part.

If we have an assumption of (5) as in the deterministic model,then we would haveh(Sn
{1,3},2)−h(Sn

3,2) = h(Sn
1,2).

Although this becomes eventually true when we replace everything with Gaussian, we cannot assume such property

at that point. This makes analysis on Gaussian model significantly more involved than the deterministic model.

In [7], two active outer bounds are many-to-one bound and bound on all common messages from unintended

transmitters. These are counterparts of two outer bounds in[5] for symmetric case. Note that a many-to-one bound

is still an active outer bound inpartially asymmetric model, but other two bounds in this model do not have clear

counterparts in aforementioned bounds. The second outer bound, however, has similar way of derivation to the

bound on all common messages from unintended transmitters.[7, Lemma 5]. Note that an important property used

in [7] is symmetry, e.g., replacingSn
1,2 with Sn

1,3 helps resolving terms. Inpartially asymmetric model, however, it

does not help, and hence, vector entropy power inequality [17] is needed to further approximate the upper bound.
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Let us now further evaluate GDOF expression in (30). By careful evaluation, we get

Dsym(α1, α2) =






































M + (N − 3M)α2 if α1 + α2 < 1, 2α2 < α1

min
{

M + (N − 3M)α1 + (3M −N)α2,M + 1
2 (N − 3M)α2

}

if 2α1 − α2 < 1, 2α2 > α1, α2 < 1
2

min
{

N − 2M + (3M −N)α1,M + 1
2 (N − 3M)α2

}

if α1 + α2 > 1, 2α1 − α2 > 1, α2 <
1
2

min
{

1
2 (N −M) + 1

2 (3M −N)α2,M + 1
3 (N − 3M)α2

}

if α1 + α2 > 1, α2 > 1
2 .

(54)

Note that the first termM + (N − 3M)α2 is the DOF which can be obtained by treating interference as noise

(IAN). In 3-user symmetric case considered in [7], the optimal GDOF is strictly larger than the GDOF obtained

by IAN for all interference regimes while 2-user SISO case in[5] also has interference regime in which IAN is

GDOF optimal. It is argued in [7] that the reason why there is no interference regime in which IAN is optimal in

3-user symmetric case is because there are multiple receiver antennas. In SISO case, there is no other dimension

to resolve interference common information when interference strength is weak enough to be affected by private

message strength of the intended user. In SIMO case, however, there always are other dimensions to exploit when

interference strength is weak. Then why do we see different behavior in asymmetric case? If we look at the condition

for which IAN is GDOF optimal, then we can see thatα2 must be small withα1 being at least as twice as larger

thanα2, and bothα1 andα2 cannot be too large. Therefore, we may think that this comes from the difficulty of

decodingWc1 from weaker interference channel due to strong interference from stronger channel and the private

message of the intended transmitter. Ifα1 is large enough, then the power of the private message of the intended

transmitter becomes small enough. The conditionα1 + α2 < 1, however, prevents it which would result in no

common message through weaker interference link. When signal from weaker interference link is treated as noise,

the receiver has enough dimension to resolve all remaining messages, and hence IAN is optimal.

Another observation can be made with the bounds corresponding to the first and the third term in (30). From (54),

we can see that the third bound which is called many-to-one bound is only active whenα1 + α2 > 1, α2 > 1
2

which corresponds to stronger interference. If we look at side information given in (52), then we can see that the

actual constraint comes from decodability of all common messages at receiver 1. If we look at side information

given in (39), then the actual constraint does not depend on decodability of common messages of the intended

transmitter. In other words, limiting factor in this case isthe decodability of common messages from unintended

transmitters given correct decoding of common messages from the intended transmitter. Hence, this bound must be

active for weaker interference while many-to-one bound is active for stronger interference.
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B. Case of α2 < 1 < α1

