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Abstract—This paper focuses on the problem of L−channel
quadratic Gaussian multiple description (MD) coding. We re-
cently introduced a new encoding scheme in [1] for general
L−channel MD problem, based on a technique called ‘Com-
binatorial Message Sharing’ (CMS), where every subset of
the descriptions shares a distinct common message. The new
achievable region subsumes the most well known region for the
general problem, due to Venkataramani, Kramer and Goyal
(VKG) [2]. Moreover, we showed in [3] that the new scheme
provides a strict improvement of the achievable region for any
source and distortion measures for which some 2-description
subset is such that the Zhang and Berger (ZB) scheme achieves
points outside the El-Gamal and Cover (EC) region. In this paper,
we show a more surprising result: CMS outperforms VKG for a
general class of sources and distortion measures, which includes
scenarios where for all 2-description subsets, the ZB and EC
regions coincide. In particular, we show that CMS strictly extends
VKG region, for the L-channel quadratic Gaussian MD problem
for all L ≥ 3, despite the fact that the EC region is complete for
the corresponding 2-descriptions problem. Using the encoding
principles derived, we show that the CMS scheme achieves the
complete rate-distortion region for several asymmetric cross-
sections of the L−channel quadratic Gaussian MD problem,
which have not been considered earlier.

Index Terms—Multiple description coding, Combinatorial mes-
sage sharing, Quadratic Gaussian multiple descriptions

I. INTRODUCTION

The multiple descriptions (MD) problem has been studied
extensively, yielding a series of advances , ranging from
achievability [4], [5], [2], [6], [1], [3], [7] to converse results
[8], [9], [10]. In the general MD setup, the encoder generates
L-descriptions of the source for transmission over L available
channels and it is assumed that the decoder receives a subset
of the descriptions perfectly and the remaining are lost. The
objective is to quantify the set of all achievable rate-distortion
(RD) tuples for the L−rates (R1, . . . , RL) and distortion levels
corresponding to the 2L− 1 possible description loss patterns
(DK,K ⊆ {1, . . . , L}). One of the first achievable regions
for the 2-channel MD problem was derived by El-Gamal and
Cover (EC) in 1982 [4]. It was shown by Ozarow in [8] that
the EC region is complete when the source is Gaussian and the
distortion measure is mean squared error (MSE). Zhang and
Berger (ZB), however, later showed in [5] that the EC coding
scheme is strictly sub-optimal in general. In particular, for a
binary source under Hamming distortion, sending a common
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codeword within the two descriptions can achieve points that
are strictly outside the the EC region. The converse to the ZB
scheme in still not known for general sources and distortion
measures.

Since then several researchers have worked on extending the
EC and ZB approaches to the L−channel MD problem [2],
[6], [9], [10]. An achievable scheme, due to Venkataramani,
Kramer and Goyal (VKG) [2], directly builds on EC and
ZB, and introduces a combinatorial number of refinement
codebooks, one for each subset of the descriptions. Motivated
by ZB, a single common codeword is also shared by all
the descriptions, which assists in better coordination of the
messages, improving the RD trade-off. We recently introduced
a new coding scheme called ‘Combinatorial Message Sharing’
(CMS) in [1], wherein a distinct common codeword is shared
by members of each subset of the transmitted descriptions.
The new achievable RD region subsumes the VKG region
for general sources and distortion measures. Moreover, we
demonstrated in [3] that CMS achieves a strictly larger region
than VKG for all L > 2, if there exists a 2-description subset
for which ZB achieves points strictly outside the EC region.
In particular, CMS achieves strict improvement for a binary
source under Hamming distortion.

Ozarow’s converse result [8] motivated researchers to seek
extended results for the L−channel quadratic Gaussian MD
problem [9], [10]. It was shown in [9] that a special case of
the VKG coding scheme, called the ‘correlated quantization’
scheme (a generalization of Ozarow’s encoding mechanism to
L−channels), where no common codewords are sent, achieves
the complete rate region, when only the individual and the
central distortion constraints are imposed. A different and
important line of attack focused on a practically interesting
cross-section of the general MD problem, called the ‘sym-
metric MD problem’ (see [6]), based on encoding principles
derived from Slepian and Wolf’s random binning techniques.
In fact, CMS principles can be extended to incorporate such
random binning techniques, to utilize the underlying symmetry
in the problem setup as illustrated recently in [7]. However,
in this paper, we restrict ourselves to the general asymmetric
setup to demonstrate the potential gains of using the common
codewords of CMS for the quadratic Gaussian MD problem.

Optimality of EC for the 2-descriptions setup has led to
a natural conjecture that common codewords do not play a
necessary role in quadratic Gaussian MD coding, and all the
achievable regions characterized so far neglect the common
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layer codewords (see eg., [2], [9], [10]). In this paper, we
show that, surprisingly CMS strictly outperforms VKG for
a Gaussian source under MSE distortion. More generally,
we show that strict improvement holds for a general class
of sources and distortion measures, which includes several
scenarios in which, for every 2-description subset, ZB and
EC lead to the same achievable region. We also show that the
common codewords of CMS play a critical role in achieving
the complete RD region for several asymmetric cross-sections
of the L−channel quadratic Gaussian MD problem.

We note that, due to severe space constraints, in this paper,
we avoid restating all the prior results and refer the readers
to [1] and [3] for a brief description of EC, ZB and VKG
schemes. In the following section, we begin with a brief
description of the CMS coding scheme.

