1302.1931v2 [CS.IT] 27 Feb 2014

arXiv

Coding for Combined
Block—Symbol Error Correction

Ron M. Roth,Fellow, IEEE,and Pascal O. VontobeSenior Member, IEEE

0O 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19

Abstract—We design low-complexity error correction coding
schemes for channels that introduce different types of erns
and erasures: on the one hand, the proposed schemes can
successfully deal with symbol errors and erasures, and, orhé
other hand, they can also successfully handle phased burstrers
and erasures.

Index Terms—Decoding, generalized Reed-Solomon (GRS)
code, Feng—Tzeng algorithm, phased burst erasure, phaseditst
error, symbol erasure, symbol error.
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Fig. 1.  Array of sizem x mn with symbol errors/erasures and block
errors/erasures. Hersy = 8, n = 20, and there are symbol errors at positions

2), and (6, 14), a symbol erasure at positidi7, 3), block errors
qumns5 andg, and a block erasure in columi®.

|. INTRODUCTION

Many data transmission and storage systems suffer frqgm
different types of errors at the same time. For example,
in some data storage systems the state of a memory ceII
might be altered by an alpha particle that hits this memory
cell. On the other hand, an entire block of memory cells
might become unreliable because of hardware wear-out. Such
data transmission and storage systems can be modeled b\X/
channels that introduce symbol errors and blaad,(phased
burst) errors, where block errors encompass several canti
symbols. Moreover, if some side information is availablgy s’
based on previously observed erroneous behavior of a srnél'\

Similarly, we say that aymbol erasuréhappens if the
content of a small square is erased and we say that a
block erasurehappens if all small squares in a column
of the array are eras

e can correct such errors and erasures by imposing that
the symbols in such an array constitute a codeword in some
suitably chosen cod€ of lengthmn over F. The two main
gredlents of the cod€ that is proposed in this paper are, on
e one hand, a matrik;, of sizem x (mn) over F, and, on

or of multiple memory cells, this can be modeled as symb
erasures and block erasures. e other hand, a codgof lengthn over F'. Namely, an array

In this paper, we design novel error correction coding)rmz acogevrvcord e |fhand or|1Iy if evt:ary rol\)/v of the arfray 'Sd
schemes that can deal with both symbol and block errors abd:o eword InCc once then columns have been transforme

both symbol and block erasures for a setup as in[Big. 1. y n different bijective mappings™ — F™ derived from
Every small square corresponds to a symbolFin= the matrix H;,. The resulting error-correcting coding scheme

. . . . has the following salient features:
GF(q), whereq is an arbitrary prime power. (In applica- It b tenated codi h h
tions, ¢ is typically a small power of.) « It can be seen as a concatenated coding scheme, however

. All small squares are arranged in the shape ofran n with two somewhat distinctive features. First, multiple
rectangular array inner codes are used (one for every column encoding),

o We say that ssymbol errorhappens if the content of a and, second, all the§e inner codes have rate methe
small square is altered. We say thatlack error happens encoders of these inner codes can be considered to be

if one or several small squares in a column of the array column scramb!ers).
are alterel One can identify a range of code parameters ¢br

for which (to the best of our knowledge) the resulting
redundancy improves upon the best known.
o One can devise efficient decoders for combinations of
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symbol and block errors and erasures most relevant in
practical applications. In particular, these decoders are
more efficient than a corresponding decoder for a suitably
chosen generalized Reed—Solomon (GRS) code of length
mn over F', assuming such a GRS code exists in the first

place. (Finding efficient decoders for the general case is
still an open problem.)

1In our setting, we think of the symbol errors and block errassbeing 2The positions of the erased symbols and blocks are assunbedoi@vided
caused by two different mechanisms. In this model, an oksecannot as side information. Thus, the squares contain element8' ¢éven at the
distinguish a block error from one or multiple symbol erramsthe same erased positions), and some of the erased squares miglat icofatain correct
column. values.
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A. Paper Overview errors—a general solution was given by Zinov'év][39] and

The paper starts in Sectid Il by considering a simplifieginov'ev and Zyablov [[40], using concatenated codes and
version of the above error and erasure scenario and of {hir generalizations. Specifically, when using an (ordipa
above-mentioned code construction. Namely, in this sectigoncatenated code, the columns of the< n array are set to
we consider only block errors and erasuries, no symbol D€ codewords of a linedm, k, d] inner code over”, and each
errors or erasures. Moreover, anx n array forms a codeword of these codewords is the result of an encoding of a coorglinat
if and only if every row is a codeword in some codeof ©Of @n outer codeword of a second lin€fax K, D] code over
length . (i.e., there are no bijective mappings applied to th&F (¢). It follows from the analysis in[39] and [40] that any
columns); in other words, the array code considered is simgi'Tor pattern of up ta} symbol errors and block errors can
anm-level interleaving ofC. Our main purpose of Sectid Il P& correctly decoded, whenever
is laying out some of the ideas and tools that will be used in 20 +1<d(D—27).
subsequent sections; in particular, it is shown how one @ t
advantage of theank of the error array in order to increaseFurthermore, such error patterns can be efficiently decoded
the correction capability of the array code. Nevertheléss, Provided that the inner and outer codes have efficient balinde
discussion in Section I[4C may be of independent interest ¢istance error—erasure decoders.
that it provides a simplified analysis of the decoding error Note that (in the nontrivial case) wheh> 0, the rate of the
probability of interleaved GRS codes when used in certaiiner code must be (strictly) smaller thanThis, in turn, im-
(probabilistic) channel models. plies that the overall redundancy of the concatenated cade h

We then move on to Sectidnllll, which is the heart of thto grow (at least) linearly witm. A generalized concatenated
paper and which gives all the details of the above-mention&dC) code allows to circumvent this impediment. We briefly
code construction and compares it with other code constrigescribe the approach, roughly following the formulatidn o

tions. Finally, Sectiofi IV discusses a variety of decoders fBlokh and Zyablov[[4]. Given a numberof block errors and
the proposed codes. a numbery of symbol errors that need to be corrected, let the

integer sequences

B. Related Work l=dy<di<---<dy,
> D,

The idea of exploiting the rank of the error array when Dop>D;>---
decoding interleaved codes was presented by Metzner an(ii. .
Kapturowski in [24] and by Haslach and Vinck iEﬂ14[j_.__[15].Sa Isty, for everyi =0.1,..., v,
Therein, the code& is chosen to be a linedn, k,d] code 20 +1 < d;(D; — 27) (1)
over F', and, clearly, any combination of block errors can be ,
corrected as long as their number does not ex¢ded1)/2. (thus,Do = 2(r +9) +1 and D, > 27 +1). Fori =
In [24] and [14], it was further assumed that the set of nomzef: 2:---» ¢ |6t H; be anr; x m parity-check matrix of a
columns in the (additive)n x n error array E over F is linear [m, ki:m—ri,d?] code overF'. We further assume that
linearly independent ovef; namely, the rank off (as a these codes are (strictly) nested, so Hat, forms a proper
matrix over F') equals the number of block errors. It was thefi—1 " Sub-matrix oftt;; the matrix formed by the remaining
shown that under this additional assumption, it is possible " —"i—1 Fows ofH; will be denoted by)H; (we formally define
correct (efficiently) any pattern of up té — 2 block errors. o = 0, along with settind, to be an “empty'ro x n matrix).

Essentially, the linear independence allows to easily tiocal €N @mn x n array overr’ is a codeword of the generalized

the nonzero columns i, and from that point onward, the cOncatenated code, if and only if the following two condiso
problem reduces to that of erasure decoding. A generaj'rxatPOId:
to the case where the nonzero columngiare not necessarily (G1) Fori = 1,2,...,v, the (partial) syndromes of the
full-rank was discussed i [15]; we will recall the lattesudt columns with respect to the partial parity-check matrix
in mode detail in SectioR T=A. O0H; form a codeword of a code of lengthover F'" —"i-1

The case where the constituent codeis a GRS code with minimum distanced; ;.
has been studied in quite a few papers, primarily in tH&2) The columns of the array form a codeword of a code of
context where the contents of each block error is assumed lengthn over F* with minimum distanceD,.
to be uniformly drawn fromF™. In [3], Bleichenbacheet (Note that condition (G2) could be incorporated into condi-
al. identified a thresholdgm/(m+1))(d—1), on the number tion (G1) by extending the latter to = v + 1, with H, 4,
of block errors, below which the decoding failure probapili taken as ann x m (nonsingular) parity-check matrix of the
approaches) as d goes to infinity andn/q goes to0. A trivial code {0}. Ordinary concatenated codes correspond to
better bound on the decoding error probability was obtaindlte case where = 1 andDy is the “minimum distance”¥ n)
by Kurzweil et al. [20] and by Schmidet al. [29], [30]. See of the trivial code.) It follows from([39] and [40] that the ake
also Brownet al. [5], Coppersmith and Sudahl[6], Justes#n array code construction has an efficient decoder that dsrrec
al. [16], Krachkovsky and Lee[[19], and Wachter—Zeh any pattern of up ta- block errors and up t@ symbol errors.
al. [34). See also[[1],[T17],[127],[136], and the survey [7].