Theorem 5. GDOF of Gaussian IC with 2M ≤ N < 3M and α2 < 1 < α1 is given as

dsym(α1, α2) =

min

{

M,
2M +Mα1 + (N − 3M)α2

3
,

max
{M +Mα1 + (N − 3M)α2

2
,
M + (N − 2M)α1 + (3M −N)α2

2

}

}

. (55)

Proof:

1) Achievability

a) Codebook generation and encoding

Transmitteri splits its messageWi into Wic1 ,Wic2 . Wic1 is encoded using a Gaussian codebook with rate

Rc1 and covariance(1− ρ−α2)I. Wic2 is encoded using a Gaussian codebook with rateRc2 and covariance

ρ−α2I.

b) Decoding

Similar to deterministic model, all messages are decoded jointly.

c) Error analysis

We obtain bounds on achievable rate by analyzing error events. By proceeding similarly to the case of

α1 < 1, we get the following bounds which are relevant for GDOF.

Rc2 < M(1− α2) log ρ+O(1). (56)

Rc1 < Mα2 log ρ+O(1). (57)

2Rc1 + 2Rc2 <










(

M +Mα1 + (N − 3M)α2

)

log ρ+O(1), if α2 < α1

2
(

M + (N − 2M)α1 + (3M −N)α2

)

log ρ+O(1), if α2 > α1

2 .

(58)

3Rc1 + 2Rc2 <
(

M +Mα1 + (N − 2M)α2

)

log ρ+O(1). (59)

Then, we get the expression for the GDOF given as (55).

2) Converse

We show each term of (55) is the upper bound. The first term of (55) is trivially an upper bound. Let us

consider the third term. LetSn
B,i =

∑

j∈B HjiX
n
j + Zn

i . From the proof of Theorem 2, side information to
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each receiver can be determined. Then, in Gaussian case,

2n(R1 +R2 +R3)

≤ 2I(Xn
1 ;Y

n
1 ) + 2I(Xn

2 ;Y
n
2 ) + 2I(Xn

3 ;Y
n
3 ) (60a)

≤ I(Xn
1 ;Y

n
1 , Sn

3,2) + I(Xn
1 ;Y

n
1 , Sn

1,2)

+I(Xn
2 ;Y

n
2 , Sn

1,3) + I(Xn
2 ;Y

n
2 , Sn

2,3)

+I(Xn
3 ;Y

n
3 , Sn

2,1) + I(Xn
3 ;Y

n
3 , Sn

3,1). (60b)

Consider nowI(Xn
1 ;Y

n
1 , Sn

3,2) + I(Xn
1 ;Y

n
1 , Sn

1,2) only.

I(Xn
1 ;Y

n
1 , Sn

3,2) + I(Xn
1 ;Y

n
1 , Sn

1,2)

= h(Y n
1 |Sn

3,2)− h(Sn
{2,3},1|S

n
3,2) + h(Sn

1,2)

+h(Y n
1 |Sn

1,2)− h(Sn
{2,3},1) +O(1) (61a)

≤ h(Y n
1 |Sn

3,2)− h(Sn
{2,3},1|S

n
3,2)− h(Sn

3,2) + h(Sn
3,2) + h(Sn

1,2)

+h(Sn
{2,3},1) + h(Sn

1,1|S
n
1,2)− h(Sn

{2,3},1) +O(1) (61b)

≤ h(Y n
1 |Sn

3,2)− h(Sn
{2,3},1) + h(Sn

3,2) + h(Sn
1,2) + h(Sn

1,1|S
n
1,2) +O(1). (61c)
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By evaluating other terms in similar ways, we get

2n(R1 +R2 +R3)

≤ h(Y n
1 |Sn

3,2)− h(Sn
{2,3},1) + h(Sn

3,2) + h(Sn
1,2) + h(Sn

1,1|S
n
1,2)

+h(Y n
2 |Sn

1,3)− h(Sn
{1,3},2) + h(Sn

1,3) + h(Sn
2,3) + h(Sn

2,2|S
n
2,3)

