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Abstract—| Using the idea of interference alignment, Suh and file, we can connect to the node which holds that particular
Ramchandran constructed a class of minimum-storage regen- portion, without downloading the whole file. There are saler
erating codes which can repair one systematic or one parity- gyisting constructions of regenerating codes for exacairep

check node with optimal repair bandwidth. With the same code o his t v idea fromterf I ¢
structure, we show that in addition to single node failure, wuble 2"N€ @pproacn Is 1o apply 1dea Iromierierence alignmen

node failures can be repaired collaboratively with optimalrepair ~ [2], [3], which is a concept in wireless communication for
bandwidth as well. We give an example of how to repair double characterizing the degree of freedom of a wireless network.

failures in thfe Suh-Ramchandran regenerating code with siX The regenerating code by Suh and Ramchandran [4] is one
nodes, and give the proof for the general case. class of regenerating code constructed using this teckniqu
_ Index Terms—Distributed storage systems, regenerating codes, The Suh-Ramchandran code is designed for repairing single
interference alignment, super-regular marix. failure. For multiple failures, it was shown by Hat al.in [5]
that by enabling data exchange, the repair bandwidth per new
node can be further reduced. Suppose that we want to repair
In a distributed storage system, we encode and distribyt@ajlures simultaneously. The repair process is divided int
a data file of sizeB3 to n storage nodes, with two propertieswo phases. In the first phase, each newcomer downlGads
that (|) anyk nOdeS are SuffiCient in rebuilding the Ol’iginal ﬁlepackets from a set Qf Surviving nodesl The System parameter
and (i) upon the failure of one or more storage nodes, we cgfs often called theepair degree In the second phase, each
recover the lost information efficiently. Property (i) islled  pajr of newcomers exchangg packets in both directions. A
the (n, k) recovery property We say that a coding schemeegenerating code which repairs multiple-node failuretjgi
satisfies themaximal-distance separable (MDS) propeity according to this two-phase protocol will be referred to as
the (n, k) recovery property is satisfied and each node storggoperativeor collaborative regenerating code. The repair
B/k units of data. The MDS property can be achieved bysndwidth per new node is denoted by= dj; + (r — 1)85s.
conventional MDS codes such as the Reed-Solomon (RS)t was shown in[[B] that for any cooperative regenerating

codes. However, the communication and traffic required ghde satisfying the MDS property, the repair bandwidth is
repairing a failed node is very large if RS codes are emplpyggwer bounded by

as the whole file must be downloaded before we re-encode the

lost data in the failed node. The amount of traffic, measured M (1)

in the number of packets transmitted from the surviving sode ~ k(d+r—k)

to the new node, is coinegpair bandwidthby Dimakiset al. A cooperative regenerating code satisfying the MDS prgpert

in [Z]. A lower bound on repair bandwidth is derived in theand [1) with equality is called minimum-storage coopemtiv

same work. A coding scheme with repair bandwidth attainirrggenerating (MSCR) code. On the other hand, if the storage

the lower bound is called eegenerating code in each node is allowed to be larger thBrk, then the repair
The repair of failed storage nodes can be carried out llandwidth of a cooperative regenerating code is lower bednd

two ways. In the first one, calledxact repair the contents by

of the new nodes are exactly the same as the failed ones. N> B(2d +r — 1)_ )

The second ifunctional repair in which the content need ~ kQd+r—k)

not be recovered exactly, but tie, k) recovery property is A cooperative regenerating code satisfyiily (2) with edyis
maintained. Exact repair has the advantage that we can sigified minimum-bandwidth cooperative regenerating (MBCR
the data file in an uncoded form in some nodes, called thgde. When- = 1, the bounds in[{1) and(2) reduce to those
systematic nodesvhile the other nodes store the parity-checfgy single-node repair i [1].
data. In case we want to look up a small portion of the dataThere are some existing constructions of exact-repair MSCR
_ _ ; and MBCR codes[[7]£[11]. These constructions are summa-
This work was partially supported by a grant from the Uniitgr&rants . d in Tablell. F f ti | ir the tradeoff
Committee of the Hong Kong Special Administrative Regiohjn@ (Project rzed in la e . For . unctiona repa”: € . ra ?O curve
No. AoE/E-02/08). between repair bandwidth and storage is derived_ in [12].
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TABLE | . .
EXPLICIT CONSTRUCTIONS OF COOPERATIVE REGENERATING copes ~ Xi» and the vector stored in nodet-i bey;. Let X (resp.Y)

be thek x k matrix whose columns arg; (resp.y;).

