
1

Analysis and Practice of Uniquely Decodable
One-to-One Code

Chin-Fu Liu, Hsiao-feng (Francis) Lu, and Po-Ning Chen

Abstract—In this paper, we consider the so-called uniquely
decodable one-to-one code (UDOOC) that is formed by inserting
a “comma” indicator, termed the unique word (UW), between
consecutive one-to-one codewords for separation. Along this re-
search direction, we first investigate several general combinatorial
properties of UDOOCs, in particular the enumeration of the
number of UDOOC codewords for any (finite) codeword length.
Based on the obtained formula on the number of length-n code-
words for a given UW, the per-letter average codeword length of
UDOOC for the optimal compression of a given source statistics
can be computed. Several upper bounds on the average codeword
length of such UDOOCs are next established. The analysis on the
bounds of average codeword length then leads to two asymptotic
bounds for sources having infinitely many alphabets, one of which
is achievable and hence tight for a certain source statistics and
UW, and the other of which proves the achievability of source
entropy rate of UDOOCs when both the block size of source
letters for UDOOC compression and UW length go to infinity.
Efficient encoding and decoding algorithms for UDOOCs are also
given in this paper. Numerical results show that when grouping
three English letters as a block, the UDOOCs with UW = 0001,
0000, 000001 and 000000 can respectively reach the compression
rates of 3.531, 4.089, 4.115, 4.709 bits per English letter (with
the lengths of UWs included), where the source stream to be
compressed is the book titled Alice’s Adventures in Wonderland. In
comparison with the first-order Huffman code, the second-order
Huffman code, the third-order Huffman code and the Lempel-Ziv
code, which respectively achieve the compression rates of 3.940,
3.585, 3.226 and 6.028 bits per single English letter, the proposed
UDOOCs can potentially result in comparable compression rate
to the Huffman code under similar decoding complexity and yield
a smaller average codeword length than that of the Lempel-Ziv
code, thereby confirming the practicability of UDOOCs.

I. INTRODUCTION

The investigation of lossless source coding can be roughly
classified into two categories, one for the compression of a
sequence of source letters and the other for a single “one shot”
source symbol [7]. A well-known representative for the former
is the Huffman code, while the latter is usually referred to as
the one-to-one code (OOC).

The Huffman code is an optimal entropy code that can
achieve the minimum average codeword length for a given
statistics of source letters. It obeys the rule of unique decod-
ability and hence the concatenation of Huffman codewords
can be uniquely recovered by the decoder. Although optimal
in principle, it may encounter several obstacles in implemen-
tation. For example, the rare codewords are exceedingly long

The authors are with the Department of Electrical and Computer En-
gineering, National Chiao-Tung University (NCTU), Hsinchu 30010, Tai-
wan (e-mails: hubert.liu.1031@gmail.com, francis@mail.nctu.edu.tw, pon-
ing@faculty.nctu.edu.tw). They are also with the Center of Information and
Communications Technology of NCTU, Taiwan.

in length, thereby hampering the efficiency of decoding. Other
practical obstacles include

i) the codebook needs to be pre-stored for encoding and
decoding, which might demand a large memory space
for sources with moderately large alphabet size,

ii) the decoding of a sequence of codewords must be done
in sequential, not in parallel, and

iii) erroneous decoding of one codeword could affect the
decoding of subsequent codewords, i.e., error propaga-
tion.

In contrast to unique decodability, the OOC only requires an
assignment of distinct codewords to the source symbols. It
has been studied since 1970s [33] and is shown to achieve
an average codeword length smaller than the source entropy
minus a nontrivial amount of quantity called anti-redundancy
[29]. Various research works over the years have shown that
the anti-redundancy can be as large as the logarithm of the
source entropy [1], [5], [6], [13], [21], [24], [26], [27], [29]–
[31] In comparison with an entropy coding like Huffman code,
the codewords of an OOC can be sequenced alphabetically and
hence the practice of an OOC is generally considered to be
more computationally convenient.

A question that may arise from the above discussion is
whether we could add a “comma” indicator, termed Unique
Word (UW) in this paper, in-between consecutive OOC code-
words, and use the OOC for the lossless compression of a
sequence of source letters. A direct merit of such a structure
is that the alphabetically sequenced OOC codewords can be
manipulated without a priori stored codebook at both the
encoding and decoding ends. This is however achieved at a
price of an additional constraint that the “comma” indicator
must not appear as an internal subword1 in the concatenation
of either an OOC codeword with a comma indicator, or a
comma indicator with an OOC codeword.

On the one hand, this additional constraint facilitates the
fast identification of OOC codewords in a coded bit-stream
and makes feasible the subsequent parallel decoding of them.
On the other hand, the achievable average codeword length
of a UW-forbidden OOC may increase significantly for a bad
choice of UWs. Therefore, it is of theoretical importance to
investigate the minimum average codeword length of a UW-
forbidden OOC, in particular the selection of a proper UW
that could minimize this quantity. Since the resultant UW-
forbidden OOC coding system satisfies unique decodability

1We say a = a1 . . . am is not an internal subword of b = b1 . . . bn if
there does not exist i such that bi . . . bi+m−1 = a for all 1 < i < n−m+1.
When the same condition holds for all 1 ≤ i ≤ n −m + 1 (i.e., with two
equalities), we say a is not a subword of b.

ar
X

iv
:1

50
8.

07
56

3v
1

 [
cs

.I
T

]
 3

0
A

ug
 2

01
5

2

(UD), we will refer to it conveniently as the UDOOC in the
sequel.

We would like to point out that the conception of inserting
UWs between consecutive words might not be new in existing
applications. For example, in the IEEE 802.11 standard for
wireless local area networks [3], an entity similar to the UW
in a bit-stream has been specified as a boundary indicator
for a frame, or as a synchronization support, or as a part
of error control mechanism. In written English, punctuation
marks and spacing are essential to disambiguate the meaning
of sentences. However, a complete theoretical study of the
UDOOC conception remains undone. This is therefore the
main target of this paper. We now give a formal definition
of binary UDOOCs.

Definition 1: Given UW k = k1k2 . . . kL ∈ F× · · · × F =
FL, where F = {0, 1}, we say Ck(n) is a UDOOC of length
n ≥ 1 associated with k if it contains all binary length-n
tuples b = b1 . . . bn such that k is not an internal subword
of the concatenated bit-stream kbk. As a special case, we set
Ck(0) := {null}.2 The overall UDOOC associated with k,
denoted by Ck, is given by

Ck :=
⋃
n≥0

Ck(n).

For a better comprehension of Definition 1, we next give
an example to illustrate how a UDOOC is generated and how
it is used in encoding and decoding. The way to count the
number of length-n UDOOC codewords will follow.

Example 1: Suppose the UW k = 00 is chosen. In order to
prohibit the concatenation of any UDOOC codeword and UW,
regardless of the ordering, from containing 00 as an internal
subword, the following constraints must be satisfied.
• Type-I constraints: The UW cannot be a subword of any

UDOOC codeword. This means that within any codeword
of length n ≥ 1:

(C1) “0” can only be followed by “1”.
(C2) “1” can be followed by either “0” or “1”.

• Type-II constraints: Besides the type-I constraints, the
UW cannot appear as an internal subword, containing the
boundary of any UDOOC codeword and UW, regardless
of the ordering. This implies that except for the “null”
codeword:

(C3) The first bit of a codeword cannot be “0”.
(C4) The last bit of a codeword cannot be “0”.

By Constraints (C1)-(C4), we can place the UDOOC code-
words on a code tree as shown in Fig. 1, in which each path
starting from the root node and ending at a gray-shaded node
corresponds to a codeword. Thus, the codewords for UW = 00
include null, 1, 11, 101, 111, 1011, 1101, 1111, etc. It should
be noted that we only show the codewords of length up to four,
while the code tree actually can grow indefinitely in depth.

At the decoding stage, suppose the received bit-stream is
00100110010100111100, where we add UWs at both the

2In our binary UDOOC, it is allowed to place two UWs side-by-side with
nothing in-between in order to produce a null codeword.

null 1

1

0

1

0

1

0

1

1

1

0

...

Fig. 1. UDOOC code tree for UW = 00.

left and the right ends to indicate the margins of the bit-
stream. This may facilitate, for example, noncoherent bit-
stream transmission. Then, the decoder first locates UWs and
parses the bit-stream into separate codewords as 1, 11, 101
and 1111, after which the four codewords can be decoded
separately (possibly in parallel) to their respective source
symbols.

With the code tree representation, the number of length-
n codewords in a UDOOC code tree can be straightforwardly
calculated. Let the “null”-node be placed at level 0. For n ≥ 1,
denote by an and bn the numbers of “1”-nodes and “0”-nodes
at the nth level of the code tree, respectively. By the two type-I
constraints, the following recursions hold:{

an = an−1 + bn−1
bn = an−1

for n ≥ 2.

With the initial values of a1 = 1 and a2 = 1, it follows
that {an}∞n=1 is the renowned Fibonacci sequence [14], i.e.,
an = an−1 + an−2 for n ≥ 3. This result, together with the
two type-II constraints, implies that the number of length-n
codewords is |C00(n)| = an for n ≥ 1, which according to
the Fibonacci recursion is given by:

an =
ϕn − ϕ̄n√

5
,

where ϕ = 1+
√
5

2 is the Golden ratio and ϕ̄ = 1−
√
5

2 is the
Galois conjugate of ϕ in number field Q(

√
5). Thus, |C00(n)|

grows exponentially in n with base ϕ ≈ 1.618.

We can similarly examine the choice of UW = 01 and draw
the respective code tree in Fig. 2, where its type-I constraints
become:

(C1) “0” can only be followed by “0”.
(C2) “1” can be followed by either “0” or “1”.

and no type-II constraints are required. We then obtain{
an = an−1
bn = an−1 + bn−1

for n ≥ 2,

and |C01(n)| = an + bn = n+ 1. Although from Figs. 1 and
2, taking UW = 01 seems to provide more codewords than
taking UW = 00 at small n, the linear growth of |C01(n)| with
respect to codeword length n suggests that such choice is not
as good as the choice of UW = 00 when n is moderately
large.

3

The above two exemplified UWs point to an important fact
that the best UW, which minimizes the average codeword
length, depends on the code size required. Thus, the inves-
tigation of the efficiency of a UW may need to consider the
transient superiority in addition to claiming the asymptotic
winner.

In this paper, we provide efficient encoding and decod-
ing algorithms for UDOOCs, and investigate their general
combinatorial properties, in particular the enumeration of the
number of codewords for any (finite) codeword length. Based
on the obtained formula for |Ck(n)|, i.e., the number of
length-n codewords for a given UW k, the average codeword
length of the optimal compression of a given source statistics
using UDOOC can be computed. Classifications of UWs are
followed, where two types of equivalences are specified, which
are (exact) equivalence and asymptotic equivalence. UWs that
are equivalent in the former sense are required to yield exactly
the same minimum average codeword length for every source
statistics, while asymptotic equivalence only dictates the UWs
to result in the same asymptotic growth rate as codeword
length approaches infinity. Enumeration of the number of
asymptotic equivalent UW classes are then studied with the
help of methodologies in [17] and [25]. Furthermore, three
upper bounds on the average codeword length of UDOOCs
are established. The first one is a general upper bound when
only the largest probability of source symbols is given. The
second upper bound refines the first one under the premise
that the source entropy is additionally known. When both
the largest and second largest probabilities of source symbols
are present apart from the source entropy, the third upper
bound can be used. Since these bounds are derived in terms
of different techniques, actually none of the three bounds
dominates the other two for all statistics. Comparison of these
bounds for an English text with statistics from [36] and that
with statistics from the book Alice’s Adventures in Wonderland
will be accordingly provided. The analysis on bounds of the
average codeword length gives rise to two asymptotic bounds
on ultimate per-letter average codeword length, one of which
is tight for a certain choice of source statistics and UW, and
the other of which leads to the achievability of the ultimate
per-letter average codeword length to the source entropy rate
when both the source block length for compression and UW
length tend to infinity.

It may be of interest to note that the enumeration of the
number of codewords, i.e., ck,n = |Ck(n)|, is actually obtained
indirectly via the determination of an auxiliary quantity sk,n,
which is the number of words satisfying the type-I constraints
but not necessarily the type-II constraints. By utilizing the
Goulden-Jackson cluster method [16], [20], [22], [23], [32],
an explicit formula for sk,n can be established. The desired
enumeration formula for the number of length-n UDOOC
codewords is then obtained by proving that both the so-called
linear constant coefficient difference equation (LCCDE) and
the asymptotic growth rate of sk,n and ck,n are identical.
We next show based on the obtained formula that the all-
zero UW has the largest asymptotic growth rate among all
UWs of the same length, while the UW with the smallest
growth rate is 00 . . . 01. Interestingly, the all-zero UW is

often the one that yields the smallest ck,n for small n, in
contrast to UW 00 . . . 01, whose ck,n tops all other UWs
when n is small. We afterwards demonstrate by using these
two special UWs that the general encoding and decoding
algorithms can be considerably simplified when further taking
into consideration the structure of particular UWs. A side
result from the enumeration of ck,n is that for all UWs, the
codeword growth rate of UDOOCs will tend to |F| = 2 as the
length of the UW goes to infinity.

With regard to the compression performance of the proposed
UDOOCs, numerical results show that when grouping three
English letters as a block and separating the consecutive blocks
by UWs, the UDOOCs with UW = 0001, 0000, 000001
and 000000 can respectively reach the compression rates of
3.531, 4.089, 4.115, 4.709 bits per English letter (with the
length of UWs included), where the source stream to be com-
pressed is the book titled Alice’s Adventures in Wonderland.
In comparison with the first-order Huffman code, the second-
order Huffman code, the third-order Huffman code3 and the
Lempel-Ziv code, which respectively achieve the compression
rates of 3.940, 3.585, 3.226 and 6.028 bits per English letter,
the proposed UDOOCs can potentially result in comparable
compression rate to the Huffman code under similar decoding
complexity and yield a smaller average codeword length
than that of the Lempel-Ziv code, thereby confirming the
practicability of the scheme of separating OOC codewords by
UWs.

In the literature, there are a number of publications on
enumeration of words in a set that forbids the appearance of a
specific pattern [8]–[12]. For example, Doroslova investigated
the number of binary length-n words, in which a specific
subword like 1010 . . . 10 is not allowed [10]. He then extended
the result to non-binary alphabet and forbidden subwords
of length 3 [9], [12], and forbidden subwords of length 4
[11], as well as the so-called “good” forbidden subwords
[8]. The analyses in [8]–[12] however depend on the specific
structure of forbidden subwords considered, and no asymptotic
examination is performed. On the other hand, algorithmic
approaches have been devoted to a problem of similar (but not
the same) kind, one of which is called the Goulden-Jackson
clustering method [16], [20], [22], [23], [32].

Instead of enumerating the number of words internally
without a forbidden pattern, some researchers investigate the
inherent characteristic of such patterns. In this literature, Rivals
and Rahmann [25] provide an algorithm to account for the
number of overlaps4 for a given set of patterns, for which the
definition will be later given in this paper for completeness
(cf. Definition 4). Different from the algorithmic approach in
[25], Guibas and Odlyzko established upper and lower bounds

3A kth-order Huffman code maps a block of k source letters onto a variable-
length codeword.