Turning to the main coding problem studied in this paper— Recently, Blaumet al. [2] have proposed new erasure-
namely, handling combinations of symbol errors and bloaorrecting codes for combined block—symbol error patterns



The advantage of their scheme is having the smallest pessiiol F;,, ,, (v, ) (namely, the powers af index the rows and the

redundancy (equaling the largest total number of symbals ttpowers ofx index the columns). With each colunjrof E we

can be erased) and an efficiezasuredecoding algorithm. associate the univariate polynomi&} (y) = Zhe<m) en,y"

However, the parameters of their constructions are rathus, E(y, ) = 3¢,y Ej(y)2’.

strongly limited: first, the array size is typically much dfea '

thang¢ (and, in one application, must in fact be smaller than Il. SIMPLIFIED CODE CONSTRUCTION

log, q), and, secondly, verifying whether the construction ac- ) ) _ o )

tually works for given parameters becomes intractableessl | In th.IS sect_lon we consider the S|m.pI|f|ed scenario men-

the number of block erasures or the number of symbol erasufi@9€d in SectioL I-A. Namely, we consider only block errors

is very small. and erasures,e., no symbol errors or erasures. Mo_reover, an
In [10], Gabryset al. presented a coding scheme which g xn array forms a_codeword of Ie_ngthn i an_d only if every

targeted mainly at applications for flash memories. In theif 1S @ godeword in some p_resgnbed C‘ﬂ?'“"th para_lmeters

setting, an erroneous column may have at most a prescribé .d] (i.e. there are no bijective mappings app.hed_ o the

number? of symbol errors; and in addition to limiting the total® umns); equivalently, the array code considered is girapl

number of erroneous columns, a further restriction is ammm—level interleaving ofC. If C is specified by arn—k) x n

on the number of columns with at most a prescribed numb%?rity'CheCk matrix, then_the Sy“dro.?”e matrig is defined
¢ (< ¢) of symbol errors. to be them x (n—k) matrix S = YH', where them x n

In Section[1=G we will compare our coding scheme witnatrx

the most relevant of the above-mentioned coding schemes. Y=T4+E

over F' represents the read out (or received) message, where

C. Notation the m x n matrix I" over F' represents the stored (or trans-
Hﬂtted) codeword, and where the x n matrix £ over F
rgpresents the alterations that happeh twver time (or during
etransmission). Note that our formalism treats erasures lik
errors, with the side informatiod’ C (n) telling us their
location.

The subsections of this section are structured as follows.
In SectiondI-A we study the error correction capabilities o
Sthe interleaved array code, wheteis any linear[n, k, d|
code overF. Then, in Sectiof 1B, we present an efficient
decoder for the special case whéris a GRS code. Finally, in
Sectiorl TI=C, we present an application of the efficient diezo
of Section[1[-B for the probabilistic decoding of the array
code under the assumption that the block errors are unijorml
distributed overF™.

This subsection lists the notation that will be used threug
out the paper. More specialized notation will be introduc
later on when needed.

For integerse andb with 0 < ¢ < b, we denote by(a, b)
the set of integerga,a+1,a+2,...,b—1}, and(b) will be
used as a shorthand notation f0r b). Entries of vectors will
be indexed starting dt, and so will be the rows and column
of matrices. For a vecton € F™ and a subselV C (n),
we let (u)y be the sub-vector (i ") of u that is indexed
by W. The support ofu will be denoted bysupp(u). We
extend these definitions to amy x n matrix E over F', with
(E)w denoting them x |W| sub-matrix of E' that is formed
by the columns that are indexed by. Columnj; of E will
be denoted byE;, and supp(E) will stand for the column
support of £, namely, the set of indexegsfor which E; # 0.
The linear subspace df™ that is spanned by the columns ofA. Block Errors and Erasures with Rank Constraints
E will be denoted bycolspan(£). We start with Theoreri]2 below that generalizes the results

The ring of polynomials in the indeterminateover F" will  of [24] and [14] to the case where the set of nonzero columns
be denoted by'[z], and the ring of bivariate polynomials inof the m x n error arrayE are not necessarily linearly inde-

y andz over F' will be denoted byF [y, z|H For a nonzero pendent. Note that this theorem was already stated (without
bivariate polynomial(y, z) = -, i(y)2" in Fly,x], we will - proof) in the one-page abstract [15] for the error-only case
let deg,, (y, =) stand for ther-degree ofp(y, ), namely, the (i.e., no block erasures). We include the proof of the theorem
largest index for which ¢;(y) # 0. The y-degree is defined not just for the sake of completeness, but also because the
in a similar manner. The notatioR,, ,,(y,z) will stand for proof technique will be useful in Sectignllll as well.

the set of all bivariate polynomialg(y,z) € F[y,x] with  Toward proving this theorem, the following lemma will be
deg, p(y,z) < m anddeg, p(y,z) < n. For an element helpful.

¢ € F, we denote byl (y; &) the polynomialzl.am> .

With any m x n matrix £ = (en j)ne(m),je(n) OVEr F, we Lemma 1 LetC be a linear|n, k,d] code overF and let Z
associate the bivariate polynomial be a nonzeron x n matrix over F' such that each row irZ

o is a codeword of’. Then
Ey,z)= >  enjya’
he(m),j€ (n) Isupp(Z)| —rank(Z) >d —1.

Proof: Write J = s Z), t = |J|, andu = rank(2),
SWe prefer the ordering;, = over =,y because the powers af and the J upp( ) |J| N ( )

powers ofz will be associated with, respectively, the rows and colurahs and apply t_he Singleton bound to the linaru, >d| code
m x n matrices likeE. over F' that is spanned by the rows 0F) ;. [ |



Theorem 2 LetC be a linear[n, k, d] code overF’ and letH introducing an efficient algorithm for decoding upttec d —2
be an(n—k) x n parity-check matrix of” over F'. Fix K to errors. In that algorithm, Gaussian elimination is perfechon
be a subset ofn) of sizer. Given anym x (n—k) (syndrome) the columns ofS, resulting in anm x (n—k) matrix SPT,
matrix S over F, there exists at most on@ x n matrix £ for some invertible(n—k) x (n—k) matrix P over F', such

over F' that has the following properties: that the firsty columns inSPT form a linearly independent
() S=FEHT ,and set while the lasti — k — i columns inSPT are all-zero. (As
(i) writing K = (n) \ K, the values = |supp ((F)«)| and & matter of fact, through this Gaussian elimination, onesfind
W= rank((E)f) satisfy trr:e value ofi.) From condition (i) in Theorerml 2 we then get
2A4+r<d+p—2. (2) hat
SPT = E(PH)". 4

Proof: We consider first the case whekéis empty. The
proof is by contradiction. So, assume thatand £ are two Let H' be the (n—k—pu) x n matrix that is formed by the
distinctm x n matrices ovetr” that satisfy conditions (i)—(ii). last n — k — u rows of PH. It follows from (4) that the
Write columns of H’ that are indexed byupp(F) must be all-
; _ max{|supp(E)| |supp(E)|} zero. Furthermore, all the remaining coI_umnsHh must be
max ’ A ’ nonzero, or else we would haye+ 1 < d linearly dependent
fimax = max {rank(E), rank(E)} , columns inH. It follows thatsupp(E) is the unique subset
U C (n) of size u such that(H')y is all-zero. Once the

and define decoder identifiesupp(E), the entries ofE can be found
J =supp(F) , by solving linear equations. This decoding algorithm can be
J = supp(E) generalized to handle the case where= |K| > 0, in the
. spirit of the last part of the proof of Theorelm 2: replaEe
Q = supp(E) Nsupp(E) . H, andS by (E)%, H, andS, respectively.
Consider the array = E — E. By condition (i) we get that AS pointed out in[[15], whetk’ is empty and the difference
every row inZ is a codeword of’. Now, t—p= |sgpp(_E)| —rank(E) is assume_d to be equal to some
. nonnegative integeb, then the decoding algorithm of [24]
lsupp(Z2)| < |J|+[J] —[Q] and [14] can be generalized into finding a subi$et (n) of
rank(Z) > pimax — Q| , sizet < (d+p)/2—1 such thatolspan((H')y) (C Fn=k=#)
has dimensiorb. Letting V' be a subset ot/ of size b such
and, so, thatrank((H')v) = b, the subset¥ = U\ V will then point
Isupp(Z)| — rank(Z) < |J| + || = ftmax att —b = p columns of E' that form a basis o€olspan(E);

thesen columns, in turn, are flagged aserasures. We will
then be left withjsupp(F)\ W| = t — u = b nonzero columns
<d-2, in E which are yet to be located, but these can be found

where the last inequality follows from condition (ii). Henc by applying to the received array, row by row, any bounded-
by Lemmdl we conclude tha = 0, namely,E = £, which distance error—erasure decoderfor C. Indeed, since
is a contradiction to the initial assumption. o

Next, we consider the case where= |K| > 0. First, note Btp=2-psd=2,
that condition (ii) implies that < d+u—2 -2t <d—t— such a decoder can uniquely recouBr given the setW
2; in particular, every subset of columns inH is linearly of erasure locations. The extension to= |K| > 0 is
independent. By applying elementary linear operation$io tstraightforward.
rows of I, we can assume without loss of generality that the Note, however, that even when we are allowed to apply the
first r rows of () contain the identity matrix, whereas thegecoderD at no computational cost, we do not know how
remainingn—k—r rows in (H)x are all-zero. Letfl be the 1o find the subset/ efficiently asb becomes large. In fact,
(n—k—r) x (n—r) matrix which consists of the last—k—7 if j is large andu is small, we may instead enumerate over
rows of (H)z: the matrix H is a parity-check matrix of the the setiV’ which indexes a basis aflspan(E), then useD

linear [n—r, k| codeC over " obtained by puncturing on the to reconstruct a candidate fdt, and finally verify that we
positions that are indexed by. Let S be them x (n—k—r)  indeed haveank(E) = rank((E)w) = p.

