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Abstract— Using the idea of interference alignment, Suh and
Ramchandran constructed a class of minimum-storage regen-
erating codes which can repair one systematic or one parity-
check node with optimal repair bandwidth. With the same code
structure, we show that in addition to single node failure, double
node failures can be repaired collaboratively with optimalrepair
bandwidth as well. We give an example of how to repair double
failures in the Suh-Ramchandran regenerating code with six
nodes, and give the proof for the general case.

Index Terms—Distributed storage systems, regenerating codes,
interference alignment, super-regular matrix.

I. I NTRODUCTION

In a distributed storage system, we encode and distribute
a data file of sizeB to n storage nodes, with two properties
that (i) anyk nodes are sufficient in rebuilding the original file,
and (ii) upon the failure of one or more storage nodes, we can
recover the lost information efficiently. Property (i) is called
the (n, k) recovery property. We say that a coding scheme
satisfies themaximal-distance separable (MDS) propertyif
the (n, k) recovery property is satisfied and each node stores
B/k units of data. The MDS property can be achieved by
conventional MDS codes such as the Reed-Solomon (RS)
codes. However, the communication and traffic required in
repairing a failed node is very large if RS codes are employed,
as the whole file must be downloaded before we re-encode the
lost data in the failed node. The amount of traffic, measured
in the number of packets transmitted from the surviving nodes
to the new node, is coinedrepair bandwidthby Dimakiset al.
in [1]. A lower bound on repair bandwidth is derived in the
same work. A coding scheme with repair bandwidth attaining
the lower bound is called aregenerating code.

The repair of failed storage nodes can be carried out in
two ways. In the first one, calledexact repair, the contents
of the new nodes are exactly the same as the failed ones.
The second isfunctional repair, in which the content need
not be recovered exactly, but the(n, k) recovery property is
maintained. Exact repair has the advantage that we can store
the data file in an uncoded form in some nodes, called the
systematic nodes, while the other nodes store the parity-check
data. In case we want to look up a small portion of the data
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file, we can connect to the node which holds that particular
portion, without downloading the whole file. There are several
existing constructions of regenerating codes for exact repair.
One approach is to apply idea frominterference alignment
[2], [3], which is a concept in wireless communication for
characterizing the degree of freedom of a wireless network.
The regenerating code by Suh and Ramchandran [4] is one
class of regenerating code constructed using this technique.

The Suh-Ramchandran code is designed for repairing single
failure. For multiple failures, it was shown by Huet al. in [5]
that by enabling data exchange, the repair bandwidth per new
node can be further reduced. Suppose that we want to repair
r failures simultaneously. The repair process is divided into
two phases. In the first phase, each newcomer downloadsβ1

packets from a set ofd surviving nodes. The system parameter
d is often called therepair degree. In the second phase, each
pair of newcomers exchangeβ2 packets in both directions. A
regenerating code which repairs multiple-node failure jointly
according to this two-phase protocol will be referred to as
cooperativeor collaborative regenerating code. The repair
bandwidth per new node is denoted byγ = dβ1 + (r − 1)β2.

It was shown in [6] that for any cooperative regenerating
code satisfying the MDS property, the repair bandwidth is
lower bounded by

γ ≥
B(d+ r − 1)

k(d+ r − k)
. (1)

A cooperative regenerating code satisfying the MDS property
and (1) with equality is called minimum-storage cooperative
regenerating (MSCR) code. On the other hand, if the storage
in each node is allowed to be larger thanB/k, then the repair
bandwidth of a cooperative regenerating code is lower bounded
by

γ ≥
B(2d+ r − 1)

k(2d+ r − k)
. (2)

A cooperative regenerating code satisfying (2) with equality is
called minimum-bandwidth cooperative regenerating (MBCR)
code. Whenr = 1, the bounds in (1) and (2) reduce to those
for single-node repair in [1].

There are some existing constructions of exact-repair MSCR
and MBCR codes [7]–[11]. These constructions are summa-
rized in Table I. For functional repair, the tradeoff curve
between repair bandwidth and storage is derived in [12].
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TABLE I
EXPLICIT CONSTRUCTIONS OF COOPERATIVE REGENERATING CODES.

type parameters reference

MSCR n ≥ d+ r, k = d [7]
MBCR n = d+ r, d = k [8]
MBCR n = d+ r, d ≥ k, r ≥ 1 [9]
MBCR n ≥ d+ r, d ≥ k, r ≥ 1 [10]
MSCR n = d+ r, d ≥ k, k = 2, r = 2 [11]
MSCR n = d+ r = 2k, k ≥ 3, r = 2 this paper

The objective of this paper is to show that the structure
of the Suh-Ramchandran regenerating code also supports
multiple-node repair. This disproves the assertion in [11]that
“it is not possible to repair exactly MSCR code withk ≥ 3,
r ≥ 2, d > k in the scalar case.” After reviewing the Suh-
Ramchandran construction in Section II, we state the main
result of this paper in Section III. In Section IV, an example
with (n, k) = (6, 3) is given. The proof of the main theorem
is stated in Section V.

