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Abstract—We focus on the following instance of an index
coding problem, where a set of receivers are required to decode
multiple messages, whilst each knows one of the messages a
priori. In particular, here we consider a generalized setting where
they are multiple senders, each sender only knows a subset of
messages, and all senders are required to collectively transmit
the index code. For a single sender, Ong and Ho (ICC, 2012)
have established the optimal index codelength, where the lower
bound was obtained using a pruning algorithm. In this paper, the
pruning algorithm is simplified, and used in conjunction with an
appending technique to give a lower bound to the multi-sender
case. An upper bound is derived based on network coding. While
the two bounds do not match in general, for the special case
where no two senders know any message bit in common, the
bounds match, giving the optimal index codelength. The results
are derived based on graph theory, and are expressed in terms
of strongly connected components.

I. INTRODUCTION

We consider a generalization of the well-known index
coding problem to the multi-sender setting where the senders
are constrained to know only certain messages. As in the
typical setup we have n receivers each requiring some of the
m independent messages in the set M = {x1, x2, . . . , xm},
but in addition, we have S separate senders who know only
subsets of M. The problem is precisely given by ({Ms :
s ∈ {1, 2, . . . , S}}, {(Wr,Kr) : r ∈ {1, 2, . . . , n}). Here,
(Wr,Kr) corresponds to receiver r, where Kr ⊆ M is the
subset of messages it knows a priori, and Wr ⊆ M is
the subset of messages it requires. Furthermore, Ms ⊆ M
denotes messages that sender s is constrained to know. Clearly
Wr ∩ Kr = {}. Without loss of generality, we assume that∪S

s=1 Ms = M, meaning that each message bit is available
at some sender(s).

We define a multi-sender index code for the above setup:
Definition 1 (Multi-Sender Index Code): An index code for

problem instance ({Ms}, {(Wr,Kr)}) consists of
1) an encoding function for each sender s ∈ {1, 2, . . . , S},

Es : {0, 1}|Ms| 7→ {0, 1}ℓs such that cs = Es(Ms),
2) a decoding function for each receiver r ∈ {1, 2, . . . , n},

Dr : {0, 1}(
∑S

s=1 ℓs)+|Kr| 7→ {0, 1}|Wr| such that
Wr = Dr(c1, c2, . . . , cS ,Kr).

That is, each sender encodes its |Ms|-bit message into an
ℓs-bit codeword. The codewords of all senders are given to
all receivers. The total number of transmitted bits is thus
ℓ̃ =

∑S
s=1 ℓs, and ℓ̃ the index codelength for the multi-

sender generalization of the index coding problem. We seek

the optimal (i.e., the minimum) index codelength, denoted ℓ̃∗,
and an optimal index code (i.e., an index code of length ℓ̃∗). In
this paper, we assume that each message bit and each codebit
is binary, but our results hold as long as all messages and
codeletters take values in the same alphabet.

The case S = 1 reduces to the usual single-sender index
coding problem studied in many works [1]–[5]. This general-
ization is of interest, for example, in distributed settings where
senders are constrained to know only part of the entire message
due to, for instance, limited bandwidth between senders for
sharing the messages or decoding errors when downloading
the messages from a central processor. Clearly, a multi-sender
index code for any S > 1 case will also be a code for
the single-sender S = 1 case for the same {(Wr,Kr)})
decoding requirements. But the converse is not true. Hence,
the techniques described here are new, and previous techniques
for the single-sender case do not straightforwardly apply.

This paper also differentiates from other works [1]–[4]
by considering a multicast setup. The classical setup (which
is multiprior unicast) is that each receiver r requires only
one unique message (i.e., each Wr = {xr}), knowing a set
of message Kr a priori. Here we consider the case where
each receiver r knows only one unique message (i.e., each
Kr = {xr}), but requires a set of messages Wr, which can
be a large subset of M. We call this the uniprior multicast
problem; this setup (first looked at in [5]) is motivated by the
multi-way relay channel [6], [7]. For the single-sender case,
the uniprior multicast problem is completely solved in [5],
which interestingly shows the optimal scheme to be linear;
this contrasts with the classical setup where it is known that
linear codes can be sub-optimal [8]. Here we explore the multi-
sender generalization. Note that for both unicast and uniprior
multicast setups, the number of receivers, n, equals the number
of messages, m.