II. FORMAL DEFINITION AND CMS CODING SCHEME

A source produces a sequence of n iid random variables,
denoted by Xn =

(
X(1), X(2) . . . , X(n)

)
. We denote L =

{1, . . . , L}. There are L encoding functions, fl(·) l ∈ L,
which map Xn to the descriptions Jl = fl(X

n), where
Jl ∈ {1, . . . Bl} for some Bl > 0. The rate of description
l is defined as Rl = log2(Bl). Each of the descriptions are
sent over a separate channel and are either received at the
decoder error free or are completely lost. There are 2L − 1
decoding functions for each possible received combination of
the descriptions X̂n

K =
(
X̂

(1)
K , . . . , X̂

(n)
K

)
= gK(Jl : l ∈ K),

∀K ⊆ L,K 6= φ, where X̂K takes on values on a finite set X̂K,
and φ denotes the null set. When a subset K of the descriptions
are received at the decoder, the distortion is measured as
DK = E

[
1
N

∑n
t=1 dK(X(t), X̂

(t)
K )
]

for some bounded dis-

tortion measures dK(·) defined as dK : X × X̂K → R. A RD
tuple (Ri, DK : i ∈ L,K ⊆ L,K 6= φ) is achievable if there
exit L encoding functions with rates (R1 . . . , RL) and 2L− 1
decoding functions yielding distortions DK. The closure of the
set of all achievable RD tuples is defined as the ‘L-channel
multiple descriptions RD region’.

In what follows, 2S denotes the set of all subsets (power
set) of any set S and |S| denotes the set cardinality. Note that
|2S | = 2|S|. Sc denotes the set complement. For two sets S1

and S2, we denote the set difference by S1 − S2 = {K : K ∈
S1,K /∈ S2}. We use the shorthand {U}S for {UK : K ∈ S}1.
Before describing CMS, we define the following subsets of
2L:

IW = {S : S ∈ 2L, |S| = W}
IW+ = {S : S ∈ 2L, |S| > W} (1)

Let B be any non-empty subset of L with |B| ≤W . We define
the following subsets of IW and IW+:

IW (B) = {S : S ∈ IW , B ⊆ S}
IW+(B) = {S : S ∈ IW+, B ⊆ S} (2)

1Note the difference between {U}S and US . {U}S is a set of variables,
whereas US is a single variable.

We also define J (K) =
⋃
l∈K I1+(l). Note that J (L) = 2L−

φ.
Next, we briefly describe the CMS encoding scheme in

[1]. Recall that, unlike VKG, CMS allows for ‘combinatorial
message sharing’, i.e a common codeword is sent in each (non-
empty) subset of the descriptions. The shared random variables
are denoted by ‘V ’. The base and the refinement layer random
variables are denoted by ‘U ’. First, the codebook for VL is
generated. Then, the codebooks for VS , |S| = W are generated
in the order W = L−1, L−2 . . . 2. 2nR

′′
Q codewords of VQ are

independently generated conditioned on each codeword tuple
of {V }IW+(Q). This is followed by the generation of the base
layer codebooks, i.e. Ul, l ∈ L. Conditioned on each codeword
tuple of {V }I1+(l), 2nR

′
l codewords of Ul are generated

independently. Then the codebooks for the refinement layers
are formed by generating a single codeword for US , |S| > 1
conditioned on every codeword tuple of ({V }J (S), {U}2S−S).
Observe that the base and the refinement layers in the CMS
scheme are similar to that in the VKG scheme, except that
they are now generated conditioned on a subset of the shared
codewords.

The encoder employs joint typicality encoding, i.e., on
observing a typical sequence xn, it tries to find a jointly typical
codeword tuple, one from each codebook. As with VKG, the
codeword index of Ul (at rate R

′

l) is sent in description l.
However, now the codeword index of VS (at rate R

′′

S ) is sent
in all the descriptions l ∈ S. Therefore the rate of description
l is:

Rl = R
′

l +
∑
K∈J (l)

R
′′

K (3)

We next formally state the achievable RD region. Let Q be
any subset of 2L. Then, we say that Q ∈ Q∗ if it satisfies the
following property:

K ∈ Q ⇒ I|K|+(K) ⊂ Q (4)

∀K ∈ Q. Further, we denote by [Q]1 the set of all elements
of Q of cardinality 1, i.e.,:

[Q]1 = {K : K ∈ Q, |K| = 1} (5)

Let ({V }J (L), {U}2L−φ) be any set of 2L+1−L−2 random
variables jointly distributed with X . For any set Q ∈ Q∗ we
define:

α(Q) =
∑

K∈Q−[Q]1

H
(
VK|{V }I|K|+(K)

)
+

∑
K∈2[Q]1−φ

H
(
UK|{V }I1+(K), {U}2K−φ−K

)
−H

(
{V }Q−[Q]1 , {U}2[Q]1−φ|X

)
(6)

We follow the convention α(φ) = 0. Next we state the
rate-distortion region achievable by the CMS scheme for the
L−descriptions framework.

Theorem 1. Let ({V }J (L), {U}2L−φ) be any set of 2L+1 −
L − 2 random variables jointly distributed with X , where
US and VS take values in some finite alphabets US and VS ,



Figure 1. The cross-section that we consider in order to prove that CMS
achieves points outside the VKG region for a general class of source and
distortion measures. CMS achieves the the complete RD region for this setup
for several distortion regimes for the quadratic Gaussian MD problem.

respectively ∀S. Let Q∗ be the set of all subsets of 2L − φ
satisfying (4) and let R

′′

S , S ∈ I1+ and R
′

l, l ∈ L be 2L − 1
auxiliary rates satisfying:∑

S∈Q−[Q]1

R
′′

S +
∑
l∈[Q]1

R
′

l > α(Q) ∀Q ∈ Q∗ (7)

Then, the RD region for the L−channel MD problem contains
the rates and distortions for which there exist functions ψS(·),
such that,

Rl = R
′

l +
∑
S∈J (l)

R
′′

S (8)

DS ≥ E [dS (X,ψS (US))] (9)

The closure of the achievable tuples over all such 2L+1−L−2
random variables is denoted by RDCMS .

Remark 1. RDCMS can be extended to continuous random
variables and well-defined distortion measures using tech-
niques similar to [11]. We omit the details here and assume
that the above region continues to hold even for well behaved
continuous random variables (for example, a Gaussian source
under MSE).

Remark 2. RDCMS is convex, as a time sharing random
variable can be embedded in VL.

Proof: Refer to [1].