4In [17] and [25], the authors actually use a different name “autocorrelation”
for “overlap” originated from [16]. Specifically, they define the autocorrela-
tion v = v1 · · · vL of a binary length-L string u = u1 · · ·uL as a binary
zero-one bit-stream of length L such that vi = 1 if i is a period of u, where i
is said to be a period of u when uj = ui+j for every 1 ≤ j ≤ L− i. Since
the term autocorrelation is extensively used in other literature ilke digital
communications to illustrate similar but different conception, we adopt the
name of “overlap” in this paper.

4

null

1

1

0

1

0

0

1

0

...

0

0

0

0

0

0

Fig. 2. UDOOC code tree for UW = 01.

for the number of overlaps when the length of the concerned
pattern goes to infinity [17].

The rest of the paper is organized as follows. In Section
II, construction of general UDOOCs is introduced. In Sec-
tion III, combinatorial properties of UDOOCs, including the
enumeration of the number of codewords, are derived. In
Section IV, the encoding and decoding algorithms as well
as bounds on average codeword length for general UDOOCs
are provided and discussed. In Section V, numerical results
on the compression performance of UDOOCs are presented.
Conclusion is drawn in Section VI.

II. CONSTRUCTION OF UDOOCS

In the previous section, we have seen that the code tree of a
UDOOC with UW = 00 (or UW = 01) is by far a useful tool
for devising its properties. Along this line, we will provide
a systematic construction of code tree for general UDOOC
in this section. Specifically, a digraph [2] whose directional
edges meet the type-I and type II constraints5 from the UW
will be first introduced. By the digraph, the construction of
a general UDOOC code tree as well as the determination of
the growth rate of UDOOC codewords with respect to the
codeword length will follow.

A. Digraphs for UDOOCs

Let k = k1 . . . kL be the chosen UW of length L. Denote
by Gk = (V,Ek) the digraph for the UDOOC with UW = k,
where V = FL−1 is the set of all binary length-(L−1) tuples,
and Ek is the set of directional edges given by

Ek :=
{

(i, j) ∈ V 2 : iL−12 = jL−21 and i1j 6= k
}
. (1)

Here, we use the conventional shorthand its = isis+1 . . . it to
denote a binary string from index s to index t, and the elements
in V are interchangeably denoted by either i = i1 . . . iL−1 or
iL−11 , depending on whichever is more convenient.

5For clarity of its explanation, we introduce the so-called type-I and type-II
constraints in Example 1. Listing these constraints for a general UW however
may be tedious and less comprehensive. As will be seen from this section,
these constraints can actually be absorbed into the construction of the digraph
(See specifically Eq. (1)); hence, explicitly listing of constraints becomes of
secondary necessity.

10

00

01

11

Fig. 3. Digraph G010 for UW k = 010.

Define the 2L−1-by-2L−1 adjacency matrix Ak for the
digraph Gk by putting its (i+ 1, j + 1)th entry as

(Ak)i+1,j+1 =

{
1, if (i, j) ∈ Ek,

0, otherwise,
(2)

where we abuse the notation by using i (resp. j) to be
the integer corresponding to binary representation of i =
i1 . . . iL−1 (resp. j = j1 . . . jL−1) with the leftmost bit being
the most significant bit. As an example, for k = 010, we have
V = F2 = {00, 01, 10, 11},

E010 = {(00, 00), (00, 01), (01, 11),

(10, 00), (10, 01), (11, 10), (11, 11)},

G010 = (V,E010) in Fig. 3, and

A010 =


1 1 0 0
0 0 0 1
1 1 0 0
0 0 1 1

 .
We remark that the adjacency matrix Ak will be used for enu-
merating the number of UDOOC codewords in next section.

B. Code Trees for UDOOCs

Equipped with digraph Gk, constructing the code tree for
the UDOOC with UW = k becomes straightforward. Recall
that a UDOOC codeword of length n is a binary n-tuple
b = b1 . . . bn, satisfying that k is not an internal subword of
the concatenated bit-stream kbk. As such, the traversal of the
digraph for constructing a UDOOC code tree should start from
the vertex kL2 ∈ V , which corresponds to the initial “null”-
node in the code tree. Next, a “0”-node at level 1 is generated
if both (kL2 , j

L−1
1) ∈ Ek and jL−1 = 0 are satisfied. By the

same rule, the “null”-node is followed by a “1”-node at level 1
if (kL2 , j

L−1
1) ∈ Ek and jL−1 = 1. We then move the current

vertex to jL−11 and draw a branch from “jL−1”-node at level 1
to a followup “0”-node (resp. “1”-node) at level 2 in the code
tree if (jL−11 , `L−11) ∈ Ek and `L−1 = 0 (resp. `L−1 = 1).
We move the current vertex again to `L−11 and re-do the above
procedure to generate the nodes in the next level. Repeating

5

this process will complete the exploration of the nodes in the
entire code tree.

Determination of the gray-shaded nodes that end a codeword
can be done as follows. Since k cannot be an internal subword
of kbk, a node should be gray-shaded if it is immediately
followed by a sequence of offspring nodes with their binary
marks equal to k1 . . . kL−1. The construction of the UDOOC
code tree is accordingly finished.

As an example, we continue from the exemplified UW
k = 010 with digraph Gk in Fig. 3 and explore its respective
UDOOC code tree in Fig. 4 by following the previously
mentioned procedure. By starting from the vertex k32 = 10
that corresponds to the “null”-node, two succeeding nodes
are generated since both (10, 00) and (10, 01) are in E010

(cf. Fig. 4). Now from vertex 00 that corresponds to the “0”-
node at level 1, we can reach either vertex 00 or vertex 01
in one transition; hence, both “0”-node and “1”-node are the
succeeding nodes to the “0”-node at level 1. However, since
vertex 01 can only walk to vertex 11 in one transition, the “1”-
node at level 1 has only one succeeding node with mark “1.”
Continuing this process then exhausts all the nodes in the code
tree in Fig. 4. Next, all nodes that are followed by k1k2 = 01
in sequence in the code tree are gray-shaded. The construction
of the code tree for the UDOOC with UW k = 010 is then
completed.

We end this section by giving the type-I and type-II con-
straints for the exemplified code tree as follows.
• Type-I constraints:

(C1) “0” can be followed by either “0” or “1”.
(C2) “1” can be followed by “0” only when the node
prior to this “1”-node is not a “0”-node.

• Type-II constraints:
(C3) The first two bits of a UDOOC codeword
cannot be “10.”
(C4) The last two bits of a UDOOC codeword cannot
be “01.”

Note that with these constraints (in particular (C4)), one can
also perform the node-shading step by first gray-shading all the
nodes in the code tree, and then unshade those that end with
“01” (in addition to the “1”-node at level 1 for this specific
UW). Nevertheless, it may be tedious to perform the node-
unshading for a general UW. For example, when UW k =
01001, all nodes that end a codeword bn1 , satisfying either
bn−3bn−2bn−1bnk1 = k or bn−2bn−1bnk1k2 = k, should be
unshaded. This confirms the superiority of constructing the
UDOOC code tree in terms of the digraph over analyzing the
explicit listing of constraints from the adopted UW that are
perhaps convenient only for some special UWs.

III. COMBINATORIAL PROPERTIES OF UDOOCS

A. The Determination of |Ck(n)|
In this subsection, we will see that the conception of digraph

Gk, in particular its respective adjacency matrix Ak, can lead
to a formula for the number of length-n codewords, i.e., ck,n =
|Ck(n)|.

In accordance with the fact that the traversal of the digraph
for constructing a UDOOC code tree should start from vertex

null

0

1

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

0

1

n=0 n=1 n=2 n=3 n=4

Fig. 4. Code tree for the UDOOC with UW k = 010.

kL2 ∈ V , we define a length-2L−1 initial vector as (xk)j+1 = 1
if integer j has the binary representation kL2 , and (xk)j+1 = 0,
otherwise, for 0 ≤ j < 2L−1. It then follows that the (`+1)th
entry of row vector x>k A

n
k gives the number of length-n walks

that end at vertex ` on digraph Gk, where “>” denotes the
vector/matrix transpose operation, and ` = `1 . . . `L−1 is the
binary representation of integer index `.

However, not every length-n walk produces a codeword.
Notably, some nodes on the code tree will be gray-shaded and
some will not. Recall that k cannot be an internal subword
of kbk if b = b1b2 . . . bn is a codeword. This implies that b
is a length-n codeword if, and only if, the vertex sequence
kL2 , kL3 b1, kL4 b

2
1, . . ., bnkL−21 , kL−11 is a valid walk of length

n+L−1 on digraph Gk. As a result, the number of length-n
codewords equals the number of length-(n + L − 1) walks
from vertex kL2 to vertex kL−11 on digraph Gk. Following the
above discussion, we define the length-2L−1 ending vector
y
k

as (y
k
)j+1 = 1 if integer j has the binary representation

kL−11 , and (y
k
)j+1 = 0, otherwise, for 0 ≤ j < 2L−1. Then,

the number of length-n codewords is given by

ck,n := |Ck(n)| = x>k A
n+L−1
k y

k
. (3)

B. Equivalence among UWs

Two UWs that result in the same minimum average code-
word length for every source statistics should be considered
equivalent. This leads to the following definition.

Definition 2: Two UWs k and k′ are said to be equivalent,
denoted by k ≡ k′, if the numbers of their length-n codewords
in the corresponding UDOOCs are the same for all n, i.e.,

ck,n = ck′,n for all n ≥ 0. (4)

By this definition, UDOOCs associated with equivalent
UWs have the same number of codewords in every code
tree level; hence they achieve the same minimum average

6

codeword length in the lossless compression of a sequence
of source letters. This equivalence relation allows us to focus
only on one UW in every equivalent class. It is however hard to
exhaust and identify all equivalent classes of UWs of arbitrary
length. Instead, we will introduce a less restrictive notion
of asymptotic equivalence when the asymptotic compression
rate of UDOOCs is concerned, and derive the number of all
asymptotically equivalent classes of UWs in Section III-E.

Some properties about the (exact) equivalence of UWs are
given below.

Proposition 1 (Equivalence in order reversing): UW k′ =
kL . . . k1 is equivalent to UW k = k1k2 . . . kL.

Proof: It follows simply from that b = b1b2 . . . bn ∈ Ck
if, and only if, b′ = bnbn−1 . . . b1 ∈ Ck′ .

Proposition 2 (Equivalence in binary complement): If k̄ is
the bit-wise binary complement of k, then k̄ and k are
equivalent.

Proof: It is a consequence of the fact that the concatenated
bit-stream kbk contains k as an internal subword if, and
only if, the binary complement kbk of kbk contains k̄ as
an internal subword.

From Propositions 1 and 2, it can be verified that there
are at most four equivalent classes for UWs of length L = 4.
Representative UWs for these four equivalent classes are 0000,
0001, 0100 and 0101, respectively.

C. Growth Rates of UDOOCs

In this subsection, we investigate the asymptotic growth rate
of UDOOCs, of which the definition is given below.

Definition 3: Given UW k, the asymptotic growth rate of
the resulting UDOOC is defined as

gk := lim
n→∞

ck,n+1

ck,n
. (5)

By its definition, the asymptotic growth rate of a UDOOC
indicates how fast the number of codewords grows as n
increases.

It is obvious that gk ≤ 2 for all UWs because the
upper bound of 2 is the growth rate for unconstrained binary
sequences of length n. In addition, the limit in (5) must exist
since it can be inferred from enumerative combinatorics [28],
and also from algebraic graph theory [4], that gk is the largest
eigenvalue of adjacency matrix Ak. In the next proposition,
we show that the largest eigenvalue of adjacency matrix Ak is
unique for all UWs but k = 01.

Proposition 3 (Uniqueness of the largest eigenvalue of Ak):
For any UW k of length L ≥ 2 except k = 01, the largest
eigenvalue of adjacency matrix Ak is unique and is real.

Proof: By Perron-Frobenius theorem [15] [19], the largest
eigenvalue of adjacency matrix Ak is unique and real with
algebraic multiplicity equal to 1 if Gk is a strongly connected
diagrph. Thus, we only need to show that Gk is a strongly
connected digraph except for k = 01.

We then argue that Gk is a strongly connected diagrph when
L ≥ 3 as follows. According to the definition of Ek in (1),

0 1

Fig. 5. Digraph Gk for UW k = 01.

the only situation that a vertex may not be strongly connected
to other vertex is when j = k2k3 · · · kL. This however cannot
happen when L ≥ 3 because vertex k1k2 · · · kL−1 will connect
strongly to k2k3 · · · kL. The proof is completed after verifying
the two cases for L = 2, i.e., G00 is strongly connected but
G01 is not.

The digraph for k = 01 is plotted in Fig. 5. It clearly
indicates that there is no directed path from vertex 0 to vertex
1. In fact, the algebraic multiplicity of the largest eigenvalue
1 of A01 is two.

By the standard technique of using an indeterminate z in
enumerative combinatorics, we can enumerate the numbers
ck,n as

∞∑
n=0

ck,nz
n =

∞∑
n=0

x>k A
n+L−1
k y

k
zn

= x>k

(∞∑
n=0

Ankz
n

)
AL−1k y

k

= x>k (I− Akz)
−1

AL−1k y
k

=
x>k adj (I− Akz) A

L−1
k y

k

det (I− Akz)
, (6)

where the first equality follows from (3) and I denotes the
identity matrix of proper size. Equation (6) then implies that
det (I− Akz) can give a linear recursion of ck,n in the form
of a linear constant coefficient difference equation (LCCDE).

Now let λ1, . . . , λm be distinct nonzero eigenvalues of
adjacency matrix Ak with algebraic multiplicities e1, . . . , em,
respectively, where we assume with no loss of generality that
|λ1| ≥ · · · ≥ |λm|. In terms of the standard technique of
partial fraction for rational functions, we can rewrite (6) as

x>k adj (I− Akz) A
L−1
k y

k

det (I− Akz)
=

m∑
i=1

pi(z)

(1− λiz)ei
(7)

for some polynomials pi(z). The next step is expectantly to
rewrite the righ-hand-side (RHS) of (7) as a power series of
indeterminate z in order to recover the actual values of ck,n
for all n. As an example, this can be done by

1

(1− λiz)ei
=

∞∑
n=0

(
n+ ei − 1

n

)
λni z

n,

7

which holds for all |z| < min1≤i≤m
1
|λi| .

Although the asymptotic growth rate gk equals exactly the
largest eigenvalue of adjacency matrix Ak, it is in general
difficult to find a closed-form expression for this value without
a proper reshaping of adjacency matrix Ak. Another approach
is to consider the following set for n ≥ L,

Sk(n) := {b ∈ Fn : k is not a subword of b} , (8)

which, in a way, defines the set of distinct length-n walks on
digraph Gk. Denoting sk,n := |Sk(n)| and by an argument
similar to (6), one can easily show that

∞∑
n=0

sk,nz
n =

L−1∑
n=0

2nzn + zL
1>adj (I− Akz)1

det (I− Akz)
, (9)

where 1 is the all-one column vector of appropriate length.
Equation (9) then implies that the enumeration of sk,n also
depends upon the polynomial det (I− Akz) as ck,n does.
Based on this observation, we can infer and prove that sk,n
has the same asymptotic growth rate as ck,n. We summarize
this important inference in the proposition below, while the
proof will be relegated to the next subsection.

Proposition 4: For any UW k, sequences {ck,n}∞n=0 and
{sk,n}∞n=0 have the same asymptotic growth rate, i.e.,

gk = gk,

where
gk := lim

n→∞

sk,n+1

sk,n
.

Notably, in order to distinguish the asymptotic growth rate
of sk,n from that of ck,n, a different font gk is used to denote
the asymptotic growth rate of sk,n.