II. GRAPH REPRESENTATIONS

In this paper, we introduce a graphical representation of
the uniprior multicast problem ({(Ms)}, {(Wr, xr)}) to cap-
ture both decoding requirements and sender constraints. This
graphical representation shall be useful for stating and proving
our subsequent results.

A graph G = (V,A) is a tuple of a vertex set V and
an arc/edge set A. We correspond a vertex to each of the
n receivers. An arc (i → j) conveys directional information
from vertex i to vertex j, while an edge (i, j) is undirected. An



(undirected) graph has only edges, while a (directed) digraph
has only arcs; both cannot have self-loops. We represent the
multi-sender uniprior multicast problem as follows.

Definition 2: The decoding requirements determined from
{(Wr, xr)} is represented by an n-vertex information-flow
digraph1 G = (V,A), where (i → j) ∈ A if and only if (iff)
receiver j requires xi, i.e., xi ∈ Wj . The sender constraints
determined from {Ms} is represented by an n-vertex message
graph U = (V, E), where (i, j) ∈ E iff messages xi and xj are
known to the same sender, i.e., i, j ∈ Ms for some s. Note,
both G and U share the same vertex set V .

We denote the optimal index codelength for the problem
represented by (G,U) as ℓ̃∗(G,U).

In the sequel, we work on the simplified model described as
follows: For any index coding problem (G1,U1), we construct
a simplified (G2,U2) by removing every message xi that
is not required by any receiver (meaning that vertex i has
no outgoing arc in G1) from the receivers and the senders;
equivalently, we set xi = ∅. There is no loss of generality
because an optimal index code for (G2,U2) is an optimal index
code for (G1,U1); see Appendix A for proof.

A. Terminology
We will use common graph terminology [9]: A strongly con-

nected component (SCC) of a digraph is a maximal subgraph
of the digraph such that in the subgraph, for any vertex pair
i, j, there is a directed path from i to j and another from j to
i. A leaf vertex in a digraph has no outgoing arcs. A vertex j
is a predecessor of vertex i iff there is a directed path from j
to i. A tree is a connected undirected subgraph with no cycle.

III. RESULTS

The main contribution of this paper is the technique we
propose to obtain a lower bound to ℓ̃∗, which we will show
to be tight in a few cases.

The lower bound and achievability in this paper will be
stated in terms of leaf SCCs in the information digraph G. A
leaf SCC is an SCC that has

• no outgoing arc (i.e., from a vertex in the SCC to a vertex
outside the SCC), and

• at least two vertices (i.e., non trivial).

A. A Lower Bound to ℓ̃∗

The following characterization of leaf SCCs in G is crucial
to our results/techniques. They involve the message graph U :

1) A leaf SCC is message connected iff there exists a path
in U between any two vertices in the SCC, where the
path contains vertices only in the SCC.

2) A leaf SCC is message disconnected iff there are two
vertices in the SCC with no path in U between them.

3) A leaf SCC which is neither message connected nor
message disconnected is semi-message connected, re-
ferred also as semi leaf SCC. Any two vertices in the

1The definition of the information-flow graph defined for the uniprior
multicast problem here (where the arcs capture what the receivers require) is
different from the side-information graph defined for the unicast problem [3]
(where the arcs capture what the receivers know).

message-connected message-disconnecteddegenerated

V ′
S

all m-neighbors of V ′
S

V ′′
S predecessors of m-neighbors

Fig. 1. Example of an index coding problem, diagrammed by super-imposing
an information-flow digraph G (arcs in black) and a message graph U (edges
in red). These graphs illustrate concurrently three leaf SCCs types: (i) message
connected, where there is a (red) path between any two vertices through only
vertices in the SCC; (ii) message disconnected, containing two vertices cannot
be connected with a red path; and (iii) semi message connected, where some
vertices must be connected by a path with vertices outside the SCC. Note,
the semi leaf SCC here is degenerated because we can find two vertex sets
V ′

S and V ′′
S , such that all m-neighbors of V ′

S are predecessors of V ′′
S .

semi leaf SCC is connected by a path in U , but there
exists a vertex pair which must be connected by a path
that includes vertices outside the leaf SCC.