+h(Y n
3 |Sn

2,1)− h(Sn
{1,2},3) + h(Sn

2,1) + h(Sn
3,1) + h(Sn

3,3|S
n
3,1) (62a)

= h(Y n
1 |Sn

3,2) + h(Y n
2 |Sn

1,3) + h(Y n
3 |Sn

2,1)

+h(Sn
1,1|S

n
1,2) + h(Sn

2,2|S
n
2,3) + h(Sn

3,3|S
n
3,1)

+h(Sn
2,1) + h(Sn

3,1)− h(Sn
{2,3},1)

+h(Sn
1,2) + h(Sn

3,2)− h(Sn
{1,3},2)

+h(Sn
1,3) + h(Sn

2,3)− h(Sn
{1,2},3) +O(1) (62b)

≤ nh(Y G
1 |SG

3,2) + nh(Y G
2 |SG

1,3) + nh(Y G
3 |SG

2,1)

+nh(SG
1,1|S

G
1,2) + nh(SG

2,2|S
G
2,3) + nh(SG

3,3|S
G
3,1)

+nh(SG
2,1) + nh(SG

3,1)− nh(SG
{2,3},1)

+nh(SG
1,2) + nh(SG

3,2)− nh(SG
{1,3},2)

+nh(SG
1,3) + nh(SG

2,3)− nh(SG
{1,2},3) +O(1) (62c)

= n(h(Y G
1 |SG

3,2) + h(Y G
2 |SG

1,3) + h(Y G
3 |SG

2,1)) +O(1). (62d)

We eventually get

Dsym(α1, α2)

≤ max
{M +Mα1 + (N − 3M)α2

2
,
M + (N − 2M)α1 + (3M −N)α2

2

}

. (63)

The second term of (55) can be evaluated similarly.

Note that the second term of (55) comes from many-to-one bound, and hence converse for this bound would be

proven in similar ways to the case ofα1 < 1. This also implies that many-to-one bound of the case ofα1 < 1

would be proven in more systematic, albeit less intuitive way given in the proof of Thereom 5.

It can be seen from (55) that the GDOF can beM which implies that the effect of interference is completely

removed. In symmetric cases in [5], [7], [13], the effect of interference is removed when interference is much

stronger than the desired channel. Theorem 5 shows that it can happen even when some of interferences are weaker

than the desired channel for asymmetric case.
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C. Case of α2 > 1

Theorem 6. GDOF of Gaussian IC with 2M ≤ N < 3M and α2 > 1 is given as

dsym(α1, α2) = min{M,
N − 2M +Mα1 +Mα2

3
}. (64)

Proof:

1) Achievability

a) Codebook generation and encoding

Transmitteri’s messageWi is encoded using a Gaussian codebook with rateR and covarianceI.

b) Decoding

Similar to deterministic model, all messages are decoded jointly.

c) Error analysis

We obtain bounds on achievable rate by analyzing error events. By proceeding similarly to the previous

cases, we get the following bounds which are relevant for GDOF.

R < M log ρ+O(1). (65)

3R <
(

N − 2M +Mα1 +Mα2

)

log ρ+O(1). (66)

Then, we get the expression for the GDOF given as (64).

2) Converse

We show each term of (64) is the upper bound. The first term of (64) is trivially an upper bound. Let us

consider the second term. LetSn
B,i =

∑

j∈B HjiX
n
j + Zn

i . From the proof of Theorem 3, side information to

each receiver can be determined. Then, in Gaussian case,

3n(R1 +R2 +R3)

≤ 3I(Xn
1 ;Y

n
1 ) + 3I(Xn

2 ;Y
n
2 ) + 3I(Xn

3 ;Y
n
3 ) (67a)

≤ I(Xn
1 ;Y

n
1 ) + 2I(Xn

1 ;Y
n
1 , Sn

1,1)

+I(Xn
2 ;Y

n
2 ) + 2I(Xn

2 ;Y
n
2 , Sn

2,2)

+I(Xn
3 ;Y

n
3 ) + 2I(Xn

3 ;Y
n
3 , Sn

3,3). (67b)

Consider nowI(Xn
1 ;Y

n
1 ) + 2I(Xn

1 ;Y
n
1 , Sn

1,1) only.