D. Enumeration of sk,n
Enumerating sk,n turns out to be easier than enumerating

ck,n due to that there is lesser number of constraints on the
sequences in Sk(n). It can be done by an approach similar to
the Goulden-Jackson clustering method [23]. Before delivering
the main theorems, we define the overlap function and overlap
vector of a binary stream k as follows.

Definition 4: For a given k of length L, its overlap function
is defined as

rk(i) :=

{
1 if kLi+1 = kL−i1 and 0 ≤ i ≤ L− 1

0 otherwise.
(10)

Furthermore, we define its length-L overlap vector as (rk)j =
rk(j − 1) for j = 1 . . . L.

Theorem 1: For a length-L UW k with overlap function
rk(i),∑
n≥0

sk,nz
n =

1 +
∑L−1
i=1 rk(i)zi

(1− 2z)
(

1 +
∑L−1
i=1 rk(i)zi

)
+ zL

. (11)

Moreover, let hk(z) denote the denominator of (11), i.e.,

hk(z) = (1− 2z)

(
1 +

L−1∑
i=1

rk(i)zi

)
+ zL. (12)

Then
hk(z) = det(I− Akz), (13)

where Ak is the adjacency matrix associated with digraph Gk.
Proof: The result (11) follows from the Goulden-Jackson

clustering method [23]. For completeness, a simplified proof to
this claim is provided in Appendix A. To establish the second
claim, i.e., (13), we combine (9) and (11) to give

1 +
∑L−1
i=1 rk(i)zi

(1− 2z)(1 +
∑L−1
i=1 rk(i)zi) + zL

=
f(z)

det(I− Akz)

for some polynomial f(z). Notice that the left-hand-side
(LHS) is an irreducible rational function in z. Furthermore,
Proposition 10 in Appendix B shows deg det(I − Akz) = L.
These then imply that

det(I− Akz) = hk(z)

and

f(z) = 1 +

L−1∑
i=1

rk(i)zi.

(13) is thus established.

The next example illustrates the usage of the above theorem
to the target result of Proposition 4.

Example 2: Consider the case of k = 000. Then from (10),
the corresponding overlap function is

r000(i) =

{
1, i = 0, 1, 2,

0, otherwise.

Substituting the above into (11), we obtain∑
n≥0

s000,nz
n =

1 + z + z2

1− z − z2 − z3
.

By regarding the above as an LCCDE, we conclude that the
sequence s000,n satisfies the following recursion for all n ≥ 0:

s000,n = s000,n−1 + s000,n−2 + s000,n−3 + δn + δn−1 + δn−2,

where

δn =

{
1, n = 0

0, otherwise

is the Kronecker delta function.

Equipped with Theorem 1, we are now ready to prove
Proposition 4.

Proof of Proposition 4: From the proof of Theorem 1,
we have seen that the enumeration of sk,n is given by the
following irreducible rational function

∞∑
n=0

sk,nz
n =

1 +
∑L−1
i=1 rk(i)zi

hk(z)

where hk(z) is the denominator of (11) and is given by (12).
Hence, it follows from the standard partial fraction technique
and Proposition 3 that

gk = max{|u|−1 : hk(u) = 0, u ∈ C},

8

where C is the set of complex numbers. Next, noticing that
the function hk(z), i.e., det(I − Akz), also appears as the
denominator of the enumeration function for ck,n (cf. (6)),
we get

gk ≤ max{|u|−1 : hk(u) = 0, u ∈ C},

since the rational function in (6) could be reducible. This
shows gk ≤ gk.

To prove gk ≥ gk (which then implies gk = gk), it suffices
to show that ck,n+2 ≥ sk,n for n ≥ L. This can be done by
substantiating that for any b ∈ Sk(n), there exist a prefix bit p
and a suffix bit q, where p, q ∈ F, such that pbq ∈ Ck(n+ 2).

Using the prove-by-contradiction argument, we first assume
that k is an internal subword of both kpb and kp̄b, where
p̄ = 1− p. This assumption, together with b ∈ Sk(n), implies
the existence of indices 1 < i < L + 2 and 1 < j < L + 2
such that

ki · · · kLpb1 · · · bi−2︸ ︷︷ ︸
=a

= kj · · · kLp̄b1 · · · bj−2︸ ︷︷ ︸
= ã

= k, (14)

where we abuse the notations to let

a =


ki · · · kLp, if i = 2

ki · · · kLpb1 · · · bi−2, if 2 < i < L+ 1

pb1 · · · bi−2, if i = L+ 1

(15)

and similar notational abuse is applied to ã and j. Assume
without loss of generality that i < j. Then, the sums of the
last (j − 1) bits of a and ã must equal, i.e.,

kL−(j−i−1)+· · ·+kL+p+b1+· · ·+bi−2 = p̄+b1+· · ·+bj−2.

Canceling out common terms at both sides gives

kL−(j−i−1) + · · ·+ kL + p = p̄+ bi−1 + · · ·+ bj−2. (16)

Note again that ã = k; hence, substituting b(j−2)−` by kL−`
for ` = 0, 1, · · · , j−i−1 in (16) gives p = p̄, which contradicts
the assumption that p̄ = 1− p.

For the suffix bit q, we again assume to the contrary that
there exist indices i and j, satisfying n+1−L < i < j < n+2,
such that

bi · · · bnqk1 · · · kL−n+i−2︸ ︷︷ ︸
=d

= bj · · · bnq̄k1 · · · kL−n+j−2︸ ︷︷ ︸
= d̃

= k

(17)
After canceling out common terms in the respective sums of
the first (n+ 2− i) bits of d and d̃, we obtain

bi + · · ·+ bj−1 + q = q̄ + k1 + · · ·+ kj−i.

Since d = k, the above implies q = q̄, which again leads to a
contradiction.

One application of the result hk(z) = det(I − Akz) in
Theorem 1 is to obtain a recursion formula for ck,n, i.e., an
LCCDE for ck,n. This is provided in the next corollary.

Corollary 1: For a length-L UW k with overlap function
rk(i), let ck,n be the number of length-n codewords in the
UDOOC Ck defined as before. Then, for n ≥ L,

ck,n =

[
L−1∑
i=1

rk(i) (2ck,n−i−1 − ck,n−i)

]
+2ck,n−1−ck,n−L.

(18)
Proof: To prove (18), we first note that the characteristic

polynomial for Ak is given by

χAk(z) = det(zI− Ak)

= z2
L−1

hk(1/z)

= z2
L−1−L (zLhk(1/z)

)
where zLhk(1/z) is a polynomial with degree

deg hk(z) = deg det(I− Akz) = L.

Denote

m = min{p > 0 : Nullity(Apk) = 2L−1 − L}, (19)

where Nullity() indicates the dimension of the null space
of the square matrix inside parentheses. By Cayley-Hamilton
Theorem [18], the following polynomial

µk(z) := zm(zLhk(1/z))

= zm

(
zL − 2zL−1 +

L−1∑
i=1

rk(i)zL−i−1(z − 2) + 1

)
(20)

is an annihilating polynomial for Ak. We shall remark that
µk(z) needs not to be the minimal polynomial for Ak. Plug-
ging (20) into (3) yields that for n− 1 ≥ max{m,L− 1}, we
have

ck,n

= x>k A
n+L−1
k y

k

= x>k A
n−1−m
k Am+L

k y
k

(21)

= x>k A
n−1
k

[
2AL−1k +

L−1∑
i=1

rk(i)(2AL−i−1k − AL−ik)− I

]
y
k

=

[
L−1∑
i=1

rk(i) (2ck,n−i−1 − ck,n−i)

]
+ 2ck,n−1 − ck,n−L,

(22)

where the condition of n−1 ≥ max{m,L−1} follows from i)
n−1−m ≥ 0 such that (21) holds, and ii) n−1 ≥ L−1 such
that the last term of the RHS of (22) represents ck,n−L. Finally,
since rank(Apk) ≤ L for p = L − 1 (see Proposition 10), we
have m ≤ L− 1, which immediately gives max{m,L− 1} =
L− 1. The proof is thus completed.

So far, we learn that ck,n and sk,n have the same asymptotic
growth rate, and both of their enumerations depend on det(I−
Akz). Below we will use sk,n to determine the asymptotic
growth rates corresponding to two specific UWs, a = 0 . . . 00
and b = 0 . . . 01. We then proceed to show that a has the
largest growth rate among all UWs of the same length, while
the smallest growth rate is resulted when UW = b.

9

Theorem 2: Among all UWs of the same length, the all-
zero UW has the largest growth rate, while UW 0 . . . 01
achieves the smallest.

Proof: For notational convenience, we set a = 0 . . . 0 and
b = 0 . . . 01. For UW = a, it can be verified from (10) and
(11) that

ha(z) = 1−
L∑
i=1

zi, (23)

and hence the sequence of {sa,n}∞n=1 satisfies the following
recursion:

sa,n =

L∑
i=1

sa,n−i for n ≥ L.

Similarly, we have hb(z) = 1− 2z + zL, and therefore,

sb,n = 2sb,n−1 − sb,n−L for n ≥ L.

For general UW k of length L, (11) gives the following
recursion for n ≥ L

sk,n =

L−1∑
i=1

(2sk,n−i−1 − sk,n−i) rk(i) + 2sk,n−1− sk,n−L.

(24)
Note that rk(i) ∈ {0, 1} by definition, and 2sk,m−1 ≥ sk,m
for all m. From (24), the following bounds hold for any UW
k with n ≥ L:

2sk,n−1 − sk,n−L ≤ sk,n ≤
L∑
i=1

sk,n−i, (25)

where the lower and upper bounds are respectively obtained
by replacing all rk(i) in (24) by 0 and 1. In particular, sk,n
equals the upper bound in (25) when k = a = 00 · · · 0, and
the lower bound is achieved when k is b = 00 · · · 01. By
dividing all terms in (25) by sk,n−1 and taking n → ∞, we
obtain

2− g−(L−1)k ≤ gk ≤ 1 + g−1k + · · ·+ g−L+1
k . (26)

To prove our claim that ga is the largest and gb is the smallest
among all gk, we first assume to the contrary that there exists k̂
with gk̂ > ga. Substituting this into (26) leads to the following
contradiction

gk̂
(i)
<

L∑
i=1

g−i+1
a

(ii)
= ga,

where (i) holds because g−1
k̂

< g−1a by assumption and (ii) is
valid because g−1a is a zero of ha(z) given in (23).

To show gb achieves the minimum, again assume to the
contrary that there exists k̂ such that gk̂ < gb. Note from (26)
that

0 ≤ gk̂− 2 + g
−(L−1)
k̂

= (1− gk̂)
(
g−L+1

k̂
+ · · ·+ g−1

k̂
− 1
)
.

(27)
Although gk ≥ 1 in general, we claim in this case gk̂ > 1.
For otherwise, that hk̂(z = g−1

k̂
= 1) = 0 according to (12)

implies that rk̂(i) = 0 for all i; hence, hk̂(z) = hb(z) and

gk̂ = gb, a contradiction. Now with 1 < gk̂ < gb, the follow-
ing series of inequalities lead to the desired contradiction:

gb
(i)
= g−L+2

b + · · ·+ 1
(ii)
< g−L+2

k̂
+ · · ·+ 1

(iii)
≤ gk̂,

where (i) follows from hb(z = g−1b) = 0 and gb > 1, (ii)
holds because g−1b < g−1

k̂
, and (iii) is due to (27) and gk̂ > 1.

Using a similar technique in the proof of Theorem 2, we
can further devise a general upper bound and a general lower
bound for gk that hold for any k.

Theorem 3: For any UW k of length L ≥ 2, the asymptotic
growth rate gk satisfies

2− 2−(L−2) ≤ gk ≤ 2− 2−L. (28)

Proof: It is straightforward to see sk,n−1 ≤ sk,n ≤
2sk,n−1 and hence 1 ≤ gk ≤ 2.

To prove the upper bound, we assume without loss of
generality that gk > 1 since the upper bound trivially holds
when gk = 1. We then derive

gk − 1 = gk(1− g−1k)
(i)
≤ 1− g−Lk

(ii)
≤ 1− 2−L,

where (i) follows from multiplying both sides of the second
inequality in (26) by (1− g−1k) with the fact gk > 1, and (ii)
holds since gk ≤ 2.

To establish the lower bound, we use the following series
of inequalities:

gk(1− g−1k) = gk − 1
(i)
≥ 1− g−(L−1)k

= (1− g−1k)
(

1 + g−1k + g−2k + · · ·+ g
−(L−2)
k

)
(ii)
≥ (1− g−1k)

(
1 + 2−1 + 2−2 + · · ·+ 2−(L−2)

)
= (1− g−1k)

(
2− 2−(L−2)

)
, (29)

where (i) is from the first inequality in (26), and (ii) holds
because gk ≤ 2. Equipped with (29), we next distinguish two
cases to complete the proof.

1) When L = 2, the lower bound is trivially valid and is
actually achieved by taking UW = 01 as g01 = 1 is the
multiplicative inverse of the smallest zero of polynomial
h01(z) = 1− 2z + z2 = (1− z)2.

2) For L > 2, it suffices to show gk > 1. Assume to the
contrary that there exists k of length L > 2 such that
gk = 1. By hk(z = g−1k = 1) = 0 and (12), we have
rk(i) = 0 for all i and hence hk(z) = 1−2z+zL. Since
gk is the multiplicative inverse of the smallest zero of
hk(z), the absolute values of all the remaining zeros of
hk(z), say λ1, . . . , λL−1, must be strictly larger than 1.
It then follows from the splitting of hk(z), i.e.,

hk(z) = (z − 1)

L−1∏
i=1

(z − λi),

10

the constant term of hk(z) must have absolute value∏L−1
i=1 |λi| > 1, contradicting to the fact that the constant

term in polynomial hk(z) = 1− 2z + zL is 1.

Theorem 3 provides concrete explicit expressions for both
upper and lower bounds on gk. Although the bounds are
asymptotically tight and well approximate the true gk for mod-
erately large L, they are not sharp in general. We can actually
refine them using Theorem 2 and obtain that gb ≤ gk ≤ ga,
where from the proof of Theorem 2, we have

ga = max
{
|t| : ha(z = t−1) = 0, t ∈ C

}
and

gb = max
{
|t| : hb(z = t−1) = 0, t ∈ C

}
.

The determination of ga and gb can be done via finding the
largest |s| and |t|, 0 6= s, t ∈ C, such that ha(s−1) = 0 and
hb(t−1) = 0, respectively. By noting that

(z − 1)
[
zLha

(
z−1
)]

= (z − 1)(zL − zL−1 − · · · − 1)

= zL+1 − 2zL + 1

and

zLhb
(
z−1
)

= zL − 2zL−1 + 1,

we conclude the following corollary.

Corollary 2: Let a = 0 . . . 0 and b = 0 . . . 01 be binary
streams of length L. Then for any k of the same length to a
and b,

gb ≤ gk ≤ ga.

In addition, ga = αL+1 and gb = αL, where

αL := max{|t| : tL − 2tL−1 + 1 = 0, t ∈ C}.

In particular, we have αL ≈ 2− 2−L+1 for large L.

Based on Theorem 3, the following corollary is immediate
by taking L to infinity.

Corollary 3: For any UW k of length L, the asymptotic
growth rate of the corresponding UDOOC approaches 2 as
L→∞, i.e.,

lim
L→∞

gk = 2.