III. STRICT IMPROVEMENT FOR A GENERAL CLASS OF
SOURCES AND DISTORTION MEASURES

We begin by defining ZZB , the set of all sources (for
given distortion measures at the decoders), for which there
exists an operating point (R1, R2, D1, D2, D12) that cannot be
achieved by an ‘independent quantization’ mechanism using
the ZB coding scheme. More specifically, X ∈ ZZB , if there
exists a strict suboptimality in the ZB region when the closure
is defined only over joint densities for the auxiliary random
variables satisfying the following conditions:

P (U1, U2|X,V12) = P (U1|X,V12)P (U2|X,V12)

E [dK(X,ψK(UK))] ≤ DK, K ∈ {1, 2, 12}
U12 = f(U1, U2, V12) (10)

where f is any deterministic function. We will show in
Theorem 2 that ∀X ∈ ZZB , RDV KG ⊂ RDCMS .

Before stating the result we describe the particular cross-
section of the RD region that we will use to prove strict
improvement in Theorem 2. Consider a 3-descriptions MD
setup for a source X wherein we impose constraints only on
distortions (D1, D2, D3, D12, D23) and set the rest of the dis-
tortions, (D13, D123) to∞. This cross-section is schematically
shown in Fig. 1. To illustrate the gains underlying CMS, here
we restrict ourselves to the setting wherein we further impose
D1 = D3 and D12 = D23. The points in this cross-section,
achievable by VKG and CMS, are denoted by RDV KG(X)
and RDCMS(X), respectively. We note that the symmetric
setting is considered only for simplicity. The arguments can
be easily extended to the asymmetric framework.

This particular symmetric cross-section of the 3-descriptions
MD problem is equivalent to the corresponding 2-descriptions
problem, in the sense that, one could use any coding scheme
to generate bit-streams for descriptions 1 and 2, respectively.
Description 3 would then carry a replica (exact copy) of the
bits sent in description 1. Due to the underlying symmetry
in the problem setup, the distortion constraints at all the
decoders are satisfied. Hence an achievable region based
on the ZB coding scheme can be derived as follows. Let
(G12, F1, F2, F12) be any random variables jointly distributed
with X and taking values over arbitrary finite alphabets. Then
the following RD-region is achievable for which there exist
functions (ψ1, ψ2, ψ12) such that R1 = R3, D1 = D3,
D12 = D23 and:

R1 ≥ I(X;F1, G12), R2 ≥ I(X;F2, G12)

R1 +R2 ≥ 2I(X;G12) +H(F1|G12) +H(F2|G12)

−H(F1, F2, F12|X,G12) +H(F12|F1, F2, G12)

DK ≥ E [dK(X,ψK(FK))] , K ∈ {1, 2, 12} (11)

The closure of achievable RD-tuples over all random variables
(G12,M1,M2,M12) is denoted by RD(X). In the following
theorem, we will show that RD(X) ⊆ RDCMS(X). We also
show that the VKG coding scheme cannot achieve the above
RD region, i.e., RDV KG(X) ⊂ RD(X), if X ∈ ZZB . We
note that in Theorem 2, we focus only on the 3-descriptions
setting. However, the results can be easily extended to the
general L−descriptions scenario. Also note that RDCMS(X)
could be strictly larger than RD(X), in general.

Theorem 2. (i) For the setup shown in Fig. 1 the CMS scheme
achieves RD(X), i.e., RD(X) ⊆ RDCMS(X).

(ii) If X ∈ ZZB , then there exists points in RD(X)
that cannot be achieved by the VKG encoding scheme, i.e.,
RDV KG ⊂ RD(X),

Remark 3. It directly follows from (i) and (ii) that RDV KG ⊂
RDCMS for the L−channel MD problem ∀L ≥ 3, if X ∈
ZZB .

Proof: We first provide an intuitive argument to justify the
claim and then follow it up with a formal argument. Due to the
underlying symmetry in the setup CMS introduces common
layer random variables V123 = G12 and V13 = F1. It then
sends the codeword of V13 is both descriptions 1 and 3 (i.e.,



U1 = U3 = V13). Hence it is sufficient for the encoder to
generate enough codewords of U2 = F2 (conditioned on V123)
to maintain joint typicality with the codewords of V13 = F1.
However VKG is forced to set the common layer random
variable V13 to a constant. Thus, in this case, the encoder
needs to generate enough number of codewords of U2 so as to
maintain joint typicality individually with the codewords of U1

and U3, which are now generated independently conditioned
on V123, entailing some excess rate for U2

2.
Part (i) of the theorem is straightforward to prove. We set

V123 = G12, V13 = F1, U2 = F2, U12 = U23 = F12 and U1 =
U3 = V13 and the rest of the random variables to constants in
the CMS achievable region in [1]. This leads to the RD region
in (11).

We next prove (ii). We consider one particular boundary
point of (11) and show that this cannot be achieved by VKG.
Let D1, D2 and D12 be fixed. Consider the following quantity:

R∗V KG(D1, D2, D12) = inf
{
R2 : R1 = R3 = RX(D1) (12)

(R1, R2, R3, D1, D2, D1, D12, D12) ∈ RDV KG(X)
}

Note that the corresponding quantity achievable using
RDCMS(X) is given by the solution to the following op-
timization problem:

R∗CMS(D1, D2, D12) = inf
{
I(U2;X,U1|V123)

I(X;V123) + I(U12;X|V123, U1, U2)
}

(13)

where the infimum is over all joint densities
P (V123, U1, U2, U12|X), where P (V123, U1|X) is any
joint density for which there exists a function ψ1(·) such that:

I(X;V123, U1) = R(D1), E [d1(X,ψ1(U1))] = D1(14)

i.e., (V123, U1) leads to an RD-optimal reconstruction of
X at D1 and P (U12, U2|X,U1, V123) is any distribution
for which there exists function ψ2(·) and ψ12(·) satisfying
the distortion constraints for D2 and D12, respectively. We
will show that R∗V KG > R∗CMS . We next specialize and
restate RDV KG(X) for the considered cross-section. Let
(V123, U1, U2, U3, U12, U23) be any random variables jointly
distributed with X taking values on arbitrary alphabets. Then,
RDV KG contains all rates and distortions for which there exist

