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Universal Wyner-Ziv Coding for Distortion
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Abstract

We investigate the Wyner-Ziv coding in which the statisticsof the principal source is known but the statistics

of the channel generating the side-information is unknown except that it is in a certain class. The class consists of

channels such that the distortion between the principal source and the side-information is smaller than a threshold,

but channels may be neither stationary nor ergodic. In this situation, we define a new rate-distortion function as the

minimum rate such that there exists a Wyner-Ziv code that is universal for every channel in the class. Then, we

show an upper bound and a lower bound on the rate-distortion function, and derive a matching condition such that

the upper and lower bounds coincide. The relation between the new rate-distortion function and the rate-distortion

function of the Heegard-Berger problem is also discussed.

Index Terms

Average Distortion, Heegard-Berger Problem, Maximum Distortion, Universal Coding, Wyner-Ziv Problem

I. I NTRODUCTION

In the seminal paper [1], Wyner and Ziv characterized the rate-distortion function of the lossy source coding with

side-information at the decoder (See Fig. 1). In this paper,we consider a universal coding of this problem where

the statistics of the principal source is known but the channel from the principal source to the side-information is

unknown except that it is in a certain class.

To motivate the problem setting investigated in this paper,let us consider the following practical situation first.

Suppose that the decoder already has a lossy compressed version of the principal source, and want to get a refined

one. The encoder does not know how the previously transmitted lossy version is encoded, but knows that the quality

of the lossy version is guaranteed to be above a certain level. What is the minimum additional rate that must be

transmitted by the encoder so that the quality of the refined version is above a required level?
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The above mentioned situation can be modeled as follows. Theprincipal sourceXn is a known i.i.d. source,

and the side-informationY n is generated fromXn through a channelWn. The statistical property of the channel

is unknown, but the distortion caused by the channel is smaller than a certain levelE for a prescribed distortion

measure. We assume that the distortion measure is additive,but the channel may be neither stationary nor ergodic.

We consider the maximum distortion constraint and the average distortion constraint for the channel. Since we

allow non-ergodic channel, the class of channels constrained by the maximum distortion and that constrained by

the average distortion are different. In this problem formulation, we are interested in the minimum rateRm(D|E)

andRa(D|E) such that the reproduction with distortion levelD is possible at the decoder for any channel in

the classes of channels satisfying the distortion levelE with the maximum distortion constraint and the average

distortion constrain respectively. In other word, we are interested in the minimum rate such that the universal coding

is possible for each class.

For the maximum distortion constrained class, we show an upper bound and a lower bound onRm(D|E). We also

derive a matching condition such that the upper and the lowerbounds coincide. Especially, for the binary Hamming

example, we show that the matching condition is satisfied, and thusRm(D|E) is completely characterized.

For the average distortion constrained class, we show an upper bound and a lower bound onRa(D|E). For the

case withD = 0, i.e., the loss less reproduction case, we show that the upper and lower bounds coincide and

thusRa(0|E) is completely characterized. Surprisingly,Ra(0|E) = H(X), i.e., the side-information is completely

useless, for anyE > 0.

Some remarks on related literatures are in order.

For lossless source coding with side-information, i.e., the Slepian-Wolf network [2], the existence of universal

code was first shown by Csiszár and Körner [3] (existence oflinear universal code was also shown by Csiszár [4]).

After that, the universal codings for the Slepian-Wolf network or other related lossless multi-terminal networks

were studied by several researchers [5], [6], [7].

For lossy source coding with side-information, i.e., the Wyner-Ziv network, the universal coding problem was

investigated by Merhav and Ziv [8], Jalaliet. al. [9], and Reani and Merhav [10]. It should be noted that the

universal codes proposed in these literatures are universal for the statistics of the principal source but not for the

channel generating the side-information, i.e., the statistics of the channel is known at the encoder. Under the same

condition, i.e., known channel, it is also known that the universal code can be constructed for the network with

several decoders [11].

The universal Wyner-Ziv coding is also related to the Heeger-Berger problem [12], in which there are several

decoders that have their own side-information. The Heeger-Berger problem has not been solved in general, and it

has only been solved under the condition that there is a degraded partial order between the channels generating the

side-information [13], [14], [15] except some special cases [16], [17]. It should be noted that there is no degraded

partial order among the channel class considered in this paper. Thus, the authors believe that the result in this paper

also shed some light on the unsolved Heeger-Berger problem.

Our problem setting can be also viewed as a kind of the successive refinement coding [18], [19]. The successive
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Fig. 1. The Wyner-Ziv coding system.

refinement coding consists of two layers of the encodings. Ifthe method used by the first layer encoder is not

known to the second layer encoder, this is exactly the situation of our problem setting.

Although the universal coding for distortion constrained class of channels is unfamiliar and new in the source

coding scenario, this kind of channel is quite natural when the channel is cased by an adversary such as in the data

hiding scenario. Indeed, this kind of channel class is commonly used in the information theoretical analysis of the

data hiding [20], [21], [22].

There are some technical differences between the data hiding problem and our problem. First, in the data hiding

problem, the channel output is only used for the decoding of the encoded message. On the other hand, in our

problem, the side-information is not only used for the decoding of the encoded source, but also for the estimation

at the decoder. This makes the problem difficult, and causes agap between the upper bound and the lower bound

derived in this paper. Second, in the data hiding problem forthe average distortion constrained class of channels,

it was shown that the achievable transmission rate is0, i.e., the channel is completely useless [21]. On the other

hand, in our problem for the average distortion constrainedclass of channels, the side-information is useless for

bin coding, but it can be used for the estimation at the decoder. Thus,Ra(D|E) can be strictly smaller than the

rate-distortion functionR(D) without any side-information forD > 0, thoughRa(0|E) = H(X).

The rest of this paper is organized as follows. In Section II,we introduce notations and the formal definition

of the problem. In Section III, we state our main theorems, and show a representative example, i.e., the binary

Hamming example. In Sections IV and V, we present proofs of the main theorems.

II. PRELIMINARIES

A. Notations

Henceforth, we adopt the following notation conventions. Random variables will be denoted by capital letters

such asX , while their realizations will be denoted by respective lower case letters such asx. A random vector of

lengthn is denoted byXn = (X1, . . . , Xn), while its realization is denoted byxn = (x1, . . . , xn). The alphabet of

a random variable is denoted by a calligraphic letter such asX , and itsn-fold Cartesian product is denoted byXn.

The probability distribution of random variableX is denoted byPX , and itsn-fold i.i.d. extension is denoted by

Pn
X . For a given channelW , its n-fold i.i.d. extension is denoted byW×n, whileWn indicates a channel that is not

November 10, 2018 DRAFT
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necessarily i.i.d.. The set of all probability distribution onX is denoted byP(X ). The set of all channel fromX

to Y is denoted byP(Y|X ). The indicator function is denoted by1[·]. The entropy and the mutual information is

denoted in a standard notation such asH(X) or I(X ;Y ). For a input distributionP of a channelW , we sometimes

use the notationI(P,W ) to designate the mutual informationI(X ;Y ), where the joint distribution of(X,Y ) is

P (x)W (y|x). The variational distance between two distributionsP andQ is denoted by‖P −Q‖. In the proofs

of our main theorems, we extensively use the type and typicality, which are summarized in Appendix C.

B. Problem Formulation

Let X = {Xn}∞n=1 be an i.i.d. source. Let

en(x
n, yn) :=

1

n

n
∑

t=1

e(xt, yt)

be an additive distortion measure for side information. As anatural assumption, we assume that there existsy such

thate(x, y) = 0 for eachx. We also assume that the distortion is bounded, i.e.,e(x, y) ≤ emax <∞ for every(x, y).

For a given distortionE ≥ 0, we consider the following maximum distortion constraint on the side-information

Wm(E) := {W = {Wn}∞n=1 : ∀δ > 0 ∃n0(δ) s.t.

Pr{en(X
n, Y n) > E} ≤ δ ∀n ≥ n0(δ)} , (1)

whereY n is the output of channelWn with inputXn. It should be noted thatn0(δ) depends onδ but not onW .

We also consider the average distortion constraint

Wa(E)

:= {W = {Wn}∞n=1 : en(PXn ,Wn) ≤ E ∀n ≥ 1} (2)

where

en(PXn ,Wn) := E[en(X
n, Y n)]

=
∑

xn,yn

Pn
X(xn)Wn(yn|xn)en(x

n, yn).

As it will be clarified later, the maximum distortion constraint and the average distortion constraint are completely

different.

Let X̂ be the reproduction alphabet. Then, let

dn(x
n, x̂n) :=

1

n

n
∑

t=1

d(xt, x̂t) (3)

be an additive distortion measure for reproduction. We assume d(x, x̂) ≤ dmax < ∞ for every (x, x̂). We also

assume that for eachx there existŝx such thatd(x, x̂) = 0.

We consider (possibly stochastic) encoder

ϕn : Xn → Mn

November 10, 2018 DRAFT
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and decoder

ψn : Mn × Yn → X̂n.

