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Abstract—Is it a good idea to use the frequency of events in
the past, as a guide to their frequency in the future (as we all
do anyway)? In this paper the question is attacked from the
perspective of universal prediction of individual sequences. It is
shown that there is a universal sequential probability assignment,
such that for a large class loss functions (optimization goals), the
predictor minimizing the expected loss under this probability, is a
good universal predictor. The proposed probability assignment is
based on randomly dithering the empirical frequencies of states
in the past, and it is easy to show that randomization is essential.
This yields a very simple universal prediction scheme whichis
similar to Follow-the-Perturbed-Leader (FPL) and works for a
large class of loss functions, as well as a partial justification for
using probabilistic assumptions.

I. I NTRODUCTION

In this paper the problem of universal sequential prediction
of an individual unknown sequence is considered [1][2][3],
and a prediction approach based on universal probability
assignment is proposed. Given a space of strategiesB, a space
of nature statesX and a loss functionl(b, x), b ∈ B, x ∈ X , the
purpose is to assign the next strategyb̂t given the knowledge
of the past statesxt−1

1 , such that the overall loss
∑n

t=1 l(b̂t, xt)
would be asymptotically close to the loss obtained by the
best fixed strategy known a-posteriori after viewing the entire
sequencexn

1 , i.e. minb∈B

∑n
t=1 l(b, xt).

In the particular case of sequential probability assignment
under thelog loss functionl(b, x) = log 1

b(x) whereB is the
space of probability assignments on the finite alphabetX , or
equivalently in universal sequential compression, it is shown
[3][4, §13][1, §9] that it is possible to assign probabilities
p̂t(xt) for the next state in an arbitrary sequence of states
xt ∈ X , t = 1, 2, . . . , n, given the past states, such that for any
possible sequence, the overall probabilityp̂(x) =

∏n
t=1 p̂t(xt)

would not be too far, in a multiplicative or logarithmic sense,
from the best i.i.d. probability assigned to the sequence a-
posteriorimaxp(·)

∏n
t=1 p(xt). The result extends to proba-

bility assigned by Markov machines or finite state machines
[5]. This problem is related to universal compression because
the overall compression length corresponds tolog

(
1

p(x)

)

. A
remarkable feature of these universal probability assignments
is that, although nothing is assumed about the sequence, to
construct a universal encoder it is enough to encode as ifp̂t(·)
was thetrue probability of the next state.

These universal probability assignments, such as the
Laplace [4,§13.2] or Krichevsky-Trofimov (KT) [6] estima-
tors, have an intuitively appealing structure which induces

a small bias over the empirical distribution seen so far. For
example, Laplace’s estimate for the probability distribution of
of xt is

p̂t(x) =
Nt−1(x) + 1

(t− 1) + |X | , (1)

whereNt(x) denotes the number of times the statex appears
in x

t
1. While these estimators get closer with time to the

measured empirical distribution, they do not “trust” it com-
pletely, and, for example, never assign a probability value0
to states that had not appeared before. Furthermore, in the
probabilistic prediction setting the same distributions were
shown to perform well not only for thelog loss: the predictor
which minimizes the expected loss under these distributions
b̂t = argmin

b

E
X∼p̂t(·)

l(b,X) operates well for a wider class of

loss functions [3,§III.A.2].
This naturally leads to the following question: is it possible

to forecast an individual sequence by first generating a proba-
bility assignment based on the past, and then minimizing the
expected loss under this assignment (i.e. in a way, acting as
if future events truly happen with this probability)? Consider
prediction schemes of the following form:

1) Generate a probability assignmentP
(u)
t (x) based on the

past of the sequencext−1
1 , in a way which does not

depend on the loss function.
2) To predictbt under the loss functionl(b, x), choose the

strategy that minimizes the expected loss underP
(u)
t ,

i.e.:
b̂t = argmin

b

E

X∼P
(u)
t

(·)

[l(b,X)] (2)

If there exists a single scheme for generatingP
(u)
t (·) that does

not depend on the loss functionl(b, x), but for whichb̂t yields
a good (Hannan-consistent [1]) predictor for a certain class
of loss functions, then we callP (u)

t (·) a universal sequential
probability assignmentwith regards to that class. Notice that
this term has been used in the past with respect to thelog-loss,
so the definition above can be considered a natural extension.

It is easy to show that, if the class of loss functions includes
even simple loss functions such as the 0-1 loss (the number
of errors), then no deterministic assignment can be universal,
and therefore the Laplace or KT assignments are inadequate.
However, it is shown in this paper that the random assignment
obtained by slightly perturbing the empirical frequenciesis
universal for a large class of loss functions, including thelog-
loss and any bounded loss.

http://arxiv.org/abs/1301.6408v1
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In addition to supplying a simple and general universal pre-
diction scheme, this result also has interpretations contributing
to our understanding of probability. For example, it supplies
justification for treating the statistics of a process in thepast
as a guide to its statistics in the future, without having to
assume the process is indeed stationary, or that it is drivenby
a “probabilistic” law. In other words, if our natural behavior
is in some way similar to the prediction algorithm described
here, then the claims on its convergence can be used to justify
this behavior.

The next section completes the problem definition and
discusses the boundaries of the solution, and relations to
known results. Section III gives the main results, and Sec-
tion IV discusses the possible implications on understanding
probabilistic behavior. The proofs are given in Section V.

II. PROBLEM STATEMENT AND DISCUSSION

Building upon the definitions already presented in the
introduction, in this section some complementary definitions
are presented. We assume throughout this paper thatX is
finite (otherwise there is no meaning to measuring empirical
frequencies). The set of possible strategiesB is not restricted.
The loss functionl(b, x) is constant over time.