2It might be tempting to conclude that the suboptimality in VKG is due
to conditions for joint typicality of all the codewords, while for this cross-
section, joint typicality of codewords of U1 and U3 is unnecessary. However,
it is possible to show that common codewords provide strict improvement
even when joint typicality only within prescribed subsets is imposed. The
details are omitted here.

functions ψ1(·), ψ2(·), ψ3(·), ψ12(·), ψ23(·), such that:

Ri ≥ I(X;Ui, V123), i ∈ {1, 2, 3}
Ri +R2 ≥ 2I(X;V123) + I(Ui;U2|V123)

+I(X;Ui, U2, Ui2|V123), i ∈ {1, 3}
R1 +R3 ≥ 2I(X;V123) +H(U1|V123)

+H(U3|V123)−H(U1, U3|X,V123)

R1 +R2 +R3 ≥ 3I(X;V123) +

3∑
i=1

H(Ui|V123)

+
∑

K∈{12,23}

H(UK|{U}K, V123)

−H(U1, U2, U3, U12, U23|X,V123)(15)

E (dK(X,ψK(UK))) ≤ DK, K ∈ {1, 2, 3, 12, 13}(16)

where R1 = R3, D1 = D3 and D12 = D23. Observe
that the random variables U13 and U123 have been set to
constants as we do not impose distortion constraints D13 and
D123, respectively. We can further restrict the joint density
P (V123, U1, U2, U3, U12, U23|X) to satisfy:

P (U12, U23|X,V123, U1, U2, U3) =

P (U12|X,V123, U1, U2)P (U23|X,V123, U2, U3) (17)

without any loss of optimality.
Next imposing R1 = R3 = RX(D1) in (15), enforces

the joint density P (V123, U1, U3|X) to satisfy the following
constraints:

I(X;V123, Ui) = R(D1), i ∈ {1, 3}
E [di(X,ψi(V123, Ui))] = D1, i ∈ {1, 3} (18)

P (U1, U3|X,V123) = P (U1|X,V123)× P (U3|X,V123)

where the last condition is required to satisfy the constraint
on R1 +R3 in (15). Therefore, using (15) and (17) we have:

R∗V KG = inf
{
I(X;V123) + I(U2;U1, U3, X|V123)

+I(X;U12|U1, U2, V123) + I(X;U23|U2, U3, V123)
}

(19)

where the infimum is over all joint densities
P (V123, U1, U2, U3, U12, U23|X) satisfying (18) for which
there exist functions ψ2(·), ψ12(·), ψ23(·) satisfying the
distortion constraints in (16).

From (19) and (13) it follows that R∗V KG is equal to
R∗CMS if and only if the two quantities on the RHS of
(19) and (13), respectively, are equal. However for any joint
density, we have I(U2;U1, U3, X|V123) ≥ I(U2;U1, X|V123)
and I(X;U23|V123, U2, U3) ≥ 0. Also note that the constraints
in (14) are a subset of the constraints in (18). Hence for R∗V KG
to be equal to R∗CMS , any joint density which achieves R∗V KG
must satisfy the following conditions:

(i) The joint density of (X,V123, U1, U2, U12) must be the
same as the corresponding joint density which achieves R∗CMS

(in (13)).
(ii)I(U2;U3|V123, U1, X) = 0, I(X;U23|V123, U2, U3) = 0.

The constraint I(X;U23|V123, U2, U3) = 0 implies that



X and U23 are independent given V123, U2 and U3.
Equivalently this constraint implies that the reconstruc-
tion X̂23 can be written as a deterministic function of
V123, U2 and U3, i.e., for R∗V KG to be equal to R∗CMS ,
there must exist a function ψ̃23(V123, U2, U3) such that
E
(
d23(X, ψ̃23(V123, U2, U3))

)
≤ D23 = D12. On the

other hand, the constraint I(U2;U3|V123, U1, X) = 0 implies
that H(U3|V123, U1, X) = H(U3|V123, U1, U2, X). However,
the joint density of (X,V123, U1, U3) must satisfy (18) for
R1 = R3 = RX(D1) to hold, i.e., H(U3|V123, U1, X) =
H(U3|V123, X). Hence for R∗V KG to be equal to R∗CMS , we
require:

H(U3|V123, X) = H(U3|V123, U1, U2, X) (20)

which implies that U2 ↔ (X,V123) ↔ U3 must hold. Recall
that the joint density P (U3, V123|X) is RD-optimal at D1

and the joint density P (U2, V123|X,U1) must be identical to
the joint density which achieves R∗CMS (from condition (i)).
Hence, it follows that, if X ∈ ZZB , there exists at least one
RD tuple in RD(X) that cannot be achieved if we constrain
the joint density to simultaneously satisfy both the conditions
(i) and (ii), proving the theorem.

Discussion: A direct consequence of the above theorem
is that, if X ∈ ZZB , then the common layer codewords of
CMS provide strict improvement in the achievable region as
compared not using them, i.e., if X ∈ ZZB , RDV KG

∣∣∣
VL=Φ

⊆

RDV KG ⊂ RDCMS , where RD
∣∣∣
VL=Φ

denotes the VKG
region when the common layer random variable (denoted by
VL) is set to a constant Φ3. In fact, it is possible to show that,
whenever X ∈ ZEC , RD

∣∣∣
VL=Φ

⊂ RDCMS , where ZEC
is defined as the set of all sources for which there exists an
operating point (with respect to the given distortion measures)
that cannot be achieved by an ‘independent quantization’
mechanism using the EC coding scheme, i.e., if there exists
an operating point that cannot be achieved by EC using a joint
density for the auxiliary random variables satisfying:

P (U1, U2|X) = P (U1|X)P (U2|X)

E [dK(X,ψK(UK))] ≤ DK, K ∈ {1, 2, 12}
U12 = f(U1, U2) (21)

where f is any deterministic function. Note that the set ZZB
is a subset of ZEC . Also observe that if X /∈ ZEC , the con-
catenation of two independent optimal quantizers is optimal in
achieving a joint reconstruction. While this condition could be
satisfied for specific values of D1, D2 and D12, it is seldom
achieved for all values of (D1, D2, D12). Though such sources
are of some theoretical interest, the multiple descriptions
encoding for such sources is degenerate. Hence with some
trivial exceptions, it can be asserted that the common layer
codewords in CMS can be used to achieve a strictly larger

3Note that setting VL to a constant in VKG is equivalent to setting all the
common layer random variables to constants in CMS.

region (compared to not using any common codewords) for
all sources and distortion measures, ∀L ≥ 3.