Definition 1: For anyε > 0, if there existsn0(ε) and a sequence of codes{(ϕn, ψn)}
∞
n=1 such that

1

n
log |Mn| ≤ R+ ε (4)

and

E[dn(X
n, ψn(ϕn(X

n), Y n))] ≤ D + ε (5)

for every W ∈ Wm(E) and n ≥ n0(ε), then we define the rateR to be achievable. We also define the rate

distortion function

Rm(D|E) := inf{R : R is achievable}.

We also defineRa(D|E) by replacingWm(E) with Wa(E).

From the problem formulation, we can prove the following relation betweenRm(D|E) andRa(D|E), which

will be proved in Appendix A.

Proposition 2: We have

Ra(D|E) ≥ lim
ǫ↓0

Rm(D|E − ǫ).

Remark 3:As we can find from the proof of Theorem 6, the theorem holds even if the average distortion

requirement in (5) is replaced by the maximum distortion requirement

Pr {dn(X
n, ψn(φn(X

n), Y n)) > D + ε} ≤ ε. (6)

However, Theorem 10 does not hold if (5) is replaced by (6).

Let RWZ(D|W ) be the rate distortion function of the ordinary Wyner-Ziv problem in which the principal source

is X and the side-informationY is the output of the channelW ∈ P(Y|X ).

The rate distortion functionRm(D|E) (or Ra(D|E)) means that ifR > Rm(D|E) there exists auniversalcode

that works well for everyW ∈ Wm(E) (or W ∈ Wa(E)). It should be noted that this definition of universality

is different from the ordinary definition of the universality. Let

WWZ(R,D) := {W ∈ P(Y|X ) : RWZ(D|W ) ≤ R} . (7)

In the ordinary definition of the universality, we require that there exists a code that works well for everyW ∈

WWZ(R,D). This requirement seems much more severe than the requirement of Rm(D|E) (or Ra(D|E)), which

will be discussed in more detail in Section III.

November 10, 2018 DRAFT
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C. Heegard-Berger Problem

For later use, we review the problem formulation of the Heegard-Berger (HB) problem [12] in this section. We

restrict our attention to the case with two decoders (see Fig. 2). Furthermore, we restrict our attention to the case

such that the alphabets of the side-information, the reproduction alphabets, and the distortion measures for both the

decoders are common, which are denoted byY, X̂ , andd(·, ·) respectively.

Let us consider the HB coding for i.i.d. joint source(X,Y1, Y2). The HB code consists of one encoder

ϕHB
n : Xn → Mn

and two decoders

ψHB1
n : Mn × Yn → X̂n,

ψHB2
n : Mn × Yn → X̂n.

For a pair(D1, D2) of distortions, a rateR is defined to be(D1, D2)-achievable if, for anyε > 0, there exists a

sequence of HB code{(ϕHB
n , ψHB1

n , ψHB2
n )}∞n=1 such that

1

n
log |Mn| ≤ R+ ε,

E

[

dn(X
n, X̂n

i )
]

≤ Di + ε i = 1, 2,

for sufficiently largen, whereX̂n
i = ψHBi

n (ϕn(X
n), Y n

i ) anddn is defined in (3). Then, the HB rate-distortion

functionRHB(D1, D2|X,Y1, Y2) for (X,Y1, Y2) is defined as the infimum of(D1, D2)-achievable rateR.

Fix an i.i.d. sourcePX . Then two side-information channelW1 : X → Y andW2 : X → Y define an i.i.d. joint

source(X,Y1, Y2) whose joint distributionPXY1Y2 is given byPXY1Y2(x, y1, y2) = PX(x)W1(y1|x)W2(y2|x),

where x ∈ X and y1, y2 ∈ Y. In the following, we denote byRHB(D1, D2|W1,W2) the HB rate-distortion

functionRHB(D1, D2|X,Y1, Y2) for (X,Y1, Y2) defined byW1 andW2.

Unfortunately, finding a single-letter expression forRHB(D1, D2|W1,W2) has been a long-standing open prob-

lem. So, we consider a special case. Let

E∗ := min
y∈Y

∑

x∈X

PX(x)e(x, y)

and y∗ ∈ Y be a symbol which attains the minimum. Further, letW∗ : X → Y be a side-information channel

such thatW∗(y∗|x) = 1 irrespectivex ∈ X . Then, let us consider a special case whereW1 = W∗. This case is

equivalent to the problem of ”lossy coding when side-information may be absent”. Heegard and Berger [12] (see

also [25]) showed the following.

Proposition 4 ([12]): We have

RHB(D1, D2|W∗,W2) = min
[

I(X ; X̂1) + I(X ;V |X̂1, Y )
]

November 10, 2018 DRAFT
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Fig. 2. The Heegard-Berger coding system.

wheremin is taken over all conditional distributionPV X̂1|X
with |V| ≤ |X×X̂ |+2 and functionsf : V×X̂×Y → X̂

such that

E[d(X,X1)] ≤ D1,

E[d(X, f(V,X1, Y ))] ≤ D2.

III. M AIN RESULT

A. Convex Form of WZ Rate-Distortion Function

We need convex form of the Wyner-Ziv rate-distortion function introduced in [26]. LetU be the set of all

functions fromY to X̂ . The setU includes a constant function, i.e.,u(y) = x̂ ∀y ∈ Y for eachx̂ ∈ X̂ . We denote

the set of constant functions bȳU ⊂ U . For fixed channelW ∈ P(Y|X ) and fixed test channelV ∈ P(U|X ), we

denote

d(V,W ) :=
∑

u,x,y

PX(x)V (u|x)W (y|x)d(x, u(y)).

For a fixed channelW ∈ P(Y|X ), let

V(W,D) := {V ∈ P(U|X ) : d(V,W ) ≤ D} .

Let

W1(PX , E) = W1(E)

:= {W ∈ P(Y|X ) : e(PX ,W ) ≤ E}

November 10, 2018 DRAFT
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and

V(E,D) := {V ∈ P(U|X ) : d(V,W ) ≤ D ∀W ∈ W1(E)} .

For (V,W ) ∈ P(U|X )× P(Y|X ), let

φ(V,W ) := I(U ;X)− I(U ;Y ) (8)

= I(U ;X |Y ). (9)

Note thatφ(·,W ) is a convex function for fixedW , which can be confirmed from (9), andφ(V, ·) is a concave

function for fixedV , which can be confirmed from (8).

By the above notations, the Wyner-Ziv rate-distortion function is given by

RWZ(D|W ) = min
V ∈V(W,D)

φ(V,W ).

Let

R̃WZ(D|W,E) = min
V ∈V(E,D)

φ(V,W )

be the pseudo rate-distortion function.

Lemma 5:The pseudo rate-distortion functioñRWZ(D|W,E) is a concave function of the channel, i.e.,

R̃WZ(D|λW1 + (1 − λ)W2, E)

≥ λR̃WZ(D|W1, E) + (1 − λ)R̃WZ(D|W2, E)

holds forW1,W2 ∈ P(Y|X ) and0 ≤ λ ≤ 1.

Proof: Let

V̂ = argmin
V ∈V(E,D)

φ(V, λW1 + (1− λ)W2).

Then, we have

RWZ(D|λW1 + (1− λ)W2, E)

= φ(V̂ , λW1 + (1− λ)W2)

≥ λφ(V̂ ,W1) + (1− λ)φ(V̂ ,W2)

≥ λ min
V ∈V(E,D)

φ(V,W1) + (1 − λ) min
V ∈V(E,D)

φ(V,W2)

= λRWZ (D|W1) + (1− λ)RWZ(D|W2),

where we used concavity ofφ(V, ·) for fixed V in the first inequality.

November 10, 2018 DRAFT
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B. Statements of General Results

For the maximum distortion class, we have the following.

Theorem 6:We have

Rm(D|E) ≥ max
W∈W1(E)

RWZ(D|W ) (10)

= max
W∈W1(E)

min
V ∈V(W,D)

φ(V,W ) (11)

and

Rm(D|E) ≤ min
V ∈V(E,D)

max
W∈W1(E)

φ(V,W ) (12)

= max
W∈W1(E)

min
V ∈V(E,D)

φ(V,W ). (13)

= max
W∈W1(E)

R̃WZ(D|W,E) (14)

Proof: See Section IV.

Remark 7:Technically in the converse part, atD = 0, we only have the inequality

Rm(0|E) ≥ lim
ǫ↓0

max
W∈W1(E)

RWZ(ǫ|W ).

This is because we use the fact thatRWZ(D|W ) is a continuos function with respect toW in the converse proof

(see Section IV-A), and it is not clear whetherRWZ(D|W ) is a continuos function with respect toW at D = 0

in general.

The difference between (11) and (13) areV(W,D) and V(E,D). Thus, we have the following matching

conditions.

Corollary 8: Let (V ∗,W ∗) be a saddle point satisfying

φ(V ∗,W ∗) = max
W∈W1(E)

min
V ∈V(E,D)

φ(V,W ).

Suppose that

V̂ := argmin
V ∈V(W∗,D)

φ(V,W ∗) ∈ V(E,D).

Then, we have

Rm(D|E) = φ(V ∗,W ∗) = max
W∈W1(E)

min
V ∈V(E,D)

φ(V,W ).