Semi leaf SCCs are also further classified using the follow-
ing property. For a vertex set VS ⊆ V , a vertex i /∈ VS is an
m-neighbor of VS iff there is an edge (i, v) between i and
some v ∈ VS. Then, a semi leaf SCC with vertex set VS, is
said to be degenerated iff

1) VS can be partitioned into two parts V ′
S and VS \V ′

S such
that there is no edge in U across vertices from different
parts, and

2) there exists a vertex subset not in VS, denoted by V ′′
S ⊆

V \ VS, which
• can only have at most one non-leaf vertex (the other

vertices must strictly be leaf)
such that

• every m-neighbor of V ′
S is in V ′′

S or is a predecessor
of some vertex in V ′′

S .
Figure 1 illustrates these different types of leaf SCCs.
We will see later that a lower bound is easily obtained if

G has no leaf SCC. To this end, we propose Algorithm 1 that
breaks all leaf SCCs, such that the leaf SCCs are no longer leaf
SCCs. In the algorithm, we prune a leaf SCC VS by arbitrarily
selecting a vertex v ∈ VS and removing all outgoing arcs from
v; we append a dummy leaf vertex i to a leaf SCC VS by
adding i and an outgoing arc (v → i) from some v ∈ VS to i.

Algorithm 1 has two distinct phases. In phase 1, the
procedure BREAKLEAFSCC is run once to break all message-
connected, all message-disconnected, and some degenerated
leaf SCCs. Phase 2 breaks the remaining leaf SCCs. In step
(iv-a), the choice of leaf SCC for adding edges is arbitrary.
Nevertheless, a proper choice of leaf SCC(s) minimizes the
number of rounds that step (iv) iterates, which we shall see
will then give a better lower bound.

Let Vout(G) denote the number of non-leaf vertices in G (i.e.,
each with at least one outgoing arc). Further, let Nconn denote
the number of message-connected leaf SCCs in G (note that
Nconn for each G is fixed, independent of the algorithm), Nrem
denote the number of leaf SCCs that remain after the initial



Algorithm 1: Breaking all Leaf SCCs
function BREAKLEAFSCC

foreach message-connected leaf SCC do
(i) Prune the leaf SCC;

foreach message-disconnected leaf SCC do
(ii) Append a dummy vertex to the leaf SCC;

while there exists degenerated leaf SCC, with vertex set VS,
do

if the set V ′′
S ⊆ V \ VS contains one non-leaf vertex,

denoted by v′′ ∈ V ′′
S , then

(iii-a) Add an arc from any vertex in V ′
S to the

vertex v′′;

else
(iii-b) Add an arc from any vertex in V ′

S to any
vertex in V ′′

S ;

begin // The algorithm starts here
// Phase 1
Run BREAKLEAFSCC;

// Phase 2: Iteration & optimization
while there exists leaf SCC (only semi SCCs left) do

(iv-a) Select one semi leaf SCC;
(iv-b) Arbitrarily add edges between vertex pairs until
the leaf SCC is message connected;
(iv-c) Run BREAKLEAFSCC;

run of BREAKLEAFSCC in phase 1 (they must be semi leaf
SCCs), and N(iv) denote the number of iterations in phase 2.
We will show (in Section IV-B) that each iteration of step (iv)
always reduces the number of leaf SCCs, and so N(iv) ≤ Nrem.
We now state the main result of this paper:

Theorem 1 (Lower bound): The optimal multi-sender index
codelength is lower bounded as

ℓ̃∗ ≥ Vout(G)− (Nconn +N(iv)). (1)

We will prove Theorem 1 in Sec. IV. As mentioned earlier,
the lower bound is optimized by finding the smallest N(iv).