In Table I, we illustrate the asymptotic growth rates of
UDOOCs for UWs a and b with lengths up to 8. Also shown
are the bounds in Theorem 3. It is seen that for moderately
large L, all UDOOCs have roughly the same asymptotic
growth rate, and hence are about the same good in terms
of compressing sources of large size. Furthermore, having
gk → 2 as L→∞ means that for very large L, UDOOCs can
have asymptotic growth rates comparable to the unconstrained
OOC, whose asymptotic growth rate equals 2.

TABLE I
THE ASYMPTOTIC GROWTH RATES FOR UWS a AND b AND THE BOUNDS

IN THEOREM 3 WITH VARIOUS L

L 2 3 4 5 6 7 8
2− 2−L 1.75 1.875 1.938 1.969 1.984 1.992 1.996
ga 1.618 1.839 1.928 1.966 1.984 1.992 1.996
gb 1 1.618 1.839 1.928 1.966 1.984 1.992

2− 2−(L−2) 1 1.5 1.75 1.875 1.938 1.969 1.984

E. Asymptotic Equivalence

After presenting the results on asymptotic growth rates, we
proceed to define the asymptotic equivalence for UWs and
show that the number of asymptotic equivalent UW classes is
upper bounded by the number of different overlap vectors in
Definition 4.

Definition 5: Two UWs k and k′ are said to be asymptot-
ically equivalent, denoted by k

a.e.≡ k′, if they have the same
growth rate, i.e., gk = gk′ .

Following the definition, we have the next proposition.

Proposition 5: Fix the length L of UWs, and denote by NL
the number of all possible overlap vectors of length L, i.e.,
NL =

∣∣{rk : k ∈ FL
}∣∣. Then, the number of asymptotically

equivalent UW classes is upper-bounded by NL.
Proof: Since the growth rate of sk,n is given by

max
{
|t| : hk

(
z = t−1

)
= 0, t ∈ C

}
, in which the polyno-

mial hk(z), defined in (12), is completely determined by the
respective overlap vector rk. As two different polynomials
hk(z) and hk′(z), resulting respectively from two different
overlap vectors rk and rk′ , could yield the same growth rate,
the number of distinct asymptotic growth rates of sk,n for
various k must be upper-bounded by NL. The proof is then
completed after invoking the result from Proposition 4 that
sk,n and ck,n have the same growth rate.

One may find the number of asymptotically equivalent UW
classes by a brutal force algorithm when L is small. With
the help of Proposition 5, an efficient algorithm for its upper
bound NL is available in [25], in which rk is regarded as
(auto)correlations of a string. Values of NL for various L are
accordingly listed in Table II. This table shows the trend, as
being pointed out in [17], that lnNL grows at the speed of
(lnL)2, or specifically,

1

2 ln 2
≤ lim inf

L→∞

lnNL

(lnL)
2 ≤ lim sup

L→∞

lnNL

(lnL)
2 ≤

1

2 ln 3
2

. (30)

TABLE II
NL VALUES FOR VARIOUS L. IT IS STATED IN [25] THAT THE LOWER

ASYMPTOTIC BOUND 1/(2 ln(2)) ≈ 0.72 IN (30) ONLY HOLDS FOR VERY
LARGE L; HENCE, THIS LOWER BOUND IS NOT VALID FOR L ≤ 13 IN THIS

TABLE .

L 1 2 3 4 5 6 7 8 9 10 11 12 13
NL 1 2 3 4 6 8 10 13 17 21 27 30 37

lnNL
(lnL)2

− 1.44 .91 .72 .69 .65 .61 .59 59 .57 .57 .55 .55

11

IV. ENCODING AND DECODING ALGORITHMS OF
UDOOCS

In this section, the encoding and decoding algorithms of
UDOOCs are presented. Also provided are upper bounds for
the averaged codeword length of the resulting UDOOC.

Denote by U = {u1, u2, · · · , uM} the source alphabet of
size M to be encoded. Assume without loss of generality that
p1 ≥ p2 ≥ · · · ≥ pM , where pi is the probability of occurrence
for source symbol ui.

Then, an optimal lossless source coding scheme for
UDOOCs associated with UW k should assign codewords
of shorter lengths to messages with higher probabilities and
reserve longer codewords for less likely messages. By follow-
ing this principle, the encoding mapping φk from U to Ck
should satisfy `(φk(ui)) ≤ `(φk(uj)) whenever i ≤ j, where
`(φk(ui)) denotes the length of bit stream φk(ui). The coding
system thus requires an ordering of the words in Ck according
to their lengths. This can be achieved in terms of the recurrence
equation for ck,n (for example, (22)). As such, φk(u1) must
be the null word, and the mapping φk must always form a
bijection mapping between {ui : Fk,n−1 < i ≤ Fk,n} and
Ck(n) for every integer n ≥ 1, where

Fk,n :=

{∑n
i=0 ck,i, if n ≥ 0,

0, otherwise.
(31)

This optimal assignment results in average codeword length:

Lk = `(k) +

M∑
i=1

pi · `(φk(ui)), (32)

where the first term `(k) accounts for the insertion of UW k
to separate adjacent codewords.

A. Upper Bounds on Average Codeword Length of UDOOCs

The average codeword length Lk is clearly a function
of the source distributions and does not in general exhibit
a closed-form formula. In order to understand the general
compression performance of UDOOCs, three upper bounds on
Lk are established in this subsection. The first upper bound
is applicable to the situation when the largest probability
p1 of source symbols is given. Other than p1, the second
upper bound additionally requires the knowledge of the source
entropy. When both the largest and second largest probabilities
(i.e., p1 and p2) of source symbols are present apart from
the source entropy, the third upper bound can be used. Note
that the third upper bound holds for all UWs and requires no
knowledge about k; therefore, one might predict that the third
upper bound could be looser than the other two. Experiments
using English text from Alice’s Adventures in Wonderland
however indicate that such an intuitive prediction is not always
valid. Nevertheless, the second upper bound is better than the
first one in most cases we have examined. Details are given
below.

Proposition 6 (The first upper bound on Lk): For UW k
of length L, the average codeword length Lk is upper-bounded
as follows:

Lk ≤ L+ (1− p1)Nk (33)

where Nk is the smallest integer such that Fk,Nk
≥M .

Proof: It can be derived from (32) and `(φk(u1)) = 0
that

Lk = L+

M∑
i=2

pi`(φk(ui))

≤ L+

M∑
i=2

pi`(φk(uM))

= L+ (1− p1)Nk.

Proposition 7 (The second upper bound on Lk): Suppose
gk > 1. Then

Lk ≤ L+
H(U) + p1 log2(p1)

log2(gk)

+ (1− p1)(1− loggk(Kk)) (34)

where H(U) =
∑M
i=1 pi log2(1/pi) is the source entropy with

units in bits, Kk is a constant given by

Kk = min
{
g1−ni

k Fk,ni−1 : i = 2, · · · ,M
}
, (35)

and ni is the smallest integer satisfying Fk,ni
≥ i.

Proof: From the definitions of ni and Kk we have

Kk g
ni−1
k ≤ Fk,ni−1 < i ≤ 1

pi

where the last inequality follows from that pi ≤ 1
i for 1 ≤

i ≤M as p1 ≥ p2 ≥ · · · ≥ pM . By gk > 1 the above implies

ni ≤ 1− loggk (Kkpi) = 1− loggk (pi)− loggk (Kk) .

Note that `(φk(ui)) ≤ ni by the property of optimal lossless
compression function φk. Consequently, we have

Lk = L+

M∑
i=2

pi`(φk(ui))

≤ L+

M∑
i=2

pini

≤ L+

M∑
i=2

pi
(
1− loggk(pi)− loggk(Kk)

)
= L−

M∑
i=2

pi loggk (pi) +

M∑
i=2

pi
(
1− loggk(Kk)

)
= L+

H(U) + p1 loggk(p1)

log2(gk)
+ (1− p1)(1− loggk Kk).

The previous two upper bounds require the computations of
either Nk, or gk and Kk; hence, they are functions of UW
k. Next we provide a simple third upper bound that holds
universally for all UWs.

Proposition 8 (The third upper bound on Lk): For UW k
of length L > 2,

Lk ≤ L+
H(U) + p1 log2(p1) + p2 log2(p2)

log2(2− 22−L)

12

+ (2− 2p1 − p2). (36)

Proof: First, we claim that

ck,n ≥ 2n−2 for 2 ≤ n ≤ L+ 1. (37)

This claim can be established by showing that for any binary
sequence b = b1 . . . bm ∈ Fm, where 0 ≤ m = n−2 ≤ L−1,
there exist a prefix bit p and a suffix bit q, where p, q ∈ F,
such that k is not an internal subword of kpbqk. This can be
done in two steps: i) there exists q ∈ F such that k is not a
subword of u := bqkL−11 , and ii) there exists p ∈ F such that
k is not an internal subword of kpu.

Because the first step trivially holds when m = 0, we only
need to focus on the case of m > 0. Utilizing the prove-by-
contradiction argument, we suppose that k is a subword of
both bqkL−11 and bq̄kL−11 , where q̄ = 1− q. This implies the
existence of indices 1 ≤ i < j ≤ m+ 1 such that

bi · · · bmqk1 · · · kL−m+i−2︸ ︷︷ ︸
=d

= bj · · · bmq̄k1 · · · kL−m+j−2︸ ︷︷ ︸
= d̃

= k

where we abuse the notations to let

d =


bqk1 · · · kL−m−1, if i = 1

bi · · · bmqk1 · · · kL−m+i−2, if 1 < i < m+ 1

qk1 · · · kL−1, if i = m+ 1

and similar notational abuse is applied to d̃ and j. After
canceling out common terms in the respective sums of the
first (m+ 2− i) bits of d and d̃, we obtain

bi + · · ·+ bj−1 + q = q̄ + k1 + · · ·+ kj−i.

Since d = k, the above then implies q = q̄, which leads to a
contradiction. The validity of the first step is verified.

After verifying u = bqkL−11 ∈ Sk(m+ L), we can follow
the proof of Proposition 4 to confirm the second step (See
the paragraph regarding (14) and (15)). The claim in (37) is
thus validated. Note that the equality in (37) holds when k is
all-zero or all-one.

Next, we note also from the proof of Proposition 4 that
ck,n+2 ≥ sk,n for n ≥ L. Since sk,L = 2L − 1, we
immediately have ck,L+2 ≥ 2L − 1. On the other hand, we

can obtain from (25) that 6

sk,n
sk,n−1

≥ 2− 22−L for n ≥ L. (38)

This concludes:

ck,n ≥


1, if 0 ≤ n ≤ 1,

2n−2, if 2 ≤ n ≤ L+ 1,

(2− 22−L)
n−L−2

(2L − 1), if n ≥ L+ 2,
(39)

where ck,0 = 1 because Ck(0) contains only the null code-
word, and ck,1 ≥ 1 can be verified again by that k cannot be
the internal subword of both kpk and kp̄k. 7 The lower bound
(39) then indicates that if 2L−1 ≥ (2−22−L)L for L > 2, we
can immediately have the following exponential lower bound
for ck,n, i.e.,

ck,n ≥

{
1, if 0 ≤ n ≤ 1,

(2− 22−L)n−2, if n ≥ 2.
(40)

A stronger claim of 2L − 1 ≥ (2− 22−L)L for L > 0 simply
follows from

2L − 1− (2− 22−L)L > 2L − 1− 2L−1(2− 22−L) = 1.

Hence, codeword lengths of the optimal UDOOC code must
satisfy: 8

`(φk(ui)) ≤ log2−22−L(i) + 2 for i ≥ 3.

Consequently,

Lk = L+

M∑
i=2

pi`(φk(ui))

6We can prove (38) by induction. Extending the definition of Sk(n) in (8),
we obtain that sk,n = 2n for 0 ≤ n < L. This implies

sk,L

sk,L−1
=

2L − 1

2L−1
= 2− 21−L ≥ 2− 22−L

and
sk,m

sk,m−1
=

2m

2m−1
= 2 ≥ 2− 22−L for all 1 ≤ m < L.

Now we suppose that for some n ≥ L fixed, (38) is true for all 1 ≤ m ≤ n,
i.e.,

sk,m

sk,m−1
≥ 2− 22−L for all 1 ≤ m ≤ n.

Then, we derive by (25) that
sk,n+1

sk,n
≥ 2−

sk,n−L+1

sk,n
≥ 2−

sk,n−L+1

sk,n−L+1(2− 22−L)L−1

= 2− (2− 22−L)1−L ≥ 2− 22−L.

This completes the proof of (38).
7If it were not true, then there exist indices i and j, 2 ≤ i < j ≤ L+1, such

that k = ki · · · kLpk1 · · · ki−2 = kj · · · kLp̄k1 · · · kj−2; hence, p − ki =
p̄− kj with ki = kj = k1. The desired contradiction is obtained.

8By (31) and (40), we have that for i ≥ 3 and ni = `(φk(ui)),

i > Fk,ni−1 =

ni−1∑
t=0

ck,t ≥ 2 +
(2− 22−L)ni−2 − 1

1− 22−L

which implies log2−22−L [(i− 2)(1− 22−L) + 1] + 2 > ni = `(φk(ui)).

Since (i− 2)(1− 22−L) + 1 ≤ i for i ≥ 2− 2L−2, we obtain

`(φk(ui)) < log2−22−L [(i−2)(1−22−L)+1]+2 ≤ log2−22−L (i)+2.

13

= L+ p2 +

M∑
i=3

pi`(φk(ui))

≤ L+ p2 +

M∑
i=3

pi
(
log2−22−L(i) + 2

)
= L+ 2− 2p1 − p2 +

M∑
i=3

pi log2−22−L(i)

≤ L+ 2− 2p1 − p2 +

M∑
i=3

pi log2−22−L

(
1

pi

)
(41)

= L+ 2− 2p1 − p2

+
H(U) + p1 log2(p1) + p2 log2(p2)

log2(2− 22−L)

where (41) follows from that p1 ≥ p2 ≥ · · · ≥ pi implies
pi ≤ 1

i for 1 ≤ i ≤M .

We next study the asymptotic compression performance of
UDOOCs, i.e., the situation when the source has infinitely
many alphabets. Note first that with complete knowledge of
the source statistics {pi : i = 1, . . . ,M}, the upper bound (34)
in Proposition 7 can be reformulated using similar arguments
as

Lk ≤ L+
H(U) + p1 log2(p1)

log2(gk)

+ (1− p1)(1− loggk(Tk)) (42)

where Tk is given by

Tk = min
{
g1−ni

k Fk,ni−1 : i = 2, · · · ,M
}
, (43)

and ni is the smallest integer satisfying Fk,ni
≥ 1

pi
. Secondly,

we can further extend the above upper bound (42) to the case
of grouping t source symbols (with repetition) to form a new
“grouped” source for UDOOC compression. The alphabet set
of the new source is therefore U t of size M t. Let Lk,t be
the per-letter average codeword length of UDOOCs for the t-
grouped source. Then, applying (42) to the t-grouped source
yields the following upper bound on Lk,t

Lk,t ≤
1

t

(
L+

H(U t) + q1 log2(q1)

log2(gk)

+ (1− q1)(1− loggk(Tk,t))

)
, (44)

where

Tk,t = min
{
g
1−ni,t

k Fk,ni,t−1 : i = 2, · · · ,M t
}
, (45)

ni,t is the smallest integer satisfying Fk,ni,t ≥ 1
qi

, and
qi is the ith largest probability of the grouped source. For
independent and identically distributed (i.i.d.) source, we have
H(U t) = tH(U). Moreover, assuming M > 1 and p1 < 1 for
the nontrivial i.i.d. sources, we have q1 = pt1 → 0 as t→∞,
and Tk,t can be shown to converge to some finite positive
constant

Tk,∞ := lim
t→∞

Tk,t

=
x>k adj (I− Akz) A

L−1
k y

k

det (I− Akz)
(1− gkz)

∣∣∣∣∣
z=g−1

k

,

where the last step follows from the conventional expansion
theory for power series and also from the fact of gk being the
unique maximal eigenvalue of the adjacency matrix Ak under
L > 2 (cf. Proposition 3). To elaborate, from the power series
expansion, we have that ck,n =

∑
i ai,nλ

n
i +c, where c is some

constant, {λi} is the set of nonzero distinct eigenvalues of Ak,
and ai,n is the coefficient associated with λi (which could a
polynomial function of n if λi has algebraic multiplicity larger
than one). In particular, assuming λ1 is the largest eigenvalue,
we can establish that Tk,∞ = a1,n = a1, where the second
equality emphasizes that a1,n is a constant independent of n
since λ−11 = g−1k is a simple zero for hk(z) when the digraph
Gk is strongly connected.