Proof: We have

φ(V̂ ,W ∗) = min
V ∈V(W∗,D)

φ(V,W ∗)

≤ max
W∈W1(E)

min
V ∈V(W,D)

φ(V,W )

≤ Rm(D|E)

≤ φ(V ∗,W ∗)

= min
V ∈V(E,D)

φ(V,W ∗)

≤ φ(V̂ ,W ∗).

November 10, 2018 DRAFT
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Corollary 9: Under the same notations as Corollary 8, suppose that

supp(V̂ ) ⊂ Ū . (15)

Then, we have

Rm(D|E) = φ(V ∗,W ∗) = max
W∈W1(E)

min
V ∈V(E,D)

φ(V,W ).

Proof: When (15) is satisfied, the distortion

∑

u,x,y

PX(x)V̂ (u|x)W (y|x)d(x, u(y))

does not depend on the channelW . Thus, Corollary 8 implies the statement of the present corollary

For the average distortion class, we have the following.

Theorem 10:We have

Ra(D|E) ≥ max
λ,E1,E2,W1,W2:

λE1+(1−λ)E2≤E

W1∈W1(E1),W2∈W1(E2)

min
D1,D2:

λD1+(1−λ)D2≤D

RHB(D1, D2|W1,W2), (16)

where (i)max is taken over all0 ≤ λ ≤ 1, Ej ≥ 0, and side information channelsW1, W2 such thatλE1 +

(1 − λ)E2 ≤ E and Wj ∈ W1(Ej) (j = 1, 2) and (ii) min is taken over allD1, D2 ∈ [0, dmax] such that

λD1 + (1− λ)D2 ≤ D. Especially,

Ra(D|E) ≥ max
λ,E2,W2∈W1(E2)

λE∗+(1−λ)E2≤E

min
D1,D2:

λD1+(1−λ)D2≤D

RHB(D1, D2|W∗,W2) (17)

holds. We also have

Ra(D|E) ≤ min
V ∈V(E,D)

I(PX , V ). (18)

Proof: See Section V.

Remark 11:Note that (17) is obtained from (16) by lettingE1 = E∗ andW1 = W∗. Thus, (16) is tighter than

(17). However, we cannot give a single letter expression forthe right hand side of (16), while we can for (17) by

using Proposition 4.

Remark 12:A close inspection of the proof reveals that we can generalize (16) by considering one-to-m lossy

source coding with side information at the decoders. That is, in the same manner as (16), we can show that

Ra(D|E) ≥ max
~λ,E,W

min
D

RHB(D1, D2, . . . , Dm|W1,W2, . . . ,Wm), (19)

where (i) max is taken over all~λ = (λ1, . . . , λm), E = (E1, . . . , Em), and W = (W1, . . . ,Wm) such that
∑

j λj = 1,
∑

j λjEj ≤ E, andWj ∈ W1(Ej) (j = 1, . . . ,m) and (ii) min is taken over allD = (D1, . . . , Dm)

such that
∑

j λjDj ≤ D. The authors conjecture that the bound (19) is not tighter than (16), i.e., is equivalent to

(16).

Remark 13:The upper bound in (18) is derived by using the side-information only for the estimation at the

decoder and not for the bin coding, which is the difference between (12) and (18).

November 10, 2018 DRAFT
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From Theorem 10, we have several corollaries. At first, let usset parameters in (17) asλ = 0 andE2 = E.

Then, we have

Ra(D|E) ≥ max
W2∈W1(E)

min
D2≤D

RHB(D1, D2|W∗,W2)

= max
W2∈W1(E)

RHB(dmax, D|W∗,W2).

Note thatRHB(dmax, D|W∗,W2) equals to the Wyner-Ziv rate-distortion functionRWZ(D|W2). This fact gives

the following corollary.

Corollary 14: We have

Ra(D|E) ≥ max
W∈W1(E)

RWZ(D|W ).

Next, let us consider the lossless case, i.e.,d(·, ·) is the Hamming distortion measure andD = 0. Note that

RHB(0, 0|W∗,W2) equals to the minimum coding rate such that the decoderψHB1
n without side information can

reproduceXn in losslessly. Thus, for any side information channelW2,

RHB(0, 0|W∗,W2) = H(X).

SinceRa(0|E) ≤ H(X), we have the following corollary.

Corollary 15: ForD = 0 andE > 0, we have1

Ra(0|E) = H(X). (20)

This corollary indicates that the side information is completely useless whenD = 0 andE > 0. It should be

emphasized that Corollary 14 does not give Corollary 15 in general. This means that our result (17) is tighter than

Corollary 14.

Lastly, we show that our bound (17) gives another trivial bound. Assume thatE ≥ E∗. Then, we can setλ = 1

in (17) and have

Ra(D|E) ≥ max
W2∈W1(E2)

min
D1≤D

RHB(D1, D2|W∗,W2)

= max
W2∈W1(E2)

RHB(D, dmax|W∗,W2).

Furthermore, for any side information channelW2, it is apparent that

RHB(D, dmax|W∗,W2) ≥ R(D)

whereR(D) is the rate-distortion function for one-to-one lossy coding without side information. Hence, ifE ≥ E∗,

we have

Ra(D|E) ≥ R(D).

1We need the conditionE > 0 because we need to takeλ > 0 in (17). Whene(·, ·) is the Hamming distortion measure andE = 0, then

we haveRa(0|0) = 0. However,Ra(0|0) may be positive in general. For example,Ra(0|0) can be positive for a distortion measure such that

e(x, y) = 0 for every (x, y).
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SinceRa(D|E) ≤ R(D) always holds, we have the following corollary.

Corollary 16: If E ≥ E∗, then we have

Ra(D|E) = R(D).

C. Binary Hamming Example

To provide some insight on our results, we consider the binary Hamming example, i.e., we assume thatX =

Y = X̂ = {0, 1}, PX(0) = PX(1) = 1
2 , and

e(x, y) =







0 if x = y

1 else
,

d(x, x̂) =







0 if x = x̂

1 else
.

In this section, we assume thatE ≤ 1
2 .

We first consider the maximum distortion class. In this case,the setW1(E) can be parametrized by two parameters

(α, β) satisfying

α+ β

2
≤ E

(see Fig. 3 and Fig. 4).

By the concavity ofR̃WZ(D|W,E) with respect toW (Lemma 5) and by the symmetry with respect toα and

β, we have

argmax
W∈W1(E)

R̃WZ(D|W,E) = BSC(E).

Let 0, 1 ∈ U be constant functions that output0 or 1 irrespective ofy and lety be the function that output

y itself. Similarly, let ȳ be the function that outputsy ⊕ 1. In the binary Hamming case,U = {0, 1, y, ȳ}. For

W ∗ = BSC(E), it is known that

RWZ(D|W ∗) = min
V ∈V(W∗,D)

φ(V,W ∗)

is achieved by the test channel of the form

V̂ (u|x) =



















λ(1 − q) if u = x

λq if u = x⊕ 1

(1− λ) if u = y

for some0 ≤ λ ≤ 1 and0 ≤ q ≤ 1
2 (λ represents the time sharing). In this case, the distortion is given by

λ
∑

x̂,x

PX(x)Vq(x̂|x)d(x, x̂)

+(1− λ)
∑

x,y

PX(x)W ∗(y|x)d(x, y)

= λ
∑

x̂,x

PX(x)Vq(x̂|x)d(x, x̂) + (1− λ)E

≤ D,
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β
0

1

0

1
α

1−α

1−β
Fig. 3. Parametrization of binary channels.

whereVq = BSC(q). Since every channelW ∈ W1(E) satisfies

∑

x,y

PX(x)W (y|x)d(x, y)

=
∑

x,y

PX(x)W (y|x)e(x, y)

≤ E,

we find that V̂ ∈ V(E,D). Thus, the matching condition of Corollary 8 is satisfied forthis binary Hamming

example.

Next, we consider the average distortion class. We evaluatethe upper bound (18). We first fixW ∗ to be BSC(E).

Note that

min
V ∈V(E,D)

I(PX , V ) ≥ min
V ∈V(W∗,D)

I(PX , V ). (21)

For a test channelV ∈ V(W ∗, D), let V̄ be a test channel such that̄V (u|x) = V (u ⊕ 1|x ⊕ 1) for u ∈ Ū

and V̄ (u|x) = V (u|x ⊕ 1) for u ∈ {y, ȳ}. Then, by the symmetry of the BSC and the sourcePX , we have

V̄ ∈ V(W ∗, D) andI(PX , V ) = I(PX , V̄ ). By the convexity of the mutual information for channel, we have

I(PX , Ṽ ) ≤
1

2
I(PX , V ) +

1

2
I(PX , V̄ ),

where Ṽ = 1
2V + 1

2 V̄ . This means that the minimum in the right hand side of (21) is achieved by a symmetric

test channel, i.e.,V (u|x) = V (u ⊕ 1|x ⊕ 1) for u ∈ Ū andV (u|x) = V (u|x ⊕ 1) for u ∈ {y, ȳ}. Furthermore,

for E ≤ 1
2 , we can assume thatV (ȳ|x) = 0 because usinḡy only makes the distortion larger. We also note that

such a symmetric test channel satisfiesV ∈ V(E,D). Thus, the equality in (21) actually holds. Consequently, the

upper bound onRa(D|E) in this example is the time sharing between the ordinary rate-distortion function and the

distortion that can be achieved only by the estimation, i.e., the point(E, 0).
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β

α2Ε

2Ε

Fig. 4. The set of all channels inW1(E).