B. Achievability

Our achievability scheme is based on the construction of
special trees in the message graph U , referred to as connecting
trees, which has all the following properties placed on its
vertex set VT:

1) Each vertex in VT has one or more outgoing arcs in G.
2) Each vertex in VT has no outgoing arc in G to V \ VT,
3) No vertex in VT belongs to any message-connected leaf

SCCs or another connecting tree.
Let Ntree denote the number of connecting trees that can be
found. We will propose a coding scheme that achieves the
following index codelength:

Theorem 2 (Achievability): The optimal multi-sender index
codelength is upper bounded as

ℓ̃∗ ≤ Vout(G)− (Nconn +Ntree). (2)

We prove Theorem 2 in Sec. V. The achievability is opti-
mized by finding the maximum number of connecting trees.

C. Special Cases

Combining Theorems 1 and 2, we conclude N(iv) ≥ Ntree,
and thus the optimal index codelength is found within N(iv) −
Ntree bits. In the following special cases, we have N(iv) = Ntree,
and the lower bound is tight.

Corollary 1: If no leaf SCC remains after running phase 1
of Algorithm 1, then

ℓ̃∗ = Vout(G)−Nconn. (3)

Proof: Since Nrem ≥ N(iv) ≥ Ntree, Nrem = 0 implies that
N(iv) = Ntree = 0.

Corollary 2: If each bit xi in the message set M is known to
only one sender (i.e., the n sender constraint sets Ms partition
M), then the optimal index codelength is given by (3).

Proof: If messages xi and xj belong to some sender s (i.e.
xi, xj ∈ Ms), then there exists an edge (i, j) in the message
graph U . Otherwise, if the messages xi, xj belong to different
senders, it is impossible to have a path between i and j. This
means we have only message connected or disconnected leaf
SCCs, i.e., there is no semi leaf SCC. Thus, Nrem = 0.

Corollary 2 includes the result of the single-sender prob-
lem [5] as a special case. For more examples, we refer the
reader to the extended version of this paper [10].

IV. PROOF OF THEOREM 1 (LOWER BOUND)
We will refer to each vertex i as receiver i (and vice versa),

and xi as the message of receiver/vertex i. The following
lemmas will be useful for deriving the lower bound:

Lemma 1: From any index code, each receiver i must be
able to decode the messages of all its predecessors.

Proof: From every arc (j → i), receiver i must be able
to decode xj . Having decoded xj , receiver i knows the only
a priori message that receiver j has. Therefore, receiver i
must also be able to decode all messages required (and hence
decodable) by receiver j, i.e., Wj = {xk : (k → j) ∈ A}.
Further chaining of this argument shows that receiver i must
be able to decode messages xj of all predecessors j of i.

Lemma 2: For any index code, any receiver must be able to
decode the messages of all predecessors of any leaf vertex.

Proof: Recall that if i is a leaf vertex, then xi = ∅, i.e., it
has no prior message. Consequently any receiver p, regardless
of the prior knowledge Kp it possesses, is as good as the
leaf vertex (receiver) i. Hence p must be able to decode all
messages decodable by receiver i, and the result follows from
the proof of Lemma 1.

A. Sketch Proof of Theorem 1

The key to our lower bound is Lemma 2. Given (G,U),
the idea is to modify G to form a grounded digraph G†—with
the property that every vertex is grounded, i.e., every vertex
is either a leaf vertex or a predecessor of some leaf vertex.
Invoking Lemma 2, any receiver (even those with no prior, i.e.,
Kj = {}) must be able to decode Vout(G†) bits (the messages
of all non-leaf vertices in G†). Hence, any index code—for the
modified problem—must contain at least Vout(G†) bits, i.e.,

ℓ̃∗(G†,U†) ≥ Vout(G†), (4)