Let us define the accumulated loss of a sequential predictor
b̂t(x

t−1
1 ) as:

L̂n =

n∑

t=1

l(b̂t, xt), (3)

and the loss of the best fixed strategy as:

L∗
n = min

b

n∑

t=1

l(b, xt). (4)

The differenceL̂n − L∗
n which is defined as the regret, is a

function of the predictor and the sequence. The worst case
regret is:

Rmax = max
x
n

1

(

L̂n − L∗
n

)

, (5)

and the normalized regret isRmax

n
. A forecasting strategŷbt

is said to beHannan-consistent, if lim supn→∞
Rmax

n
≤ 0

almost surely (the probability is over the randomization inthe
forecaster if it is random). This means that for largen, the loss
of the forecaster is essentially at least as small as that of any
fixed strategy. As mentioned in the introduction, the problem
addressed in this paper is of finding a sequential probability
assignmentP (u)

t (·) such that the resulting prediction scheme
(2) is Hannan-consistent for a large class of loss functions.
We will focus mainly on bounding theexpectedloss (over the
predictor’s randomization), because it also leads to almost-
sure bounds by applying the strong law of large numbers. The
maximumexpectedregret is defined as:

Rmax = max
x
n

1

E

[

L̂n − L∗
n

]

, (6)

For some loss functions satisfying smoothness conditions
[1, Thm 3.1][2, Thm 1], the forecasting strategy known as
“Follow the Leader” (FL), which chooses at each time the
best strategy in retrospect̂b(FL)

t = argmin
b

∑t−1
i=1 l(b, xi),

is Hannan consistent. Rewriting the above asb̂(FL)

t =

argmin
b

∑

x∈X
Nt−1(x)

t−1 l(b, x), it can be interpreted as an im-

plementation of (2) where the universal probability assignment
equals the empirical frequenciesP (u)

t (·) = Nt−1(x)
t−1 . In other

words, for this family of loss functions, there is a simple so-
lution for P (u)

t (·), namely the empirical distribution. However
this class of loss functions where FL is universal, is rather
limited.

For a probability assignment to be “general” enough, one
would want to cover, at the least, the family of discrete-
strategy, discrete-state loss functions, presented by Hannan
[7]. For this family, the loss function can be represented
by a general|B| × |X | matrix specifying the loss for each
strategy and each state of nature. It is well known [1,§4]
and straightforward to see that randomization is required in
order to cover this class: consider the 0-1 loss case, i.e. binary
sequencesX = B = {0, 1} with l(b, x) = Ind(b 6= x), where
the total loss is the number of errors. For this loss function,
no deterministic predictor yields Hannan-consistency, because
for each deterministic predictor there exists a sequence which
fails the predictor completely, by choosing the next outcome
as the opposite of the predictor’s choice, while the loss of the
best fixed predictor is at mostn/2. Because a deterministic
P

(u)
t (·) inevitably leads to a deterministic predictor (2), this

implies a randomP (u)
t (·) is required, in general.

For the binary 0-1 loss problem, Feder, Merhav and Gutman
[8] used a small dither when the empirical probability is close
to 1

2 , which effectively avoids a decision when the frequencies
of 0, 1 are nearly equal.1 For this specific problem, the optimal
solution (in the sense of minimax regret) is known exactly
and was presented by Cover [9]. While the optimal dither in
this problem is different than the straight line used by Feder,
Merhav and Gutman, and is not known in general, this is
of no consequence in the current problem, as we are only
considering Hannan consistency. This solution, as well as the
small bias from the empirical distribution which is required
in the log-loss problem (1), motivates the following choiceof
P

(u)
t (·): add a small dither toNt−1(x) (the counts of events

in the past) and re-normalize. As shown below, this solution
achieves Hannan-consistency for any bounded loss function
and for the log loss.

The proposed forecaster is reminiscent of the scheme termed
“Follow the Perturbed Leader” (FPL), originally proposed by
Hannan [7], in which the decision in obtained by adding
a small dither to the accumulated loss of every reference
strategy and then choosing the best one. Indeed, dithering
the frequencies is similar, but not equivalent, to dithering the
accumulated losses, and our proof technique for the bounded
loss case borrows from Kalai and Vempala’s [10]. Following
this similarity we term the scheme proposed here “Follow
the Perturbed Frequency” (FPF). Notice, however, that FPL
is defined, in general, only when the number of strategies is
finite, while FPF is defined, in general, only when the number
of outcomes (states) is finite, and does not have to assume

1It is interesting to note that for the 0-1 loss problem their forecaster
is equivalent to a “Follow the Perturbed Leader” forecasterwith a uniform
distribution (see below) and also equivalent to the forecaster proposed here.
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the number of strategies is finite. On the other hand, FPL can
deal with more general forms of the problem, including time-
varying loss functions.

The problem considered here is a close relative of the
calibration problem [1,§4.5], i.e. the problem of estimating
from an individual sequence, probability forecasts that pass
certain consistency tests. The problems are related in that, in
both cases it is shown possible to generate from empirical data
collected from an individual sequence, probability assignments
that appear to operate as well as forecasts which are based on
knowledge of the “true” statistical model. Also, randomization
is essential in both cases. However, none of the problems is
a special case of the other: the probability assignment shown
here is not necessarily calibrated, and a calibrated probability
assignment does not necessarily satisfy the requirements of
the current problem.2

In this paper, in order to simplify matters, only fixed
strategies are considered. As one of our motivations is to
rationalize the behavior of learning probabilities from the past,
it is enough to consider fixed strategies in order to see the
advantage of this behavior. The extension to dynamic reference
strategies is unfortunately not immediate as in the settingof
prediction with expert advice [1,§2], where dynamic strategies
can be turned into fixed ones by simple enumeration (i.e.
replacing the strategy with the index of the strategy), because
we explicitly assume a fixed loss function. However in some
cases, the core of the prediction problem lies in competing
with fixed strategies. For example, reference strategies defined
by states (such as Markov predictors or finite state machines),
can be considered as fixed strategies in each sub-sequence
belonging to the same state.

III. M AIN RESULTS

Let Nt(x) be number of times a specificx occurred in the
sequencex up to and including timet. The universal sequential
probability assignment is defined as:

P
(u)
t (x) = ct · (Nt−1(x) + ht · ut(x))

=
Nt−1(x) + ht · ut(x)

t− 1 + ht ·
∑

x′∈X ut(x′)

(7)

where ct =
∑

x∈X (Nt−1(x) + ht · ut(x)) is the normalizer
guaranteeing unit sum.ut(x) ∼ U [0, 1] is a random dither
which is assumed to be uniformly distributed, i.i.d. over
different x and t (dependence overt does not affect the
expected regret).ht is a non-decreasing positive sequence.
Our philosophical considerations (i.e. justifying probabilistic
behavior) motivate keepinght as general as possible rather
than finding a specific optimal sequenceht for each problem.