D. Discussion on Universality

In this section, we discuss on the definitions of the universal Wyner-Ziv coding. We also discuss the relation

between the universal Wyner-Ziv coding and the Heegard-Berger problem.

Let us consider the binary Hamming case as in the previous section. LetX be the uniform random variable on

{0, 1}. LetW1 be the binary channel in Fig. 3 withα = 2E andβ = 0, and letW2 be the binary channel in Fig. 3

with α = 0 andβ = 2E. Obviously, the Wyner-Ziv rate-distortion functions forW1 andW2 coincide, i.e.,

RWZ(D|W1) = RWZ(D|W2).

It should be also noted thatW1(E) is the convex hull of the set{W1,W2}.

As we have mentioned in Section II-B, in the ordinary definition of the universality, we require that there

exists a universal code that works well for everyWWZ(R,D) instead ofW1(E). If we setR = RWZ(D|W1) =

RWZ(D|W2), then we have

W1,W2 ∈ WWZ(R,D).

Thus, at least, we have to construct a code that is universal for bothW1 andW2, which can be regarded as a

special case of the Heegard-Berger problem [12]. The rate-distortion functionRHB(D,D|W1,W2) is not known,

but we have a trivial lower bound

RHB(D,D|W1,W2) (22)

≥ RWZ(D|W1) = RWZ(D|W2). (23)
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The equality in (23) is a required condition such that the universal coding in the sense ofWWZ(R,D) to be

possible. In other word, if the strict inequality holds in (23), this means that the universal coding in the sense of

WWZ(R,D) is impossible. Showing whether the equality holds or not is an important open problem.

A straightforward upper bound onRHB(D,D|W1,W2) can be derived as follows. LetVs ∈ P(U|X ) be a

symmetric test channel such that

Vs(0|0) = Vs(1|1),

Vs(y|0) = Vs(y|1),

Vs(ȳ|0) = Vs(ȳ|1) = 0.

Then, by takingVs(0|0) appropriately, we have

Vs ∈ V(W1, D) ∩ V(W2, D).

The achievability of

φ(Vs,W1) = φ(Vs,W2)

can be also derived from the known upper bound in [12]. Thus, we have

RHB(D,D|W1,W2)

≤ R̃HB(D,D|W1,W2)

:= min
Vs∈V(W1,D)∩V(W2,D)

φ(Vs,W1)

Numerical calculations of̃RHB(D,D|W1,W2) andRWZ(D|W1) are compared in Fig. 5. For comparison, we also

plottedRm(D|E) in the figure. As we can find from the figure,Rm(D|E) is much larger thañRHB(D,D|W1,W2).

This is becauseW1(E) involves BSC(E).

IV. PROOF OFTHEOREM 6

A. Proof of Converse Part

First we consider the case withE = 0. Let W ∈ W1(0). Then, from the definition ofWm(E), we have

{W×n}∞n=1 ∈ Wm(0), which implies

Rm(D|0) ≥ max
W∈W1(0)

RWZ(D|W ).

Next, we consider the case withE > 0 andD > 0. For any0 < δ < E, let W ∈ W1(E − δ). Then, from the

definition ofWm(E), we have{W×n}∞n=1 ∈ Wm(E), which implies

Rm(D|E) ≥ max
W∈W1(E−δ)

RWZ(D|W ).

Since this inequality holds for arbitrary0 < δ < E andRWZ(D|W ) is continuous with respect toW for D > 0,

which will be proved in Appendix B, we have (10).
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Fig. 5. Comparison among̃RHB(D,D|W1,W2), RWZ (D|W1), andRm(D|E). The red solid line isRWZ (D|W1). The green dashed

line is R̃HB(D,D|W1,W2). The blue dashed line isRm(D|E).

WhenE > 0 andD = 0, for ǫ > 0, we first prove

Rm(0|E) ≥ max
W∈W1(E−δ)

RWZ(0|W )

≥ max
W∈W1(E−δ)

RWZ(ǫ|W ).

Then, by the continuity argument, we have

Rm(0|E) ≥ lim
ǫ↓0

max
W∈W1(E)

RWZ(ǫ|W ).

B. Proof of Direct Part

Note that the functionφ(·,W ) is a convex function for fixedW , φ(V, ·) is a concave function for fixedV ,

andW1(E) andV(E,D) are convex sets. Thus, (13) is derived from (12) by applying the saddle point theorem

[27]. We prove (12) by three steps. First, we prove that thereexists a universal code for i.i.d. channels. Then, we

show that there exists a randomized universal code for permutation invariant channels. Finally, we de-randomize

the randomized universal code by using the technique of [28], [29].
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1) Code for i.i.d. Channel:In this section, we construct a universal Wyner-Ziv code fora fixed test channel

such that it works well for everyW ∈ W1(E) ∩Pn(Y|X ). We construct a universal Wyner-Ziv code by using the

output statistics of random binning argument recently introduced by [30]. We note that a universal Wyner-Ziv code

can be also constructed from the coding method in [31].

Let us fix V ∈ V(D,E). We use two kinds of bin codingsfn : Un → Sn andgn : Un → Ln. Let Fn andGn

be random bin codings. For arbitrary smallδ > 0, let Rf , Rg ≥ 0 be the real numbers such that

Rf = H(U |X)− δ, (24)

Rg = max
W∈W1(E)

φ(V,W ) + 2δ (25)

= max
W∈W1(E)

I(U ;X |Y ) + 2δ. (26)

Since

I(U ;X |Y ) = H(U |Y )−H(U |X,Y )

= H(U |Y )−H(U |X),

we have

Rf +Rg = max
W∈W1(E)

H(U |Y ) + δ. (27)

Let |Sn| = ⌊2nRf ⌋ and |Ln| = ⌈2nRg⌉.

From (27), we find that the sum rateRf + Rg is sufficiently large for the Slepian-Wolf coding. We use the

following lemma on universal Slepian-Wolf coding.

Lemma 17:For sufficiently largen, there existsµ1 > 0 and a universal decoderκn : Yn ×Sn ×Ln → Un such

that

EFnGn
[Perr(Fn, Gn,W )] ≤ 2−µ1n

for everyW ∈ W1(E)∩Pn(Y|X ), wherePerr(Fn, Gn,W ) is the error probability of the Slepian-Wolf coding for

channelW when the bin codings(Fn, Gn) are used.

Proof: The lemma is proved exactly in the same manner as [4]. A few modifications are that we use the

random bin coding instead of the random linear coding2, and that we evaluate the ensemble average of the error

probability.

From (24), we find that the rateRf is sufficiently small to generate the uniform random variable that is independent

of Xn. We use the privacy amplification lemma (Lemma 30) describedin Appendix D.

We construct a code as follows. Let

PÛn|Y nSnLn
(un|yn, sn, ℓn) = 1[un = κn(y

n, sn, ℓn)]

2we can also use the random linear coding instead of the randombin coding because Lemma 30 holds under the condition thatfn is chosen

from a universal hash family and the random linear coding ensemble is a universal hash family.
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be the distribution describing the Slepian-Wolf decoder. Let

PSnLnUnXnY nÛn(sn, ℓn, u
n, xn, yn, ûn)

= PSnXn(sn, x
n)PUn|SnXn(un|sn, x

n)PLn|Un(ℓn|u
n)

PY n|Xn(yn|xn)PÛn|Y nSnLn
(ûn|yn, sn, ℓn)

and

P̂S̄nLnUnXnY nÛn(sn, ℓn, u
n, xn, yn, ûn)

= PS̄n
(sn)PXn(xn)PUn|SnXn(un|sn, x

n)PLn|Un(ℓn|u
n)

PY n|Xn(yn|xn)PÛn|Y nSnLn
(ûn|yn, sn, ℓn).

The distributionPSnLnUnXnY nÛn describes a virtual coding scheme in which the encoder sendsboth Fn(U
n)

andGn(U
n). The distributionP̂S̄nLnUnXnY nÛn describes a real coding scheme in which the encoder sends only

Gn(U
n) and uses the common randomnessS̄n that is shared with the decoder. Note thatPUn|SnXn(un|sn, x

n) is

a randomized quantizer, which is derived from the bin codingfn and the test channelPU|X via PUnXnSn
. From

Lemma 30 and the fact that the variational distance does not increase by data processing or marginalization, we

have

EFnGn

[

‖P̂S̄nUnXnY nÛn − PSnUnXnY nÛn‖
]

≤ 2−µ2n

for someµ2 > 0. By the large deviation bound such as the Bernstein inequality, there existsµ3 > 0 such that

PUnXnY n({dn(x
n, un(yn)) > D + δ}) ≤ 2−µ3n. (28)

It should be noted that the bound (28) is uniform with respectto the channelW . By Lemma 17, we have

EFnGn
[PSnUnXnY nÛn({dn(x

n, ûn(yn)) > D + δ})]

≤ EFnGn
[PSnUnXnY nÛn({dn(x

n, un(yn)) > D + δ

or un 6= ûn})]

≤ 2−µ1n + 2−µ3n.