U† is the message graph appropriately modified from U .
From a given G there will be many possible G†; the main

difficulty is to find one that gives the tightest lower bound.
Also, care must be taken to enforce that

ℓ̃∗(G,U) ≥ ℓ̃∗(G†,U†). (5)

In Section IV-B, we will prove that Algorithm 1 produces
a grounded G†, meaning that (4) holds; in Section IV-C, we
will prove that G† produced by Algorithm 1 satisfies (5). This
gives

ℓ̃∗(G,U) ≥ Vout(G†). (6)

B. Algorithm 1 Produces a Grounded Digraph

If a digraph contains no leaf SCC, then it is grounded;
see Appendix B for proof. We now show that Algorithm 1
produces a digraph with no leaf SCC, and hence grounded. As
the algorithm terminates after all leaf SCCs have been broken,
it suffices to show that the algorithm always terminates, i.e.,
step (iv) iterates for a finite number of times. This is true if
step (iv) always reduces the number of leaf SCCs.

We first show that any of the steps (i), (ii), and (iii-b) reduces
the number of leaf SCCs by one. In step (i), after removing
all outgoing arcs from some vertex v in a leaf SCC, v and
other vertices in the SCC (each having a directed path to v)
are grounded. In steps (ii) and (iii-b), an arc is added from a
leaf SCC to a leaf vertex. This will also ground all vertices
in the SCC. As any grounded vertex cannot belong to a leaf
SCC, each of these steps breaks the leaf SCC it “operates”
on, thereby reducing the number of leaf SCCs by one.

We now show that step (iii-a) cannot increase the number
of leaf SCCs. Step (iii-a) adds an arc from a leaf SCC (denote
by Gleaf) to some vertex v′′ not in Gleaf. There are three
possibilities: (1) v′′ is grounded. Using the argument for step
(ii), the number of leaf SCCs decreases by one. (2) v′′ is not
grounded and has no directed path to Gleaf. In this case Gleaf
is made non-leaf, and the number of leaf SCCs decreases by
one. (3) v′′ is not grounded and has a directed path to Gleaf.
In this case the SCC Gleaf expands to include more vertices
(including v′′) and arcs. The number of leaf SCCs decreases (if
the expanded SCC is non-leaf) or stays the same (otherwise).

Finally, consider each iteration (iv). Step (iv-b) makes a
semi leaf SCC message connected. This step, only adding
edges, does not change the number of leaf SCCs. When
running BREAKLEAFSCC in step (iv-c), the leaf SCC that
has been made message-connected will be broken in step (i),
and other steps (ii) and (iii) cannot increase the number of leaf
SCCs. So, step (iv) always reduces the number of leaf SCCs.

C. Algorithm 1 Cannot Increase the Optimal Codelength

Now, we prove (5) by showing that each of the steps (i)–(iv)
cannot increase the optimal index codelength, i.e.,

ℓ̃∗(G′,U ′) ≤ ℓ̃∗(G,U), (7)

where G = (V,A) and U = (V, E) respectively denote
information-flow and message graphs before each of the steps
(i)–(iv), G′ = (V ′,A′) and U ′ = (V ′, E ′), after the step.

1) Step (i): Removing arcs in the information-flow digraph
is equivalent to removing decoding requirements for the re-
ceivers. Hence, we have (7).

2) Step (ii): As adding an arc (v → i) and a
dummy receiver i increases decoding requirements, we have
ℓ̃∗(G′,U ′) ≥ ℓ̃∗(G,U). But, Lemma 3 below says that using
any optimal index code for (G,U)—of length ℓ̃∗(G,U)—a
dummy receiver can decode all messages of all message-
disconnected leaf SCCs. Hence, this index code also satisfies
the decoding requirements of (G′,U ′), i.e., ℓ̃∗(G,U) is achiev-
able for (G′,U ′). So, (7) in fact holds with equality.

Lemma 3: For any index code, any receiver is able to decode
the messages of all message-disconnected leaf SCCs.