II. T HE SUH-RAMCHANDRAN CONSTRUCTION

In the Suh-Ramchandran construction, the number of nodes,
n, can be any integer larger than or equal to2k. For the ease
of presentation, we focus on the casen = 2k in this paper.
We will use notations different from those in [4], in order to
emphasize the symmetry of the code, which will be crucial in
the derivation of multiple-node recovery process.

Let Fq denote a finite field of sizeq. Each data symbol is
regarded as a finite field element, and we will use a symbol as
a unit of data. A symbol will also be called apacket. The data
file is divided into many data chunks, each containingB = k2

symbols. All data chunks are encoded and treated in the same
way. Hence, we only need to describe the operations on one
data chunk, and without loss of generality, we can assume that
the data file consists of exactlyk2 symbols.

The construction requires four non-singulark × k matrices
U = [uij ], V = [vij ], P = [pij ] andQ = P−1 = [qij ] over
Fq, satisfying

U = VP andV = UQ. (3)

Denote the columns ofU by u1,u2, . . . ,uk, and the columns
of V byv1,v2, . . . ,vk. The columns ofU andV are regarded
as bases ofFk

q , and the matricesP andQ are the change-of-
basis matrices; the transformations in (3) are equivalent to

ui = p1iv1 + p2iv2 + · · ·+ pkivk,

vi = q1iu1 + q2iu2 + · · ·+ qkiuk,

for i = 1, 2, . . . , k. Let

Û := (Ut)−1 andV̂ := (Vt)−1, (4)

where the superscriptt denotes the transpose operator.
The columns of Û (resp. V̂) form the dual basis of
u1,u2, . . . ,uk (resp.v1,v2, . . . ,vk). Let the columns ofÛ
be û1, û2, . . . , ûk, and the columns of̂V be v̂1, v̂2, . . . , v̂k.

Each node stores a column vector of lengthk overFq. For
i = 1, 2, . . . , k, let the vector stored in nodei be denoted by

xi, and the vector stored in nodek+ i beyi. Let X (resp.Y)
be thek × k matrix whose columns arexi (resp.yi).

The Suh-Ramchandran regenerating code can be constructed
in two ways. In the first way, the data packets stored in nodes
1 to k are uncoded symbols, and the packets stored in nodes
k+1 to 2k are obtained by some linear transformation on the
packets in nodes 1 tok, i.e., nodes 1 tok are the systematic
nodes, and nodesk+1 to 2k are the parity-check nodes. The
parity-check symbols in nodesk + 1 to n are generated by

Y = δV̂XtU+ ǫXP. (5)

The variableδ andǫ are elements inFq to be determined later.
If we let

zj :=

k
∑

ℓ=1

pℓjxℓ

to be thej-th column in matrixXP, then we write (5) in an
alternate way as

yj =
(

δ

k
∑

i=1

v̂iu
t
jxi

)

+ ǫzj , (5’)

for j = 1, 2, . . . , k.
In the second way of constructing the Suh-Ramchandran

regenerating code, the packets in nodesk+1 to 2k are treated
as information packets, while the packets in nodes 1 tok are
parity-check packets. The matrixX is obtained fromY by

X = δ′ÛYtV + ǫ′YQ, (6)

whereδ′ andǫ′ are elements inFq. We use the notation

z′j :=

k
∑

ℓ=1

qℓjyℓ

to denoted thej-th column of matrixYQ. Forj = 1, 2, . . . , k,
the data stored in nodej can be expressed as

xj =
(

δ′
k

∑

i=1

ûiv
t
jyi

)

+ ǫ′z′j . (6’)

The equivalence of these two ways of encoding is shown
in the next theorem.

Theorem 1. Let F (X) = δV̂XtU + ǫXP and G(Y) =
δ′ÛYtV + ǫ′YQ be linear transformations from the vector
space ofk × k matrices to itself. If we chooseδ, δ′, ǫ and ǫ′

such that

δδ′ + ǫǫ′ = 1, and (7)

ǫδ′ + δǫ′ = 0, (8)

then the compositionsF ◦ G and G ◦ F are the identity
transformation.

Proof: For all k × k matricesX, we have

G(F (X)) = δ′Û(δUtXV̂t + ǫPtXt)V

+ ǫ′(δV̂XtU+ ǫXP)Q

= (δδ′ + ǫǫ′)X+ (ǫδ′ + δǫ′)V̂XtV = X.



The proof ofF (G(Y)) = Y is similar.
In [4], Suh and Ramchandran prove the following.

Theorem 2 ( [4]). The Suh-Ramchandran regenerating codes
satisfies the MDS property if all square submatrices of matrix
P are non-singular.