IV. GAUSSIAN MSE SETTING

In the following theorem we show that, under MSE, a
Gaussian source belongs to ZZB .

Theorem 3. (i) CMS achieves the complete RD region for the
symmetric 3-descriptions quadratic Gaussian setup shown in
Fig. 1.

(ii) The VKG encoding scheme cannot achieve all the points
in the region, i.e., RDV KG ⊂ RDCMS .

Remark 4. It follows from (i) and (ii) that RDV KG ⊂
RDCMS for the L−channel quadratic Gaussian MD problem
∀L > 2.

Proof: Proof of (i) is straightforward and follows directly
from the proof of Theorem 1. Hence, we only prove (ii).
Specifically, we show that, a Gaussian random variable, under
MSE, belongs to ZZB . (ii) then follows directly from Theorem
1.

Consider the 2-description quadratic Gaussian problem. It
follows from Ozarow’s results (see also [4]) that, if D12 ≤
D1 +D2−1, then the following rate region is achievable (and
complete):

RK ≥ 1

2
log

1

DK
, K ∈ {1, 2, 12} (22)

i.e., there is no excess rate incurred due to encoding the source
using two descriptions. Observe that the excess sum rate term
in the ZB must be set to zero to achieve the above rate-
region. We will show that, if we restrict the optimization to
conditionally independent joint densities, then it is impossi-
ble to simultaneously satisfy all the distortions and achieve
I(U1;U2|V12) = 0. Recall that the ZB region achievable using
any joint density P (X,V12, U1, U2, U12) is given by:

Ri ≥ I(X;V12, Ui) i ∈ {1, 2}
R1 +R2 ≥ I(X;V12) + I(U1;U2|V12)

+I(X;V12, U1, U2, U12)

DK ≥ E [(X − ψK(UK))] , K ∈ {1, 2, 12} (23)

Let us consider the corner point P0 , (R1, R2) =
( 1

2 log 1
D1
, 1

2 log D1

D12
) for some (D1, D2, D12) satisfying

D12 ≤ D1 +D2−1 and show that this point is not achievable
by the ZB scheme when we restrict the joint densities to satisfy
(10). First, as I(X;V12, U1, U2, U12) ≥ 1

2 log 1
D12

, P0 can be
achieved only by joint densities that satisfy I(X;V12) = 0.
Hence, to prove the theorem, it is sufficient to show that P0

is not achievable when we restrict the optimization to joint
densities satisfying (10) and I(X;V12) = 0.

Let P (V12, U1, U2, U12, X) be any such joint density and let
V12 be the alphabet for V12. Then the associated ZB achievable
region can be rewritten as:



Ri ≥
∑

v12∈V12

P (v12)I(X;Ui|V12 = v12), i ∈ {1, 2}

R1 +R2 ≥
∑

v12∈V12

P (v12)
[
I(U1;U2|V12 = v12)

+I(X;U1, U2, U12|V12 = v12)
]

DK ≥ E
[
(X − ψK(UK))2

]
, K ∈ {1, 2, 12}

= E
[
E
[
(X − ψK(UK))2

∣∣∣V12

]]
(24)

We will next show that the optimization can be further
restricted to joint densities P (X,V12)Q(Ũ1, Ũ2, Ũ12|X,V12)
such that (X, Ũ1, Ũ2, Ũ12) are jointly Gaussian given V12 =
v12, ∀v12 ∈ V12 and satisfying Q(Ũ1, Ũ2|X,V12) =
Q(Ũ1|X,V12)Q(Ũ2|X,V12). First, note that, as I(X;V12) =
0, P (X|V12 = v12) is Gaussian ∀v12 ∈ V12. Next, recall that
P0 is obtained by first minimizing R1 followed by minimizing
R2 given R1 subject to all the distortion constraints. From
(24), we have R1 = min

∑
v12∈V12 P (v12)I(X;U1|V12 =

v12), where the minimization is over all joint densities
P (X,V12, U1) satisfying the distortion constraint for D1.

Let P (X,V12, U1) be any joint density satisfying the dis-
tortion constraint for D1. Consider the joint density generated
as Q(X,V12, Ũ1) = P (X,V12)Q(Ũ1|X,V12) where (X, Ũ1)
are jointly Gaussian given V12 = v12 and KX,Ũ1|V12=v12

=
KX,U1|V12=v12 , ∀v12 ∈ V12. Observe that Q(·) also satis-
fies the distortion constraint for D1. As a Gaussian density
over the relevant random variables maximizes the conditional
entropy for a fixed covariance matrix [12], it follows that
I(X;U1|V12 = v12) ≥ I(X; Ũ1|V12 = v12), ∀v12 ∈ V12.
Hence, to achieve minimum R1, it is sufficient to restrict the
optimization to densities wherein (X,U1) are jointly Gaussian
given V12.