I(Xn
1 ;Y

n
1 ) + 2I(Xn

1 ;Y
n
1 , Sn

1,1)

= h(Y n
1 )− h(Sn

{2,3},1) + 2h(Sn
1,1) +O(1) (68a)

= h(Y n
1 ) + h(Sn

2,1) + h(Sn
3,1)− h(Sn

{2,3},1) + 2h(Sn
1,1)− h(Sn

2,1)− h(Sn
3,1) +O(1). (68b)
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By evaluating other terms in similar ways, we get

3n(R1 +R2 +R3)

≤ h(Y n
1 ) + h(Y n

2 ) + h(Y n
3 ) + h(Sn

2,1) + h(Sn
3,1)− h(Sn

{2,3},1)

+h(Sn
1,2) + h(Sn

3,2)− h(Sn
{1,3},2) + h(Sn

1,3) + h(Sn
2,3)− h(Sn

{1,2},3)

+2h(Sn
1,1)− h(Sn

1,2)− h(Sn
1,3) + 2h(Sn

2,2)− h(Sn
2,1)− h(Sn

2,3)

+2h(Sn
3,3)− h(Sn

3,1)− h(Sn
3,2) +O(1) (69a)

≤ h(Y n
1 ) + h(Y n

2 ) + h(Y n
3 ) + h(Sn

2,1) + h(Sn
3,1)− h(Sn

{2,3},1)

+h(Sn
1,2) + h(Sn

3,2)− h(Sn
{1,3},2) + h(Sn

1,3) + h(Sn
2,3)− h(Sn

{1,2},3) +O(1) (69b)

≤ nh(Y G
1 ) + nh(Y G

2 ) + nh(Y G
3 ) + nh(SG

2,1) + nh(SG
3,1)− nh(SG

{2,3},1)

+nh(SG
1,2) + nh(SG

3,2)− nh(SG
{1,3},2) + nh(SG

1,3) + nh(SG
2,3)− nh(SG

{1,2},3) +O(1) (69c)

= n(h(Y G
1 ) + h(Y G

2 ) + h(Y G
3 )) +O(1). (69d)

We eventually get

Dsym(α1, α2) ≤
N − 2M +Mα1 +Mα2

3
. (70)

From (64), we can directly conclude that the effect of interference is removed, i.e, the GDOF isM , if α1+α2 >

5M−N
M

which corresponds to very strong interference. It can be also seen that settingα1 = α2 = α exactly recovers

the result in the symmetric case in [7] forα > 1.

D. Further interpretation of the GDOF

Figure 2 describes the GDOF region of 3-user MIMO GIC withM = 1 andN = 2 for 0 < α1, α2 < 2. It

can be seen that the GDOF region consists of several faces corresponding to terms in (30), (55), (64). For ease of

exposition, each face is labeled in Figure 2 by the order of appearance of the corresponding term in (30), (55), (64).

For example, (30) has six terms in total, and faces corresponding to these terms are labeled from 1 to 6. (55)

has four terms, and faces corresponding to these terms are labeled from 7 to 10. (64) has two terms, and faces

corresponding to these terms are labeled from 11 to 12. Let the face with labeli be called the facei. The face 2

intersects with the faces 1,3, and 4, and it does not appear inFigure 2 due to the viewing angle. Note that three

triangular faces of 1,3 and 4 form a pit in the GDOF region.