matrix which consists of the last— k& — r columns ofS. We
have

S 2tmax — Mmax

B. The GRS Case

In this section, we present an efficient decoder for finding
Replacing (i) by[(B) and by C, we have reduced to the casghe error matrixe under the conditions of Theordrh 2, for the
where K is empty. The result follows by recalling that thespecial case wher€ is a generalized Reed—Solomon (GRS)
minimum distance ot is at leastd — r. B code (this decoder will then be used as a subroutine in one
The proof of Theorerl2 in[24] an@[1L4], which was for theof the decoders to be presented in Seclioh 1V). Specifically,
special case = 0 andp. = ¢ = |supp(F)|, was carried out by hereafter in this section, we fi& to be an[n, k, d=n—k+1]

S=(BE)gH". ®)



GRS codeCqrs over F' with a parity-check matrix Now, let A\(x) andw(y, ) satisfy (P1)—(P2), fiX to be any
i index in J, and letU be a subset of/ of size i such that
Hgrs = (O")iew 1),j€(n) ¢ € U andrank((E)y) = p (recall thatJ C supp(E) and,
where ag, a1, ..., a1 are distinct nonzero elements &f SO E¢ # 0). Leta = (an)ne(m) be a row vector inf™ such
(without real loss of generality, and for the sake of simipfic that(aE)u is nonzero on—and only on—positian
we restrict ourselves here to GRS codes where the columrk-et J be the smallest subset ¢#) such that

multipliers—as defined in[26, p. 148]—are all. _ J C supp(aB) C KU J ;
Let E = (en,j)he(m),je(n) D€ @anm x n (error) matrix over

F, and letK and.J be disjoint subsets ofn) such that note that/ € J and that/ C {¢} U (J \ U) and, so,lJ| <
J Csupp(E) CKUJ t — p+ 1. Define
(the setJ indexes the erroneous columns akidindexes the Az) = [[(1 = ay2)
erasure locations). For the matrik, define the syndrome jed
array as the followingn x (d—1) matrix S (equivalently, the Olx) — 1 QO
bivariate polynomialS(y, ) € Fp,.a_1(y,z)): () = I (1-az) Z an$dn (@)
T " eU\{£} he(m)
S = EHggs
_ - N _ = > (aB) J] (Q-oy2),
(compare with condition (i) in Theorefm 2). In addition, defin jeKUJ J (KU}
the error-locator polynomialA(x) and the erasure-locator o
polynomialM(z) by o(z) = ;)ahah(ﬂ ’
he(m
A(z) = H(l —a;x) , o(z) = Z anwn (@) .
et he(m)
M(z) = 1—a
(@) Jg(( ) Observing thats(x) is the modified syndrome polynomial

that corresponds to the row vectair, we get from the key
respectively. Also, let the modified syndrome array be thguation of GRS decoding that

unique m x (d—1) array o over F' (namely, the unique R R
bivariate polynomiab (y, ) in F,, 4—1(y, «)) that satisfies the Az)o(z) = Qx)  (mod 2971) . (5)
polynomial congruence

i Moreover,
o(y,z) = S(y,z) M(z mod z¢7 ) . . )
. ( . ) . e M) ) . ged(A(z), Q(z)) =1, (6)
Finally, the (bivariate) error-evaluator polynomidly, z) =
> hemy n(z)y" is defined by de e
degh(z)=|J|  <t-p+1 <=L @)
Z €h,j H (1—ajx), he(m). d—2—|—r
JEKUT jre(KUI\{s} deg Qz) < [K|+ || <r+t—p+1< g )

Lemma 3 Write t = |J|, r = |K|, andyu = rank((E),), and Multiplying both sides of[{5) byA(z) we obtain
suppose that ) R
A@)\(z)o(z) = Mz)Q(z)  (mod z971) .
A+r<d+p—2

L On the other hand, by (P1) we have
(see [@)). Let\(z) be a polynomial inF[z] and w(y,z) =

Zh€<m> wn(z)y" be a bivariate polynomial (of-degree less Mz)o(z) = &(z)  (mod z%71)
than m) in F[y,z| such that the following conditions are
satisfied: and so, combining the last two congruences, we get
(P1) o(y,2)A\(z) =w(y,z) (modz?""), and A@)o(z) = M2)Q(z)  (mod 2971) .
(P2) deg A(z) < (d+p—7)/2 -1 and
deg, w(y,x) < (d+p+r)/2 -1 . Now, from (P2) and[{7)£{8) it follows that the degrees of the
Then there is a polynomial(x) € F[x] such that products on both sides of the last congruence are less than

d—1. Hence, this congruence is actually a polynomial equality:
Az) = Aa)u(z) © CONOMENEE TS ety a pomomia catty

w(y, z) = Uy, z)u(x) . A(z)a(z) = Ma)Q(z) .

Proof: First, by the key equation of GRS decoding, ifThus, from [6) we get that(z) is divisible by A(z); in
is known that (P1)—(P2) are satisfied fafz) = A(x) and particular, \(z) is divisible by 1 — «yz. Ranging now over
w(y,z) = Qy,z) (see, for example[[26, Section 6.3 andll ¢ in J, we conclude thad(z) can be written as\(z)u(x)
pp. 207-208)). for some polynomiak(x) € F[z].



Finally, from (P1) and the key equation we obtain

Input:
w(y, x) = oy, x)\(z) o Array Y of sizem x n over F.
= o(y, z)A(z)u(x) . S.etK of sizer of indexes of column erasures.
B e Steps:
= Qy, x)u(z) (mod z°7), 1) Compute then x (d—1) syndrome array
from which the equalityw(y, =) = Q(y, x)u(z) follows again S =Y Hlns .
by computing degrees: from (P2) we get

2) Compute the modified syndrome array to be the unigqug
d+p+r 1<d—1 (d—1) matrix o that satisfies the congruence:

deg, w(y,r) <

2 _ d—1
and o(y,z) = S(y,z) M(z) (modz" "),
where
deg, (Q(y, z)u(x)) N )
= deg, Uy, x) + (deg \(z) — deg A(x)) (@) = ]g{( — ) .
< degA(z) +r 5
Let 1 be the rank of then x (d—1—r) matrix S formed by
< d+p+r 1 the columns ofr that are indexed byr,d — 1).
- 2 3) Using the Feng—Tzeng algorithm, compute a polynomial)
<d-1. of (smallest) degreeA < (d+p—r)/2 — 1 such that the
. following congruence is satisfied for some polynomidl, =)
This completes the proof. [ ] with deg, w(y,z) < r + A:

Fix J and K to bedisjoint subsets of(n), write t = |J|

d—1
andr = |K|, and letE be anm x n matrix of ranky over )

o(y,z)\(z) = w(y,z) (mod z

F such thatJ C supp(E) C K U J. Define If no such\(z) exists or the computed(x) does not divide
- [Ic(ny (1 — ajz) then declare decoding failure agtop.
S = (E), ((Hers)J) 9 4) Compute then x n error arrayFE by the following variant of
q Forney’s formula for error value§ [26, p. 195]:
an
—ojw(yarl) “1
T A . =
SUY) = (B)k ((Hars)k ) - (10) A’(ail)-M(ail) it Ala;) =0
E. = —ojw(y,0; ) . ,
Clearly, the syndrome arra§ that corresponds t@ can be W) 7A(a;1)_M/(;;1) ifjekK
decomposed into 0 otherwise
S =8 455 where(-)" denotes formal differentiation.
Output:

and after multiplying the respective bivariate polynorsibly
the erasure-locator polynomial(z) = [];cx (1 — a;z), we
get

o Decoded arrayy” — E of sizem x n.

Eig. 2. Decoding of anm-level interleaving of a GRS code. (See Sec-

o(y,z) = S(y,z) M(x) tion IT-B])
= SD(y,z) M(x) + S (y, 2) M(z) (mod z471) .
(11) (whereM(aj‘l) # 0 since K NJ = ). Hence, under the

Now, recall (from the key equation) that the coefficients aissumption that < d — 1 —r (which, in fact, holds whenever
o am 2?2 in SUO(y, 2) M(x) are all zero, which 2t + 1 < d+ u — 2) we get thatrank((AMHGRs)J) =t It
means that the respective coefficientssify, z) are equal to now follows from [I2) that
those inS/) (y, 2) M(x).

Let S denote then x (d—1—r) matrix colspan((£) ) = colspan(S) (13)
S = (Oh,i)he(m)icird—1) - (provided that < d —1 —r); equivalently, for everys € F'™,
It follows from (@)-[T1) that a(E);j=0 <= aS=0.
G T -
S=(E)s((AmHcrs)s) (12) " 1n particular, rank((E) ;) = rank(S). In fact, everym x s

where Ay is a (d—1—r) x (d—1) matrix over F’ whose first Sub-matrix ofS which consists o > ¢ consecutive columns

row consists of the: + 1 coefficients ofM(z) in decreasing Of S has the same rank a%).

order (padded witli—2 —r zero entries), and each subsequent Given o(y,z) = 2, ., on(2)y" and the number of
row is obtained from its predecessor by a shift one position €rasuresr, we can use the Feng-Tzeng algorithm [9] (see
the right (compare{12) with13)). Hence, any column indexe?iso the related algorithms ifDL8]|:ﬂ35_]|:ﬂ31]:[|38]) to find
by j € J in the (d—1—r) x t matrix (Ay Hgrs)s takes the efficiently a polynomial\(z) = 377~ A" in F[z] of smallest
form degree A such that (P1) is satisfied for some&(y,z) =

> he(my Wn(®)y" wheredeg, w(y, =) < r+A. In other words,

T —1 2 d—2—r\T
af - M(a; ') - (Lajaj ... af ) for every h € (m), the sequencéoy, i);c(rqa—1) Satisfies the

J J



TABLE |

linear recurrence TYPES OF ERRORS AND ERASURES UNDER CONSIDERATION
A
Z)‘iafw’—i =0, r+A<j<d-2. ‘ H error erasure
i=0
Under th; assumption that +r < d + 2, we get from (11) (T2)
P T K= 2 9 block column set7 column setC
Lemmal3 that the polynomial(z) found equals the error- |7 =7 K| =p
locator polynomialA (z) (up to a normalization by a constant).
From the roots of\(z) one can then recover the sét (T3) (T4)
. . . . . symbol location setl location setR
The decoding algorithm is summarized in Figd. 2. Next, IC| =0 IRl = o
we analyze its complexity. The syndrome computation step

(Step[1 in the figure) can be carried out usitfdmn)

operations inF. Step[2 require®)(drm) = O(d*m) oper-

ations to compute (y, z) andO(dm - min(d, m)) operations Form > d — 1, this bound is (considerably) better than those

to compute the ranlu. The application of the Feng—Tzenggiven in [3] and [20], and is comparable to that in1[29].][30]

algorithm in Ste B require®(d?>m) operations, and, finally, whenm is much larger than.