The FPF predictor, for any loss functionl(b, x) is defined
by:

b(FPF)

t = argmin
b∈B

E

X∼P
(u)
t

(x)

[l(b,X)] (8)

2Consider for example the 0-1 loss problem, and a sequence containing
an equal number of zeros and ones. Any probability forecaster yielding only
values in the range0.5± ǫ is ǫ-calibrated, while the decisions based on these
probabilities (when plugged into (2)) can be arbitrary (depending on whether
the probability is smaller or larger than0.5), and can yield arbitrarily bad (or
good) aggregate losses.

Theorem 1. Assuminght = h1 · tα, with α ∈ (0, 1), the FPF
predictor is Hannan-consistent for any bounded loss function
and for the log-loss. Therefore under these conditions,P

(u)
t (x)

defined in(7) is a universal probability assignment for the
class.

This theorem is based on the two following theorems:

Theorem 2. Assume the loss function is bounded|l(b, x)| ≤
R. Then:

1) The expected regret of FPF is upper bounded by

Rmax ≤ 2R

n∑

t=1

h−1
t + 2R|X |hn (9)

2) Particularly, for anyht = h1 · tα, with α ∈ (0, 1), the
normalized expected regret1

n
Rmax tends to zero with

n.
3) For ht =

√
2t
|X | ,

1
n
Rmax ≤ 4R

√
2|X |
n

.

Corollary 2.1. The theorem holds under a milder condition,
that the loss function is bounded only for the set of optimizing
strategies, defined as

Bopt =

{

argmin
b∈B

∑

x∈X

λ(x)l(b, x) : λ(x) ≥ 0, ∃x : λ(x) > 0

}

(10)
and whereR = supx∈X ,b∈Bopt

l(b, x). Particularly, the the-
orem holds for theL2 norm loss, l(b,x) = ‖b − x‖2
for X ⊂ R

d (|X | < ∞), and B = R
d. In that case

R = maxx,x′∈X ‖x − x
′‖2 is the squared diameter of the

setX .

Notice that in the most general case without any limitations
(such as on magnitude), it is generally impossible to devise
a universal scheme for theL2 norm loss that beats the best
fixed strategy, i.e. the empirical mean up to a constant, and
it is made possible in the current problem by the assumption
thatX is finite.

The proof of Theorem 2 is similar in spirit to the proof
of Kalai and Vempala [10] for the FPL forecaster, as the
perturbation onNt(x) can be translated to a perturbation on
the accumulated loss.

Theorem 3. For the case of the log-loss, whereb(x) is a

probability distribution overX and l(b, x) = log
(

1
b(x)

)

,3 the
expected regret of FPF satisfies:

1)

Rmax ≤
n∑

t=1

|X |ht − 1

t
+

n∑

t=1

1

⌊ t−1
|X | ⌋+ ht

(11)

2) Particularly, for anyht = h1 · tα, with α ∈ [0, 1), the
normalized expected regret1

n
Rmax tends to zero with

n.
3) For constant ht the expected regret behaves like

O(log n) and specifically for the choiceh = |X |−1,
Rmax ≤ |X | log(n).

3All log-s in this paper are in the natural base.
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Regarding the last case, notice that this redundancy is
similar to the redundancy obtained with Laplace’s estima-
tor and approximately twice the redundancy obtained using
Kritchevsky-Trofimov’s (which is approximately|X |−1

2 logn).
However notice that the target of the FPF forecaster was not
to produce optimal redundancy for specific loss functions.

The proofs of the theorems stated above appear in Section V
below.

IV. I MPLICATIONS ON THE UNDERSTANDING OF

PROBABILITY

A. Initial probabilities

A basic question in the application and philosophy of
probability theory is: where do initial probabilities originate
from (see, e.g. [11]) ? The fact is, that in many situations a
probability distribution is deduced from the relative frequency
of events in the past. While this deduction may be justified
based on some stationarity assumption, it is often used exactly
in those situations where precise analysis of the source of
events is not possible, and therefore the assumption that the
frequency of events in the future would be similar to their
frequency in the past is not necessarily justified. In spite of
this, we often deduce a probability distribution based on past
statistics and use this probability for decision making with
regards to future events. It seems that not only humans but
also animals use this principle [12].

One motivation for the problem posed in Section II, of
searching for a universal probability assignment, is the attempt
to justify this behavior based on mathematical, rather than
physical assumptions. The theory of universal prediction of
individual sequences, or repetitive games, seems a good frame-
work for this purpose, because it facilitates deduction from
the past, without assumptions that the past indicates anything
with respect to the future. The existing universal prediction
schemes are less suitable for this purpose since they determine
the next strategy in a contrived way, as a function of the past
frequencies and the loss function, whereas in the probability-
based decision making, it is assumed that there exist a single
“true” probability.

The success of the FPF predictor for a large set of loss
functions, indicates that indeed it is useful to rely on past
frequencies, and draw from them a “probability” distribution,
even if the future is arbitrary. The dither may be interpreted
as the assumption that the future would be similar but not
identical to the past, and prevents using a too “decisive”
strategy (such as choosing ’0’ or ’1’ in the 0-1 loss case),
based on a small change in the frequencies. It would be
farfetched to claim that this isthe justification for using
probabilities: clearly the reason is related to the regularity
that many natural processes exhibit; however it supplements
our intuitive understanding by showing that even if these
assumptions fail, there is still benefit in learning probabilities
from the past.

B. Meaning of probability

In the previous section we tried to justify a specific choice
of a probability. However, probability itself is not a well

defined concept, and many attempts to explain or justify its use
have been made. A good introduction to these philosophical
questions can be found in [11] (for a quick overview see
[13, Chap.??]). While there is no dispute on the mathemat-
ical axiomatic theory dealing with probability functions,the
meaning of probability, and the justification for using it are
questionable.