The face 7 in Figure 2 represents the GDOF ofM . In this region, the message from the stronger interference

can be decoded by treating everything else as noise. After decoding of the stronger interference, the receiver has

enough dimension to resolve everything else. The face 11 also represents the GDOF ofM . In this region, the

messages from two interferences are jointly decoded by treating the desired signal as noise. In symmetric case,
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Fig. 2. The GDOF region of 3-user1× 2 GIC

faces 4,6,11 and 12 are only active, and the intersection of them with the planeα1 = α2 forms a line corresponds

to the GDOF of 3-user symmetric SIMO GIC shown in [7, Figure 2]. As mentioned earlier, the face 1 corresponds

to the GDOF of IAN. An orthogonal scheme achieves the GDOF of2/3, and it is a lower bound of the GDOF

region in Figure 2 with equality at the points correspondingto the intersection of the faces 6,8, and 12 and the

intersection of the faces 1,2 and 3.

Let us consider now weak interference regime which corresponds to faces 1 to 6 more carefully. There are three

important factors in understanding the GDOF behavior. Faces 1 to 6 correspond to the rate bounds given in (30) at

the receiver 1 as mentioned before. The first important factor is the rate terms involved in each of these bounds.

The second important factor comes from Lemma 1. From this lemma, it can be seen that the user whose messages

have the weakest power cannot achieve the full DOF when receiver dimension is not enough. Depending on values

of α1 andα2, the power of each user’s messages changes as well as the userwith the weakest power. This is the

second important factor. Table I describes these factors for bounds correspond to faces 1 to 6 at the receiver 1.

The third important factor is the signal strength of each user’s messagesWc1 ,Wc2 ,Wp at the receiver 1, and they

are described in Table II. From Figure 2, it can be seen that bound 6 is active whenα2 is larger, and bounds 4

and 5 is active whenα2 is smaller. This can be explained by universal common message Wc1 . From Table I, it

can be seen that bound 6 includesR1c1 while bounds 4 and 5 do not. Whenα2 is small, the decodability ofW2c1



30

TABLE I
TABLE OF IMPORTANT FACTORS IN EACH BOUND AT THE RECEIVER1

Bound Involved rate terms The smallest power exponent and the corresponding user

1
R1p, R2c1

, R3c2

α2 (user 2)

2 α1 − α2 (user 3)

3 1− α1 (user 1)

4
R1p, R1c2

, R2c1
, R3c1

, R3c2

α2 (user 2)

5 1− α2 (user 1)

6 R1p, R1c1
, R1c2

, R2c1
, R3c1

, R3c2
α2 (user 2)

TABLE II
THE SIGNAL STRENGTH OF EACH USER’ S MESSAGES AT THE RECEIVER1

❳
❳
❳
❳
❳
❳
❳❳

Message
User

1 2 3

Rp ρ1−α1

1
1

Rc2
ρ1−α2 − ρ1−α1 ρα1−α2 − 1

Rc1
ρ− ρ1−α2 ρα2 − 1 ρα1 − ρα1−α2

andW3c1 becomes limiting factor as suggested in Table II. Asα2 increases, this decodability increases such that

decodability ofW1c1 gets important. This is similar to phenomena observed in symmetric cases in [5], [7]. Note

that bounds 1 to 3 occurs only ifα2 < 0.5. Figure 3 describes the GDOF withα2 = 0.2 with labels which match

with corresponding faces in Figure 2. It can be seen that bound 4 is first active untilα1 reaches certain level.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

α
1

G
D

O
F

4
2

1
3

4

9
7

Fig. 3. The GDOF of 3-user1× 2 GIC with α2 = 0.2

This can be again explained byWc1 . From Table I, it can be seen that bounds 1 to 3 do not involveR3c1 while

bound 4 does. As suggested in Table II, increasingα1 increases decodability ofW3c1 , and decodability of only

W2c1 becomes limiting factor at some point. Interestingly, bound 4 is active again whenα1 is larger. This can be

explained byWc2 . From Table I, it can be seen that bounds 1 to 3 do not involveR1c2 while bound 4 does. As
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suggested in Table II, increasingα1 increases decodability ofW3c2 , and decodability ofW1c2 becomes limiting

factor together withW3c2 at some point.