Step[# require$)(dn) operations for the Chien search and

O(d*m) operations for computing the nonzero columns of m

E. Overall, the decoding complexity amounts €(dmn) ] ) ]

operations for syndrome computatiof{dn) for the Chien We come now to the main code construction of thls_ paper,

search, anaD(de) for the remaining steps. .namely. the code copstructldb = (C, Hin) t_hat was outllned
We note that Lemmi 3 and the decoding algorithm in Eig.!8 Section. In particular, SectidnTIlJA gives all the disa

apply also to the more general class of alternant codes oféthe channel model and the code construction, SeCfioBlI1l-

F, with d now standing for the designed minimum distance d'€sents the error and erasure correction capabilitieshef t

the code. Specifically, we apply the lemma and the decodifgde: and Section ITHAC discusses a variety of examplesdbase

algorithm to the underlying GRS code over the appropriaf® Specific choices for the code and the matrixH;,, and

extension field ofF: that GRS code has minimum distanée Compares them with alternative code constructions. (Diegod

and contains the alternant code as a sub-field sub-code. algorithms forC will be discussed in Sectidn 1V.)

. M AIN CoDE CONSTRUCTION

C. Application to Probabilistic Decoding A. Channel Model and Code Definition

We next provide an application of the efficient decoding e consider the following channel model. Anx n array
algorithm of Fig.[2 for the following channel model: anp gyer £ is stored (or transmitted), anid is subject to the

m x n transmitted array over is subject to at most a fo|1owing error and erasure types (see also Table | andTig. 1
prescribed number of block errors (and no erasures), suc 1) Block errors:a subset of columns it that are indexed
that the valuei(e., contents) of the block error in each affecte by J C (n) (.:an be eIToneous

column is uniformly distributed ovef . mc_:lependentl_y of the (T2) Block erasuresa subset of columns ifi that are indexed
other block-error values. (Note that in this formulationtiog
by K C (n) \ J can be erased.

channel, there is a probability @f¢™ that an affected column i Lo .
o P . (T3) Symbol errors:a subset of entries ift that are indexed
will in fact be error-free; we have elected to define the clghnn by £ C (m) x ({n) \ (K U J)) can be erroneous.

this way in order to simplify the analysis.) . )
. . . (T4) Symbol erasures subset of entries ifi that are indexed
We consider the decoding problem given that thex n by R C (<m> x ({n) \IC)) \ £ can be erased.

transmitted array belongs to the code described in SddiBh | _ .
namely, anm-level interleaving of arjn, k, d=n—k-+1] GRS Let them x n matrix £ over F' represent the alterations that

code overF'. Let J be the index set of the columns that wer82ppen td” over time (or during transmission). Then the read
affected (possibly by an error-free block error), whefe< ¢, ©ut (Or received) message is given by thex n matrix

and let, be the rank of the error array. The decoder of T=T+6&

Fig. [2 will fail to decode (or will decode incorrecthynly

when the inequality in Lemmhl 3 is violated, namely, onlpver . Note that our formalism treats erasures like errors,
whenp < 2|J| — d + 1. Under the assumed statistical modewith the side informationC and R telling us their location.
on the error arrays, it is easy to see that (Of course, the setg and £ are not known to the decodar

riori.
Prob {rank(F) < p} = Prob {rank((E)./) < p} e - (7] p = IKl, 9 = |£], and g = [R]. The
= ¢ U= (1 4 0(1)) total number of symbol errors (resulting from error typeg)(T

(see [22, p. 699]), where(1) is an expression that goes tcand (T3)) is at mostm + ¢ and the total number of sy_mbol

0 asq — co. Hence, whenn > d — 1, the decoding failure €rasures (resulting from erasure types (T2) and (T4))st-
probability of the algorithm in Figl]2 is bounded from above?: hence, we should be able to correct all error and erasure
up to a multiplicative factoil + o(1), by types (T1)—(T4) (when occurring simultaneously) whilengsi

a code of lengthmn over F' with minimum distance at least

—(m+d—1-2|J|)(d—1—|J —(m+d—1-2t)(d—1—t
( 7 < g . . m(27+p)+29+ 0+ 1. However, such a strategy does not take

q



into account the fact that errors of type (T1)—(T2) are a@gn types (T1), (T3), and (T4), with the respective setsJ, L,
across then rows of them x n arrayl'. The next construction and £ satisfying

is designed to take advantage of such an alignment.
27—max S d—2 )

Definition 4 LetC be a linear[n, k, d] code overF', and let 2max +0 <01,

H;, be anm x (mn) matrix overF' that satisfies the following \where
two properties for some positive integé&r

(a) Every subset o6 — 1 columns inH;, is linearly inde- Tmax = max{|.J,| 7]},

pendent (namely;,, is a parity-check matrix of a linear Dmax = max{| L], |L[},
code overF' of lengthmn and minimum distance at |ea5tandg — |R| (the symbol erasure s@& is the same for both
5),.§1nd & and éf). We will have reached a contradiction once we have
(b) writing shown that€ — £ is a codeword ofC if only if £ =¢.
Hy=(Ho |Hi|...| Hoot ), Let Z be them x n matrix
with Hy, Hy, ..., H,_; beingm x m sub-matrices of Z = (Ho(&—&) | Hyi(&-&1) | |Hn—1(5"—1_5"—1)) :
Hi,, eachHj is invertible overF. Observe that since the matricé%,, Hi,...,H,_, are all

GivenC and H;,, we defineC = (C, H;,) to be the linear invertible over I, we get that a column i is zero if and

[mn, mk] code overF which consists of alln x n matrices only if it is zero in& — &; in particular,Z = 0 if and only if
& =¢&. Write

L= (To|[Ty|...[Tn) Q =supp(-E)\(TUT),

over F' (whereI'; stands for columry of I') such that each

row in namely, the se indexes the columns af — £ that contain
errors of type (T3) and (possibly part of) the erasures of
= ( Hol'o | HiT'1 | ... | Hocalpy ) (14) type (T4). For eachj € Q, denote byw; the number of
, nonzero entries i; — £; (that is,w; = |supp( (& = ENT)-
is a codeword ot. 5 The total number of nonzero entries 6 — €)q satisfies:
One can view the cod€ as a (generalized) concatenated Z w; <|[LULUR| < 2Wpax +0<0—1.
code, where the outer code is anlevel interleaving ofC, ico

such that ann x n matrix i .
Consider the respective columns h

Z-:H-(Ej—fjj)7 jeQ

over [ is an outer codeword if and only if each row i EachZ; is a nontrivial linear combination af; columns of

belongs toC. Each column inZ then undergoes encoding byy. and obviously, for distinct mdexeysthese combinations
an inner encoder of rate one, where the encoder of coljim

ol e ) " fhvolve disjoint sets of columns aff;,. Recalling that every
is given by the bijective mapping; — H; " Z;. subset ofy>..ow; (< 6 — 1) columns in H,, is linearly
independent, we thus get that the set of column§Ajfy is
B. Error Correction Capabilities linearly independent, that is,

This subsection discusses what combinations of errors and rank(Z) > rank((Z)o) = 19| .

erasures of the types (T1)—(T4) can be handled by the co
C = (C, Hy,) that was specified in Definitidn 4. 8” the other hand,

Z=(2Zo| %] | Zur)

Isupp(2)| < |T|+ |1+ Q] < 27max + Q] < d —2+Q)|
Theorem 5 There exists a decoder for the codé that
correctly recovers the transmitted array in the presence OP

errors of types (T1)—(T4) (which may occur simultaneously) |supp(Z)| —rank(Z) <d—2.
h = ,p (= 1K), 9 (= |£]), andp (= |R .
\évatzasr;svew (= 17D, p (= IKD). 9 (= |£]), and ¢ (= [R]) Hence, we conclude from Lemrbh 1 that each ro inelongs
to C only if Z = 0. Equivalently,& — & belongs toC if only
2r+p<d-2, if £=¢, as promised. [ |
20+ 0<d6—1.