Since

P̂S̄nUnXnY nÛn(A) − PSnUnXnY nÛn(A)

≤ ‖P̂S̄nUnXnY nÛn − PSnUnXnY nÛn‖

for any setA, we have

EFnGn
[P̂S̄nUnXnY nÛn({dn(x

n, ûn(yn)) > D + δ})]

≤ 3 · 2−nminµi .
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Since

|W1(E) ∩ Pn(Y|X )| ≤ (n+ 1)|X ||Y|,

there exists at least one realization(fn, gn, sn) of (Fn, Gn, Sn) such that

P̂UnXnY nÛn|S̄n
({dn(x

n, ûn(yn)) > D + δ}|sn)

≤ 3(n+ 1)|X ||Y|2−nminµi .

for everyW ∈ W1(E)∩Pn(Y|X ). Furthermore, letKn be a random variable that simulate the randomized quantizer

PUn|SnXn . Then, we can also eliminate this randomness in a similar manner as above.

In summary, we have shown the following.

Lemma 18:For anyV ∈ V(E,D) and anyδ > 0, there exists a universal code(ϕn, ψn) and a constantµ > 0

such that

1

n
log |Mn| ≤ max

W∈W1(E)
φ(V,W ) + 2δ

and

Pr{dn(X
n, ψn(ϕn(X

n), Y n)) > D + δ} ≤ 2−µn

for everyW ∈ W1(E) ∩ Pn(Y|X ) provided thatn is sufficiently large.

2) Code for Permutation Invariant Channel:In Section IV-B1, we constructed a universal Wyner-Ziv code

(ϕn, ψn) for a fixed test channel such that it works well for everyW ∈ W1(E) ∩ Pn(Y|X ). In this section, we

use this code to the channel inWm(E). Let πn be random permutation on{1, . . . , n}. We first apply the random

permutation to the sequence(Xn, Y n) and then use(ϕn, ψn). It should be noted that the encoder and the decoder

agree with a realization of the random permutation in this section. We denote

Pn
X ·Wn(xn, yn) = Pn

X(xn)Wn(yn|xn).

Note that

Eπn
[Pn

X ·Wn(πn(x
n), πn(y

n))]

= Eπn
[Pn

X(πn(x
n)Wn(πn(y

n)|πn(x
n))]

= Pn
X(xn)Eπn

[Wn(πn(y
n)|πn(x

n))] ,

and we consider the average performance with respect to the permutation. Thus, without loss of generality, we can

assume thatWn is permutation invariant, i.e.,Wn(yn|xn) =Wn(ỹn|x̃n) if Pxnyn = Px̃nỹn .

Lemma 19:Let An ⊂ Xn × Yn. Suppose that

Pn
X · W̄×n(Ac

n) ≤ ε̄
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for everyW̄ ∈ W1(E + δemax) ∩ Pn(Y|X ). Then, for any conditional typēW ∈ W̄n(TX,δ, E), we have

∑

xn∈TX,δ

Pn
X(xn)1[W̄ ∈ Pn(Y|Pxn)]

×
∑

yn∈TW̄ (xn)

1

|TW̄ (xn)|
1[(xn, yn) ∈ Ac

n]

≤ (n+ 1)|X ||Y|ε̄.

Proof: For anyW̄ ∈ Pn(Y|Pxn), note that

W̄×n(TW̄ (xn)|xn) ≥
1

(n+ 1)|X ||Y|
2−nD(W̄‖W̄ |Pxn ) (29)

=
1

(n+ 1)|X ||Y|
. (30)

From (51), we have

W̄ ∈ W̄n(TX,δ, E) =⇒ W̄ ∈ W1(E + δemax).

Thus, for everyW̄ ∈ W̄n(TX,δ, E) we have

ε̄ ≥ Pn
X · W̄×n(Ac

n)

≥
∑

xn∈TX,δ

Pn
X(xn)1[W̄ ∈ Pn(Y|Pxn)]

∑

yn∈TW̄ (xn)

×W̄×n(TW̄ (xn)|xn)
1

|TW̄ (xn)|
1[(xn, yn) ∈ Ac

n]

≥
1

(n+ 1)|X ||Y|

∑

xn∈TX,δ

Pn
X(xn)1[W̄ ∈ Pn(Y|Pxn)]

×
∑

yn∈TW̄ (xn)

1

|TW̄ (xn)|
1[(xn, yn) ∈ Ac

n],

which implies the statement of the lemma.

Lemma 20:Suppose that the code(ϕn, ψn) satisfies

Pr {dn(X
n, ψn(ϕn(X

n), Y n)) > D + δ} ≤ ε̄

for every i.i.d. channelW̄×n such thatW̄ ∈ W1(E + δemax) ∩ Pn(Y|X ), where(Xn, Y n) ∼ Pn
X · W̄×n. Then,

we have

Pr {dn(X
n, ψn(ϕn(X

n), Y n)) > D + δ}

≤ (n+ 1)2|X ||Y|ε̄+ Pn
X((T n

X,δ)
c) + δ1

for every permutation invariant (not necessarily i.i.d.)Wn satisfying

Pr {en(X
n, Y n) > E} ≤ δ1,

where(Xn, Y n) ∼ Pn
X ·Wn.
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Proof: Suppose that(Xn, Y n) ∼ Pn
X ·Wn. By using Lemma 19 for

An := {(xn, yn) : dn(x
n, ψn(ϕn(x

n), yn)) ≤ D + δ} ,

we have

Pr {dn(X
n, ψn(ϕn(X

n), Y n)) > D + δ}

≤
∑

xn /∈TX,δ

Pn
X(xn)

+
∑

W̄∈W̄n(TX,δ ,E)

∑

xn∈TX,δ

Pn
X(xn)1[W̄ ∈ Pn(Y|Pxn)]

×
∑

yn∈TW̄ (xn)

Wn(TW̄ (xn)|xn)
1

|TW̄ (xn)|
1[(xn, yn) ∈ Ac

n]

+
∑

W̄ /∈W̄n(TX,δ ,E)

∑

xn∈TX,δ

Pn
X(xn)1[W̄ ∈ Pn(Y|Pxn)]Wn(TW̄ (xn)|xn)

≤ Pn
X(T c

X,δ)

+
∑

W̄∈W̄n(TX,δ ,E)

∑

xn∈TX,δ

Pn
X(xn)1[W̄ ∈ Pn(Y|Pxn)]

×
∑

yn∈TW̄ (xn)

1

|TW̄ (xn)|
1[(xn, yn) ∈ Ac

n]

+Pr {en(X
n, Y n) > E}

≤ (n+ 1)2|X ||Y|ε̄+ Pn
X(T c

X,δ) + δ1,

where we usedWn(TW̄ (xn)|xn) ≤ 1 to bound the second term, we used the fact

W̄ /∈ W̄n(Pxn , E) ⇐⇒ e(Pxn , W̄ ) > E

and (49) to bound the third term in the second inequality, andwe used Lemma 19 to bound the second term in the

third inequality.

By combining Lemma 18 and Lemma 20 and by noting the definitionof Wm(E), we have the following.

Lemma 21:For anyV ∈ V(E + δemax, D), any δ > 0, and anyε > 0, there exists a universal code(ϕn, ψn)

such that

1

n
log |Mn| ≤ max

W∈W1(E+δemax)
φ(V,W ) + 2δ

and

Eπn
[Pr{dn(πn(X

n), ψn(ϕn(πn(X
n)), πn(Y

n))) > D + δ}]

≤ ε (31)

for everyW ∈ Wm(E) provided thatn is sufficiently large.
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3) De-Randomization:Now we reduce the size of random permutation by using the de-randomization technique.

Lemma 22:Suppose that(ϕn, ψn) satisfies (31). Then, for arbitraryδ2, γ > 0, there existsmn = 2δ2n permu-

tations{π(1)
n , . . . , π

(mn)
n } such that

1

mn

mn
∑

i=1

Pr{dn(π
(i)
n (Xn), ψn(ϕn(π

(i)
n (Xn)), π(i)

n (Y n)))

> D + δ} ≤ ε+ γ

provided thatn is sufficiently large.

Proof: For a permutationπn and (xn, yn) ∈ Xn × Yn, we denote

I(πn, x
n, yn)

= 1[dn(πn(x
n), ψn(ϕn(πn(x

n)), πn(y
n))) > D + δ].

Let π(1)
n , . . . , π

(mn)
n be randomly generated permutations, and letĪ(xn, yn) = Eπn

[I(πn, x
n, yn)]. Then, by using

Lemma 31 forAi = I(π
(i)
n , xn, yn), b = 1, andα = γ

2 , we have

Pr

{

1

mn

mn
∑

i=1

I(π(i)
n , xn, yn) ≥ Ī(xn, yn) + γ

}

≤ exp{−(γ2/4)mn}.