By taking limits (letting t → ∞) on both sides of (44)
and by noting that limt→∞ q1 = limt→∞ pt1 = 0 and Tk,∞
is some finite positive constant, we summarize the asymptotic
compression performance of UDOOCs in the next proposition.

Proposition 9: Given gk > 1 and a nontrivial i.i.d. source,
we have

lim
t→∞

Lk,t ≤
H(U)

log2(gk)
≤ H(U)

log2(2− 22−L)
. (46)

Two remarks are made based on Proposition 9. First,
the larger asymptotic bound H(U)/ log2(2 − 22−L) in (46)
immediately gives

lim
L→∞

lim
t→∞

Lk,t = H(U).

Hence, if both t and L are sufficiently large, the per-letter
average codeword length of UDOOCs can achieve the en-
tropy rate H(U) of the i.i.d. source. Secondly, the bound of
H(U)/ log2(gk) in (46) is actually achievable by taking the
all-zero UW with the source being uniformly distributed. In
other words,

lim
t→∞

La,t =
H(U)

log2(ga)
=

log2(M)

log2(ga)
, (47)

where a = 0 . . . 0. For better readability, we relegate the proof
of (47) to Appendix D.

Tables III and IV evaluate the bounds for the English text
source with letter probabilities from [36] and a true text source
from Alice’s Adventure in Wonderland with empirical frequen-
cies directly obtained from the book, respectively. The source
alphabet of the English text and that from Alice’s Adventure
in Wonderland is of size 27, where letters of upper and lower
cases are regarded the same and all symbols other than the 26
English letters are treated as one. It can be observed from Table
III that bound (33) is always the best among all three bounds
but still has a visible gap to the resultant average codeword
length Lk. Table IV however shows that the three bounds may
take turn to be on top of the other two. For example, under
k = a, (33), (34) and (36) are the lowest when (L, t) = (3, 1),
(L, t) = (5, 2) and (L, t) = (6, 3), respectively. Table IV also
indicates that enlarging the value of t may help improving
the per-letter average codeword length as well as the bounds

14

of UDOOCs. Comparison of the per-letter average codeword
length of UDOOCs with the source entropy will be provided
later in the simulation section.

TABLE III
UPPER BOUNDS (33), (34) AND (36) ON THE AVERAGE CODEWORD

LENGTH Lk OF UDOOCS FOR ENGLISH TEXT SOURCE WITH LETTER
PROBABILITIES FROM [36]. HERE, a = 0 · · · 0 AND b = 0 · · · 01.

k L = 3 L = 4 L = 5 L = 6
La 6.432 7.411 8.411 9.411

a (33) 8.330 9.330 10.330 11.330
(34) 9.606 10.496 11.488 12.484
Lb 5.215 6.185 7.185 8.185

b (33) 6.553 7.553 8.553 9.553
(34) 10.385 10.206 10.889 11.769

– (36) 10.831 10.140 10.652 11.456

TABLE IV
UPPER BOUNDS (33), (34) AND (36) ON THE PER-LETTER AVERAGE

CODEWORD LENGTH Lk,t OF UDOOCS FOR ENGLISH TEXT SOURCE
FROM Alice’s Adventure in Wonderland. HERE, a = 0 · · · 0 AND

b = 0 · · · 01.

k L = 3 L = 4 L = 5 L = 6
t = 1 5.773 6.757 7.757 7.757

La,t t = 2 4.498 4.920 5.397 5.891
t = 3 3.862 4.089 4.388 4.709
t = 1 7.459 8.459 9.459 10.459

a (33) t = 2 6.569 7.069 7.569 7.608
t = 3 5.770 5.786 6.119 6.134
t = 1 8.700 9.596 10.585 11.580

(34) t = 2 6.548 6.886 7.333 7.813
t = 3 5.771 5.586 6.120 6.135
t = 1 4.792 5.774 6.774 7.774

Lb,t t = 2 3.791 4.134 4.598 5.090
t = 3 3.455 3.532 3.802 4.115
t = 1 6.716 6.973 7.973 8.973

b (33) t = 2 6.108 6.147 6.647 7.147
t = 3 5.452 5.150 5.483 5.816
t = 1 9.399 9.366 10.089 10.984

(34) t = 2 7.356 6.819 7.040 7.435
t = 3 5.453 5.150 5.483 5.817
t = 1 9.676 9.221 9.801 10.632

– (36) t = 2 8.106 7.035 7.399 7.816
t = 3 6.947 5.815 5.726 5.889

B. General Encoding and Decoding Mappings for UDOOCs
In this subsection, the encoding and decoding mappings for

a UDOOC with general UW are introduced.
The practice of UDOOC requires the encoding function φk

to be a bijective mapping between the subset of source letters
Uk(n) := {um : Fk,n−1 < m ≤ Fk,n} and the set of length-
n codewords Ck(n) for all n. Since the resulting average
codeword length will be the same for any such bijective
mapping from Uk(n) to Ck(n), we are free to devise one that
facilities efficient encoding and decoding of message um. The
bijective encoding mapping φk that we propose is described
in the following.

We define for any binary stream d of length ≤ n,

Ck(d, n) := {c ∈ Ck(n) : d is a prefix of c, or c = d} .
(48)

Obviously, Ck(d, n)∩Ck(d̃, n) = ∅ for every pair of distinct d
and d̃ of the same length, and for any fixed i with 1 ≤ i ≤ n,

Ck(n) =
⋃
d∈Fi

Ck(d, n). (49)

Then, given message um ∈ Uk(n), i.e., the number n is
chosen such that Fk,n−1 < m ≤ Fk,n, the proposed encoding
mapping φk produces the codeword φk(um) = c1c2 · · · cn
for source letter um recursively according to the rule that for
i = 1, 2, . . . , n,

ci =

{
0, if ρi−1 ≤ |Ck(c1 · · · ci−10, n)|
1, if ρi−1 > |Ck(c1 · · · ci−10, n)| (50)

where the progressive metric ρi is also maintained recursively
as:

ρi := ρi−1 − ci |Ck(c1 · · · ci−10, n)|

=

{
ρi−1, if ci = 0
ρi−1 − |Ck(c1 · · · ci−10, n)| , if ci = 1

(51)

with an initial value ρ0 = m − Fk,n−1. This encoding
mapping actually assigns codewords according to their lex-
icographical ordering.

Example 3: Taking k = 010 as an example, we can see
from Fig. 4 that the seven codewords of length 4, i.e., 0000,
0011, 0110, 0111, 1100, 1110 and 1111, will be respectively
assigned to source letters u9, u10, u11, u12, u13, u14 and u15.
The progressive metrics ρ0, ρ1, ρ2, ρ3 for source letter u11 are
3, 3, 1, 1, respectively, with |Ck(0, 4)| = 4, |Ck(00, 4)| = 2,
|Ck(010, 4)| = 0 and |Ck(0110, 4)| = 1.

Note again that given m (equivalently, um), n can be
determined via Fk,n−1 < m ≤ Fk,n. At the end of the nth
recursion, we must have

m = Fk,n−1 +

n∑
i=1

ci
∣∣Ck(ci−11 0, n)

∣∣+ 1. (52)

We emphasize that (52) actually gives the corresponding
computation-based decoding function ψk : Ck(n) → Uk(n)
for codewords c of length n.

One straightforward way to implement φk and ψk is to
pre-store the value of |Ck(d0, n)| for every d and n. By
considering the huge number of all possible prefixes d for
each n, this straightforward approach does not seem to be an
attractive one.

Alternatively, we find that |Ck(d0, n)| can be obtained
through adjacency matrix Ak introduced in Section II. The
advantage of this alternative approach is that there is no
need to pre-store or pre-construct any part of the codebook
Ck, and the value of |Ck(d0, n)| is computed only when
it is required during the encoding or decoding processes.
Moreoever, for specific UWs such as 00 . . . 0, 00 . . . 01, and
their binary complements, we can further reduce the required
computations.

In the following subsections, we will first introduce the
encoding and decoding algorithms for specific UWs as they
can be straightforwardly understood. Algorithms for general
UWs require an additional computation of |Ck(d0, n)| and will
be presented in subsequent subsections.

C. Encoding and Decoding Algorithms for UW = 11 . . . 1

It has been inferred from Proposition 2 that the encoding
and decoding of the UDOOC with UW k = 00 . . . 0 can be

15

equivalently done through the encoding and decoding of the
UDOOC with UW k = 11 . . . 1 as one can be obtained from
the other by binary complementing. Thus, we only focus on
the case of k = 11 . . . 1 in this subsection.

For this specific UW, we observe that a codeword c =
d0b ∈ Ck(d0, n) if, and only if, 0b ∈ Ck(n − `(d)) is a
codeword of length n − `(d), where `(d) is the length of
prefix bitstream d. We thus obtain

|Ck(d0, n)| = ck,n−`(d). (53)

It can be shown that the LCCDE for ck,n with k = 11 . . . 1 is

ck,n =

L∑
i=1

ck,n−i, for all n > L, (54)

where the initial values are

ck,n =

{
1, n = 0, 1, 2,
2n−2, n = 3, . . . , L.

(55)

Based on (53), (54) and (55), the algorithmic encoding and
decoding procedures can be described below.

Algorithm 1 Encoding of UDOOC with k = 11 . . . 1

Input: Index m for message um
Output: Codeword φk(um) = c1 . . . cn

1: Compute ck,0, ck,1, ck,2, . . . using (54) and (55) to deter-
mine the smallest n such that Fk,n ≥ m. If n = 0, then
φk(um) = null and stop the algorithm.

2: Initialize ρ0 ← m− Fk,n−1
3: for i = 1 to n do
4: if ρi−1 ≤ ck,n−i+1 then
5: ci ← 0 and ρi ← ρi−1
6: else
7: ci ← 1 and ρi ← ρi−1 − ck,n−i+1

8: end if
9: end for

Algorithm 2 Decoding of UDOOC with k = 11 . . . 1

Input: Codeword c = c1 . . . cn
Output: Index m for message um = ψk(c)

1: Compute ck,0, ck,1, . . . , ck,n using (54) and (55)
2: Initialize m← Fk,n−1 + 1
3: for i = 1 to n do
4: if ci = 1 then
5: m← m+ ck,n−i+1

6: end if
7: end for

D. Encoding and Decoding Algorithms for 11 · · · 10

Again, Proposition 2 infers that the encoding and decoding
of the UDOOC with UW k = 00 . . . 01 can be equivalently
done through the encoding and decoding of the UDOOC
with UW k = 11 . . . 10. We simply take k = 11 · · · 10 for
illustration.

It can be derived from (12) that for k = 11 · · · 10,

ck,n = 2ck,n−1 − ck,n−L (56)

with initial condition

ck,n =

 1, n = 0
2n, n = 1, . . . , L− 1
2L − 1, n = L.

(57)

It remains to determine |Ck(d0, n)|. Observe that d0b ∈
Ck(d0, n) if, and only if, b ∈ Ck(n − `(d) − 1); hence,
|Ck(d0, n)| = ck,n−`(d)−1. We summarize the encoding and
decoding algorithms of UDOOCs with k = 11 . . . 10 in
Algorithms 3 and 4, respectively.

Algorithm 3 Encoding of UDOOC with k = 11 · · · 10

Input: Index m for message um
Output: Codeword φk(um) = c1 . . . cn

1: Compute ck,0, ck,1, ck,2, . . . using (56) and (57) to deter-
mine the smallest n such that Fk,n ≥ m. If n = 0, then
φk(um) = null and stop the algorithm.

2: Initialize ρ0 ← m− Fk,n−1
3: for i = 1 to n do
4: if ρi−1 ≤ ck,n−i then
5: ci ← 0 and ρi ← ρi−1
6: else
7: ci ← 1 and ρi ← ρi−1 − ck,n−i
8: end if
9: end for

Algorithm 4 Decoding of UDOOC with k = 11 · · · 10

Input: Codeword c = c1 . . . cn
Output: Index m for message um = ψk(c)

1: Compute ck,0, ck,1, . . . , ck,n using (56) and (57)
2: Initialize m← Fk,n−1 + 1
3: for i = 1 to n do
4: if ci = 1 then
5: m← m+ ck,n−i
6: end if
7: end for

E. Encoding and Decoding Algorithms for General UW k

It is clear from the discussions in the previous two subsec-
tions as well as from (50) that to determine ci in the encoding
algorithm, we only need to keep track of the most recent
ρi−1, instead of retaining sequentially all of ρ0, . . . , ρi−2. We
address the recursion for the update of ρi in (51) only to
facilitate our interpretation on the operation of the progressive
metric. The same approach will be followed in the presentation
of the general encoding algorithm below, where a progressive
matrix Di is used in addition to the progressive metric ρi.

The encoding algorithm for general UWs consists of two
phases. Given the index m, we first identify the smallest n such
that Fk,n ≥ m. Note that the computation of Fk,n requires the
knowledge of ck,n, which can be recursively obtained using

16

the LCCDE in (18). In the second phase, as seen from the two
previous subsections, we need to determine the cardinality of
Ck(d, n) for any prefix d with `(d) ≤ n. Thus, our target in
this subsection is to provide an expression for |Ck(d, n)| that
holds for general k and d.

Define Ek,0 and Ek,1 for digraph Gk = (V,Ek) as

Ek,0 := {(i, j) ∈ Ek : jL−1 = 0} (58)
Ek,1 := {(i, j) ∈ Ek : jL−1 = 1} . (59)

Literally speaking, Ek,0 (resp. Ek,1) is the set of edges in Ek,
whose ending vertex has its last bit jL−1 equal to 0 (resp. 1).
Let Ak,0 and Ak,1 be the adjacency matrices respectively for
digraphs Gk,0 = (V,Ek,0) and Gk,1 = (V,Ek,1). Obviously,
Ak = Ak,0 + Ak,1. Based on the two adjacency matrices, we
derive

|Ck(d, n)| = x>k DiA
(n+L−1)−i
k y

k
(60)

where for a prefix stream d = d1 . . . di,

Di :=

i∏
t=1

Ak,dt , (61)

and xk and y
k

are the initial and ending vectors for digraph
Gk defined in Section III-A. With (60) and (61), the general
encoding and decoding algorithms are given in Algorithms
5 and 6, respectively. Verification of the two algorithms is
relegated to Appendix C for better readability.