Remark 6 We draw the attention of the reader to the con-
Proof: Using puncturing as in the proof of Theor&in 2, ilition on 7 and p in Theorenlh, namely, that the expression
suffices to prove the theorem for the case whéris empty, 27 + p be at mostd — 2, rather than the (more common)
i.e., there are no erasure events of type (T2). requirement that it be at mogt— 1. It is this slightly stronger
The proof is by contradiction. So, assume thaandé are condition that, implicitly, provides the required redundg for
two distinctm x n matrices that correspond to error events gforrecting the (additional) symbol errors and erasures.[]



Remark 7 Theorem[b indirectly implies a dependence ahat contains only two nonzero entries. Therefdfecannot
the correction capability of errors of type (T3)—(T4) on théave a decoder that corrects all one-symbol error pattéins.
parameterm, which, in turn, is part of the specification of

the errors of type (T3)—(T4). Specifically, the largest plolss Examples

value for$ can be the minimum distance of any linear code

of lengthmn and redundancy. over F'. Of course, one may
re-arrange the array by grouping together non-overlapgpéts
of s columns, for some integar> 0, to form anm’ x n’ array

wherem’ = sm andn’ = n/s (assuming the latter ratio is an h o A ith table choice f
integer). The block errors and the symbol errors will remaﬁlfat the constructiol€ can offer (with a suitable choice for

so also in this modified setting, except that the block errcjsagd Hi“)l EMDE?GS W'tr? the same Ieh%gt_h a,:?gssae.
will be more structured than just being phased with resp gy =xampie an , WE ShOw Cases Wheres

to the (new) parameter’. If this additional structure is not (in f_act, GRS), and, in contrgst, we exhibit in Examplé 13 a
taken into account, the cod@ is bound to be sub-optimall choice of parameters for which no MDS code can have the

same length, size, and symbol-block correction capalakty

C. In Example$I4=16, we demonstrate the advantages of the
c(%de(C over other existing alternatives for handling errors of
types (T1)—(T4), such as concatenated codes and generalize
concatenated (GC) codes.

In this subsection, we consider various special choices for
C and H;, and demonstrate the properties of the resulting
codeC = (C, Hy,). Specifically, in Examplé_10 below, we
discuss complexity advantages, in an error-detectiorngett

Remark 8 In contrast to the previous remark,sif is (much)
larger than the redundancy needed from a linear code
length mn and minimum distancé as in Theoreni]5, we
may partition each column in the original array intonew
columns, thereby forming am’ x n’ array, wheren’ = m/s

;o 2 :
andn’ = sn, such thatn’ is (just) the redundancy reqwredq+1. Here, we can take to be an MDS code oveF and Hy,

from a Imear_ cer-of lengthn and minimum distance. to be a parity-check matrix of an MDS code ovér Under
Of course, this will increase the number of block errors by a

f S - such circumstances we have=n — k+1 andé = m + 1,

actor of s, yet as long a&’ is sufficiently small to allow us to hich that it suffices that the si 9. and i

use a maximum-distance separable (MDS) code& fas will which means that it suffices that the sizeg, v, and satisfy

be the case in the examples in Secfion 1lI-C), we will obtain 2r+p<n—k—1,

a gain in the redundancy: it will reducg fr0@7+p)m+m 2W+o<m.

to (27 + p)m + m/. Thus, the codeC is suitable for (the

rather practical) scenarios where the number of symborgrrd he redundancy of, beingm(n — k), is then the smallest

is relatively small compared to the block-error length [0 possible for this correction capability: since the totatmer of
symbol errors can be as largeras + ¢ and the total number

Remark 9 One may speculate whether Theoréin 5 holds f@f Symbol erasures isp + o, by the Reiger bound [([21],

the following more general definition @: instead of requiring [25]) we need a redundancy of at least2r + p) + 20 + o

that each row ofZ in (I4) be a codeword of, require that Symbols overF' in order to be able to correct all error types

Z belong to a lineafn, k, d] code overGF(¢™), where each (T1)-(T4). Admittedly, the same performance of correction

column of Z is regarded as an element of the latter field withapability versus redundancy can be achieved also by aesingl

respect to some basis of that field owv@r It turns out that linear [mn, mk] MDS code C over F* (which exists under

Theorem[b doesot hold for this more general setting, aghe assumption thatin < ¢ + 1). However, as pointed out

Example 10 We consider first the special case whete <

shown by the following counterexample. earlier, the use of such a codedoes not take into account
Letd = 2 (i.e, 7 = p = 0). Assume that, < ¢ — 1 the alignment of error types (T1) and (T2) across the rows
and letCy, Cy,Cs, ..., Cn_1 be anyn distinct powers of an Of the receivedn x n array. It is this alignment that allows

m x m companion matrix of some irreducible polynomial ofC to achieve the same correction capability using a a6de
degreem over F' [22, p. 106], whereCy = I (the m x m Which ism times shorter thar€. While we still need forC

identity matrix). Then the parity-check matrix7;, of an MDS code of lengthnn,
the redundancy of the latter code needs to be eon)yather
{Zz(Zo|Z1|...|Zn1) : chzj.:o} thanm(n — k). .
jem) To demonstrate the savings th@t may offer compared

_ ) R to C, consider the simple problem of verifying whether a
is a linear(n, n—1,2] code oveiGF (¢™) (with the columns of 4iven 1, % 1, array I belongs to the code (namelgetecting
eachZ being the codeword coordinates). The respective Coafﬁether errors have occurred). When usiigve will regard

C would then be written as I" as a vector of lengthun over F and the checking will be
- . B carried out through multiplication by afm(n—k)) x (mn)
{F =(To[Ti] | Tamr) Z CiH;T; = 0} ' (systematic) parity-check matrix , thereby requiring up to
J&(m 2m?k(n — k) operations (namely, additions and multiplica-

If 6 > 3 then the2m columns ofHy, and H; are all nonzero tions) in F. In contrast, when usin@, we will first compute
and distinct. Therefore, we can seleCi # I so that the the arrayZ as in [14) while requiring less tham?(n — 1)
first column (say) inC1H; equals the first column (say) inoperations inF" (one of the matriced?; can be assumed to
Hy = CyHy. Yet this means that there exists a nonZére C  be the identity matrix); then we will compute the syndrome



of each row ofZ, for which we will need up t@mk(n — k)
operations inF'. O

Example 11 Suppose thatnn < ¢ — 1 and select to be an
[n, k, d=n—k+1] GRS codeCgrs over F' as in Sectiof I-B.
For everyj € (n), let

Hj = ( ] )he(m>,m€<m) ’
such that the elements, ; are distinct and nonzero ifi for all
k € (m) andj € (n); the respective matrixii, = (H;);e(n)
is then a parity-check matrix of dmn, m(n—1), m+1] GRS
code overF'. Given anym x n matrixI' = (T'x ;) ce (m),je (n)
over F, the entries of,;I'; are given by

(HiTj)n= Y Tu;Bl;, he(m).
KE(m)

(Recall the definition of"; from Definition[4.) HenceT is in
C = (C, Hyy,) if and only if

> > TejaiBl; =0,

KE(m) jE(n)

he{m), ie(d-1).

(Note that if 3, ; depended only om, thenC could be seen
as a two-dimensional shortening of a two-dimensional cyclé
O

code; see, for example[28].)

Example 12 We show that sometimes the constructionn
ExampleIl is an MDS code. Assume therein thatlivides
g — 1 and that for everyj € (n), the multiplicative order of
a; divides(g—1)/m (thus, eachy; hasm distinctmth roots
in F'). For everyj € (n), selectfy ;,f1,j,.-.,Bm-1,; t0 be
the distinct roots oty; in F. ThenI' € C if and only if

SN T =0, he(m), ie(d-1).
rRE(m) jE(n)

The latter condition, in turn, is equivalent tb being a

10

a (possibly extended) GRS code. For the sake of simplicity,
we will consider in these examples only the block—symbol
error-only casei.e., no erasures are present.

Example 14 Given positiver, 9, n, and F = GF(q) (such
that2r+2 < n < q), we takeH;, to be a parity-check matrix
of a (possibly extended) shortened BCH code of length
over F', wherem is determined by, n, andq to satisfy the
equality

m=1+ [% (20 — 1)—‘ : [logq(mn)—‘

(so mn may be larger tham; see [26, p. 260]). The codg
is taken as a (possibly extended) &, d] GRS code overF’
whered = 27 + 2. The overall redundancy o = (C, Hi,)
is then

@2r+1)m=2rm+1+ [% (29 — 1)—‘ : {logq(mn)—‘ .
(15)

The first term27m, on the right-hand side df(1L5) is the small-
est redundancy possible if one is to correct arylock errors

of lengthm. The remaining term therein is the redundancy (or
n upper bound thereof) of a BCH code that corrects @ny
symbol errors over’'. In comparison, a shortened BCH code
of lengthmn over F' that corrects anym + 9 symbol errors
may have redundancy as large as

1+ [% (2(rm +9) — 1)—‘ . [logq(mn)] .

It can be verified that the latter expression is larger thdf) (1
whenmn > ¢ > 4. O

Example 15 We compare the performance@fwith that of a
concatenated codé constructed from a linedin, k, d] inner
code overF’ and a linear[n, K, D] outer code oveiGF(g¥)

codeword of a GRS code of lengtmn and redundancy (wheren < q). By the Singleton bound, we can bound the

(d—1)m overF.

In contrast, the following example shows that sometimes

C = (C, Hin) is not an MDS code, even whehis MDS and
H;, is a parity-check matrix of an MDS code.