In a nutshell, the main interpretations to probability are the
relative frequency approach, a-priori or logical approachan the
subjectivistic approach. Relative frequency theories interpret
probability as the limiting frequencies in very large groups
of events (called “collectives”). A-priori theories interpret
probability as logical relation between sentences, and an
extension of formal logic: the attributes “true” and “false”
are represented by probabilities of 1 and 0, and are extended
by adding a range of probabilities in between. Subjectivistic
theories interpret probability as a measure of the degree of
belief of a certain person in a certain proposition, and therefore
its value is not unique.

A main issue in all interpretations is what probability
means with respect to the future. The current results can be
interpreted under the framework of the subjectivistic theories,
which view probability as a tool for decision making, i.e.
probability is just the relative weight that we put on each future
event when making decisions. Because under subjectivistic
theories any probability is valid, there is a problem of justi-
fying any specific choice of a probability assignment, as well
as the merit of making decisions according to probabilistic
considerations.

The current results can be thought of as a partial resolution
to this question: the suggestion of learning probability from
the past by biasing or dithering past frequencies, is a good one
in the sense that it is better than any fixed behavior (and as a
result, of making decisions according to any fixed probability).
This demonstrates a clear merit in following probabilistic
considerations, which is not dependent on any assumptions
with respect to the real world (the processxt).

There are some issues, however, with this interpretation.
First, the problem setting is limited, compared to our actual use
of probability. Learning from experience extends far beyond
the framework of repetitive games and constant loss functions,
as we usually deduce probabilities from the past and use
them to solvenew problems. Also the factX is assumed
discrete is somewhat limiting, although it may be sufficient
to justify probabilistic intuition, which is fundamentally based
on distributions on finite sets (such as coins and dice).

But the main weakness of this interpretation is that it
relies on randomness for generating the universal probability
assignmentP (u) (and as a result, the claims we can make are
also probabilistic), and so it may lead to a cyclic argument of
explaining probability by using probability. The randomness
used here is in a restricted form of “controlled randomness”
which is generated by the forecaster. I.e. if we believe it is
possible to draw random coins, it is enough for this interpre-
tation to hold and be meaningful. An alternative assumption
is pseudo-randomness, i.e. assume that we can generate the
dither not randomly, but such that “nature” (drawing the
next xt) cannot guess it, and it appears effectively random.
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Unfortunately, like in many other theories, we are not able to
escape some form of “belief” or conjecture with respect to the
future.

Another way to avoid the need for randomness is to avoid
problems such as the 0-1 loss case, in which one is forced
to bet, problems that are insolvable without randomness. For
example, if the loss is convex with respect to the strategy, then
the loss when taking the expected value of a random strategy
b is always better than the expected loss whenb is random.
In this case, the forecaster can make a deterministic decision:
replace (8) witĥbt = E

{

b̂(FPF)

t

}

, where the expected value is

with respect to the randomness ofP (u). This can be thought of
as a different rule for making decisions based on the past: take
as probability the empirical frequencies in the past, however
when making a decision which changes significantly with
respect to small variations in the probability, take the average
decision over these small variations. This rule is deterministic
and aligns with intuition, however the restriction to “smooth”
loss functions may be too limiting.

Another question that would naturally arise with respect to
this explanation is how it aligns with the fact that, at leastin the
theoretical application of probability theory (e.g. estimation
theory, communication theory) we do not use dithers in our
probabilities. It seems that the idea of dithering the probabil-
ities is a similar notion to the idea of checking sensitivityof
a given solution to the probabilistic assumptions. In case the
solution to a given problem does not depend crucially on the
exact probability values, adding the dither is indeed redundant.
On the other hand, if the solution depends crucially on a small
change in the probabilistic assumptions, it may be reasonable
to doubt its operation in the real world.

V. PROOFS

A. Proof of Theorem 2

The proof follows the same line of thought of Kalai-
Vemplala [10]: first, the regret of a clairvoyant forecaster
usingxt in addition toxt−1

1 is bounded. Then, the difference
in performance between the clairvoyant forecaster and the
proposed forecaster is bounded, by using the fact that some
of the dither works in the same direction as the the difference
between them.

1) Definitions:The cumulative loss for playing the constant
strategyb up to time t is Lt(b) =

∑t
i=1 l(b, xt). We denote

for brevity B{L(b)} , argmin
b

L(b) the best strategy for

cumulative loss functionL(b).
The optimal fixed (a-posteriori) best fixed strategy is

B{Ln(b)} and has lossL∗
n = Ln(B{Ln(b)}). As another

example to clarify the notation, the FL predictor can be written
as B{Lt−1(b)}, and the FPL predictor [10] can be written
B{Lt−1(b) + pt(b)} wherept(b) is a random perturbation.

Let us define the dithered count at timet− 1 as

N (p)

t−1(x) , Nt−1(x) + htut(x), (12)

and the respective dithered accumulated loss as

L(p)

t−1(b) ,
∑

x

l(b, x)N (p)

t−1(x). (13)

This loss could be thought of as the loss during a sequence
which is an extension of the actual sequence with some
random states. Notice the distinction betweenL̂n defined in
(3), which is the loss of the universal predictor, andL(p)

t

which is the accumulated loss whose minimization yields the
predictor. The distributionP (u) is proportional toN (p)

t−1(x),
and thus the FPF forecaster is equivalent to optimizing the
dithered loss:

b(FPF)

t = argmin
b∈B

E

X∼P
(u)
t

(x)

[l(b,X)]

= argmin
b∈B

∑

x

P
(u)
t (x)l(b, x)

= argmin
b∈B

[

ct ·
∑

x

N (p)

t−1(x)l(b, x)

]

= B{L(p)

t−1(b)}.

(14)

Notice that the constantct does not affect the minimum.

2) Bounding the expected loss:In terms of the expected
lossE

[

L̂n

]

=
∑n

t=1 E

[

l(b̂t, xt)
]

, only the marginal distribu-

tion of b̂t matters, and therefore dependence betweenut(x) at
different times does not affect the expected loss. Therefore in
this section, we assume allut are equal,ut(x) = u1(x).