Algorithm 5 Encoding of UDOOC with General k
Input: Index m for message um
Output: Codeword φk(um) = c1 . . . cn

1: Compute ck,0, ck,1, ck,2, . . . using (18) and the method in
Section IV-F to determine the smallest n such that Fk,n ≥
m. If n = 0, then φk(um) = null and stop the algorithm.

2: Initialize ρ0 ← m− Fk,n−1 and D0 ← I

3: for i = 1 to n do
4: Compute dummy← x>k Di−1Ak,0A

(n+L−1)−i
k y

k
5: if ρi−1 ≤ dummy then
6: ci ← 0, ρi ← ρi−1 and Di ← Di−1Ak,0
7: else
8: ci ← 1, ρi ← ρi−1 − dummy and Di ← Di−1Ak,1
9: end if

10: end for

Algorithm 6 Decoding of UDOOC with General k
Input: Codeword c = c1 . . . cn
Output: Index m for message um = ψk(c)

1: Compute ck,0, ck,1, . . . , ck,n using (18) and the method in
Section IV-F.

2: Initialize m← Fk,n−1 + 1 and D0 ← I

3: for i = 1 to n do
4: if ci = 1 then
5: m← m+ x>k Di−1Ak,0A

(n+L−1)−i
k y

k
6: end if
7: Di ← Di−1Ak,ci
8: end for

F. Exemplified Realization of the Encoding and Decoding
Algorithms for General UW k

The matrix expressions in (60) and (61) facilitate the
presentation of Algorithms 5 and 6 for general UW; however,
their implementation involves extensive computation of matrix
multiplications. Since the entries in each row or column of
Ak are all 0’s except for at most two 1’s, the complexity of
computing

ck,n = x>k A
n+L−1
k y

k
(62)

and
|Ck(d0, n)| = x>k D`(d)Ak,0A

n+L−`(d)−2
k y

k
(63)

is in fact relatively small. Furthermore, it is much easier to
compute ck,n than |Ck(d0, n)|. To see this, note from (6) that
we have the following enumeration for ck,n

∞∑
n=0

ck,nz
n =

x>k adj (I− Akz) A
L−1
k y

k

det (I− Akz)
.

Thus, simply evaluating the RHS of the above equation gives
the values of ck,n for n = 1, 2, . . . , L − 1. The remaining
values of ck,n for n ≥ L can be easily determined through
the recursion formula (18).

Another way to compute the values of ck,n can be easily
obtained by modifying the algorithm for computing the values
of |Ck(d0, n)|, which we now discuss. The first step to
compute |Ck(d0, n)| is to break up formula (63) into:

|Ck(d0, n)| = (x>k D`(d))︸ ︷︷ ︸
u>

Ak,0A
n−`(d)−1
k (AL−1k y

k
)︸ ︷︷ ︸

wk

. (64)

We note that from the choice of d in the encoding algorithm
5, we must have |Ck(d, n)| ≥ 1.9 Hence, u = D>`(d)xk is
actually a zero-one indication vector of length 2L−1 for the
rightmost (L− 1) bits of kL2 d, i.e., all components of vector
u = [u1 u2 · · ·u2L−1]> are 0’s except the (j+1)th component
(being 1’s), where j is the integer corresponding to the binary
representation of the rightmost (L − 1) bits of kL2 d. Hence,
u can be directly determined without any computation. In
addition, we can pre-compute wk since it is the same for all
n and d. Our task is therefore reduced to computing the value
of

|Ck(d0, n)| = u>Ak,0A
n−`(d)−1
k wk.

Below, we demonstrate how to utilize a finite state machine
based on the digraph Gk to evaluate |Ck(d0, n)| without
resorting to matrix operations.

Notations that are used to describe the finite state machine
are addressed first. Let S = {s00···0, s00···01, · · · , s11···1} be
the set of states indexed by all binary bit-streams of length
L−1. We say si = si1···iL−1

is a counting state if the (i+1)th
component of wk is 1, where i is the integer corresponding to

9Given any choice of prefix d, it is possible that |Ck(d, n)| = 0 if d 6∈ Ck,
and in this case we have u = 0 in (64). However, the prefix d considered in
our encoding algorithm, Algorithm 5, is always a prefix of some codeword;
hence we have |Ck(d, n)| > 0.

17

binary representation of i = i1 . . . iL−1.10 Denote by Ck the
set of all counting states corresponding to k. Also, for each
state sk ∈ S we define

I(si) = {sj : (j, i) ∈ Ek} ,
O(si) = {sj : (i, j) ∈ Ek} ,
Ib(si) = {sj : (j, i) ∈ Ek,b} ,
Ob(si) = {sj : (i, j) ∈ Ek,b} ,

for b = 0, 1, where the edge-sets Ek,0 and Ek,1 are defined in
(58) and (59), respectively. Literally speaking, from digraph
Gk, I(si) is the set of states that link directionally to si,
O(si) is the set of states that are linked directionally by si,
and I0(si) is the set of states that link to si via a so-called
0-edge in Ek,0. The sets I1(si), O0(si) and O1(si) all have
in a similar meaning.

In our state machine, we associate each state si with an
integer. Without ambiguity, we use si to also denote the integer
associated with it. Define an operator Ξk : S → S, which
updates the value associated with each state according to:

Ξk : si ←
∑

sj∈I(si)

sj for all si ∈ S.

It should be noted that the operator Ξk updates all states in S
in a parallel fashion. Also, if I(si) is an empty set, operator
Ξk would set si ← 0. We similarly define operators Ξk,0 and
Ξk,1 respectively as

Ξk,0 : si ←
∑

sj∈I0(si)

sj and Ξk,1 : si ←
∑

sj∈I1(si)

sj .

An example is provided below to help clarify these nota-
tions.

Example 4: For UW k = 000 of length L = 3, there
are four possible states in S = {s00, s01, s10, s11}. Because
AL−1k y

k
=
[
0 1 0 1

]>
, we have Ck = {s01, s11}. Create

the 0-edges and 1-edges of the digraph in Fig. 6. Table V
then shows I(si), O(si), I0(si), I1(si), O0(si) and O1(si)
for each si.

TABLE V
VARIOUS STATE SETS FOR UW k = 000

si s00 s01 s10 s11
I(si) {s10} {s00, s10} {s01, s11} {s01, s11}
O(si) {s01} {s10, s11} {s00, s01} {s10, s11}
I0(si) {s10} {} {s01, s11} {}
I1(si) {} {s00, s10} {} {s01, s11}
O0(si) {} {s10} {s00} {s10}
O1(si) {s01} {s11} {s01} {s11}

According to the first row in Table V, the operator Ξk

simultaneously updates all states in S according to

Ξk :

s00 ← s10
s01 ← s00 + s10
s10 ← s01 + s11
s11 ← s01 + s11.

10Here we implicitly use a fact that wk is a binary zero-one vector. Note
that the (i+ 1)th component of wk = [w1 w2 · · · w2L−1]> = AL−1

k y
k

is equal to the number of distinct walks from vertex i1 · · · iL−1 to vertex
k1 · · · kL−1 on digraph Gk. This fact follows since there is at most one
walk of length (L− 1) between the above two vertexes.

00 01 10 11

1-edge

0-edge

k=000

: counting state

: non-counting state

Fig. 6. Digraph G000 for UW k = 000

Likewise, the operators Ξk,0 and Ξk,1 simultaneously update
all states in S according to

Ξk,0 :

s00 ← s10
s01 ← 0
s10 ← s01 + s11
s11 ← 0

and Ξk,1 :

s00 ← 0
s01 ← s00 + s10
s10 ← 0
s11 ← s01 + s11.

With the above, we now demonstrate how to compute ck,i
and |Ck(d0, n)| using the finite state machine. Note ck,n =
x>k A

n
kwk; hence to compute ck,n, the states are initialized such

that sk2...kL = 1 and si = 0 for all remaining i 6= kL2 . Note
that these initial values correspond exactly to the component
values of vector xk. Next we apply n times the operator Ξk

to update the states in S. It can be seen that the resulting
values of the states correspond exactly to the contents of the
row vector x>k A

n
k. Thus, the value of ck,n can be obtained by

summing the values of the counting states. Again, we remark
that we only need the finite state machine for computing the
values of ck,n for n = 1, 2, . . . , L − 1, as the values of ck,n
for n ≥ L can be easily determined by the recursion formula
(18).

On the other hand, to compute

|Ck(d0, n)| = u>Ak,0A
n−`(d)−1
k wk

for a given prefix d, we initialize the values associated
with all states to be zero except sum−L+2···um

= 1, where
um−L+2 · · ·um is the rightmost (L − 1) elements in u =
u1 . . . um = kL2 d. Apply the operator Ξk,0 to all states in S
once, followed by updating all the states (n− `(d)− 1) times
via operator Ξk. Then, the sum of the values of all counting
states equals |Ck(d0, n)|.

V. PRACTICE AND PERFORMANCE OF UDOOCS

In Fig. 7, we compare the numbers of length-n code-
words for all UWs of lengths L = 2, 3, 4 and 5. These
numbers are plotted in logarithmic scale and are normalized
against the number of length-n codewords for the all-zero

18

UW k = 0 . . . 00 to facilitate their comparison. By the
equivalence relation defined in Definition 2, only one UW in
each equivalence class needs to be illustrated. We have the
following observations.

1) The logarithmic ratio log2(ck,n/ca,n), where a =
0 . . . 00, exhibits some transient fluctuation for n ≤ L
but becomes a steady straight line of negative slope after
n > L. This hints that ck,n has a steady exponential
growth when n is beyond L.

2) The number cb,n, where b = 00 . . . 01, is always the
largest among all ck,n when n is small. However, this
number has an apparent trend to be overtaken by those
of other UWs as n grows and will be eventually smaller
than the number of length-n codewords for the all-zero
UW. This result matches the statement of Theorem 2.

3) As a contrary, the number ca,n for the all-zero UW
a = 0 . . . 00 is the smallest among all ck,n for UWs of
the same length when n is small. Although Theorem 2
indicates that this number will eventually be the largest,
Fig. 7 shows that such would happen only when n is
very large.

4) As a result of the two previous observations, UW
b = 00 . . . 01 perhaps remains a better choice in the
compression of sources with practical number of source
letters even though it is asymptotically the worst. We
will confirm this inference by the later practice of
UDOOCs on a real text source from the book Alice’s
Adventure in Wonderland.

We next investigate the compression rates of UDOOCs
and compare them with those of the Huffman and Lempel-
Ziv (specifically, LZ77 and LZ78) codes. In this experiment,
the standard Huffman code in the communication toolbox
of Matlab is used instead of the adaptive Huffman code.
The LZ77 executable is obtained from the basic compression
library in [34], while the LZ78 is self-implemented using
C++ programing language. As a convention, the data is binary
ASCII encoded before it is fed into the two Lempel-Ziv com-
pression algorithms. The sliding window for the LZ77 is set
as 10, 000 bits, and the tree-structured LZ78 is implemented
without any windowing.

Three different English text sources are used, in which the
uppercase and lowercase of each English letter are treated as
the same symbol. The first English text source is distributed
uniformly over the 26 symbols. The second English text source
is assumed independent and identically distributed (i.i.d.) with
marginal statistics from [36]. The third one is a realistic
English text source from Alice’s Adventure in Wonderland,
in which any symbols other than the 26 English alphabets
are regarded as a “space.” In addition, the effect of grouping
t symbols as a grouped source for compression is studied,
which will be termed t-grouper in remarks below. The results
are summarized in Tables VI and VII, in which the average
codeword length of UDOOCs has already taken into account
the length of UWs. We remark on the experimental results as
follows.

1) First of all, it can be observed from Table VI that the
length-2 UW k = 01 gives a good per-letter average

codeword length only when t = 1. When the size of
source alphabet increases by grouping t = 2 or t = 3
letters as one symbol for UDOOC compression, the
per-letter average codeword length dramatically grows.
Note that k = 01 is the only UW, whose number of
length-n codewords has a linear growth with respect
to n, i.e., we have c01,n = n + 1. Since the size of
source alphabets increases exponentially in t when t-
grouper is employed, the resulting per-letter average
codeword length also increases exponentially as t grows.
Therefore, when UW = 01, t-grouper will result in an
extremely poor performance for moderately large t.

2) By independently generating 106 letters according to
the statistics in [36] for compression, we record the
per-letter average codeword in the second row of Table
VI. As expected, the Huffman coding scheme gives the
smallest per-letter average codeword length of 4.253
bits per letter, when 3-grouper is used. The gap of per-
letter average codeword lengths between the 3-grouper
Huffman and the 3-grouper UDOOC however can be
made as small as 4.795− 4.253 = 0.542 bits per source
letter if UW = 0001. This is in contrast to the gap
of 1.007 bits when uniform independent English text
source is the one to be compressed (cf. the first row
in Table VI). We would like to point out that the error
propagation of UDOOCs is limited firmly by at most
two codewords, while that of the Huffman code may be
statistically beyond this range. In comparison with the
LZ77 and LZ78, the UDOOC clearly performs better
in compression rate for usual independent English text
source.

3) When the compression of a source with memory such as
the book titled Alice’s Adventures in Wonderland [35]
is concerned, the third row in Table VI shows that the
gap of per-letter average codeword lengths between the
optimal 3-grouper Huffman and the 3-grouper UDOOC
with UW = 0001 is narrowed down to 0.305 bits per
letter. The 3-grouper UDOOC with the all-zero UW
also performs well for this source. Note that part of
the per-letter average codeword length of UDOOCs is
contributed by the UW, i.e., L/t; hence, in a sense, a
larger t and a smaller L are favored (except for L = 2).
As can be seen from Table VI, the best compression
performance is given by t = 3, L = 4, and UW = 0001.

4) For the third English text source, the LZ77 performs
better than all of the 1-grouper UDOOC compression
schemes but one. We then compare the running time
of both algorithms. We reduce the window size of
LZ77 so that it has a similar running time to the 1-
grouper UDOOC scheme. The compression performance
of LZ77 degrades down to 5.234 bits per letter, which
is larger than that of the 1-grouper UDOOC. Note that
we only compare their running time in encoding in
Table VII as the decoding efficiency of UDOOCs is
seemingly better than that of the LZ77. Considering
also the low memory consumption of UDOOCs when a
specific UW is pre-given in addition to its simplicity in
implementation, the UDOOC can be regarded as a cost-

19

0 5 10 15 20 25 30
−16

−14

−12

−10

−8

−6

−4

−2

0

2

lo
g 2(

c k,
n/c

al
l z

er
o,

n)

Codeword Legnth n

00
01

0 5 10 15 20 25 30
−4

−3

−2

−1

0

1

2

Codeword Legnth n

lo
g 2(

c k,
n/c

al
l z

er
o,

n)

000
001
010

(a) L = 2 (b) L = 3

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

lo
g 2(

c k,
n/c

al
l z

er
o,

n)

Codeword Legnth n

0000
0001
0010
0101

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Codeword Legnth n

lo
g 2(

c k,
n/c

al
l z

er
o,

n)

00000
00001
00010
00100
01001
01010

(c) L = 4 (d) L = 5

Fig. 7. Normalized numbers of length-n codewords for UWs of lengths L = 2, 3, 4, 5

effective compression scheme for practical applications.

TABLE VII
AVERAGE CODEWORD LENGTHS IN BITS PER SOURCE SYMBOL AND

RUNNING TIME IN SECONDS FOR THE UDOOC ENCODING AND THE LZ77
ENCODING ON Alice’s Adventures in Wonderland. THE PROGRAMS ARE

IMPLEMENTED USING C++, AND ARE EXECUTED IN A MICROSOFT
WINDOWS-BASED DESKTOP WITH INTEL-CORE7 2.4G CUP AND 8G

MEMORY.