Furthermore, by using the union bound, we have

Pr

{

∃(xn, yn)
1

mn

mn
∑

i=1

I(π(i)
n , xn, yn) ≥ Ī(xn, yn) + γ

}

≤ |Xn||Yn| exp{−(γ2/4)mn}. (32)

Sinceexp{−(γ2/4)mn} converges to0 doubly exponentially, the right hand side of (32) is strictly smaller than1

if n is sufficiently large, which implies that there exists one realization ofπ(1)
1 , . . . , π

(mn)
n such that

1

mn

mn
∑

i=1

I(π(i)
n , xn, yn) ≤ Ī(xn, yn) + γ (33)

for every (xn, yn). Finally, by taking the average of both sides of (33) with respect to (Xn, Y n), we have the

assertion of the lemma.

Finally, by combining Lemma 21 and Lemma 22, by taking the constants to be sufficiently small andn to be

sufficiently large, we can show (12).

V. PROOF OFTHEOREM 10

A. Proof of Converse Part

We only prove (16) because (17) is obtained from (16) by letting E1 = E∗ andW1 =W∗.

Assume thatR is achievable and fixλ, E1, E2, W1, andW2 such thatλE1+(1−λ)E2 ≤ E andWj ∈ Wj(Ej)

for j = 1, 2. To prove (16), it is sufficient to show that there exists a pair (D1, D2) such thatλD1+(1−λ)D2 ≤ D

andR ≥ RHB(D1, D2|W1,W2).
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To do this, we consider the compound channel

Wn = λW×n
1 + (1 − λ)W×n

2 .

Note thatW = {Wn}∞n=1 ∈ Wa(E) since

en(P
n
X ,W

n) =
∑

xn,yn

Pn
X(xn)Wn(yn|xn)en(x

n, yn)

= λen(P
n
X ,W

×n
1 ) + (1− λ)en(P

n
X ,W

×n
2 )

≤ λE1 + (1 − λ)E2

≤ E.

Hence, by the definition of the achievability ofR, for arbitrary smallε > 0 and sufficiently largen, there exists a

code(ϕn, ψn) such that

1

n
log |Mn| ≤ R+ ε

and

∑

xn,yn

Pn
X(xn)Wn(yn|xn)dn(x

n, ψn(ϕn(x
n), yn)) ≤ D + ε. (34)

Note that (34) can be also written as

D + ε ≥ λ
∑

xn,yn

Pn
X(xn)W×n

1 (yn|xn)dn(x
n, ψn(ϕn(x

n), yn)) (35)

+ (1− λ)
∑

xn,yn

Pn
X(xn)W×n

2 (yn|xn)dn(x
n, ψn(ϕn(x

n), yn)). (36)

On the other hand, by using(ϕn, ψn), we can construct a HB code(ϕHB
n , ψHB1

n , ψHB2
n ) as

ϕHB
n (xn) = ϕn(x

n) xn ∈ Xn,

ψHB1
n (m, yn1 ) = ψn(m, y

n
1 ) m ∈ Mn, y

n
1 ∈ Yn,

ψHB2
n (m, yn2 ) = ψn(m, y

n
2 ) m ∈ Mn, y

n
2 ∈ Yn.

Then, let(D1, D2) be the pair of average distortion occurred by(ϕHB
n , ψHB1

n , ψHB2
n ), i.e.,

Dj :=
∑

xn,yn

Pn
X(xn)W×n

j (ynj |x
n)dn(x

n, ψHBj
n (ϕHB

n (xn), ynj )) j = 1, 2. (37)

By the definition ofRHB(D1, D2|W1,W2) and the construction of the code, we have

R+ ε ≥ RHB(D1, D2|W1,W2).

Further, (36) and (37) indicate

D + ε ≥ λD1 + (1 − λ)D2.

Since we can chooseε arbitrary small, we haveR ≥ RHB(D1, D2|W1,W2) andλD1 + (1 − λ)D2 ≤ D.
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B. Proof of Direct Part

As the direct part proof of Theorem 6, we prove (18) in three steps. First, we construct a code for i.i.d. channel.

Then, it is used to permutation invariant channels by using random permutation. Then, the size of the randomness

is reduced by the de-randomization technique.

1) Code for i.i.d. channel:The goal of this section is to show the following lemma.

Lemma 23:For arbitrarily fixedV ∈ V(E,D) and δ > 0, there existsµ > 0 and a codeϕ′
n : Xn → Un such

that

1

n
log |ϕ′

n| ≤ I(PX , V ) + 2δ (38)

and

Pr
{

(Ûn, Xn, Y n) /∈ TPXV W̄ ,δ

}

≤ 2−µn

for every W̄ ∈ Pn(Y|X ) provided thatn is sufficiently large, where|ϕ′
n| is the cardinality of the image of

ϕ′
n, Ûn = ϕ′

n(X
n) and TPXV W̄ ,δ is the set ofPUXY -typical sequences with respect toPUXY (u, x, y) =

PX(x)V (u|x)W̄ (y|x).

Proof: We construct a code in a similar manner as Section IV-B1. We use two kinds of bin codingsfn : Un →

Sn andgn : Un → Ln. We set

Rf = H(U |X)− δ,

Rg = I(PX , V ) + 2δ.

Let |Sn| = ⌊2nRf ⌋ and |Ln| = ⌈2nRg⌉.

Since

Rf +Rg = H(U) + δ,

there exists a decoderκn : Sn × Ln → Un andµ1 > 0 such that

EFnGn
[Perr(Fn, Gn)] ≤ 2−µ1n (39)

for sufficiently largen, wherePerr(Fn, Gn) is the error probability of the source coding when the bin codings

(Fn, Gn) are used. Furthermore, sinceRf = H(U |X)− δ, Sn = Fn(U
n) is close to the uniform random variable

that is independent ofXn (Lemma 30).

We construct a code as follows. Let

PÛn|SnLn
(un|sn, ℓn) = 1[un = κn(sn, ℓn)]

be the distribution describing the decoder. Let

PSnLnUnXnY nÛn(sn, ℓn, u
n, xn, yn, ûn)

= PSnXn(sn, x
n)PUn|SnXn(un|sn, x

n)PLn|Un(ℓn|u
n)PY n|Xn(yn|xn)PÛn|SnLn

(ûn|sn, ℓn)
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and

P̂S̄nLnUnXnY nÛn(sn, ℓn, u
n, xn, yn, ûn)

= PS̄n
(sn)PXn(xn)PUn|SnXn(un|sn, x

n)PLn|Un(ℓn|u
n)PY n|Xn(yn|xn)PÛn|SnLn

(ûn|sn, ℓn).

Note thatPUn|SnXn is a randomized quantizer. From Lemma 30 and the fact that thevariational distance does not

increase by data processing and marginalization, we have

EFnGn

[

‖P̂S̄nUnXnY nÛn − PSnUnXnY nÛn‖
]

≤ 2−µ2n

for someµ2 > 0. By Lemma 29 and (39), we have

EFnGn

[

PSnUnXnY nÛn({(û
n, xn, yn) /∈ TPXVW,δ})

]

≤ EFnGn

[

PSnUnXnY nÛn({(u
n, xn, yn) /∈ TPXVW,δ or un 6= ûn})

]

≤ 2−µ3n

for someµ3 > 0. Since

P̂S̄nUnXnY nÛn(A) − PSnUnXnY nÛn(A)

≤ ‖P̂S̄nUnXnY nÛn − PSnUnXnY nÛn‖

for any setA, we have

EFnGn

[

P̂S̄nUnXnY nÛn({(û
n, xn, yn) /∈ TPXVW,δ})

]

≤ 2−µ4n

for someµ4 > 0. Since the cardinality ofPn(Y|X ) is bounded by(n + 1)|X ||Y|, there exists one realization

(fn, gn, sn) of (Fn, Gn, Sn) satisfying

P̂UnXnY nÛn|S̄n
({(ûn, xn, yn) /∈ TPXV W,δ}|sn) ≤ (n+ 1)|X ||Y|2−µ4n.

Furthermore, letKn be a random variable that simulate the randomized quantizerPUn|SnXn . Then, we can also

eliminate this randomness in a similar manner. Letτn : Sn × Xn → Un be the resulting deterministic quantizer.

Then, we setϕ′
n(x

n) = κn(sn, gn(τn(sn, x
n))). The image size ofϕ′

n obviously satisfies (38). Thus, by takingn

sufficiently large, we have the assertion of the lemma.

2) Code for Permutation Invariant Channel:

Lemma 24:For W̄ ∈ W̄n(TX,δ), let An(W̄ ) ⊂ Xn × Yn. Suppose that

Pn
X · W̄×n(An(W̄ )c) ≤ ε̄

for everyW̄ ∈ W̄n(TX,δ). Then, for any conditional typēW ∈ W̄n(TX,δ), we have

∑

xn∈TX,δ

Pn
X(xn)1[W̄ ∈ Pn(Y|Pxn)]

×
∑

yn∈TW̄ (xn)

1

|TW̄ (xn)|
1[(xn, yn) ∈ An(W̄ )c]

≤ (n+ 1)|X ||Y|ε̄.
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Proof: We prove this lemma in a similar manner as Lemma 19. For anyW̄ ∈ Pn(Y|Pxn), note that (30) holds.