Proof: Let VS be the vertex set of a message-disconnected
leaf SCC. By definition, we can partition all vertices V into
two non-empty sets V1 and V2, such that two vertices a, b ∈ VS
in the leaf SCC lie on separate partitions and cannot have an
undirected path (in U) between them. Let a ∈ V1 and b ∈ V2.

The lack of edge-connectivity between V1 and V2 implies
that any index code can be partitioned into two parts, c =
(c1, c2), such that every bit in c1 depends on only {xi : i ∈
V1} and not on {xj : j ∈ V2}, and vice versa.

Since a and b belong to an SCC, receiver a must decode xb

(see Lemma 1). Note that c1 (which contains xa) and c2 do
not have any message bit in common. So, knowing xa can help
receiver a decode only messages in c1. Also, receiver a must
decode xb using solely c2, without using its prior. Hence, if a
can decode xb, so can any receiver—even one without prior.
Since the choice of a, b was arbitrary, we have Lemma 3.

3) Step (iii): Recall the vertex subsets V ′
S ⊂ VS and V ′′

S ⊆
V \VS. In step (iii), we append an arc from V ′

S to some vertex
v′′ ∈ V ′′

S . If we can show that receiver v′′ can decode all
messages of V ′

S (using any index code for (G,U)), then by the
arguments for step (ii), we conclude (7) holds with an equality.

By Lemmas 1 and 2, receiver v′′ can decode the messages
of all m-neighbors of V ′

S, denoted as N (V ′
S), as each vertex in

N (V ′
S) is either grounded, a predecessor of v′′, or v′′ itself.

Let a ∈ VS \ V ′
S and b ∈ V ′

S, where a must decode xb. We
will show that if a can decode xb, so can v′′. Consequently, v′′

can decode all messages of V ′
S. There is no edge across V ′

S and
VS \ V ′

S, meaning that any index codebit cannot be a function
of messages from both the sets. So, we can partition any index
code for (G,U) into c = (c1, c2), where c1 does not contain
any message of V ′

S, and c2 contains only the messages of V ′
S

and N (V ′
S). Any advantage in decoding that a has over v′′ is

due to knowing xa, but xa can help a only in decoding the
messages in c1, which a can then use to decode the messages
in c2 (which contain xb). As v′′ is able decode the messages
of N (V ′

S), which contains all the overlap of messages in c1
and c2, v′′ is as capable as a in decoding xb.

4) Steps (iv-a)–(iv-b): Appending an edge (i, j) is equiva-
lent to appending messages {xi, xj} to some sender’s message
set Ms. Doing so relaxes the sender constraints, and thus the
optimal codelength can only decrease. Hence (7) holds.



D. Evaluating the Lower Bound
In each iteration (iv), step (i) is run once through

BREAKLEAFSCC, as step (iv-b) has made only one leaf SCC
message connected. Out of steps (i)–(iii), (iv-a), and (iv-b),
only step (i) changes Vout(·)—reducing it by one. So when
Algorithm 1 terminates, we have

Vout(G†) = Vout(G)−N(i) = Vout(G)− (Nconn +N(iv)), (8)

where N(a) is the number of times step (a) is run. Combining
(6) and (8), we have Theorem 1. ■

V. PROOF OF THEOREM 2 (ACHIEVABILITY)
We now show that there exists an index code of length ℓ̃ =

Vout(G)−(Nconn+Ntree). Let a set of connecting trees be {Tt =
(VT

t , ET
t ) : t ∈ {1, . . . , Ntree}}, and all the message-connected

leaf SCCs in G be {Cc = (VC
c ,AC

c ) : c ∈ {1, 2, . . . , Nconn}}.
Further, let the remaining vertices in G be V ′ = V\{

∪Ntree
t=1 VT

t ∪∪Nconn
c=1 VC

c }. Denote by V ′
out the set of all non-leaf vertices in

V ′. By definition, all VT
t ,VC

c , and V ′ are disjoint.
Our coding scheme is as follows:
1) For each connecting tree (VT

t , ET
t ), we transmit all {xi⊕

xj : (i, j) ∈ ET
t }, i.e., we transmit the network-coded

bits of the associated message pair for each edge. Note
that we transmit |VT

t | − 1 bits.
2) For each message-connected leaf SCC (VC

c ,AC
c ) (which

is edge-connected by definition), we first obtain a span-
ning tree, denoted by T ST

c = (VC
c , EST

c ), where EST
c ⊆ E .