[ type | parameters | reference ] The Suh-Ramchandran regenerating code can be constructed
MoLR nz Zi:' h=d . in two ways. In the first way, the data packets stored in nodes
VIBCR n=drrdS kTSI 5 1 to k are uncoded symbols, and the packets stored in nodes
MBCR n>d+r,d>kr>1 10 k+1 to 2k are obtained by some linear transformation on the
MSCR | n=d+r,d>k k=2 r=2 A1 packets in nodes 1 tb, i.e., nodes 1 td are the systematic
MSCR| n=dtr=2k k>3 r=2 | this paper nodes, and nodgs+ 1 to 2k are the parity-check nodes. The

parity-check symbols in nodds+ 1 to n are generated by
() t

The objective of this paper is to show that the structure Y = VXU +eXP. ©®)

of the Suh-Ramchandran regenerating code also suppdre variablej ande are elements iif, to be determined later.

multiple-node repair. This disproves the assertioriin fthat If we let .

“it is not possible to repair exactly MSCR code with> 3,

r > 2,d > k in the scalar case.” After reviewing the Suh- 7= > puXe

Ramchandran construction in Sectioh I, we state the main ) gz_l ) .

result of this paper in Sectidilll. In SectiéillV, an exampl® e thej-th column in matrixXP, then we write[(5) in an

with (n, k) = (6,3) is given. The proof of the main theorem@ltérnate way as

is stated in Sectioh1V. k
= (6 ff-ut-x-) + €z, [
Il. THE SUH-RAMCHANDRAN CONSTRUCTION Yi ( ; LT I ®)
In the Suh-Ramchandran construction, the number of nodﬁ)sr.j —1,2,... k.

n, can be any integer larger than or equabio For the ease | the second way of constructing the Suh-Ramchandran
of presentation, we focus on the case= 2k in this paper. regenerating code, the packets in notlesl to 2% are treated
We will use notations different from those inl [4], in order to5 information packets, while the packets in nodes & e

emphasize the symmetry of the code, which will be crucial iﬁ‘arity-check packets. The matrX is obtained fromY by
the derivation of multiple-node recovery process.

Let F, denote a finite field of sizg. Each data symbol is X =dUY'V+€YQ, (6)
regarded as a finite field element, and we will use a symbol\%erey
a unit of data. A symbol will also be calledpacket The data
file is divided into many data chunks, each containig- k2 , i
symbols. All data chunks are encoded and treated in the same Zj = Z a5y
way. Hence, we only need to describe the operations on one =1
data chunk, and without loss of generality, we can assunte tkadenoted thg-th column of matrixY Q. Forj = 1,2,.. ., k,

and¢’ are elements ifff,. We use the notation

the data file consists of exactly? symbols. the data stored in nodgcan be expressed as
The construction requires four non-singukax k& matrices k
U = [uj], V = [v], P = [pi;] andQ = P~! = [g;] over x;j = (6’Zﬁiv§-yi) + 'z @)
IF,, satisfying i=1
U=VPandV =UQ. 3 The equivalence of these two ways of encoding is shown
Denote the columns 68 by u;, us, .. ., uy, and the columns N the next theorem.

of Vbyvy,va,...,vi. The cplumns oU andV are regarded Theorem 1. Let F(X) = dVX'U + ¢XP and G(Y) =
as bases of;, and the matrice® andQ are the change-of- 5/{JY*V + ¢'YQ be linear transformations from the vector
basis matrices; the transformations|[ih (3) are equivatent t space ofk x k matrices to itself. If we choosk &', e and ¢’

u; = p1;v1 + p2ive + -+ PriVi, such that
Vi = quiuy + Gagu2 + - - -+ qriUg, 60’ + e =1, and @)
fori=1,2,...,k Let ed + 8 =0, (8)
U= (U)~! andV := (VH) !, ) then the cc_)mpositionsF oG and G o F are the identity
transformation.

where the superscript denotes the transpose operator.
The columns of U (resp. V) form the dual basis of
up, uy,...,uy (resp.vi,vs,...,vy). Let the columns ofU G(F (X)) = d'U(SUX V! + eP'XHV
be iy, 0o, . . ., 0y, and the columns oV be vy, Vo, ..., V. + (VXU + eXP)Q

Each node stores a column vector of lengtbver F,. For , , , <t
i=1,2,...,k, let the vector stored in nodebe denoted by = (68" + €)X + (e + € )VXTV = X.