We start by analyzing a clairvoyant predictor which includes
also the statext into the prediction. For this purpose, let us
define analogously to (12)-(13):

N (cl)

t (x) , Nt(x)+htut(x), L(cl)

t (b) ,
∑

x

l(b, x)N (cl)

t (x)

(15)
where fort = 0 we defineh0 = 0, and note thatN0(x) = 0
by definition, and thereforeN (cl)

0 (x) = 0 andL(cl)

0 (b) = 0. We
consider the loss of the predictorb̂t = B{L(cl)

t (b)}:

n∑

t=1

l(B{L(cl)

t (b)}, xt)

(a)
=

n∑

t=1

∑

x

[
l(B{L(cl)

t (b)}, x)(Nt(x) −Nt−1(x))
]

=
n∑

t=1

∑

x

[
l(B{L(cl)

t (b)}, x)(N (cl)

t (x) −N (cl)

t−1(x))
]

−
n∑

t=1

∑

x

[
l(B{L(cl)

t (b)}, x)(htut(x)− ht−1ut−1(x))
]

(16)

where in (a) we usedNt(x)−Nt−1(x) as an indicator function
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Ind(xt = x). The first part can be bounded as:

n∑

t=1

∑

x

[
l(B{L(cl)

t (b)}, x)(N (cl)

t (x)−N (cl)

t−1(x))
]

=
n∑

t=1

[
L(cl)

t (B{L(cl)

t (b)})− L(cl)

t−1(B{L(cl)

t (b)})
]

(a)

≤
n∑

t=1

[
L(cl)

t (B{L(cl)

t (b)})− L(cl)

t−1(B{L(cl)

t−1(b)})
]

(b)
= L(cl)

n (B{L(cl)

n (b)})− L(cl)

0 (B{L(cl)

0 (b)})
= L(cl)

n (B{L(cl)

n (b)})
≤ L(cl)

n (B{Ln(b)})
= Ln(B{Ln(b)}) + hn

∑

x

l(B{Ln(b)}, x)un(x)

≤ Ln(B{Ln(b)}) +R|X |hn

= L∗
n +R|X |hn,

(17)

where we used (a) the fact thatB{L(cl)

t−1(b)} is optimized for
L(cl)

t−1 and (b) the sum of the telescopic series. For the second
sum in (16), let us use the assumptionut = u1. Then:
∣
∣
∣
∣
∣

n∑

t=1

∑

x

[
l(B{L(cl)

t (b)}, x)(htut(x)− ht−1ut−1(x))
]

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

n∑

t=1

∑

x

[
l(B{L(cl)

t (b)}, x)(ht − ht−1)u1(x)
]

∣
∣
∣
∣
∣

≤
n∑

t=1

∑

x

R|ht − ht−1|

(a)
= |X |R

n∑

t=1

(ht − ht−1)

(b)
= R|X |hn,

(18)

where we used (a) the assumption that the sequenceht is non
decreasing, and (b) the definitionh0 = 0. Combining (18) and
(17) into (16) yields:

n∑

t=1

l(B{L(cl)

t (b)}, xt) ≤ L∗
n + 2R|X |hn (19)

The next step is to bound the performance difference
between the clairvoyant predictorB{L(cl)

t (b)} and the FPF
forecasterb(FPF)

t = B{L(p)

t−1(b)}. The key is that the new
element added toL(cl)

t (b) is l(b, xt), and the dither element
u(xt) (i.e. belonging to the state that actually happened at time
t) contributes an offset in the same direction, which cancels
this addition or most values ofu(xt). For this purpose let us
write the accumulated losses as:

L(p)

t−1(b) =
∑

x

l(b, x)(Nt−1(x) + htut(x))

= Lc + htu(xt)l(b, xt)

L(cl)

t (b) =
∑

x

l(b, x)(Nt(x) + htut(x))

= L(p)

t−1(b) + l(b, xt)

= Lc + (htu(xt) + 1)l(b, xt)

(20)

where we defined

Lc =
∑

x

l(b, x)Nt−1(x) +
∑

x 6=xt

l(b, x)htut(x). (21)

Noticing that the common partLc is independent ofu(xt),
we compute the conditional expectation givenLc for each of
the predictors:

E

[

l(B{L(p)

t−1(b)}, xt)
∣
∣
∣Lc

]

= E

[

l(B{Lc + htu(xt)l(b, xt)}, xt)
∣
∣
∣Lc

]

=

∫ 1

v=0

l(B{Lc + htl(b, xt)v}, xt)dv

=

∫ 1

v=0

g(v)dv,

(22)

where we defined for brevityg(v) = l(B{Lc +
htl(b, xt)v}, xt), and

E

[

l(B{L(cl)

t (b)}, xt)
∣
∣
∣Lc

]

= E

[

l(B{Lc + (htu(xt) + 1)l(b, xt)}, xt)
∣
∣
∣Lc

]

=

∫ 1

v=0

l(B{Lc + (htv + 1)l(b, xt)}, xt)dv

=

∫ 1

v=0

l(B{Lc + ht(v + h−1
t )l(b, xt)}, xt)dv

=

∫ 1+h
−1
t

v=h
−1
t

l(B{Lc + htl(b, xt)v}, xt)dv

=

∫ 1+h
−1
t

v=h
−1
t

g(v)dv

(23)

The integrands in (22),(23) are equal. Let us temporarily
assume that fort ≥ 1, ht > 1, so that the integration regions
partially overlap. For most of the integration region, because
the integrands are the same (no matter whatl(·, xt) evaluates
to), and the integration regions overlap, they cancel out, and
we remain with the contribution of the edges where there is
no overlap:

E

[

l(B{L(p)

t−1(b)}, xt)− l(B{L(cl)

t (b)}, xt)
∣
∣
∣Lc

]

(22),(23)
=

∫ 1

v=0

g(v)dv −
∫ 1+h

−1
t

v=h
−1
t

g(v)dv

=

∫ h−1
t

0

g(v)dv −
∫ 1+h−1

t

1

g(v)dv

≤
∫

[0,h−1
t

]∪[1,1+h
−1
t

]

|g(v)|dv

≤ 2 ·R · h−1
t .

(24)

Recall that we assumedht ≥ 1. For ht ≤ 1 the bound (24) is
trivially true (because the RHS is at least2R), and therefore
it holds for all ht.