Type Average Codewrod length Running Time

UDOOC UW k = 00 4.887 0.0162 sec
UW k = 01 4.068 0.0158 sec

LZ77 Window Size = 104 bits 4.661 0.0328 sec
Window Size = 3000 bits 5.234 0.01607 sec

VI. CONCLUSION

In this paper, we have provided a general construction
of UDOOCs with arbitrary UW. Combinatorial properties
of UDOOCs are subsequently investigated. Based on our
studies, the appropriate UW for the UDOOC compression
of a given source can be chosen. Various encoding and
decoding algorithms for general UDOOCs, as well as their
efficient counterparts for specific UWs like k = 00 . . . 0,
00 . . . 01, are also provided. Performances of UDOOCs are
then compared with the Huffman and Lempel-Ziv codes. Our
experimental results show that the UDOOC can be a good
practical candidate for lossless data compression when a cost-
efficient solution is desired.

APPENDIX A
PROOF OF THEOREM 1

In this section, we will prove (11), the enumeration of sk,n
in Theorem 1. Our proof technique is similar to that in [23].

Let F∞ :=
⋃
n≥0 Fn be the set of all binary sequences. For

a word w = w1 . . . wn ∈ F∞ of length n, let Fk(w) be the
set of index pairs indicating the places that w contains k as
a subword, i.e.,

Fk(w) =
{

(i, j) : k = wji

}
.

Further denote by `(w) the length of word w. Then

f(z) =
∑
n≥0

sk,nz
n

(i)
=
∑

w∈F∞
z`(w)0|Fk(w)|

=
∑

w∈F∞
z`(w)

∏
a∈Fk(w)

(1 + (−1))

(ii)
=
∑

w∈F∞
z`(w)

∑
A⊆Fk(w)

(−1)|A| (65)

where in (i) we have adopted the convention of 00 = 1, and
(ii) follows from the inclusion-exclusion principle. In light of
(65), we will regard the pair (w, A) with A ⊆ Fk(w) as a
marked word. The set of all marked words is thus defined as

Mk := {(w, A) : w ∈ F∞ and A ⊆ Fk(w)} .

Define the following weight function for elements in Mk

π(w, A) := z`(w)(−1)|A|; (66)

20

TABLE VI
AVERAGE CODEWORD LENGTHS IN BITS PER SOURCE SYMBOL FOR THE COMPRESSION OF THREE DIFFERENT SOURCES. THE BEST ONE AMONG

1-GROUPER, 2-GROUPER AND 3-GROUPER OF THE SAME COMPRESSION SCHEME IS BOLDFACED.

Type Entropy LZ77 LZ78 Huffman UW = 00 · · · 0 UW = 00 · · · 01
t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

Independent L = 2 6.961 6.820 6.790 5.846 12.76 41.99
English Letter with 4.700 4.700 4.700 7.992 7.178 4.768 4.738 4.702 L = 4 8.576 6.831 6.213 7.000 5.899 5.709
Uniform distribution L = 6 10.58 7.748 6.746 9.000 6.768 6.104

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3
Independent L = 2 5.591 5.550 5.637 4.557 7.771 20.907

English Letter with 4.246 4.246 4.246 7.925 6.626 4.274 4.261 4.253 L = 4 7.411 5.872 5.351 6.185 4.970 4.795
Usual distribution L = 6 9.411 6.818 5.924 8.185 5.882 5.274

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3
Alice’s L = 2 4.887 4.340 3.958 4.068 4.975 7.573

Adventures 3.914 3.570 3.215 4.661 6.028 3.940 3.585 3.226 L = 4 6.757 4.920 4.089 5.774 4.133 3.531
in Wonderland L = 6 8.757 5.890 4.709 7.774 5.089 4.115

then (65) can be rewritten as

f(z) =
∑

(w,A)∈Mk

π(w, A). (67)

To determine f(z), below we introduce the concept of a
cluster.

Definition 6 (Cluster): We say the marked word (w, A) is
a cluster if, and only if,⋃

(it,jt)∈A

[it, jt] = [1, `(w)]

where by [a, b] we mean the closed interval {x ∈ R : a ≤ x ≤
b} on the real line. The set of all clusters is thus

Tk = {(w, A) ∈Mk : (w, A) is a cluster} .

Definition 7 (Concatenation of sets of marked words): For
any two sets of marked words Ak and Bk, we define the
concatenation of Ak and Bk as

Ak∨Bk := {(ab, A ∪ J(B, `(a)) : (a, A) ∈ Ak, (b, B) ∈ Bk}

where by ab we meant the usual concatenation of strings a
and b, and the function J(B, `(a)) is

J(B, `(a)) := {(it + `(a), jt + `(a)) : (it, jt) ∈ B} .

Having defined the concatenation operation ∨ for sets of
marked words, we next claim the following decomposition
for the set Mk

Mk = {(null, ∅)} ∪ (Mk ∨ F) ∪ (Mk ∨ Tk) , (68)

where F := {(b, ∅) : b ∈ F}.
To show (68), for any (w, A) ∈ Mk we distinguish the

following three disjoint cases:
1) If `(w) = 0, it is obvious that w is a null word and

A = ∅ from the definition of Fk(w).
2) For `(w) ≥ 1, appending an arbitrary binary word to w

results in another marked word (wb, A), which cannot
be a cluster since⋃

(it,jt)∈A

[it, jt] ⊂ [1, `(w) + 1].

Conversely, take any marked word (w, A) from Mk

with `(w) = n. If jt < `(w) = n for all (it, jt) ∈ A,
then we can delete the rightmost bit from w, and
the resulting pair (wn−11 , A) is still a marked word.
Summarizing the above gives the following equalities
between two sets of marked words

{(w, A) ∈Mk : jt < `(w) for all (it, jt) ∈ A)}
= {(wb, A) : (w, A) ∈Mk, b ∈ F}
=Mk ∨ F , (69)

where the last equality follows from the definition of
concatenation operation ∨.

3) The last case concerns the situation when (w, A) sat-
isfies `(w) = n ≥ 1, A = {(i1, j1), . . . , (im, jm)} and
i1 < · · · < im < jm = n. In other words, this is the case
when max{jt : (it, jt) ∈ A} = `(w), which is disjoint
from the second case. For this, let u be the smallest
index such that [iu+t, ju+t] ∩ [iu+t+1, ju+t+1] 6= ∅ for
all t = 0, 1, . . . ,m−u+ 1. Then obviously we have the
following de-concatenation of (w, A)

(w, A) = (wiu−11 , {(it, jt) : t = 1, . . . , u− 1})
∨ (wniu , {(it − iu + 1, jt − iu + 1) : t = u, . . . ,m}).

Clearly, the first marked word (wiu−11 , {(it, jt) : t =
1, . . . , u − 1}) ∈ Mk. The second marked word
(wniu , {(it − iu + 1, jt − iu + 1) : t = u, . . . ,m}) is
a cluster since

m⋃
t=u

[it − iu + 1, jt − iu + 1] = [1, n− iu + 1]

by the choice of u. Hence we arrive at the following
equality between two sets of marked words

{(w, A) ∈Mk : max{jt : (it, jt) ∈ A} = `(w)}
=Mk ∨ Tk. (70)

Combining the case of null word and equations (69) and (70)
proves the desired claim of (68).

Using the decomposition in (68), we can rewrite (67) in
terms of the three sets, i.e., the set for null word, Mk ∨ F ,

21

and Mk ∨ Tk. In particular, we have∑
(w,W)∈Mk∨Tk

π(w,W)

=
∑

(a,A)∈Mk

∑
(b,B)∈Tk

z`(ab)(−1)|A∪J(B,`(a))|

=
∑

(a,A)∈Mk

∑
(b,B)∈Tk

z`(a)+`(b)(−1)|A|+|B|

=

 ∑
(a,A)∈Mk

π(a, A)

 ∑
(b,B)∈Tk

π(b, B)

 . (71)

Similarly, one can show that∑
(w,A)∈Mk∨F2

π(w, A) = 2z
∑

(w,A)∈Mk

π(w, A). (72)

Substituting (71) and (72) into (67) gives

f(z) =
∑

(w,A)∈Mk

π(w, A) = 1 + 2zf(z) + f(z)T (z),

or equivalently,

f(z) =
1

1− 2z − T (z)
, (73)

where T (z) is the weight enumerator of elements in Tk given
by

T (z) :=
∑

(b,B)∈Tk

π(b, B). (74)

Determining T (z) is now relatively easy. Recall that the
overlap function rk(i) = 1(kL−i1 = kLi+1), where 1(·)
is the usual indicator function, shows exactly whether the
length-(L − i) prefix of k is also a suffix of k. Let Rk =
{i : 1 ≤ i ≤ L− 1, rk(i) = 1}. For any cluster (b, B) ∈ Tk
with b = b1 . . . bn, we must have bnn−L+1 = k by Definition
6. So for any i ∈ Rk, i.e., rk(i) = 1, we have bnn−L+i+1 =

kLi+1 = kL−i1 . Hence the pair

(bkL−i+1 . . . kL, B ∪ {(n+ i− L+ 1, n+ i)})

is a cluster in Tk. It implies that for i ∈ Rk, the set

Tk,i :=

{ (
bkLL−i+1, B ∪ {(n+ i− L+ 1, n+ i)}

)
:

(b, B) ∈ Tk, n = `(b)

}
(75)

is a subset of Tk.
On the other hand, take any (b, B) ∈ Tk with `(b) = n

and B = {(it, jt) : t = 1, . . . ,m}, where 1 = i1 < i2 <
· · · < im < jm = n and im = n − L + 1. If m = 1, then
b = k and B = {(1, L)}. Hence we consider the case when
m > 1. As (b, B) is a cluster, [im−1, jm−1]∩[im, jm] 6= ∅ and
b
jm−1

im−1
= bjmim = k. Therefore, we must have bjm−1

im
= kv1 =

kLL−v+1, where v = jm−1 − im + 1. Thus, rk(L − v) = 1
and (b, B) ∈ Tk,L−v . The above discussion then gives the
following decomposition for Tk

Tk = {(k, {(1, L)})} ∪

(⋃
i∈Rk

Tk,i

)
. (76)

For enumerating the weights of elements in Tk, we further
claim that Tk,i ∩ Tk,j = ∅ for all i 6= j. This simply follows

from the definition of Tk,i in (75) that for any (b, B) ∈ Tk,i
and (b′, B′) ∈ Tk,j , say B = {(it, jt) : t = 1, . . . ,m} and
B′ = {(it, jt) : t = 1, . . . ,m′}, where the pairs (it, jt) are
arranged in ascending order, we have that jm − jm−1 = i
for B and jm′ − jm′−1 = j for B′. This proves our claim.
Finally, using (76) and the fact that the sets {Tk,i} are disjoint,
we obtain

T (z) = π(k, {(1, L)}) +

L−1∑
i=1

rk(i)
∑

(b,B)∈Tk,i

π(b, B)

= z`(k)(−1) +

L−1∑
i=1

rk(i)
∑

(b,B)∈Tk

z`(b)+i (−1)
|B|+1

= −zL −
L−1∑
i=1

rk(i)ziT (z).

Hence

T (z) = − zL

1 +
∑L−1
i=1 rk(i)zi

.

Substituting the above into (73) proves (11) of Theorem 1.

APPENDIX B
DEGREE OF det (I− Akz)

In this section, we will determine the degree of polynomial
det (I− Akz) that is required in the proof of Theorem 1.

Proposition 10: Let Ak be the adjacency matrix for the
digraph Gk associated with UW k defined in Section III. Then

deg det (I− Akz) = L. (77)

Proof: First, from (9) and (11), the two equivalent for-
mulas for the enumeration of sk,n, we see det (I− Akz) is
divisible by hk(z) = (1 − 2z)(1 +

∑L−1
i=1 rk(i)zi) + zL. It

follows that
deg det (I− Akz) ≥ L.

To establish the converse of the above inequality, i.e.,
deg det (I− Akz) ≤ L, it suffices to show that rank(AL−1k) ≤
L, which in turns implies rank(ALk) ≤ L. As a result,
the algebraic multiplicity of eigenvalue 0 for Ak is at least
2L−1 − L. Hence, the degree of det(I− Akz) is at most L.

To prove the claim, given the UW k = k1 . . . kL of length
L and the corresponding adjacency matrix Ak for digraph Gk,
let

H = Ak + ek1
e>k2

where k1 = kL−11 and k2 = kL2 , and where by ed ∈ F2L−1

with d = d1 . . . dL−1 ∈ FL−1 we mean (ed)j+1 = 1 if j has
the binary representation d, and (ed)j+1 = 0, otherwise.

Apparently, H is the adjacency matrix for the digraph
without UW forbidden constraint and is therefore independent
of the choice of k. As an example, if L = 3, then

H =


1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1

 .

22

Furthermore, it can be easily verified that HL−1 = 11> is the
all-one matrix. Armed with the above, we now have

AL−1k =
(
H− ek1

e>k2

)L−1
= HL−1 −

L−2∑
i=0

HL−2−i
(
ek1

e>k2

)
Aik, (78)

where the last equality is due to the following identity for
square matrices A and B:

(A−B)L−1 = AL−1 −
L−2∑
i=0

AL−2−iB(A−B)i.

Applying the standard rank inequality of rank(A + B) ≤
rank(A) + rank(B) [19] to (78) yields

rank
(
AL−1k

)
≤ rank

(
HL−1

)
+

L−2∑
i=0

rank
(
HL−2−i

(
ek1

e>k2

)
Aik
)

= 1 +

L−2∑
i=0

1 = L,

and the proof is completed.

APPENDIX C
VERIFICATION OF ALGORITHMS 5 AND 6

For completeness, we verify Algorithms 5 and 6 in this
section.

For message u1, i.e., the most likely message, we have
from line 1 in Algorithm 5 that m = 1 and n = 0 since
Fk,0 = ck,0 = 1. This results in the encoding output of the
null codeword. In parallel, when receiving the null codeword,
we have n = 0. Algorithm 6 then sets m = 1 at line 2 as
Fk,−1 = 0. This verifies the correctness of Algorithms 5 and
6 for message u1.

For m ≥ 2, we shall show that for each n ≥ 1, the encoding
function φk is a bijection between Uk(n) = {um : Fk,n−1 <
m ≤ Fk,n} and Ck(n), and the decoding function ψk is the
functional inverse of φk. Equivalently, it suffices to show that

1) ψk is a bijection between Ck(n) and Uk(n) for each
n ≥ 1, and

2) φk is the functional inverse of ψk

We will proceed with this approach.
Prior to establishing the claims, we first introduce below a

well-ordering of binary sequences. This is in fact a key concept
embedded in Algorithms 5 and 6.

Definition 8 (Lexicographical ordering): For any two bi-
nary sequences a = a1 . . . ai and b = b1 . . . bj , we say a � b
if i > j, or if i = j and there exists a smallest integer s,
1 ≤ s ≤ i, such that au = bu for u = 1, . . . , s − 1, as = 1,
and bs = 0.

Obviously, such ordering is a total-ordering of binary
sequences. How the lexicographical ordering of binary se-
quences plays a key role in the encoding and decoding of
UDOOCs is due to the following lemma.