Proof: For all k£ x k matricesX, we have



The proof of F(G(Y)) =Y is similar. B Let F;; be the left-hand side of the above equation, regarded
In [4], Suh and Ramchandran prove the following. as a mutli-variate polynomial im;'s and b;’s. Constructing

Theorem 2 ( [4]). The Suh-Ramchandran regenerating codés Cauchy matrixP satisfying the conditions in Theoref 3

satisfies the MDS property if all square submatrices of matria_[mounts ;o :éngiln;:j;tse da?(;j abjnsons_l;(é?o t:g;sttgﬁmproguct
P are non-singular. 1<i,j<k ' i By

Schwartz-Zippel lemma (see e.@. [14, Corollary 19.18]is th
We will call a matrixsuper-regulaif all square submatrices can be done if the finite field sizgis sufficiently large.

are non-singular. It can be proved that the inverse of a sup

regular matrix is also super-regular. Therefore in ThedB&m

it is equivalent to pick the matriQ) to be super-regular.

gorollary 4. With sufficiently large finite field,, we can re-
pair single and double node failures in the Suh-Ramchandran
regenerating code with optimal repair bandwidth.

HI. MAIN RESULT IV. AN EXAMPLE FORn =6 AND k=3

The main result of th_'s paper 1S _to _shovy _that th_e _SUh' In this section, we illustrate how to repair two node faikire
Ramchandran regenerating code, which is originally ainaing in the rate? /2 Suh-Ramchandran code far— 6 nodes.

repairing single-node failure, can repair the followindtpms .
P g sing P gip Encoding. There areB = 9 symbols to be encoded and

of multiple-node failures with minimal repair bandwidth. .
distributed ton = 6 storage nodes. Let us agree that the

Theorem 3. Suppose that in the Suh-Ramchandran construfirst three nodes are systematic nodes, and the last three
tion, the parametersV, P, ¢, d, ¢ and ¢’ are chosen such nodes are parity-check nodes. Each node stores a column

that vector of length 3. We eV = [vy|vs|v3] be a non-singular
« Vis ak x k non-singular matrices ovef,, 3 x 3 matrices, andP = [p;;]7,_, be a Cauchy matrix,
« Pis ak x k super-regular matrices over,, so that the MDS property is guaranteed by Theokém 2. Let
e ¢ 0, ¢ and ¢’ are non-zero and satisff]) and (8), U = [ui|uz|us] = VP and denote the inverse @& by
e pijqii # 1 foralliandjin {1,2,... k}. Q=P " =g} ;_
Then we can exactly repair The encoding is illustrated in the following table:
« 7 systematic nodes, for anybetween 1 and, | Node | Content |
« 7 parity-check nodes, for any between 1 and, 1 X1
« any pair of systematic node and parity-check node, 2 Xo
with repair bandwidth attaining the lower bound {@) and 3 X3
repa?r degreed qual ton minus the number of failed nodes 4 vy = 623,1 vulx; + ez
repaired cooperatively. =2 '
. . . . 5 Y2 = 0 23»:1 {Ijung + €zo
The proof of Theorerh]3 is given in Sectibd V. J
We need to choose the coding coefficients such that the 6 Y3 = 62?:1 vijubx; + ez3
conditions in Theorer]3 are satisfied. First of all, if we sgua , . .
both sides of[{7) and18) and subtract, we get . Repair. Upon the_ failure of tv_vo ;torage nodes, each surviv-
ing node sends a linear combination of the stored symbols to
(62 =) ((6")* = ()?) =1. each of the failed node. The first phase of the repair proeedur
is as follows.

Hence, we havé? # ¢2 and(§')? # (¢')2. As the determinant

of the 2 x 2 matrix in 1) If node i is one of the failed node, foi = 1,2,3,

a surviving node takes the inner product of the stored

{5 E] [5/} — H 9) vector andv;, and sends it to newcomer
e 0] € 0 2) If node3 + j is one of the failed node, fof = 1,2, 3,
is necessarily non-zero, we can chodsande to be a pair of a surviving node takes the inner product of the stored
nonzero elements ifi, such thats? # ¢2, and then obtain’ vector andu;, and sends it to newcomar+ ;.
andd’ by solving [9). The values of andd’ so obtained are By the symmetry of the code structure, it is sufficient to
provably non-zero. discuss the repair of (i) two parity-check nodes, and (ii¢ on
Secondly, for a Cauchy matriR = [(a; —b;) '], the(j,i)- Systematic node and one parity check node.
entry of P~! can be calculated by Repair of two parity-check nodes.Without loss of gen-
osi(bi —ae) Tlos;(ai — be) e_rality, we consider the_z repair of nodes 4 and 5. After the
qji = (a; — bj) _ : b b)) (10) first phase of the repair process, newcomer 4 receives four
Hf#i(al - al) Hé;éj( J f) symbols,

See for example [13] for a derivation df_(10). Whence, the
conditionp;;q;; # 1 is equivalent to

The symbols received by newcomer 5 are
H(bj —ag) - H(ai —bg) — H(ai —ay) - H(b_j —by) #0.