Applying the iterated expectations law and accumulating
(24) yields:

E

[
n∑

t=1

l(B{L(p)

t−1(b)}, xt)−
n∑

t=1

l(B{L(cl)

t (b)}, xt)

]

≤ 2R

n∑

t=1

h−1
t

(25)
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which, together with (19) yields:

E

[
n∑

t=1

l(B{L(p)

t−1(b)}, xt)

]

− L∗
n

= E

[
n∑

t=1

l(B{L(p)

t−1(b)}, xt)−
n∑

t=1

l(B{L(cl)

t (b)}, xt)

]

+ E

[
n∑

t=1

l(B{L(cl)

t (b)}, xt)

]

− L∗
n

(25),(19)
≤ 2R

(
n∑

t=1

h−1
t + |X |hn

)

, ∆,

(26)

which proves the first claim of the theorem.
3) Choices of the dither amplitude sequence:There re-

mains the question of selecting the sequence of dither ampli-
tudesht. For a given horizonn, a simple calculation shows,
that the best choice in terms of minimizing∆ is a constant
ht, which equals

√
n
|X | . As will be seen below, a good choice

of a varyinght that yields an infinite horizon solution (i.e. in
which the setting ofht does not depend on the horizonn) is
ht =

√
2t
|X | . However, because in real life we do not choose

an “optimal”ht, it is first desired to show that for a wide range
of choices, the resulting predictor’s expected regret tends to
zero. This analysis is rather straightforward and reoccursin
many developments of this kind [1, Ex 4.7][10]. So, let us
chooseht = h1 · tα, with α ∈ (0, 1). Then,

n∑

t=1

h−1
t = h−1

1

n∑

t=1

t−α ≤ h−1
1

(

1 +

∫ n

x=1

x−αdx

)

= h−1
1

(

1 +
1

1− α
(n1−α − 1)

)

≤ h−1
1

1

1− α
n1−α

(27)

Substituting in (26) yields:

∆

n
=

2R

n

(
n∑

t=1

h−1
t + |X | · hn

)

≤ 2R

(

h−1
1

1

1− α
n−α + |X | · h1n

α−1

) (28)

For anyα ∈ (0, 1) and anyh1, this yields ∆
n

−→
n→∞

0, i.e.
Hannan’s consistency. It is straightforward to see that thebest
choice is obtained byα = 1

2 andh1 =
√

2
|X | , which yields:

∆

n
=

2R√
n

(
2h−1

1 + |X | · h1

)
= 4R

√

2|X |
n

(29)

4) Proof of Corollary 2.1: To prove the corollary is it
sufficient to notice that all strategies for which the loss is
computed in the proof of Theorem 2, are in the aforementioned
set of optimizing strategies. For theL2 loss it is easy to see
that the set of optimizing strategies is the convex hull ofX
(the strategy for givenλ(x) can be interpreted as a center of
mass ofX with varying weights to the different points).

B. Proof of Theorem 3 (Log loss)

The sequence isxt, t = 1, . . . , n. The accumulated loss for
probabilityqt is

∑n
t=1 log

1
qt(xt)

. The best fixedqt in hindsight

is qt(x) = P̂x(x) and yieldsL∗
n = n

∑

x P̂x(x) log
1

P̂x(x)
. For

the universal estimator proposed:P
(u)
t (x) = c−1

t · (Nt−1(x)+

htut(x)), and it is easy to see that givenP (u)
t (x), the choice

of qt(·), the probability distribution for the next state is just
qt(·) = argmin

q
E

P
(u)
t

(x)

log 1
q(X) = P

(u)
t (x)

E[L̂n] = E

n∑

t=1

log
1

P
(u)
t (xt)

= s
n∑

t=1

[E log(ct)− E log(Nt−1(xt) + htut(xt))]

(30)

In general, in order to achieve a small regret for thelog

loss, it is required that the overall contribution ofP
(u)
t (xt) for

all occurrences of a certain statext = x, would approximate
P̂x(x). However the most important property, which is not
satisfied by FL, is not to give a probability too close to0
for a certain statex on its first appearance in the sequence.
I.e. if Nt−1(xt) = 0, it is required thatE log(Nt−1(xt) +
htut(xt)) = E log(htut(xt)) is finite. Indeed it is easy to
verify that this holds.

Following is the detailed calculation and bounding for
E[L̂n]. The normalizedct is bounded as:

ct =
∑

x

(Nt−1(xt) + htut(x)) ≤ t− 1 + |X |ht (31)

In the below, denote for concisenessNt−1(xt) = v

E log(Nt−1(xt) + htut(xt))

= E log(v + htut(xt)) =

∫ 1

0

log(v + hty)dy

= h−1
t

∫ v+ht

v

log(y)dy

= h−1
t [y log y − y]v+ht

v

= h−1
t [(v + ht) log(v + ht)− v log v − ht]

(a)
= h−1

t

[
ht log(v + ht) + v log

(
1 + ht

v

)
− ht

]

log x≥ x

1+x

≥ h−1
t

[

ht log(v + ht) + v
ht

v

1 + ht

v

− ht

]

= log(v + ht)−
ht

v + ht

= log(Nt−1(xt) + ht)−
ht

Nt−1(xt) + ht

.

(32)

In (a) notice thatv = 0 is a special case. using0 log 0 = 0,
it is easy to verify that in this case the the expression before
(a) for v = 0 equalslog(ht)− 1, and therefore the inequality
holds.
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Returning to (30):

E[L̂n] =

n∑

t=1

[E log(ct)− E log(Nt−1(xt) + htut(x))]

≤
n∑

t=1

log (t− 1 + |X |ht)

+

n∑

t=1

[

− log(Nt−1(xt) + ht) +
ht

Nt−1(xt) + ht

]

=
n∑

t=1

log (t− 1 + |X |ht)

+
∑

x∈X

∑

t:xt=x

[

− log(Nt−1(x) + ht) +
ht

Nt−1(x) + ht

]

(33)

For the second sum, which was broken into the subsequenes
in which a specific statex appears, notice thatNt−1(x)
increases by1 between consecutive elements of the internal
sum. The final value ofNt−1(x) in the last element equals
the total number of apperances ofx, Nn(x). At this point, it
is beneficial to writeL∗

n in a similar form:

L∗
n = n

∑

x

P̂x(x) log
1

P̂x(x)

=
∑

x

Nn(x) log
n

Nn(x)

= n logn−
∑

x

Nn(x) logNn(x)

(34)

A consequence of the bound on the size of a type class
|TP | ≤ exp(nH(P )) [14, Lemma II.2] is (considering the

type defined by the sequencex,
(

. . . , Nn(x)
n

, . . .
)

and taking
the log of both sides):

log

(
n!