Next consider minimizing R2 given R1. From (24), we
have:

R2 = min
{ ∑
v12∈V12

P (v12)
[
I(Ũ1;U2|V12 = v12)

+I(X; Ũ1, U2, U12|V12 = v12)
]
−R1

}
(25)

where the minimization is over all joint densities
P (X,V12, U1)P (U2, U12|X,V12, U1) satisfying (10) and
I(X;V12) = 0 and where (X,U1) are jointly Gaussian
given V12 = v12, ∀v12 ∈ V12 (required to minimize R1).
It is easy to show using similar arguments that the above
minimization is again achieved by a joint density where
(X,U1, U2, U12) are jointly Gaussian given V12 = v12 and
such that Q(U1, U2|X,V12) = Q(U1|X,V12)Q(U2|X,V12)
∀v12 ∈ V12. Hence, to achieve P0 using a joint density that
satisfies (10), it is sufficient to optimize the rates over joint
densities satisfying the following properties:

1) (X,U1, U2, U12) are jointly Gaussian given V12 = v12

∀v12 ∈ V12

2) I(X;V12) = 0
3) I(U1;U2|X,V12) = 0

4) P (X,V12, U1, U2, U12) satisfies all the distortion con-
straints

Observe that, for any joint density that satisfies all the above
properties, it is impossible to achieve I(U1;U2|V12) = 0.
Therefore, the excess sum rate term in the ZB scheme is non-
zero, concluding that P0 is not achievable by the ZB scheme
using any independent quantization mechanism. Therefore,
a Gaussian random variable under MSE belongs to ZZB ,
proving the theorem.

Note that, as ZZB ⊆ ZEC , a Gaussian source under MSE
belongs to ZEC . Hence, the ‘correlated quantization’ scheme
(an extreme special case of VKG) which has been proven to
be complete for several cross-sections of the L−descriptions
quadratic Gaussian MD problem [9], is strictly suboptimal in
general.

V. POINTS ON THE BOUNDARY

Before stating the results formally, we review Ozarow’s
result for the 2-descriptions MD setting. Ozarow showed
that the complete region for the 2-descriptions Gaussian MD
problem can be achieved using a ‘correlated quantization’
scheme which imposes the following joint distribution for
(U1, U2, U12) in the EC scheme:

U1 = X +W1

U2 = X +W2 (26)

U12 = E(X|U1, U2), where W1 and W2 are zero mean
Gaussian random variables independent of X with covariance
matrix KW1W2 , and the functions ψK(UK) are given by the
respective MSE optimal estimators, eg., ψ1(U1) = E [X|U1].
The covariance matrix KW1W2

is set to satisfy all the distortion
constraints. Specifically, the optimum KW1W2

is given by:

KW1W2
=

[
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

]
(27)

where σ2
i = Di

1−Di
i ∈ {1, 2} and the optimum ρ12, denoted

by ρ∗12, is given by (see [13]):

ρ∗12 =

−
√
πD2

12+γ−
√
πD2

12

(1−D12)
√
D1D2

D12 ≤ Dmax
12

0 D12 ≥ Dmax
12

γ = (1−D12)
[
(D1 −D12)(D2 −D12)

+D12D1D2 −D2
12

]
Dmax

12 = D1D2/(D1 +D2 −D1D2)

π = (1−D1)(1−D2) (28)

We denote the complete Gaussian-MSE L-descriptions region
by RDLG. The characterization of RD2

G is given in [4] (see
also [13]) and we omit restating it explicitly here for brevity.

In this section we show that CMS achieves the complete
RD region for several cross-sections of the general quadratic
Gaussian L−channel MD problem. We again begin with the
3-descriptions case and then extend the results to the L
channel framework. Recall the setup shown in Fig. 1, i.e,
a cross-section of the general 3-descriptions rate-distortion



region wherein we impose constraints only on distortions
(D1, D2, D3, D12, D23) and set the rest of the distortions,
(D13, D123) to 1. Here we consider the general asymmetric
case, i.e. D1 6= D3 and D12 6= D23 and show that the CMS
scheme achieves the complete rate region in several distortion
regimes.

In the following theorem, without loss of generality we
assume that D1 ≤ D3. If D3 ≤ D1, then the theorem
holds by interchanging ‘1’ and ‘3’ everywhere. Let D12 be
any distortion such that D12 ≤ min{D1, D2}. We define
D∗23 = D∗23(D1, D2, D3, D12) as:

D∗23 =
σ2

2σ
2
3

(
1− ρ2

)
σ2

2σ
2
3 (1− ρ2) + σ2

2 + σ2
3 − 2σ2σ3ρ

(29)

where σ2
i = Di

1−Di
i ∈ {2, 3} and

ρ = ρ∗12

σ1

σ3
(30)

where ρ∗12 is defined in (28). In the following theorem, we will
show that CMS achieves the complete rate-region if D23 =
D∗23.

Theorem 4. For the setup shown in Fig. 1, let D1 ≤ D3.
Then,

(i) CMS achieves the complete rate-region if:

D23 = D∗23(D1, D2, D3, D12) (31)

where D∗23 is defined in (29). The rate region is given by:

Ri ≥
1

2
log

1

Di
i ∈ {1, 2, 3}

R1 +R2 ≥ 1

2
log

1

D1D2
+ δ(D1, D2, D12)

R2 +R3 ≥ 1

2
log

1

D2D3
+ δ(D2, D3, D23) (32)

where δ(·) is defined by:

δ(D1, D2, D12) =
1

2
log

(
1

1− (ρ∗12)2

)
(33)

where ρ∗12 is defined in (28).
(ii) Moreover, CMS achieves the minimum sum-rate if one

of the following hold:
(a) For a fixed D12, D23 ≥ D∗23(D1, D2, D3, D12)
(b) For a fixed D23, D12 ∈ {D12 : δ(D2, D3, D23) ≥

δ(D1, D2, D12)}

Remark 5. We note that the above rate region cannot be
achieved by VKG. We omit the details of the proof here as it
can be proved in same lines as the proof of Theorem 3.
Remark 6. An achievable rate-distortion region can be derived
for general distortions using the encoding principles we derive
as part of this proof. However, it is hard to prove outer bounds
if the conditions in (31) are not satisfied and hence we omit
stating the results explicitly here.
Remark 7. Both the CMS and the VKG schemes achieve the
complete rate region when D12 ≥ Dmax

12 and D23 ≥ Dmax
23 ,

where Dmax
12 and Dmax

23 are defined in (28). It is easy to show

that in this case an independent quantization scheme is optimal
and the complete achievable rate-region is given by Ri ≥
1
2 log 1

Di
i ∈ {1, 2, 3}.

Remark 8. It is easy to verify that CMS achieves the minimum
sum-rate whenever D12 = D23 for any D1, D3.