¢ t t t ¢ t
(4i 4] 1£i 4] U3X1, UsXa, Usxs andugys = Jugzg + eugzs.

uix;, uix,, ulxs andulys = dulz; + eulz;.



Recall that newcomer 5 wants to compute V. PROOF OF THEMAIN THEOREM

We use the first encoding method of the Suh-Ramchandran
code; the entries iX are the source symbols and the entries in
The first term can be obtained frombx;, ubxs andubxs. Y are the parity-check symbols calculated By (5). In the first
For the second term, newcomer 5 first calculates phase of the repair procedure, the packet sent from a sogvivi
node to a newcomer is computed as follows:

1 1) If nodei is one of the failed node, far=1,2,...,k,

U—ézQ = g(ut2y3 — ep13ubXy — €pazubxs — ep33u§><3). then a surviving node takes the inner product of the

stored vector and;, and sends it to newcomer
and then asks newcomer 4 for a copy 2) If nodek+i is one of the failed node, far=1,2, ...k,
ulzy = prulx; 4 porulxy + pajulxs, then a surviving node takes the inner product of the
stored vector andh;, and sends it to newcomér+ <.

Y2 = 5({’1115)(1 + ‘/}QUZXQ + {73115X3) + €zo. (11)

t t t t
UyZo = P12UgX] + P22UsXa + P32UsXs3,

which can be computed by newcomer 4. In the computation
of ulz,, it is obvious that we need to impose the condition
thatd # 0. Then, by the linear independence wf, u, and
us, hewcomer 5 can regenerating the second ter ih (11).

Similarly, newcomer 4 can regenerate after newcomer 5
has sentuz; to newcomer 4.

Repair of a systematic node and a parity-check node.
Without loss of generality, we consider the repair of nodes 1
and 5. After the first phase of the repair process, newcomer 1 b .
receivesvix,, vixs, (52 Vfuixl) + €zi.

Repair of r parity-check or systematic nodes] < r < k.
By the symmetry betweeK and, it suffices to consider
the repair of parity-check nodes.

Suppose that nodds+ 1 to k +r fail. Fori =1,2,...,r,
the symbols received by newcomer+ i are ulx; to ulxy
andujy; = dulz; +eufz; forj=r+1,7+2,... k.

Recall that newcomek + ¢ wants to regenerate

=1
Viyr = duix; + evizi, andviys = dusx; + evizs, The first term is known to newcomeért i after the first phase,
and can be reconstructed fromix; to u‘x;. For the second

while newcomer 5 receives)xs, ubxs, '
term, newcomek -+ ¢ calculates

t t t t t t
uyy1 = du;zg + €uyzy, anduyys = dujze + euyzs.

k
. L . t, — ut
Newcomer 5 computes a linear combination of the received u;z; = thuiva and
symbols, =1 )
1 €
qu1uby1 + gz1ubys + (8 + €)[pa2qa1ubxa + p3agarubxs). UE‘Zi = guzt'}’j I ( szjuﬁxe),
=1

The coefficients are chosen so that it can be simplified to ,
forj=r+1,r+2,...,k, and asks the other— 1 newcomers

6viza + (€ — (e 4 6)p1agar )ubxy, (12) each for a copy ofiz;, for 1 < j < r,j # i. Using the fact

which is a linear combination of%z, and utx;. (We have thatuhl’uz"l' ' ’llfk are linearly independent, newcome: i

used the orthogonality relatiof} ", picqe; is equal to the can t e.n SOlve 10E;. ) _

Kronecker delta functioi;;.) In the second phase of the repair Repair of a systematic node and a parity-check node.