∏

x∈X Nn(x)!

)

≤ n
∑

x∈X

Nn(x)

n
log

n

Nn(x)

= n logn−
∑

x∈X

Nn(x) logNn(x)

(35)

Plugging into (34) yields:

L∗
n ≥ log

(
n!

∏

x∈X Nn(x)!

)

=

n∑

t=1

log(t)−
∑

x∈X

Nn(x)∑

m=1

log(m)

(36)

Notice that this way of boundingL∗
n is slightly non stan-

dard: rather than writingL∗
n in a similar form to LU , it

would generally be simpler to write the bound onE[L̂n]
using factorials, and simplify it using Stirling’s approximation,
obtaining a form similar to (34), however this approach does
not hold for varyinght.

Let us now assumeht is non-decreasing. Combining (33)
with (36) yields:

E[L̂n]− L∗
n

≤
n∑

t=1

(log (t− 1 + |X |ht)− log(t))

+
∑

x∈X

∑

t:xt=x

[

log(Nt−1(x) + 1)

− log(Nt−1(x) + ht) +
ht

Nt−1(x) + ht

]

=

n∑

t=1

(

log

(

1 +
|X |ht − 1

t

))

+
∑

x∈X

∑

t:xt=x

[

log

(

1 +
1− ht

Nt−1(x) + ht

)

+
ht

Nt−1(x) + ht

]

≤
n∑

t=1

|X |ht − 1

t

+
∑

x∈X

∑

t:xt=x

[
1− ht

Nt−1(x) + ht

+
ht

Nt−1(x) + ht

]

=

n∑

t=1

|X |ht − 1

t
+
∑

x∈X

∑

t:xt=x

1

Nt−1(x) + ht

=

n∑

t=1

|X |ht − 1

t
+

n∑

t=1

1

Nt−1(xt) + ht

(37)

Let us consider the sequencex that maximizes the second
sum. As clear intuitively, and will be proven below, this
sequence selects all states ofx in a round-robin fashion,
which minimizes the growth rate ofNt−1(xt) and for which
Nt−1(xt) = ⌊ t−1

|X | ⌋.
First, for a given type (i.e. for given{Nn(x)}x∈X ), consider

the order that would yield the maximum. It is clear that them-
th occurrences of different states (assuming these states indeed
occur at leastm times) should occur at consecutivet-s. In other
words, the sequenceNt−1(xt) is non decreasing. Suppose
that the opposite occurs, i.e.Nt−2(xt−1) > Nt−1(xt), then
obviouslyxt 6= xt−1. Let us flip the order of these states, i.e.
let x′

t = xt−1 and x′
t−1 = xt, then as a result the counts

will also flip, N ′
t−2(x

′
t−1) = Nt−1(xt) and N ′

t−1(x
′
t) =

Nt−2(xt−1). This is easiest to see via an example: suppose the
sequence isx = (c, a, a, b, c, c), then the countsNt−1(xt) are
0, 0,1,0, 1, 2. After flipping the statest = 3, 4 the sequence
is x

′ = (c, a, b, a, c, c) and the counts are0, 0,0,1, 1, 2. The
elements pertaining to other times are not affected by this flip,
while the sum of the two elements is now:

1

N ′
t−2(x

′
t−1) + ht−1

+
1

N ′
t−1(x

′
t) + ht

=
1

Nt−1(xt) + ht−1
+

1

Nt−2(xt−1) + ht

>
1

Nt−2(xt−1) + ht−1
+

1

Nt−1(xt) + ht

(38)

where the inequality holds becauseht ≥ ht−1 and
Nt−2(xt−1) > Nt−1(xt). This can be seen by direct algebraic
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manipulation, or by using Lemma 1 with the convex function
f(x) = 1

x
:

Lemma 1. Let f be a convex-∪ function anda0, a1, b0, b1
satisfya1 ≥ a0 and b1 ≥ b0, then

f(a0 + b0) + f(a1 + b1) ≥ f(a0 + b1) + f(a1 + b0) (39)

I.e. the maximum sum is obtained by joining the smaller and
bigger elements together.

Proof: Let us assume there is strict inequality at least in
one of the pairs, otherwise the result holds trivially. Write the
hybrid sums as convex combinations of the homogenous sums:

a0 + b1 = λ(a0 + b0) + (1− λ)(a1 + b1)

a1 + b0 = (1− λ)(a0 + b0) + λ(a1 + b1),
(40)

with

λ =
a1 − a0

a1 − a0 + b1 − b0
∈ [0, 1]. (41)

From (40) and the convexity off :

f(a0 + b1) ≤ λf(a0 + b0) + (1− λ)f(a1 + b1)

f(a1 + b0) ≤ (1− λ)f(a0 + b0) + λf(a1 + b1).
(42)

Summing the two equations in (42) yields the desired result
(39).

The conclusion is that the sequenceNt−1(xt) is non de-
creasing. Next, is it obvious that to increase the sum, all states
in x should be chosen approximately the same number of
times. If at some point, a statex has been chosen for the
m-th time at timet, while another statex′ did not appear
m−2 times at this point, then because of the monotonicity of
Nt−1(xt), x′ can never appear again in an optimal sequence.
Clearly, choosingx′ instead ofx at time t would decrease
Nt−1(xt) for time t as well as for all future occurrences of
the statex, and therefore will increase the sum.

This concludes the proof that the last sum in (37) is
maximized byNt−1(xt) = ⌊ t−1

|X | ⌋. Now, (37) may be rewritten
as:

E[L̂n]− L∗
n ≤

n∑

t=1

|X |ht − 1

t
+

n∑

t=1

1

⌊ t−1
|X | ⌋+ ht

, ∆. (43)

The last bound is only a function of{ht} and not of the
sequencex. If ht grows sublinearly, then the dominant factor
in the second sum will be⌊ t−1

|X | ⌋ and the sum would grow
like O(log(n)). On the other hand, any growth rate ofht that
satisfies1

n

∑n
t=1

ht

t
−→
n→∞

0 would yield normalized expected

regret tending to0, and a sufficient condition isht

t
→ 0, and

particularly this holds forht = O(tα), α ∈ [0, 1).