Example 13 Suppose thag is a power of4 and takem = 3

redundancy ofC from below by

mn —kK > (D-1)m+ (d—1)n— (D—1)(d—1)
=(D-1)(m+1)—n+d(n—D+1). (16)

As we mentioned already in Sectibnl]-B, any error pattern of
up tor block errors and up té symbol errors can be correctly

andn = (¢ +2)/3. SelectH;, to be a parity-check matrix of decoded, whenever

a[g+2,q—1,4] triply-extended GRS code ovéf [22, p. 326]
andC to be any lineafn, k] code overF. Thus,C is a linear

29 +1<d(D—2r). (17)

la+2, 3k] code overF. It follows from the already-proved gj,cq in our setting the valuesandd are prescribed, we can

range of the MDS conjecture th@t, being longer tham + 1,
cannot be MDS when, sag,< k < 1+ %,/7 [33]. O

In fact, Exampld_1I3 shows that there are choiceg ofr,
m, 7, and ¥ for which the constructiorC = (C, Hi,) can
be realized to correct any block errors and any symbol
errors, while, on the other hand, there are no codes bvef
the same length and size &sthat can correct angrm + ¢

symbol errors (Example_14 below presents a larger range of

parameters where this may happen).

In Exampled_I¥=16, we make a running assumption that
n < ¢, in which caseC can be taken as an MDS code, such as

minimize [16) overd and D, subject to the inequalityf_(17).
Specifically, we defined = D — 27 and, from [[(I¥), we can
expressd in terms of A asd = [(29+ 1)/A], in which
case [(Ib) becomes

2041
A

A(m—i—l)—i—{ -‘(n—27+1—A)

+@2r—1(m+1)—n (18)
> Am41)+ (2z9+1)(nA—27+1)
—(2W+1)-(n=-2r+1)+2r—-1)m. (19)
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The minimum of [IP) over (a real) is attained at In Appendix[A, we show that the expressign](21) is bounded

from below by
A \/(219+1)(n—27’+1)
min m+ 1 : 20+ 1)Inv+2vy-94+0(1), (22)

Yet we need to take into account that bdtand A are positive where ~ is Euler's constant (approximatelg.5772) [L1,
integers. p. 264]. TakingC in C as an MDS code, the redundancy@f
Case 1in — 27 < &L In this range (of very smalh) is then smaller than that of GC codes (with the same cormectio
we haveA,, < 1 and, so, we také = 1; namely, for this capabilities) whenevef (22) exceeds O
range, it is best to let the inner code handle (exclusivdig) t
symbol errors, and then the outer code is left to correct the
block errors. For this range, the expression (18) becomes

IV. DECODINGALGORITHMS FOR THE
MAIN CoDE CONSTRUCTION

2rm + 29(n — 271) We now discuss a variety of decoders for the cdtle=

S ] (C, Hy,) that was specified in Definitidd 4, for the case where
which is never larger than the smallest possible redundangys constituent codé is a GRS code. Sectign IVIA presents a
(27 +1)m, of C. Notice, however, that wheff;, in C can be 5y nomial-time decoding algorithm for error and eraswes
taken as a parity-check matrix of an MDS code, ther= 20 has (T1)—(T4) as far as they are correctable as guaranteed
and therefore this range is empty. _ by Theorenib, and provided that the code parametets 0,

Case 2:n — 27 > (m + 1) - (20 + 1). In this range we ;" anq, satisfy a certain inequality (see TheorEm 18 below).
haveA, > 20+ 1 and, so, the expressidn| (for d) in 18) Then, we consider the constructi@ras in Exampl&d1 (where
equalsl; namely, for this range, it is best to regard the symbel is 5 GRS code andl;, is a parity-check matrix of a GRS
errors as block errors. Therefore, we take= 20 +1 and the  qge) and present some more specialized decoders for this
expression[(18) becomes construction. Namely, Sectidn IWB discusses a decoder tha

2(r +9)m handles errors and erasures of types (T1), (T2), (T4), but
’ not of type (T3), and Sectidn TVAC introduces a decoder that
which is larger than the redundancy &f wheneverd > 0 handles errors and erasures of types (T1), (T2), (T4), and

(assuming thaf in C is an MDS code). some combinations of errors of type (T3), including the case
Case 3:% <n—27 < (m+1)-(29+1).In this range, where there are at most three errors of type EI'B); of yet,

we plug the expression faoA,,;, into (I9), resulting in the we do not have an efficient decoder that corrects all error
following lower bound expression on the redundancyCof  patterns that satisfy the conditions of Theofdm 5 (eventer t
construction of Example_11, excepting certain special £ase
220 +1)(n—2r +1)(m +1) — (20 + 1) such as Example12).
—(n=2r+1)4+ 27 —1)m. Assume thatn, 7, p, %, and ¢ scale linearly withn. If C
is replaced by a GRS code (if such a code exists) then the
decoding complexity scales linearly with?)? = n*. One of
the main purposes of defining the co@e= (C, H;,) is the
420+ 1)(n — 27 + 1)(m + 1) potential existencg of a decoding_algorithm whose comme_xi
5 does not scale higher tharw?, as is the case for the special
> (2m+(219—|—1)+(n—27’+1)) . (20) choices of C = (C,H;,) and decoders in Sectioris_1V-B
and[1V-G.

Since the left-hand side of (R0) is a cubic expression while

the right-hand side is only quadratic, the inequalfty] (29) i o ) .

expected to hold for a range of parameters of interest, e/g:, Polynomial-Time Decoding Algorithm

whenm, 7, andd scale linearly withn. O Example[IP demonstrates one particular instance of the
constructionC = (C, H;,) for which the decoder guaranteed

Example 16 In many cases, the redundancy @fis smaller Py Theorenib has an efficientimplementation (simply because
even than that of the generalized concatenated (GC) cdfhis case the cod€ is a GRS code). In this section, we
construction defined through conditions (G1)—(G2) in Se€xhibit a much wider range of instances for which decoding
tion Referring to the notation therein, we first notetthacan be carried out in polynomial-time complexity.

if D, > 27+ 1, then the contribution of condition (G2) alone Specifically, we consider the case where the dodea GRS

to the redundancy is already at legBt,—1)m > (27 + 1)m. code overf” (and, so,n < ¢ — 1), and Hi, is anarbitrary
Hence, we assume thBt, = 27 + 1, in which case, from{1), ™ % (mn) matrix overF' that satisfies the two properties (a)-
we get thatr, > d, — 1 > 2¢. Thus, condition (G2) induces (b) in Definition[4. The columns ofn x n arrays will be

a redundancy of at leagtrm, and condition (G1) adds a
redundancy of at least

This lower bound is greater than the redundancyoivhen-
ever

4A small number of errors of type (T3) is a realistic assumpfiar memory
storage applications that userubbing i.e., memory storage applications

v where a background task periodically inspects the memoryefoors and
) ) D, 1-9 (21) corrects them if necessary. Such a background task helpd #heaccumu-
Z(rl - rl—l)( =17 L T) ) lation of errors between the time that a program writes ardigea certain

i=1 memory location.
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regarded as elements of the extension fiel{ ™) (according that are affected by erasures: this translates into remati
to some basis o&F(¢") over F'). When doing so, the matrix by d — p — ¢ (assuming that the latter value is positive).
Z in [I4) can be seen as a codeword of a GRS addever The next theorem characterizes a range of parameters for
GF(q™), whereC’ has the same code locatdis;);c(,y as which (23) holds for some polynomially-large list size(and,
C (this observation was used, for example,[inl[32], and motieus,C can be decoded in polynomial time).
recently in [13]).

Let ' € C be the transmittedn x n array and letY be Theorem 18 For C = (C, Hi,) such thatC is a GRS code
the receivedn x n array, possibly corrupted by errors of over F, the decoder guaranteed by Theoren 5 can be imple-
type (T1) andy errors of type (T3), where < (d/2)—1 and mented by a polynomial-time algorithm, whenever

¥ < (6 —1)/2. We first compute amn x n array d—p—0>2/5(n—p—g)—6 (24)
Y= (HoYo | ¥y | ... [ Hooa Yoo ) (or, simply, wheneved > 21/6n — 6 in casep = o = 0).

whereY containsr + ¢ < (d+ § — 3)/2 erroneous columns.

Regarding nowY as a corrupted version of a codeword of Proof: We will assume in th_e proof that = ¢ = 05 th?
¢’ we can apply dist decoderfor ¢’ to Y. Such a decoder general case follows by observing that any puncturing’of

. . on ositions results in a GRS code of length- p —
returns a list of up to a prescribed humbenf codewords of prep : gth-p =0
; S ; and minimum distancé — p — o.
C’, and the returned list is guaranteed to contain the correc . . .
ur proof will be complete once we identify a poly-

codeword, provided that the number of erroneous columps” . = .
in Y does not exceed thdecoding radiusof C’. In our nomially-largeL for which (23) holds. We tak. to be such

decoding, we will use the polynomial-time list decoder dutehalt

to Guruswami and Sudah [12] (for variations of the algorithm d. 5 -1 46-1 2 (25)
that reduce its complexity, see [18] arid][37]). For any GRS n

n n * L+1"

code of lengthn and minimum distancel (over any field) |t readily follows from [2%) that there exists such arwhich
and for any prescribed list size, their decoder will return js at most quadratic in.

the correct codeword as long as the number of errors does nopefine s to be

exceed[n©r(d/n)] — 1, where Or(d/n) is the maximum

overs € {1,2,..., L} of the following expression: s=1 — {L 5__1—‘

n
s+1 L d

OL,s(d/n) =1— AL+l 2s (1 - 5) From [25) we have

(see [26, Chapter 9.5]). Thus, If is such that LS 7 s 071 + LZ ! I °
n- L—s n +
nOr(d/n) > (d+0-1)/2, (23)  which can also be rewritten as
then the returned list will contain the correct codeword d_ 25 (0-1 n L 457 L
n_ L—s\ 2n 2s  2(L+1)
Z=( Holy | HiTy | ... | HyiTpiy )

Multiplying both sides by(L — s)/(2s) and rearranging terms
of C’'. For each arrayZ’ in the list we can compute theyields

respective array irt, s+ 1 I d 4 6-1
1-— = ) > =4+ —,
U= (Hy'zy | B Zy | . | H M 20 ) 2(L+1) 2s ( n) “2n 2n
and it follows from the proof Theorefd 5 that only one suchhich is equivalent to
computed arrayl’—namely, the transmitted arralj—can O (d/n) > d+0—1
correspond to an error pattern of up(t¢/2) — 1 block errors Lys = m ’
and up to(é — 1)/2 symbol errors. Finding that array canThis, in turn, implies[[2B). m
be done simply by checking each computéti against the  The range of parameters ifi{24) may potentially be in-
received arrayr’. creased in light of a recent result of Guruswami and Xing

on list decoding of interleaved GRS codE&s][13].
Remark 17 While the decoding scheme that we have just
outlined makes essential use of an efficient list decoder fgr Decoding of Errors and Erasures of Type (T1), (T2), (T4),
the m-level interleaving ofC, nothing is assumed abolifi, pyt not of Type (T3)
beyond properties (a)—(b) in Definiti@h 4. In particularthing
is assumed about the decoding complexity of the code Bve
that is defined by the parity-check matrk¥,, .