Proof: We begin with the proof of (i). The proof of
(ii) then follows almost directly from (i). First we show the
converse, which is quite obvious. Conditions on Ri follow
from the converse to the source coding theorem. Conditions
on R1 + R2 and R2 + R3 follow from Ozarow’s result, to
achieve (D1, D2, D12) using descriptions {1, 2} and to achieve
(D2, D3, D23) using descriptions {2, 3} at the respective de-
coders.

We next prove that CMS achieves the rate region in (32)
if (31) holds. We first give an intuitive argument to explain
the encoding scheme. Description 3 carries an RD-optimal
quantized version of X (which achieves distortion D3). De-
scription 1 carries all the bits embedded in description 3 along
with ‘refinement bits’ which assist in achieving distortion
D1 ≤ D3. This entails no loss in optimality as a Gaussian
source is successively refinable under MSE [14]. Description
2 then carries a quantized version of the source which is
correlated with the information in descriptions 1 and 3. We
will show that if D23 = D∗23(D1, D2, D3, D12), then the
correlations can be set such that description 2 is optimal with
respect to both descriptions 1 and 3.

Formally, to achieve the rate region in (32), we set the
auxiliary random variables in the CMS coding scheme as
follows:

V13 = X +W1 +W3

U3 = V13

U1 = X +W1

U2 = X +W2

U12 = Φ U23 = Φ (34)

and the functions ψ(·) as the respective MSE optimal esti-
mators, where W1,W2,W3 are zero mean Gaussian random
variables independent of X with a covariance matrix:

KW1W2W3
=

 σ̃2
1 ρ12σ̃1σ̃2 0

ρ12σ̃1σ̃2 σ̃2
2 0

0 0 σ̃2
3

 (35)

where σ̃2
1 = σ2

1 = D1

1−D1
, σ̃2

2 = σ2
2 = D2

1−D2
, σ̃2

3 = σ2
3 − σ2

1 =
D3

1−D3
− D1

1−D1
. The correlation coefficient ρ12 is set to achieve

distortion D12, i.e. ρ12 = ρ∗12 defined in (28). Let us denote by
W13 = W1 +W3. Observe that the encoding for descriptions
2 and 3 resembles Ozarow’s correlated quantization scheme
with U2 = X + W2 and U3 = X + W13. Let us denote the
correlation coefficient between W2 and W13 be ρ. We have
the following equation relating ρ12 and ρ (which is equivalent
to (30)):

ρ∗12σ̃1 = ρ
√
σ̃2

1 + σ̃2
3 (36)

Note that the above relation is derived using the independence
of W2 and (W1,W3), which follows from our choice of



KW1W2W3
. Hence the minimum distortion D23 achievable

using the above choice for the joint density of the auxiliary
random variables is given by:

D23 = Var(X|U2, U3, V13)

= Var(X|U2, V13)

= D∗23 (37)

We next derive the rates required by this choice of
KW1W2W3

. Direct application of Theorem 1 using the above
joint density leads to the following achievable rate region for
any given distortions D1, D2, D3, D12, D23:

R
′′

13 ≥ 1

2
log

1

D3

R
′

2 ≥ 1

2
log

1

D2

R
′

1 +R
′′

13 ≥ 1

2
log

1

D1

R
′

2 +R
′′

13 ≥ H(V13) +H(U2)−H(V13, U2|X)

= H(U3) +H(U2)−H(U3, U2|X)

=
1

2
log

1

D3D2
+

1

2
log

(
1

1− ρ2

)
=

1

2
log

1

D3D2
+ δ(D2, D3, D

∗
23)

R
′

1 +R
′

2 +R
′′

13 ≥ H(V13) +H(U1|V13) +H(U2)

−H(U1, V13, U2|X)

= I(X;U1, V13) + I(U2;X,U1, V13)

=(a) I(X;U1) + I(X;U2)

+I(U2;U1, V13|X)

= I(X;U1) + I(X;U2)

+I(U2;U1, U3|X)

=(b) I(X;U1) + I(X;U2)

+I(W2;W1,W1 +W3)

= I(X;U1) + I(X;U2) + I(W2;W1)

+I(W2;W3|W1)

=(c) I(X;U1) + I(X;U2) + I(W2;W1)

=
1

2
log

1

D1D2
+

1

2
log

(
1

1− (ρ∗12)2

)
=

1

2
log

1

D1D2
+ δ(D1, D2, D12)

R1 = R
′′

13 +R
′

1

R2 = R
′

2

R3 = R
′′

13 (38)

where (a) follows from the Markov chain X ↔ U1 ↔ V13,
(b) from the independence of X and (W1,W2,W3) and (c)
from the independence of W3 and (W1,W2).

At a first glance, it might be tempting to conclude that the
region for the tuple (R1, R2, R3) in (38) is equivalent to the

region given by (32). This is not the case in general as the
equations in (38) have an implicit constraint on the auxiliary
rates R

′′

13, R
′

1, R
′

2 ≥ 0. However, we will show that if D3 ≥
D1, then the two regions are indeed equivalent. We denote
the rate region given in (32) by R and the region in (38) by
R∗. Clearly, R∗ ⊆ R, as any (R1, R2, R3) that satisfies (38)
also satisfies (32). We need to show that R∗ ⊇ R. Towards
proving this claim, note that bothR andR∗ are convex regions
bounded by hyper-planes. Hence, it is sufficient for us to show
that all the corner points of R lie in R∗. Clearly, R has 6
corner points denoted by Pijk i, j, k ∈ {1, 2, 3} defined as:

Pijk = {ri, rj , rk}
ri = minRi

rj = min
Ri=ri

Rj

rk = min
Ri=ri,Rj=rj

Rk (39)

To prove R∗ ⊇ R, we need to prove that every corner
point (r1, r2, r3) ∈ R is achieved by some non-negative
(R