If ht is constant, then the first sum grows likeO(log(n))

as well. A more detailed evaluation yields:

∆ = (|X |h− 1)

n∑

t=1

1

t
+

n∑

t=1

1

⌊ t−1
|X | ⌋+ h

≤ (|X |h− 1)

(

1 +

∫ n

1

1

t
dt

)

+

∫ n

t=0

1
t

|X | − 1 + h
dt

= (|X |h− 1) (1 + log(n)) + |X | log
(
n− |X |
|X |h + 1

)

h=|X |−1

= |X | log (n− |X |+ 1)

≤ |X | log(n).
(44)

This ends the proof of Theorem 3.

C. Proof of Theorem 1

Both Theorem 2 and Theorem 3 show the normalized
expected regret tends to0 with n, and it remains to change
from claims on expected regret to claims on the almost-sure
regret. To prove that the regret tends to0 almost surely, or
more precisely,lim supn→∞(L̂n−L∗

n) ≤ 0, using the already
established fact thatlim supn→∞(E[L̂n]−L∗

n) ≤ 0, it remains
to show that1

n
(L̂n − E[L̂n]) −→

n→∞
0 almost surely.

1

n
(L̂n − E[L̂n]) =

1

n

n∑

t=1

(

l(b̂t, xt)− E[l(b̂t, xt)]
)

(45)

To show that the mean above converges to0 almost surely, we
use Kolmogorov’s criterion for the applicability of the Strong
Law of Large numbers [15]. The elements of the sequence
γt = l(b̂t, xt) − E[l(b̂t, xt)] have zero mean, and are inde-
pendent, because eachb̂t depends only on the deterministic
history of the sequence, and onut(x), which are assumed
independent. Notice thatγt are not identically distributed.
Kolmogorov’s criterion requires that

∑∞
t=1

Var(γt)
t2

< ∞.
This holds trivially for bounded loss functions, for which the
boundness of|γt| yields a constant bound on its variance.
Proving that this condition holds for the case of the log loss
function is a rather technical calculation which is deferred to
Appendix- A. �

APPENDIX

A. Completion of the proof of Theorem 1 for the log loss

This appendix completes the proof of Theorem 1 from
Section V-C, by showing that for the case of the log loss,
the Kolmogorov criterion holds and therefore the normalized
regret converges almost surely to the normalized expected
regret. Our purpose is to upper bound the following variance:

σ2
t = Var(γt) = Var(l(b̂t, xt)) = V ar

[

log
(

P
(u)
t (xt)

)]

,

(46)
and show that Kolmogorov’s criterion

∑∞
t=1

σ2
t

t2
< ∞ holds.

P
(u)
t (xt) is defined in (7) as

P
(u)
t (x) =

Nt−1(x) + ht · ut(x)

t− 1 + ht ·
∑

x′∈X ut(x′)
. (47)
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We have:

log
(

P
(u)
t (xt)

)

= log(Nt−1(xt) + ht · ut(xt))

− log(t− 1 + ht ·
∑

x′∈X

ut(x
′))

= log

(
Nt−1(xt)

ht

+ ut(xt)

)

︸ ︷︷ ︸

A

− log

(

t− 1

ht

+
∑

x′∈X

ut(x
′)

)

︸ ︷︷ ︸

B

.

(48)

Using

Var(A−B) ≤ E
[
(A−B)2

]
≤ 2E

[
A2
]
+ 2E

[
B2
]
, (49)

where the second inequality stems from(a − b)2 = 2a2 +
2b2−(a+b)2 ≤ 2a2+2b2, it is enough to bound the expected
squared value of eachlog in (48) separately. For a uniform r.v.
U ∼ U[0, 1] and a constanta ≥ 0, the following bound holds:

E
[
log2(a+ U)

]
=

∫ 1

0

log2(a+ u)du

=

∫ a+1

a

log2(u)du

≤
∫ 1

0

log2(u)du+

∫ a+1

max(a,1)

log2(u)du

≤
∫ 1

0

log2(u)du+

∫ a+1

max(a,1)

log2(u)du

≤
[
u log2(u)− 2u log(u) + u

]1

0
+ log2(a+ 1)

= 2 + log2(a+ 1).
(50)

We used the fact thatlog2(u) is increasing foru ≥ 1. Notice
that the bound is trivial fora ≥ 1 becauseU ≤ 1. Applying
the bound to the squared elements in (48):

E

[

log2
(
Nt−1(xt)

ht

+ ut(xt)

)]

≤ 2 + log2
(
Nt−1(xt)

ht

+ 1

)

≤ 2 + log2
(
t− 1

ht

+ 1

)

.

(51)

For the second term, the expectation is first applied only to
one arbitrary elementut(x), while conditioning on the other
elements:

E

[

log2

(

t− 1

ht

+
∑

x′∈X

ut(x
′)

)]

= E

{

E

[

log2

(

t− 1

ht

+
∑

x′∈X

ut(x
′)

)

|ut(x
′), x′ 6= x

]}

(50)
≤ E






2 + log2




t− 1

ht

+
∑

x′ 6=x

ut(x
′) + 1











≤ 2 + log2
(
t− 1

ht

+ |X |
)

,

(52)

where we used again the fact thatlog2(u) is increasing for
u ≥ 1. Combining (48) with (49) and the bounds above yields:

σ2
t = Var

[

log
(

P
(u)
t (xt)

)]

≤ 4 + 2 log2
(
t− 1

ht

+ 1

)

+ 4 + 2 log2
(
t− 1

ht

+ |X |
)

≤ 8 + 4 log2
(
t− 1

ht

+ |X |
)

(53)

Under the assumptions of Theorem 1,ht = h1 · tα with
α ∈ (0, 1) and soσ2

t = O(log2(t)) and clearly Kolmogorov’s
criterion holds. �
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