. In this section, we present an efficient decoder for the code
C when constructed as in Examfle] 11, for the special case
whered = |£| = 0 (no errors of type (T3ﬁ.

Our decoding scheme can be generalized to handle alsg

. . This special case has also been considerefl in [29], yet thdesetting
erasures of types (T2) and (T4) by applying a list decodgy section[Tg, namely, where the decoding algorithm may Weith a

for the GRS code obtained by puncturi@gon the columns (controlled) positive probability.
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An m x n matrix I' is transmitted and am x n matrix Now, for each? € (p), every row in the(m+p—1) x n
array Z(y,z) = B®(y)Z(y,x) is a codeword ofCcrs.
r=r+¢ Therefore, by applying a decoder fG¢rs to row o — 1 of
is received, Wher€ = (24 ;) e (my.ic(ny iS @Nm X n error Z\") with p + 1 erasures indexed big U {j¢}, we should be
matrix, with 7 (C (n)) (respectivelyC (C (n))) indexing the able to decode the vectef”), based on our assumptidn_{26).
columns in which block errors (respectively, block eraspre It follows from the definition ofe( that for every; € (n),

have occurred, an® (C (m) x (n)) is a nonempty set of (0) (0) (0) (0)
" €. BO Bl [P B 1 €o—1,5
positions where symbol erasures have occuiiréde assume %1) ) ) 51) ’
thatd, 7 (= |.7]), andp (= |K|) satisfy e, | | Bo By’ o Byt | [ee2i
2 p<d—2 (26) : : : : 5 :
(0-1) (e-1) ple-1) (e-1)
and thatp (= |R|) satisfies & Bo By e Bem €0.j
O<g=m. In particular,
Define ¢ ) 1
| 652) = Z Bi( ) Z Em,jzﬂg,g‘[l
Y = ( HyYy | H{ T, | | H, 1Y, 1 ) i€{o) ki (K,j0) ER
and - Z engiBr B (5:],)
K (Kk,je)ER
F = (eh,j)he(m>,je(n> = Eﬁbjeﬁ;g,_jel .
= (Hobo |l | ... | Hoabnor ) - Ranging over alll € (o), we are able to recover the erasures
Clearly, in £ at the positionsk. Namely,
Vi _
Y=Z+F R €ke,je — e,gz)ﬁib?ﬂ ) le <Q> :
where Z is given by [@&). In particular, every row i is a This, in turn, allows us to eliminate the symbol erasuresfro
codeword ofCqgs. E.
Next, write R = {(#.j¢) }oe (). FOr €achl € (o), define Fig.[d summarizes the decoding algorithm of a combination
the following univariate polynomial (of degree— 1) of errors of type (T1), (T2), and (T4). The complexity of Siép
o is O((d+m)mn) operations inF’ (see the discussion that pre-
BO(y) = Z By (27) cedes Example_11). Stép 2 requi@édpp) operations. Each
i€(o) iteration in Sted B require®(dp) operations (for Step_Ba),
B 1— By 28 O(d?) operations (for Step_8b), an@(dm) operations (for
= H 1— B, 8% (28) Step3t), totaling t@ (d(d+m)o) for Stepl3. Stepl4 requires
(r: ) ER\{(Ke,50) } IR, ge

O(d*m) operations to compute the error-locator and error-

and lete® — (egé))je<n> denote rowo— 1 of the (m-+o—1) x evaluator_polynomials, and an additizor@an) for the Chien
n matrix BO (y)E(y,z) (where we recall the definition of search. Finally, Stepl 5 requir€¥(dm?) operations. To sum-

I from Sectior -C). We have marize, the decoding complexity amounts@¢(d + m)mn)
) ) operations for syndrome computatiof(dn) for the Chien
supp(e) C JUKU{jo}, L€ (o). search, and) (d(d + m)m) for the remaining steps.

Indeed, the contribution of a symbol erasure at positiorny)
in £ to the columnE;(y) of E(y,z) is an additive term o
the form

¢ C. Decoding of Errors and Erasures of Type (T1), (T2), (T4),
and with Restrictions on Errors of Type (T3)

1— (Bejy)™ In this sectiqn, we consider the decoo_ling 6f Wh(_en

W constructed as in Example]11, under certain assumptions on
0 the set£, namely, under some restrictions on the symbol error

(where we recall the definition df,,(-;-) from Sectior I-=C); positions (errors of type (T3)). These restrictions alwagkl

so, if (k,j) # (ke, j¢) then the product when|£| < 3 andd is sufficiently large.

Specifically, we consider the case where each column,

€k, T (y; Bm,j) =Erj"

B® ) I — (Bejy)™ _ . B(E)(y) m ; ;

(Y)-€n,j- =€xj -(1 = (Br.jv) ) except possibly for one column, contains at most one symbol
1= By 1= Brjy error. The general strategy will be to locate the positions

is a polynomial in which the poweng !, y¢,...,y™ ! have Of these errors, thereby reducing to the case considered in

zero coefficients. Section[TV-B. We use the same notation as in that section,

except that the sef is not necessarily empty and that (for
SWhen performing arithmetic operations af we assume that the erasedregsons of simplicity) the s& is empty. As in Section IV-B,

entries in the array are preset to some arbitrarily-sedeeiements ofF’,
whereas the set§ andR are provided as side information. Thu,is also the numberr of block errors and the numbep of block

an array overr'. erasures satisf§r + p < d — 2.



Input:

o Array T of sizem x n over F.
« SetC of indexes of column erasures.
o SetR = {(ke, je)}ec(oy OFf positions of symbol erasures.

Steps:
1) Compute then x (d—1) syndrome array
S=( HoYo | HiX1 | ... | HooiTuoy ) Hegs .

2) Compute the modified syndrome array to be the unigue
(d—1) matrix o that satisfies the congruence

o(y,z) = S(y,z) H (1 —ajz) (mod {z? '
jEX

YY)

3) For every? € (p) do:
a) Compute rowp — 1 in the uniquep x (d—1) matrix o
that satisfies the congruence
9 (y,2) =B (y) oy, 2) (1 -
(mod {z*~

o, )

Lyt
whereB“ (y) is as in [27).

Decodee%) (i.e. entryj, in e'¥) by applying a decoder

for Cars using rowo — 1 in ¢ as syndrome and
assuming that columns indexed kyU {j.} are erased.

Computesy, ;, = e - f17¢ .

Update the received arrdy and the syndrome array
by

T(y7x) <~ T(y,fb) -
Sy, x) < Sy, z) — i Bie) -

4) For everyh € (m), apply a decoder fo€grs using rowh

b)

Cpde, ke
Erpde Y

€rpge Ta—1 (5 Ay ) T (y

of S as syndrome and assuming that columns indexedCby

14

to be0 and £’ to be the empty set.
Let the modified syndrome be the uniquen x (d—1)
matrix that satisfies

o(y,z) =Sy, z) - H(l —ajz) (mod z?71),
jex
and letS be them x (d—1—p) matrix formed by the columns
of o that are indexed byp,d — 1). We recall from [(IB) that
1 = rank(S) = rank((E) 7uz)-

If > 2w+ 2, then we can regard the columns that are
indexed byZ’ as full block errors (namely, errors of type (T1)),
and the conditions of Lemnid 3 will still be satisfied, namely,
we will have

2r+w+1)+p<d+p—2.

Therefore, we assume from now on thak 2w + 1.

By (13) we get that for every € JUL’, columnE; belongs
to colspan(S). In particular, this holds foy € £’ \ {jw}, in
which caseE); (in polynomial notation) takes the form

Ej(y) = enj - Tim(y; Br.j) -

Let the row vectorsag, as,...,an,—,—1 form a basis of
the dual space ofolspan(S), and for everyi € (m — ),
let a;(y) denote the polynomial of degree less thanwith
coefficient vectora,;; we can further assume that this basis
is in echelon form,i.e, degap(y) < degai(y) < ... <
deg am—p—1(y) < m. This, in turn, implies that the degree
of a(y) = ged(ao(y), a1(y), ..., am—p—1(y)) satisfies

dega(y) <,

are erased. LeEl be them x n matrix whose rows are the namely,a(y) has at mosj (< 2w + 1) distinct roots inF'.

decoded error vectors for &ll € (m).