We then transmit all {xi ⊕ xj : (i, j) ∈ EST
c }. Note that

we transmit |VC
c | − 1 bits.

3) For the rest of the non-leaf vertices, we transmit {xi :
i ∈ V ′

out}, i.e., we transmit the message bits uncoded.
Each vertex in the connecting trees and the message-connected
SCCs has at least one outgoing arc. Hence, the coding scheme
generates an index code of length Vout(G)− (Nconn +Ntree).

We can easily verify that the index code can be transmitted,
as each message pair to be XORed is associated with an edge,
i.e., both the message bits belong to some sender.

Finally, we show that each receiver is able to obtain its
required messages. Recall that each receiver i needs to decode
all messages in {xj : (j → i) ∈ A}. Now, each receiver i must
belong to one—and only one—of the following groups:

1) (Connecting tree) i ∈ VT
t : Knowing xi, receiver i can

decode all {xj : j ∈ VT
t } from {xj ⊕ xk : (j, k) ∈ ET

t }
by traversing the tree (which is connected by definition).
It can also decode the messages {xk : k ∈ V ′

out}, sent un-
coded. Since all connecting trees and message-connected
leaf SCCs have no outgoing arcs, each incoming arc to
i must be from either VT

t \ {i} or V ′
out. So, receiver i is

able to decode all its required messages.
2) (Message-connected leaf SCC) i ∈ VC

c : Using the same
argument as that for the connecting trees, we can show
that receiver i can decode all its required messages.

3) (The remaining vertices) i ∈ V ′: Using the argument
in point 1, all incoming arcs to vertex i must come
from V ′

out \ {i}. Since we sent {xj : j ∈ V ′
out} uncoded,

receiver i can decode all its required messages. ■

APPENDIX A
Consider an index coding problem IC1, and denote its

optimal codelength by ℓ̃∗(IC1). Let L be the set of receivers
whose messages {xi : i ∈ L} are not required by any other
receiver. Consider the simplified problem IC2 where xi = ∅,
for all i ∈ L. Denote its optimal codelength by ℓ̃∗(IC2).

Proposition 1: Any index code for IC2 is an index code for
IC1.

Proof: Any index code c for IC2 can also be transmitted
by the senders of IC1. Since c satisfies the decoding require-
ment of IC2, it must also satisfy the those of IC1.

Proposition 2: ℓ̃∗(IC1) = ℓ̃∗(IC2)
Proof: It follows from Proposition 1 that ℓ̃∗(IC1) ≤

ℓ̃∗(IC2). Now consider any optimal index code c∗ for IC1.
By definition it can contain {xi : i ∈ L}. Since c∗ is an index
code, all receivers in IC1 can decode their required messages
when xi = 1 for all i ∈ L (these messages xi are not required
by any receiver). So, c∗ with all xi set to 1 is also an optimal
index code. Denote this code by c′. Now, since c′ does not
depend on the actual contents of {xi : i ∈ L}, c′ can also be
sent by the senders in IC2, and it also satisfies the decoding
requirement of IC2. This means c′ is an index code for IC2,
and hence ℓ̃∗(IC2) ≤ ℓ̃∗(IC1).

APPENDIX B
Given any digraph G, we form a supergraph Gs by “collaps-

ing” each SCC—leaf or non-leaf, with at least two vertices—
into a supernode. First, Gs cannot contain any directed cycle.
Otherwise, all supernodes and vertices in the cycle form an
SCC, and it would have been collapsed into a supernode.
Further, if G has no leaf SCC, meaning that Gs has no leaf
supernode, then every supernode and non-leaf vertex must
have a path to a leaf vertex. This means G is grounded. ■
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