Lemma 1: For any two length-n codewords a, b ∈ Ck(n),
we have a � b if, and only if,

n∑
i=1

ai
∣∣Ck(ai−11 0, n)

∣∣ > n∑
i=1

bi
∣∣Ck(bi−11 0, n)

∣∣ . (79)

Proof: As `(a) = `(b) and a � b, there exists a smallest
integer s, 1 ≤ s ≤ n, such that au = bu for u = 1, . . . , s− 1,
as = 1, and bs = 0. Thus,

n∑
i=1

ai
∣∣Ck(ai−11 0, n)

∣∣
≥

s−1∑
i=1

ai
∣∣Ck(ai−11 0, n)

∣∣+
∣∣Ck(as−11 0, n)

∣∣
>

s−1∑
i=1

ai
∣∣Ck(ai−11 0, n)

∣∣+

n∑
i=s+1

bi
∣∣Ck(as−11 0bi−1s+10, n)

∣∣
=

n∑
i=1

bi
∣∣Ck(bi−11 0, n)

∣∣ ,
where the second inequality follows from the fact that the sets
Ck(as−11 0bi−1s+10, n), where i = s + 1, . . . , n and bi = 1, are
disjoint proper subsets of Ck(as−11 0, n).

With the above lemma, given a codeword c = c1 . . . cn,
Algorithm 6 outputs ψk(c) = m with

m =

n∑
i=1

cix
>
k

i−1∏
j=1

Ak,cj

 Ak,0A
(n+L−1)−i
k y

k
+ Fk,n−1 + 1

=

n∑
i=1

ci
∣∣Ck(ci−11 0, n)

∣∣+ Fk,n−1 + 1. (80)

We remark that the first term in the above, i.e.,∑n
i=1 ci

∣∣Ck(ci−11 0, n)
∣∣, is the only term dependent on c, and it

also appears in (79). It means that the encoding and decoding
algorithms of UDOOC given in Algorithms 5 and 6 are indeed
based on the lexicographical ordering of length-n codewords
in Ck(n). Using Lemma 1 we can establish the range of ψk

when restricted to Ck(n).
Corollary 4: The range of ψk when restricted to Ck(n) is

the set Uk(n) = {um : Fk,n−1 < m ≤ Fk,n}. Therefore, ψk

is a bijection between Ck(n) and Uk(n) for all n ≥ 1.
Proof: Given Ck(n), let b be the smallest member and

d be the largest member according to the lexicographical
ordering, i.e. b � c � d for all c ∈ Ck(n). It then follows
from Lemma 1 that

min
c∈Ck(n)

ψk(c) = ψk(b) and max
c∈Ck(n)

ψk(c) = ψk(d).

For the minimum, from (80) we have

ψk(b) =

n∑
i=1

bi
∣∣Ck(bi−11 0, n)

∣∣+ Fk,n−1 + 1.

Since b is the smallest member, it follows that for all i, i =
1, . . . , n,

∣∣Ck(bi−11 0, n)
∣∣ = 0 if bi = 1. Hence

min
c∈Ck(n)

ψk(c) = ψk(b) = Fk,n−1 + 1.

23

To see the maximum, again from (80)

ψk(d) =

n∑
i=1

di
∣∣Ck(di−11 0, n)

∣∣+ Fk,n−1 + 1.

Since d is the largest member in Ck(n), the sets Ck(di−11 0, n),
where i = 1, . . . , n and di = 1, are disjoint and proper subsets
of Ck(n). Moreover, for any c ∈ Ck(n) and c ≺ d, there
exists a smallest integer s, 1 ≤ s ≤ n, such that du = cu for
u = 1, . . . , s − 1, ds = 1, and cs = 0. This in turn implies
c ∈ Ck(ds−11 0, n). Therefore,

n⋃
i=1
di=1

Ck(di−11 0, n) = Ck(n) \ {d}

and
ψk(d) = ck,n − 1 + Fk,n−1 + 1 = Fk,n.

Finally, noting that |Ck(n)| = |Uk(n)| and that ψk is injective
by Lemma 1, we conclude that ψk is bijective.

So far we have established the first claim that ψk is a
bijection between Ck(n) and Uk(n). To prove the second claim
that φk is the functional inverse of ψk, given a codeword
c = c1 . . . cn, Algorithm 6 outputs

m = ψk(c) =

n∑
i=1

ci
∣∣Ck(ci−11 0, n)

∣∣+ Fk,n−1 + 1

and Fk,n−1 < m ≤ Fk,n. Line 2 of Algorithm 5 would
produce the correct n for m. Then, from line 3 of Algorithm
5, we get

ρ0 =

n∑
i=1

ci
∣∣Ck(ci−11 0, n)

∣∣+ 1.

For the loop of lines 3-10 of Algorithm 5, when i = 1, dummy
has value

dummy = x>k Ak,0A
n+L−2
k y

k
= |Ck(0, n)| .

We distinguish two cases:
1) if c1 = 0, then we must have

ρ0 =

n∑
i=2

ci
∣∣Ck(0ci−12 0, n)

∣∣+ 1 ≤ dummy

since
∑n
i=2 ci

∣∣Ck(0ci−12 0, n)
∣∣ is the sum of the cardinal-

ities of certain disjoint subsets (with different prefixes)
of Ck(0, n). Hence lines 5-9 of Algorithm 5 output
c1 = 0 as desired.

2) if c1 = 1, then

ρ0 = |Ck(0, n)|+
n∑
i=2

ci
∣∣Ck(1ci−12 0, n)

∣∣+ 1 > dummy

and lines 5-9 of Algorithm 5 gives the correct c1 = 1.
Furthermore, it can be seen that at the end of line 9, we have

ρ1 =

n∑
i=2

ci
∣∣Ck(ci−11 0, n)

∣∣+ 1

for the next iteration. Now suppose we are at the tth iteration
of Algorithm 5 for some integer t with 1 < t < n. We have
already determined c1, c2, . . . , ct−1, and have

ρt−1 =

n∑
i=t

ci
∣∣Ck(ci−11 0, n)

∣∣+ 1.

Line 4 of Algorithm 5 then gives

dummy = x>k

(
t−1∏
i=1

Ak,ci

)
Ak,0A

(n+L−1)−t
k y

k

=
∣∣Ck(ct−11 0, n)

∣∣ .
Using the same reasoning as the above it can be easily shown
that lines 5-9 of Algorithm 5 always produce the correct value
for ct. Finally at the nth iteration we have

ρn−1 = cn
∣∣Ck(cn−11 0, n)

∣∣+ 1

and

dummy = x>k

(
n−1∏
i=1

Ak,ci

)
Ak,0A

L−1
k y

k
=
∣∣Ck(cn−11 0, n)

∣∣ .
It should be noted that cn−11 0 is a length-n word, hence
dummy = 0 or 1. We distinguish the following cases:

1) If dummy = 0, then cn−11 0 cannot be a valid codeword
for UDOOC. Lines 5-9 of Algorithm 5 achieve exactly
the above, since we have

ρn−1 = cn · dummy + 1 = 1 > dummy = 0

and the algorithm always outputs cn = 1.
2) If dummy = 1, then ρn−1 = cn+1. The same reasoning

as the above shows that lines 5-9 of Algorithm 5 always
produce the correct value for cn.

We therefore complete the proof that φk is the functional
inverse of ψk.

APPENDIX D
limt→∞ Lk,t FOR ALL-ZERO UW AND UNIFORM

I.I.D. SOURCE

Let a = 00 . . . 0 be the all-zero UW of length L. From (23),
(54), and (55), it can be easily verified that

∞∑
n=0

ca,nz
n = 1 +

z

1−
∑L
i=1 z

i
. (81)

Furthermore, from (23) we have g(z) = (1 − z)ha(z) =
1 − 2z + zL+1. It is straightforward to show that the two
polynomials g(z) and d

dz g(z) are co-prime to each other;
hence there are no repeating zeros in ha(z). It then implies
that all the nonzero eigenvalues of Aa are simple.

Denote by λ1 · · ·λL the nonzero eigenvalues of Aa, and
assume without loss of generality that |λ1| > |λ2| ≥ · · · ≥
|λL|. Then

ca.n = δn +

L∑
i=1

ai(λi)
n

24

where a1 · · · aL are constants such that (81) holds. We can
also obtain the closed-form expression for Fa,n as

Fa,n = 1 +

L∑
i=1

ai
λn+1
i − 1

λi − 1
, for all n ≥ 0

Consider a uniform i.i.d. source U of alphabet size M with
M > 1. Let U t be the grouped source obtained by grouping
any t source symbols (with repetition) in U . It is clear that U t
is also a uniform i.i.d. source. The per-letter average codeword
length is given by

La,t =
1

t

L+

Mt∑
i=2

pi`(φ(ui))


=

1

t

L+
1

M t

Mt∑
i=2

`(φ(ui))

 .

Let N be the smallest integer such that Fa,N ≥ M t >
Fa,N−1. Then

La,t ≥
1

t

L+
1

Fa,N

Mt∑
i=2

`(φ(ui))


≥ 1

t

(
L+

1

Fa,N

N−1∑
i=2

i · ca,i

)

≥ 1

logM (Fa,N)

(
L+

1

Fa,N

N−1∑
i=2

i · ca,i

)
.

Consequently,

lim
t→∞

La,t

≥ lim
N→∞

1

logM (Fa,N)

(
L+

1

Fa,N

N−1∑
i=2

i · ca,i

)

= lim
N→∞

∑N−1
i=2 i · ca,i

Fa,N logM (Fa,n)

= lim
N→∞

L∑
i=1

ai
λi[(N − 1)λNi −Nλ

N−1
i + 1]

(λi − 1)2(
1+

L∑
i=1

ai
λN+1
i − 1

λi − 1

)
logM

(
1+

L∑
i=1

ai
λN+1
i − 1

λi − 1

)
=

1

logM (λ1)
=

1

logM (ga)
.

This implies

lim
t→∞

La,t ≥
log2(M)

log2(ga)
=

H(U)

log2(ga)
.

REFERENCES

[1] N. Alon and A. Orlitsky, “A lower bound on the expected length of one-
to-one codes,” IEEE Trans. Inf. Theory, vol. 40, no. 5, pp. 1670-1672,
September 1994.

[2] J. Bang-Jensen and G. Z. Gutin, Theory, Algorithms and Applications,
Springer Monographs in Mathematics, 2009.

[3] Information Technology-Telecommunications And Information Exchange
Between Systems-Local and Metropolitan Area Networks-Specific
Requirements-Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications, IEEE Standard 802.11-1999.

[4] N. Biggs, Algebraic Graph Theory, Cambridge Mathematical Library,
1994.

[5] C. Blundo and R. D. Prisco, “New bounds on the expected length of
one-to-one codes,” IEEE Trans. Inf. Theory, vol. 42, no. 1, pp. 246-250,
January 1996.

[6] J. Cheng, T.-K. Huang and C. Weidmann, “New bounds on the expected
length of optimal one-to-one codes,” IEEE Trans. Inf. Theory, vol. 53,
no. 5, pp. 1884-1895, May 2007.

[7] T. M. Cover and J. A. Thomas, Elements of Information Theory, New
York, NY: John Wiley & Sons, 1991.

[8] R. Doroslovački, “The set of all the words of length n over any alphabet
with a forbidden good subword,” Univ. u Novom Sadu, Zb. Rad. Prirod.-
Mat. Fak. Ser. Mat., 23:2, pp. 239-244, 1993.

[9] R. Doroslovački, “The set of all the words of length n over alphabet
{0, 1} with any forbidden subword of length three,” Univ. u Novom Sadu,
Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 25: 2, pp. 111-115, 1995.

[10] R. Doroslovački, “Binary n-Words without the subword 1010 · · · 10,”
Novi Sad J. Math., vol. 28, no. 2, pp. 127-133, 1998.

[11] R. Doroslovački, “On binary n-words with forbidden 4-subwords,” Novi
Sad J. Math., vol. 29, no. 1, pp. 27-32, 1999.

[12] R. Doroslovački, “n-words over any alphabet with forbidden any 3-
subwords,” Novi Sad J. Math., vol. 30, no. 2, pp. 159-163, 2000.

[13] J. G. Dunham, “Optimal noiseless coding of random variables,” IEEE
Trans. Inf. Theory, vol. IT-26, no. 3, p. 345, May 1980.

[14] Sam E. Ganis, Notes on the Fibonacci Sequence, Amer. Math. Monthly,
1959, pp. 129-130.

[15] C. Godsil and G. F. Royle, Algebraic Graph Theory, Springer, 2001.
[16] I. Goulden and D. M. Jackson, “An inversion theorem for cluster

decompositions of sequences with distinguished subsequences,” J. London
Math. Soc, pp. 567-576, 1979.

[17] L. J. Guibas and A. M. Odlyzko, “Periods in strings,” J. Combinatorial
Theory, series A 30, pp. 19-42, 1981.

[18] K. M. Hoffman and R. Kunze, Linear Algebra, 2nd edition, Pear-
son,1971.

[19] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd edition, Cambridge
University Press, 2012.

[20] E. J. Kupin and D. S. Yuster, “Generalizations of the Goulden-Jackson
cluster method,” J. Difference Eq. Appl., 16:12, pp. 1463-1480, 2010.

[21] S. K. Leung-Yan-Cheong and T. M. Cover, “Some equivalences between
Shannon entropy and Kolmogorov complexity,” IEEE Trans. on Informa-
tion theory, vol. IT-24, no. 3, pp. 331-338, May 1978.

[22] J. Noonan, “New upper bounds for the connective constants of self-
avoiding walks,” J. Statistical Physics, vol. 91, nos. 5/6, 1998.

[23] J. Noonan and D. Zeilberger, “The Goulden-Jackson cluster method:
extensions, applications, and implementations,” J. Difference Eq. Appl.,
5: pp. 355-377, 1999.

[24] J. Rissanen, “Tight lower bounds for optimum code length,” IEEE
Trans. Inf. Theory, vol. IT-28, no. 2, pp. 348-349, March 1982.

[25] E. Rivals and S. Rahmann, “Combinatorics of periods in strings,”
J. Combinatorial Theory, series A 104, pp. 95-113, 2003.

[26] S. A. Savari, “On one-to-one codes for memoryless cost channels,” IEEE
Trans. Inf. Theory, vol. 54, no. 1, pp. 367-379, January 2008.

[27] S. A. Savari and A.Naheta, “Bounds on the expected cost of one-to-
one codes,” IEEE International Symposium on Information Theory, June
2004.

[28] R. Stanley, Enumerative Combinatorics, vols. 1 and 2, Cambridge
Studies in Advanced Mathematics, 2011.

[29] W. Szpankowski, “A one-to-one code and its anti-redundancy,” IEEE
Trans. Inf. Theory, vol. 54, no. 10, pp. 4762-4766, October 2008.

[30] W. Szpankowskia and S. Verd u, “Minimum expected length of fixed-to-
variable lossless compression of memoryless sources,” IEEE International
Symposium on Information Theory, Seoul, Korea, July 2009.

[31] E. I. Verriest, “An achievable bound for optimal noiseless coding of a
random variable,” IEEE Trans. Inf. Theory, vol. IT-32, no. 4, pp. 592-594,
July 1986.

[32] X. Wen, “The symbolic Goulden-Jackson cluster method,” J. Difference
Eq. Appl., 11:2, pp. 173-179, 2006.

[33] A. D. Wyner, “An upper bound on the entropy series,” Inf. Control,
vol. 20, 30: pp. 176-181, 1972.

[34] http://bcl.comli.eu/download-en.html
[35] http://corpus.canterbury.ac.nz/descriptions/
[36] http://oxforddictionaries.com/words/what-is-the-frequency-of-the-

letters-of-the-alphabet-in-english