5) Compute the error array
E=(Hy'Eo | H{'Ey | ... | HY Ena ) .

Output:
o Decoded arrayl’ — &£ of sizem x n.

Fig. 3. Decoding of errors and erasures of type (T1), (T23)(but not of
type (T3). (See Sectidn TViB.)

Whend = |£] > 0, we write £ = {(k¢,je) }oe(vy, and

assume that that there existawac () such that the values

Jo, ji,- - -, Jw are all distinct, whilej,, = jy11 =+ = joy—_1.
Furthermorey andw should satisfy the mequalmes

V<3 (30)

wH+TH+Hp<d-—2. (31)

(While the inequality in[(30) is already part of the requiratts

Now, it is easy to see that for evey € F, the column
vector (§") ey (also represented &b, (y; ¢)) belongs to
coIspan(S‘) (and, hence, taolspan(E)7y./), if and only if
¢ is a root ofa(y). In particular,,, ;, is a root ofa(y) for
every? € (w). We denote byR the root subset

R = {(K/a]) a’(BN,j) = O} 3 (32)
and define the polynomial(y) by
7
=> Ay'= [ -8y, (33
i=0 (r,J)ER

wheren = |R|.

Consider the(m—n) x n Matrix £ = (&) ne (m—n).jc(n)
which is formed by the rows oA (y)E(y, «) that are indexed
by (n,m). Specifically,

n
= ZAiethn—i,j , hem—n), je(n

in Theorenib, we need the inequality in(31) so thai (13) wiftompare with [[2D)). Respectively, &t be the (m—n) x

hold. Specifically, the inequality in_(81) says that the nemb (4—1—) matrix formed by the rows of\(y )S S(y,
of erroneous columns does not exceked 1. Observe that the indexed by (n,

x) that are
m). It readily follows thatE;,(y) = 0 for

inequality27 + p < d — 2 and the inequality in[{30) togethery ¢ (w) and that

imply 33) whenevem < d — p.)

Without any loss of generality, we will also assume thalt?aw

€reje 7 0 for every £ € (9). The set{j¢}sc w1y Will be
denoted hereafter bg’. When = 0, we formally definew

( ): Z (aievjwﬁfw Jw (B/:z,jw)) ’

Le{w,9)

m— n(?ﬁ ﬁm&jw) .

(34)
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Observe that the number of summands on the right-hand sided since the Hamming weight of; is at mostJ — w <
of (34) is¥ — w, and that number is bounded from above by, — 1) /2, we can decodé; umquely fromE (again, under
m—2w—1<m—pu <m—n. This means thaE () =0 the runmng assumption that_ Jw)- Thus, for everyk such
if and only if A(Bneluw) =0 forall £ € (w,9). We also recall that A(B ) # 0, we can recover the error valug, ; and
that subtract |t from the respective entry af, thereby making
_ R a superset of the remaining symbol errors. The problem
rank(S) = rank((E )‘7“{]“’}) AT (35) though is that we do not know the indgy. Therefore, we
Next, we distinguish between the following three cases. apply the above process &verynonzero column in& with
Case 1:n = u. By (@8) we must have®;, (y) = 0, which index j ¢ K. A decoding failure means that is certainly
is equivalent to having&(ﬁ;;je) =0 for all ¢ € (¥). Thus, not j,, and a decoding success fpe£ j,, will just cause us
assuming this case, we hageC R, and the decoding problemto incorrectly change already corrupted-column¥inwithout
then reduces to the one discussed in Se¢tion]IV-B. introducing new erroneous columns. We can then proceed with
Case 2ip = pu—1.If Ej;, (y) =0thenL C R. Otherwise, the decoding off as in Sectiof TV-B.
it follows from (38) that each column i¥' must be a scalar  Fig.[4 presents the implied decoding algorithm of a com-
multiple of £;,. The entries of; , in turn, form a sequence bination of errors of type (T1), (T2), and (T3), providedttha

that satisfies the (shortest) linear recurrence the type-(T3) errors satisfy the assumptions laid out at the
R beginning of this section; as said earlier, these assumgptio
y) = ZBiyi _ H (1= Brjy) hold whenm < d — p and the numbgr of type-(T3) errors is
L at most3. Steps I3[ Ba, ard [7-8 in Fig. 4 are essentially
(r,J)ER L . -
applications of steps in Fig$l 2 amd 3. Next, we analyze
where the complexity of the remaining steps in Figl 4, starting
R — {(m,jw) ¢ (w,9) andA(ﬂwlj ) # O} _ with Step[4h. A basis in echelon form of the left kernel of

S can be found using)(d?>m) operations inF, and from
Indeed, this recurrence is uniquely determined, since thfis basis we can compute(y) using m applications of
number of entries in;,, which ism —n =m —pu+1 > Euclid’s algorithm, amounting ta@)(dm?) operations. The
m — 2w, is at least twice the degre®R’| (< ¥ — w) of setR can then be found in Step b via a Chien search,
B(y). The recurrence can be computed efficiently from amgquiringO (mn-min(d, m)) operations, followed by (d?m)
nonzero column ofS' using Massey’s algorithm for finding gperations to compute the matiékin Sted4t. The complexity
the shortest linear feedback shift register capable ofgeing  of Step[ is dictated by Stdpl5b therein which, with a Chien
a prescribed finite sequence of symbals| [23] (cf. Berlekampgarch, can be implemented usifign?n) operations. Finally,
Massey algorithm as in, e.g.. [26]). We now hae& RUR',  StedBb require® (d(d+m)m) operations in’. In summary,

where the decoding complexity of the algorithm in Fid. 4 amounts
IRUR'| = |R| + [R] to O((d + m)mn) operations for syndrome computation and
the Chien search, and(d(d+m)m) operations for the other
<n+d-—-w
steps.
<2w+1Y—w
=94 w ACKNOWLEDGMENT
<m. The authors thank Erik Ordentlich for helpful discussions.

So the decoding problem again reduces to that in Selction IV-B
Case 3: < u — 2. If Ej;, (y) = 0 then (again)C C R. APPENDIXA

Otherwise, the conditions of Lemnia 3 hold with respect to ANALYSIS FOREXAmMPLE[1H

E and to the matrixZ formed by the rows ofA(y)Z(y,z)  We derive the lower bound (P2) on the expressfod (21):

indexed by(n, m) (each such row is a codeword Gtrs).

Hence, we can decodg. Next, we observe froni_(34) that for v
j = juw, the vectorE;(y) can be seen as a syndrome of the Z(l’i —ri—1)(Di—1 —1-27)
column vector =1

0 T e (3

rE(m) : A8, })#0
. . . . 29+ 1
with respect to the followingm—n) x m parity-check matrix > —ri—1) T
ri—1
29+ 1
ri—1+1

of a GRS code:

Z
Hgf){s - (’UHJBI{ J)he(m n),kE(m) (36) = Z
Z

where

vﬁ_’j_{ﬂZ,jA(ﬁm;) TAB) A0 5y >

1 otherwise



Input:
o Array T of sizem x n over F.
o Set/C of indexes of column erasures.

(1]

Steps: 2]
1) Compute then x (d—1) syndrome array
S=( HoYo | Hi¥1 | ... | Hn-1Yn-1 ) Hégs - 3]
2) Compute then x (d—1—p) matrix S formed by the columns

(4
(5]

of S(y,z) [[;ex (1 — o ) that are indexed byp,d — 1). Let
1 = rank(S).
(Attempt to correct assumind’| < u/2.) Apply Step$ B4 in
Fig.[@ (with K = K) to the modified syndrome array(y, z),
to produce an error array. If decoding is successful, go to
Step[8
a) Compute the greatest common diviady) of a basis of
the left kernel ofS.
b) Compute the seR and the polynomial (y) as in [32)-
@3). Lety = [R|.
c) Compute the(m—n) x (d—1—p) matrix S formed by
the rows ofA(y)S(y,x) that are indexed byn, m).
If n =p — 1 then do:
a) Compute the shortest linear recurreriBgy) of any
nonzero column irS.

b) Compute the set
R' = {(k,j) : A(B.;)#0andB(B,;) =0}.
c) If |[R'| = degB(y) and |R’| < m — n then update

R+ RUR.

6) Else ifn < p — 2 then do:
a) Apply Step§H34 in Fifl2 (with = K) to the syndrome [13]
array S, to produce an error arrag.
b) For every index ¢ K of a nonzero column o2 do:

i) Apply a decoder for the GRS code with the parity{14]
check matrix Hgﬁs as in [38)13V), withE; as
syndrome, to produce an error vector.

i) If decoding in Steff 6(B)i is successful then lgf =
H;E; and updateY'; < Y; — & and S(y, ) «+
S(y,x) = Ef(y) - Ta-1(z;05,).

7) Apply Step$ P in Fidl3 t&, K, andR, to produce an error

3)

(6]
4)
(7]
(8]

5) [9]

[20]

(11]

[12]

[15]

[16]

array E.
8) Compute the error array [17]
E=(Hy'Eo | HT'Ex | ... | H Y By ) .
[18]
Output:

« Decoded arrayl’ — £ of sizem x n. (1]

Fig. 4. Decoding of errors and erasures of type (T1), (T2}%)(Tand
with restrictions on errors of type (T3). (See Section IN-Eor the sake

[20]
of simplicity, we assume that there are no erasures of tygé. (T

[21]

[22]

[23]

[24]

where the penultimate step follows from > 2. The lower [25]
bound [22) immediately follows by the known expression fqge]
harmonic sums[11, p. 264].
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