Let us consider bound 6. Increasingα2 with fixing α1 decreases the GDOF. As seen in Table I, the weakest user

in this bound is user 2 with power exponentα2. Increasingα2 increases decodability ofW2c1 while decreasing

decodability ofW1c2 andW3c2. SinceW2c1 does not achieve the full DOF, rate gain ofW2c1 cannot compensate

rate loss ofW1c2 andW3c2. On the other hand, Increasingα1 with fixing α2 does not change the GDOF. In this

case, changingα1 does not affect the weakest user’s power, and hence rate gainand loss occur for users which

achieve full DOF. This maintains the balance.

Opposite phenomenon occurs in bound 5. Increasingα2 with fixing α1 increases the GDOF. Increasingα2

increases decodability ofW2c1 while decreasing decodability ofW1c2 andW3c2. As seen in Table I, the weakest

user in this bound is user 1 with power exponent1 − α2. Since user 1 does not achieve the full DOF, rate gain

of user 2 exceeds rate loss of user 1. Increasingα1 with fixing α2 does not change the GDOF from the similar

reason to the case of bound 5.

Things get a little trickier whenα2 < 0.5. Consider Figure 3. On bound 4, the weakest user is user 2 withpower

exponentα2, and hence increasingα1 maintains balance. On bound 2, however, the weakest user is user 3 with

power exponentα1 − α2. Hence, increasingα1 increases signal power of the user who does not achieve the full

DOF, and this results in decrease of the GDOF. Once it hits bound 1 which corresponds to IAN, increasingα1 does

not affect the GDOF. On bound 3, the weakest user is user 1 withpower exponent1−α1. Increasingα1 decreases

decodability of user 1 who does not achieve the full DOF whileincreasing decodability of other user’s messages.

This should result in increase of the GDOF.

V. CONCLUSION

In this paper, the GDOF of 3-user MIMO GIC is characterized. As conjectured in [7], Han-Kobayashi or

Etkin-Tse-Wang-like message splitting achieves the GDOF although generalization of multiple message splitting

is required. Three messages per transmitter suffice in 3-user case, and it implies thatK message splitting would

achieve the GDOF of anyK-user MIMO GIC which satisfies the condition ofM(K − 1) ≤ N . Note that the

GDOF result obtained in this paper essentially impliesO(1) gap to the capacity which is finite, but the exact gap

to the capacity cannot be computed. In finite SNR regime in which the exact constant gap is desirable, degraded

nature does not exist in the channel anymore, and this means that more message splitting would be required to

establish such result.

We definepartially asymmetric GIC which yields valuable insights with manageable amount of computation on

asymmetric GIC with more than two users which has not been well studied in literature. The form of the GDOF

region gives interesting interpretation on interactions among different interferences for the first time in information

theoretic study on interference channel. The methodology in this paper would achieve the GDOF of any MIMO

GIC which satisfiesM(K − 1) ≤ N probably through cumbersome analysis.

The deterministic model is used in this paper as in [7] to facilitate easier analysis for the Gaussian case. The most
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important benefit is the systematic way of determining side information for converse. In Gaussian case, however,

the proof of converse is not as simple as in the deterministiccase due to the fact that the channel output becomes

linear combination of channel inputs. Asymmetric nature ofthe channel requires an approximation which implies

non-trivial generalization of the symmetric case. This approximation using vector entropy inequality can possibly

be used for generalK-user MIMO GIC, but it relies on the fact that the GDOF is not affected by finite gap to the

capacity, and hence, may not be used for analysis in finite SNRregime. This implies that a better upper bounding

technique is required to obtain the exact constant cap to thecapacity.
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