Then, for anyW̄ ∈ W̄n(TX,δ), we have

ε̄ ≥ Pn
X · W̄×n(An(W̄ )c)

≥
∑

xn∈TX,δ

Pn
X(xn)1[W̄ ∈ Pn(Y|Pxn)]

∑

yn∈TW̄ (xn)

W̄×n(TW̄ (xn)|xn)
1

|TW̄ (xn)|
1[(xn, yn) ∈ An(W̄ )c]

≥
1

(n+ 1)|X ||Y|

∑

xn∈TX,δ

Pn
X(xn)1[W̄ ∈ Pn(Y|Pxn)]

∑

yn∈TW̄ (xn)

1

|TW̄ (xn)|
1[(xn, yn) ∈ An(W̄ )c],

which implies the statement of the lemma.

Lemma 25:For a givenV ∈ V(E + 2δemax, D), suppose that there existsϕ′
n : Xn → Un such that

Pr{(Ûn, Xn, Y n) /∈ TPXV W̄ ,δ} ≤ ε̄

for everyW̄ ∈ Pn(Y|X ), whereÛn = ϕ′
n(X

n) andTPXV W̄ ,δ is the set of allPUXY -typical set forPUXY (u, x, y) =

PX(x)V (u|x)W̄ (y|x). Then, we have

E

[

dn(X
n, Ûn(Y n))

]

≤
{

Pn
X(T c

X,δ) + (n+ 1)2|X ||Y|ε̄+ δ
}

dmax +D

for every permutation invariant (not necessarily i.i.d.)Wn such that

E[en(X
n, Y n)] ≤ E

provided thatn is sufficiently large.

Proof: From (52), we first note that

dn(x
n, un(yn)) ≤ d(V, W̄ ) + δdmax

for (un, xn, yn) ∈ TPXV W̄ ,δ. Then, by using Lemma 24 for

An(W̄ ) = {(xn, yn) : (ϕ′
n(x

n), xn, yn) ∈ TPXV W̄ ,δ},

we have

E

[

dn(X
n, Ûn(Y n))

]

≤ Pn
X(T c

X,δ)dmax

+
∑

W̄∈W̄n(TX,δ)

∑

xn∈TX,δ

Pn
X(xn)1[W̄ ∈ Pn(Y|Pxn)]

∑

yn∈TW̄ (xn)

Wn(TW̄ (xn)|xn)
1

|TW̄ (xn)|
1[(xn, yn) ∈ Ac

n(W̄ )]dmax

+
∑

W̄∈W̄n(TX,δ)

∑

xn∈TX,δ

Pn
X(xn)1[W̄ ∈ Pn(Y|Pxn)]

∑

yn∈TW̄ (xn)

Wn(TW̄ (xn)|xn)
1

|TW̄ (xn)|
1[(xn, yn) ∈ An(W̄ )]{d(V, W̄ ) + δdmax}
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≤
{

Pn
X(T c

X,δ) + (n+ 1)2|X ||Y|ε̄+ δ
}

dmax

+
∑

xn∈TX,δ

∑

W̄∈Pn(Y|Pxn )

Pn
X(xn)Wn(TW̄ (xn)|xn)d(V, W̄ ),

where we used Lemma 24 to upper bound the second term in the second inequality. Now, we rewrite the last term

as

∑

xn∈TX,δ

∑

W̄∈Pn(Y|Pxn )

Pn
X(xn)Wn(TW̄ (xn)|xn)d(V, W̄ )

= Pn
X(TX,δ)d(V,Wmix),

whereWmix ∈ P(Y|X ) is a channel defined by

Wmix(y|x) =
∑

xn∈TX,δ

P̃n
X(xn)

∑

W̄∈Pn(Y|Pxn )

Wn(TW̄ (xn)|xn)W̄ (y|x)

for

P̃n
X(xn) =

Pn
X(xn)

Pn
X(TX,δ)

.

From (49) and (50), we have

en(x
n, yn) ≥ e(PX , W̄ )− δemax

for xn ∈ TX,δ andyn ∈ TW̄ (xn). Thus, we have

E ≥ E [en(X
n, Y n)]

=
∑

xn,yn

Pn
X(xn)Wn(yn|xn)en(x

n, yn)

≥
∑

xn∈TX,δ

Pn
X(xn)

∑

W̄∈Pn(Y|Pxn )

Wn(TW̄ (xn)|xn)e(Pxn , W̄ )

≥
∑

xnTX,δ

Pn
X(xn)

∑

W̄∈Pn(Y|Pxn )

Wn(TW̄ (xn)|xn){e(PX , W̄ )− δemax}

= Pn
X(TX,δ){e(PX ,Wmix)− δemax}.

Thus, we haveWmix ∈ W1(E + 2δemax) provided thatn is sufficiently large. SinceV ∈ V(E + 2δemax, D), we

haved(V,Wmix) ≤ D. This completes the proof.

By combining Lemma 23 and Lemma 25, we have the following.

Lemma 26:For anyV ∈ V(E + 2δemax, D), δ > 0, andε > 0, there existsϕ′
n : Xn → Un such that

1

n
log |ϕ′

n| ≤ I(PX , V ) + δ

and

Eπn

[

E

[

dn(πn(X
n), Ûn(πn(Y

n)))
]]

≤ D + ε (40)

for everyW ∈ Wm(E) provided thatn is sufficiently large, wherêUn = ϕ′
n(πn(X

n)).
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3) De-Randomization:Now we reduce the size of random permutation by using the de-randomization technique.

Lemma 27:Suppose thatϕ′
n satisfies (40). Then, for arbitraryδ2, γ > 0, there existsmn = 2δ2n permutations

{π
(1)
n , . . . , π

(mn)
n } such that

1

mn

mn
∑

i=1

E

[

dn(πn(X
n), Ûn(πn(Y

n)))
]

≤ D + ε+ γ

provided thatn is sufficiently large.

Proof: For a permutationπn and (xn, yn) ∈ Xn × Yn, we denote

J(πn, x
n, yn) = dn(πn(x

n), ûn(πn(y
n))),

whereûn = ϕ′
n(πn(x

n)). Letπ(1)
n , . . . , π

(mn)
n be randomly generated permutations, and letJ̄(xn, yn) = Eπn

[J(πn, x
n, yn)].

Then, by using Lemma 31 forAi = J(π
(i)
n , xn, yn), b = dmax, andα = γ

2d2
max

, we have

Pr

{

1

mn

mn
∑

i=1

J(π(i)
n , xn, yn) ≥ J̄(xn, yn) + γ

}

≤ exp{−(γ2/4d2max)mn}.

Furthermore, by using the union bound, we have

Pr

{

∃(xn, yn)
1

mn

mn
∑

i=1

J(π(i)
n , xn, yn) ≥ J̄(xn, yn) + γ

}

≤ |Xn||Yn| exp{−(γ2/4d2max)mn}. (41)

Since exp{−(γ2/4d2max)mn} converges to0 doubly exponentially, the righthand side of (41) is strictly smaller

than1 if n is sufficiently large, which implies that there exists one realization ofπ(1)
n , . . . , π

(mn)
n such that

1

mn

mn
∑

i=1

J(π(i)
n , xn, yn) ≤ J̄(xn, yn) + γ (42)

for every (xn, yn). Finally, by taking the average over both sides of (42) with respect to(Xn, Y n), we have the

assertion of the lemma.

Finally, by combining Lemma 26 and Lemma 27, and by taking theconstants to be sufficiently small andn to

be sufficiently large, we can show that the righthand side of (18) is achievable.

VI. CONCLUSION

In this paper, we introduced the novel rate-distortion functions for the Wyner-Ziv problem, which are defined as

the minimum rates required for the universal coding for the distortion constrained general channel classes. Then,

we derived the upper bounds and lower bounds on the rate-distortion functions. The complete solution for the

rate-distortion functions is remained open. Parts of difficulties are related to the Heegard-Berger problem, which is

also a long-standing open problem.

November 10, 2018 DRAFT



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 29

APPENDIX

A. Proof of Proposition 2

From the definition, for anyν > 0 there exists an average-achievable rateR such thatR ≤ Ra(D|E) + ν. For

any ǫ > 0 andW ∈ Wm(E − ǫ), we have

E [en(PXn ,Wn)] ≤ E − ǫ+ emax Pr {en(X
n, Y n) > E} (43)

≤ E (44)

provided thatn ≥ n0(ǫ/emax).

Let W̃ = {W̃n}∞n=1 be a sequence of channels such thatW̃n = Wn for n ≥ n0(ǫ/emax) and W̃n for 1 ≤

n < n0(ǫ/emax) are chosen appropriately so thatE

[

en(PXn , W̃n)
]

≤ E. Then from (44), we havẽW ∈ Wa(E).

Then, sinceR is average achievable, for anyε > 0 there exists a code such that (4) and (5) are satisfied forW̃n

andn ≥ n1(ε). This also implies that the code also satisfies (4) and (5) forWn andn ≥ max[n0(ǫ/emax), n1(ε)].