′′

13, R
′

1, R
′

2, R1, R2, R3) ∈ R∗ such that Ri = ri, i ∈
{1, 2, 3}. We set R

′′

13 = R3 = r3 and R
′

2 = R2 = r2 and
show that we can always find R

′

1 ≥ 0 satisfying (38) such
that R1 = R

′

1 + R
′

13 = r1. Let us first consider the points
P213 = P231 given by:

r1 =
1

2
log

1

D1
+ δ(D1, D2, D12)

r2 =
1

2
log

1

D2

r3 =
1

2
log

1

D3
+ δ(D2, D3, D23) (40)

This can be achieved by using the following auxiliary rates,
R

′

2 = r2, R
′′

13 = r3 and

R
′

1 =
1

2
log

D3

D1
+ δ(D1, D2, D12)

−δ(D2, D3, D23)

=
1

2
log

(1−D1)D3 − (ρ∗12)2D1(1−D3)

(1−D1)D1(1− (ρ∗12)2)
(41)

It is easy to verity that R
′

1 ≥ 0 if D3 ≥ D1. Hence P213 =
P231 ∈ R∗. Let us next consider the points P132 = P312 given
by:

r1 =
1

2
log

1

D1

r2 =
1

2
log

1

D2

+ max{δ(D1, D2, D12), δ(D2, D3, D23)}

r3 =
1

2
log

1

D3
(42)

Again it is easy to show that (R
′′

13, R
′

1, R
′

2) = (r3, r1−r3, r2)
belongs to R∗. Finally, we consider the remaining two points



P123 and P321. P123 is given by:

r1 =
1

2
log

1

D1

r2 =
1

2
log

1

D2
+ δ(D1, D2, D12)

r3 =
1

2
log

1

D3

+ (δ(D2, D3, D23)− δ(D1, D2, D12))
+ (43)

where x+ = max{x, 0}. Consider the following auxiliary
rates: R

′′

13 = r3, R
′

2 = r2 and R
′

1 = 1
2 log D3

D1
. Clearly the first

three constraints in (38) are satisfied by these auxiliary rates.
The following inequalities prove that the last two constraints
are also satisfied by these rates and hence P123 ∈ R∗.

R
′

2 +R
′′

13 = r2 + r3

=
1

2
log

1

D2D3
+ δ(D1, D2, D12)

+ (δ(D2, D3, D23)− δ(D1, D2, D12))
+

≥ 1

2
log

1

D2D3
+ δ(D2, D3, D23)

R
′

2 +R
′

1 +R
′′

13 =
1

2
log

1

D1D2
+ δ(D1, D2, D12)

+ (δ(D2, D3, D23)− δ(D1, D2, D12))
+

≥ 1

2
log

1

D1D2
+ δ(D1, D2, D12) (44)

Next consider P321:

r1 =
1

2
log

1

D1

+ (δ(D1, D2, D12)− δ(D2, D3, D23))
+

r2 =
1

2
log

1

D2
+ δ(D2, D3, D23)

r3 =
1

2
log

1

D3
(45)

Using same arguments as before, it is easy to show that P321 ∈
R∗ by using the following auxiliary rates: R

′′

13 = r3, R
′

2 = r2

and R
′

1 = 1
2 log D3

D1
+ (δ(D1, D2, D12)− δ(D2, D3, D23))

+.
Therefore, it follows that R = R∗ and hence CMS achieves
the complete rate region, proving (i).

We next prove (ii)(a). It follows from (i) that the following
rate point is achievable ∀D23 ≥ D∗23:

{R1, R2, R3} =
{1

2
log

1

D1
,

1

2
log

1

D2
+ δ(D1, D2, D12),

1

2
log

1

D3

}
(46)

Also observe that ∀D23 ≥ D∗23, δ(D1, D2, D12) ≥
δ(D2, D3, D23) and hence a lower bound to the sum rate is

1
D1D2D3

+δ(D1, D2, D12). Therefore the above point achieves
the minimum sum rate ∀D23 ≥ D∗23.

The proof of (ii)(b) follows similarly by noting that if
D12 ∈ {D12 : δ(D2, D3, D23) ≥ δ(D1, D2, D12)}, the

Figure 2. Example: This figure denotes the regime of distortions wherein
the CMS scheme achieves the complete rate region and the minimum sum
rate. Here D1 = 0.1, D2 = 0.15 and D3 = 0.2. The blue points correspond
to the region of distortions wherein the CMS scheme achieves the complete
rate-region and the green points represent the region where the CMS scheme
achieves the minimum sum rate .

minimum sum rate is given by 1
D1D2D3

+ δ(D2, D3, D23)
which is achieved by the point:

{R1, R2, R3} =
{1

2
log

1

D1
,

1

2
log

1

D2
+ δ(D2, D3, D12),

1

2
log

1

D3

}
(47)

This proves the theorem.
It is interesting to observe that the optimum encoding

scheme introduces common codewords (creates an interaction)
between descriptions 1 and 3, even though these two descrip-
tions are never received simultaneously at the decoder. While
common codewords typically imply redundancy in the system,
in this case, introducing them allows for better co-ordination
between the descriptions leading to a smaller rate for the com-
mon branch. Similar principles can be used to show that CMS
achieves the complete RD region for the L−channel quadratic
Gaussian MD problem, for several distortion regimes.

Example 1. We consider an asymmetric setting where D1 =
0.1, D2 = 0.15 and D3 = 0.2. Fig. 2 shows the regime of
distortions where CMS achieves the complete rate-region and
minimum sum rate. The blue region corresponds to the set
of distortion pairs (D12, D23) wherein the CMS rate-region
is complete. The green region denotes the minimum sum rate
points. It is clearly evident from the figure that CMS achieves
the minimum sum rate for a fairly large regime of distortions.

VI. CONCLUSION

In this paper, we showed that CMS achieves a strictly larger
region compared to VKG for a general class of sources and
distortion measures, which includes the quintessential setting
of Gaussian source under mean squared error. As a conse-
quence, it follows that the ‘correlated quantization’ scheme
(an extreme special case of VKG), is strictly suboptimal in
general. We also showed that CMS achieves the complete
rate region for the 3-description symmetric cross-section and
several asymmetric cross-sections of the setup shown in Fig.
1.
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