process, newcomer 5 sends the symbalin (12) to newcomer 1SUPPose nodes andk + b fail, wherea andb are integers
Since newcomer 1 knows! x, andv'xs, newcomer 1 can between 1 andc. We want to replace them by newcomer

compute and newcomef; + b. Let [k] denote{1,2,...,k}.
. . After the first phase of the repair process, newcomer
(0p12vi + (€ = (€ 4+ 6)p12gar)uy)x receives
by subtractingdpsavixs and dpsavixs. Next, newcomer 1 vix; fori e [k]\ {a}, and
calculates

vflyj = 5u§»xa + evflzj for j € [k]\ {b},
viy) — epaivixa — epa1vixs = (du} + ep11vi)x;, and

t t t t t
ViYs — €pagViXa — €p33viXs = (dug + ep13vi)x1.

and newcomek; + b receives
ujx; for i € [k] \ {a}, and
The vectorx; can be recovered if the matrix uly; = 5u§zb +eulz, for j € [k]\ {b}.
(€ = (e + 0)p12ga1)ub + dp1avy
dul + epr1vi
dul + ep13vi t t
is non-singular. Z Gjaupy; + (0 +¢€) Zpib%aubxi
Using the symmetry of the code, newcomer 5 can recover ”ébt i7a .
the lost information in a similar way. = 6vazp + (€ — (€ + 0)pabva)UpXa,

In the second phase, newconiet b sends the linear combi-
nation



where j runs over[k] \ {b} and: runs over[k] \ {a}, toO
newcomera. Newcomerq then calculates

(6pabvl, + (€ — (€ + 8)Pabbay) Xa,

and (0u’ 4 ep,;vl )%, for j € [k]\ {b}. The vectorx, can be
recovered if the followingk x & matrix

[(e — (€ + 0)Pabgba)uf + dpapVh]
dul + epa1vl

5u271 + epa_,b,lvfl (13)

t t
oy, + €Pabi1Vy,

t t
L §uk + €Pak Vg .

where

_ |€— (E + 5)pabqba 0
A= [ 0 51}

is a diagonal matrix, and

g = |: 6pab :| h _ |: dba :|
€Pa,k\{b}] Ak)\{b}.a

are column vectors.

The first summand is non-singular because(e + 0)pasGpa
and o are non-zero. By the Sherman-Morrison formulal [15,
p.18], we see that the matrix ih (13) is invertible if

1+hiAlg

is non-zero. Using the identitEIZ:lpagqga = 1, the above

is non-singular. We will show in Prop] 5 that the determi”a@pression can be simplified to

of this matrix is non-zero ip.,qpq 7 1.
Using the symmetric of the code, newcomeer b can
recover the lost information after receiving

Sulzl + (€ — (€ + 8 )qaPab)Viys

from newcomer, provided thatp,,qp, 7 1.

Proposition 5. Suppose thaV, P, ¢, §, ¢ and ¢’ satisfy the

e(e +6)(1 = pavgpa)®
€ — (E + 6)pabqba

which is nonzero because# 0, 62 # €2, andpgrqpe # 1. B

VI. CONCLUDING REMARKS
In this paper we show that with the regenerating code

criteria in TheoreniB. Then the determinant of the matrix ifonstructed by Suh and Ramchandran, which is originally

(13) is non-zero.

Proof: We divide the proof into two cases.

designed for repairing any single node failure, multiptete
failures can also be repaired cooperatively with optimphie
bandwidth. Indeed, we can repair any set of systematic nodes

Case 1:e — (¢ + 0)pavgoa = 0. In this case, we can row- gny set of parity-check nodes, or any pair of nodes. However,

reduce the matrix in((13) to

|: 6pabvfz ]
t
OU\ 16}

t
NG
where Uy 13y denotes thes x (k — 1) matrix

6pab Z?:l q€aui‘|

Upippy = [ Wi Wy ] .

It can further be row-reduced to a non-singular matrix, an(ﬂZ]

thus has non-zero determinant.
Case 2:¢ — (e + 0)pavrqva # 0. After substitutingv, by
Zif:l qeqaug, the matrix in [I8) can be factored as

€ — €Pabqba 5pabq)[§k]\{b}t7a { tU-Z ]
€qbaPa,k\{b} OL+ €Pa,[k\ {6} A[k]\ {b} ,a U[k]\{b}
(14)

wherel is the (k — 1) x (k — 1) identity matrix, p, [\ 15} iS
the column vector
Pa,[E]\{b} = [pal *Pa,b—1 Pa,b+1 " 'pak]ta

andq)\ (s}, IS the column vector

the technique that we used in this paper cannot be extended to
the optimal repair of one systematic node and two parityckhe
nodes.
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