SinceW ∈ Wm(E − ǫ) is arbitrary,R is also maximum-achievable. Sinceν > 0 is arbitrary, we have

Ra(D|E) ≥ Rm(D|E − ǫ).

Thus, by taking the limitǫ→ 0, we have the assertion of the proposition.

B. Continuity ofRWZ(D|W )

Lemma 28:ForD > 0, RWZ(D|W ) is a continuous function with respect toW .

Proof: For two channelsW1,W2, we consider the distance given by

∆(W1,W2) :=
∑

x,y

|PX(x)W1(y|x)− PX(x)W2(y|x)|.

Since the Euclidian distance‖W1 −W2‖2 converging to0 implies∆(W1,W2) converging to0, it suffice to show

the continuity ofRWZ(D|W ) with respect to the topology given by∆(·, ·).

By a slight abuse of notation, we also introduce

∆(V1, V2) :=
∑

u,x

|PX(x)V1(u|x)− PX(x)V2(u|x)|

for two test channelV1, V2. From the definition of the variational distance, we can find that

∆(W1,W2) = ‖PXVW1 − PXVW2‖

for any fixed test channelV and

∆(V1, V2) = ‖PXV1W − PXV2W‖

for any fixed channelW , wherePXVW is the joint distribution given byPX(x)V (u|x)W (y|x). Furthermore, from

Fannes’ inequality [32, Lemma 2.7], there exists a functionν(δ) such thatν(δ) → 0 asδ → 0 and

|φ(V,W1)− φ(V,W2)| ≤ ν(∆(W1,W2)) (45)

November 10, 2018 DRAFT



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 30

for fixed V and

|φ(V1,W )− φ(V2,W )| ≤ ν(∆(V1, V2)) (46)

for fixedW .

For two channelsW1,W2, let ǫ := dmax∆(W1,W2). Let V ∗
i ∈ V(Wi, D + ǫ) be a test channel such that

φ(V ∗
i ,Wi) = RWZ(D + ǫ|Wi).

Let Ṽi be a test channel such thatṼi ∈ V(Wi, 0). We set

V †
i :=

D

D + ǫ
V ∗
i +

ǫ

D + ǫ
Ṽi.

Then, we have

∆(V ∗
i , V

†
i ) ≤

ǫ

D + ǫ
‖PXV

∗
i − PX Ṽi‖ (47)

≤
2ǫ

D + ǫ
(48)

and

d(V †
i ,Wi) =

D

D + ǫ
d(V ∗

i ,Wi) +
ǫ

D + ǫ
d(Ṽi,Wi)

≤ D.

Furthermore, letV ‡
i ∈ V(Wi, D) be such that

φ(V ‡
i ,Wi) = RWZ(D|Wi).

Note thatV ‡
1 ∈ V(W2, D + ǫ) andV ‡

2 ∈ V(W1, D + ǫ).

By using above notations, we have

RWZ(D|W1) = φ(V ‡
1 ,W1)

(a)

≥ φ(V ‡
1 ,W2)− ν(∆(W1,W2))

(b)

≥ φ(V ∗
2 ,W2)− ν(∆(W1,W2))

(c)

≥ φ(V †
2 ,W2)− ν(∆(W1,W2))− ν (2ǫ/(D + ǫ))

(d)

≥ φ(V ‡
2 ,W2)− ν(∆(W1,W2))− ν (2ǫ/(D + ǫ))

= RWZ(D|W2)− ν(∆(W1,W2))− ν (2ǫ/(D + ǫ)) ,

where (a) follows from (45), (b) follows from V ‡
1 ∈ V(W2, D + ǫ) and the fact thatV ∗

2 minimizesφ(V,W2)

underV ∈ V(W2, D+ ǫ), (c) follows from (48) and (46), and(d) follows from V †
2 ∈ V(W2, D) and the fact that

V ‡
2 minimizesφ(V,W2) underV ∈ V(W2, D). Similarly, we can prove the inequality in whichW1 andW2 are

interchanged. Thus we have

|RWZ(D|W1)−RWZ(D|W2)| ≤ ν(∆(W1,W2)) + ν (2ǫ/(D + ǫ)) .

Sinceǫ→ 0 as∆(W1,W2) → 0, we have proved the continuity ofRWZ(D|W ).
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C. Miscellaneous Facts on Types and Typicality

In this section, we introduce some notations and known factson the type method [32].

The type of a sequencexn and the joint type of(xn, yn) are denoted byPxn andPxnyn respectively. The set

of all types and joint types are denoted byPn(X ) andPn(X × Y). For typeP , the set of all sequence such that

Pxn = P is denoted byTP . We use a similar notation for joint types. The set of all conditional types is denoted

by Pn(Y|X ), and the set ofW -shell for givenxn is denoted byTW (xn). For typeP ∈ Pn(X ), the set of all

conditional types such thatTW (xn) is not empty is denoted byPn(Y|P ). It is well known that

|Pn(X )| ≤ (n+ 1)|X |,

|Pn(X × Y)| ≤ (n+ 1)|X ||Y|,

|Pn(Y|X )| ≤ (n+ 1)|X ||Y|,

and these inequalities are extensively used in the paper.

For PX ∈ P(X ), a sequencexn is calledPX -typical sequence with constantδ if

|Pxn(a)− PX(a)| ≤ δ ∀a ∈ X

and noa ∈ X with PX(a) = 0 occurs inxn. The set of all typical sequence is denoted byTX,δ. The set of

all typesP ∈ Pn(X ) such thatTP ⊂ TX,δ is denoted byPX,δ,n. For joint probability distribution, joint typical

sequence and the set of all joint typical sequences are defined in a similar manner. It is well known that the set of

all non-typical sequences occur with exponential small probability. Especially for our purpose, we need a bound

such that the convergence is uniform with respect toPX .

Lemma 29:For anyPX ∈ P(X ), we have

Pn
X(T c

X,δ) ≤ 2|X |2−n 2δ2

5 ln 2 .

Proof: For eacha ∈ X such thatPX(a) > 0, by noting that the variance of1[Xi = a]− PX(a) is bounded

by 1
2 and |1[Xi = a]− PX(a)| ≤ 1 with probability one, and by using the Bernstein inequality, we have

Pr{|PXn(a)− PX(a)| ≥ δ} ≤ 2 · 2−n 2δ2

5 ln 2

for any 0 < δ ≤ 1. Thus, by using the union bound with respect toa ∈ X , we have the assertion.

Since the distortion is additive, the distortion betweenxn andyn only depends on their joint type, and thus we

have

en(x
n, yn) = e(P,W ) (49)

if xn ∈ TP andyn ∈ TW (xn). From the definition ofPX,δ,n, we have

|e(P,W )− e(PX ,W )| ≤ δemax (50)

for anyP ∈ PX,δ,n andW ∈ P(Y|X ).
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For P ∈ Pn(X ), let

W̄n(P,E) := W1(P,E) ∩ Pn(Y|P ).

Then, forP ∈ PX,δ,n, (50) implies

W ∈ W̄n(P,E) =⇒W ∈ W1(E + δemax). (51)

We also use the notation

W̄n(TX,δ, E) :=
⋃

P∈PX,δ,n

W̄n(P,E),

W̄n(TX,δ) :=
⋃

P∈PX,δ,n

Pn(Y|P ).

For (V,W ) ∈ P(U|X ) × P(Y|X ), let PUXY (u, x, y) = PX(x)V (y|x)W (y|x). For (un, xn, yn) ∈ TUXY,δ, by

the same reason as (49) and (50), we have

|dn(x
n, un(yn))− d(V,W )| ≤ δdmax. (52)

D. Privacy Amplification Lemma

Lemma 30:Let Fn be the random binning fromUn to Sn such that|Sn| = ⌊2nRf ⌋, whereRf = H(U |X)− δ.

Then, there existsµ2 > 0 such that

EFn

[

‖PSnXn − PS̄n
× PXn‖

]

≤ 2−µ2n,

wherePS̄n
is the uniform distribution onSn.

Proof: The lemma is a straightforward consequence of [33, (51)], which states that

E
[

‖PSnXn − PS̄n
× PXn‖

]

≤ 3|Sn|
θ2nτ(θ|PUX) (53)

for 0 ≤ θ ≤ 1
2 , where

τ(θ|PUX ) = log
∑

x

PX(x)

(

∑

u

PU|X(u|x)
1

1−θ

)1−θ

.

Since dτ(θ|PUX)
dθ

∣

∣

∣

θ=0
= −H(U |X), there existsθ0 > 0 such that

τ(θ0|PUX)

θ0
≤ −H(U |X) +

δ

2
.

Thus, we have

θ0
n

log |Sn|+ τ(θ0|PUX) ≤ Rf −H(U |X) +
δ

2

= −
δ

2
. (54)

Combining (53) and (54), we have the assertion of the lemma.
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E. Bernstein’s Trick

Lemma 31 ([28]): Let A1, . . . , Am be a sequence of discrete independent random variables thattake values in

[−b, b]. Then, for0 < α ≤ min[1, b
n

2 e
−2b], we have

Pr

{

1

m

m
∑

i=1

(Ai − E[Ai]) ≥ γ

}

≤ exp
{

(−αγ + α2b2)m
}

.
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