We will call a matrixsuper-regularif all square submatrices
are non-singular. It can be proved that the inverse of a super-
regular matrix is also super-regular. Therefore in Theorem2,
it is equivalent to pick the matrixQ to be super-regular.

III. M AIN RESULT

The main result of this paper is to show that the Suh-
Ramchandran regenerating code, which is originally aimingat
repairing single-node failure, can repair the following patterns
of multiple-node failures with minimal repair bandwidth.

Theorem 3. Suppose that in the Suh-Ramchandran construc-
tion, the parametersV, P, ǫ, δ, ǫ′ and δ′ are chosen such
that

• V is a k × k non-singular matrices overFq,
• P is a k × k super-regular matrices overFq,
• ǫ, δ, ǫ′ and δ′ are non-zero and satisfy(7) and (8),
• pijqji 6= 1 for all i and j in {1, 2, . . . , k}.

Then we can exactly repair

• r systematic nodes, for anyr between 1 andk,
• r parity-check nodes, for anyr between 1 andk,
• any pair of systematic node and parity-check node,

with repair bandwidth attaining the lower bound in(1) and
repair degreed equal ton minus the number of failed nodes
repaired cooperatively.

The proof of Theorem 3 is given in Section V.
We need to choose the coding coefficients such that the

conditions in Theorem 3 are satisfied. First of all, if we square
both sides of (7) and (8) and subtract, we get

(δ2 − ǫ2)((δ′)2 − (ǫ′)2) = 1.

Hence, we haveδ2 6= ǫ2 and(δ′)2 6= (ǫ′)2. As the determinant
of the 2× 2 matrix in

[

δ ǫ
ǫ δ

] [

δ′

ǫ′

]

=

[

1
0

]

(9)

is necessarily non-zero, we can chooseδ andǫ to be a pair of
nonzero elements inFq such thatδ2 6= ǫ2, and then obtainǫ′

andδ′ by solving (9). The values ofǫ′ andδ′ so obtained are
provably non-zero.

Secondly, for a Cauchy matrixP = [(ai−bj)
−1], the(j, i)-

entry ofP−1 can be calculated by

qji = (ai − bj)

∏

ℓ 6=i(bj − aℓ)
∏

ℓ 6=i(ai − aℓ)
·

∏

ℓ 6=j(ai − bℓ)
∏

ℓ 6=j(bj − bℓ)
. (10)

See for example [13] for a derivation of (10). Whence, the
conditionpijqji 6= 1 is equivalent to
∏

ℓ 6=i

(bj − aℓ) ·
∏

ℓ 6=j

(ai − bℓ)−
∏

ℓ 6=i

(ai − aℓ) ·
∏

ℓ 6=j

(bj − bℓ) 6= 0.

Let Fij be the left-hand side of the above equation, regarded
as a mutli-variate polynomial inai’s and bj ’s. Constructing
a Cauchy matrixP satisfying the conditions in Theorem 3
amounts to findingai’s and bj ’s such that the product
∏

1≤i,j≤k Fij is evaluated to a non-zero constant inFq. By
Schwartz-Zippel lemma (see e.g. [14, Corollary 19.18]), this
can be done if the finite field sizeq is sufficiently large.

Corollary 4. With sufficiently large finite fieldFq, we can re-
pair single and double node failures in the Suh-Ramchandran
regenerating code with optimal repair bandwidth.

IV. A N EXAMPLE FOR n = 6 AND k = 3

In this section, we illustrate how to repair two node failures
in the rate-1/2 Suh-Ramchandran code forn = 6 nodes.

Encoding. There areB = 9 symbols to be encoded and
distributed ton = 6 storage nodes. Let us agree that the
first three nodes are systematic nodes, and the last three
nodes are parity-check nodes. Each node stores a column
vector of length 3. We letV = [v1|v2|v3] be a non-singular
3 × 3 matrices, andP = [pij ]

3
i,j=1 be a Cauchy matrix,

so that the MDS property is guaranteed by Theorem 2. Let
U = [u1|u2|u3] = VP and denote the inverse ofP by
Q = P−1 = [qij ]

3
i,j=1.

The encoding is illustrated in the following table:

Node Content

1 x1

2 x2

3 x3

4 y1 = δ
∑3

j=1 v̂ju
t
1xj + ǫz1

5 y2 = δ
∑3

j=1 v̂ju
t
2xj + ǫz2

6 y3 = δ
∑3

j=1 v̂ju
t
3xj + ǫz3

Repair. Upon the failure of two storage nodes, each surviv-
ing node sends a linear combination of the stored symbols to
each of the failed node. The first phase of the repair procedure
is as follows.

1) If node i is one of the failed node, fori = 1, 2, 3,
a surviving node takes the inner product of the stored
vector andvi, and sends it to newcomeri.

2) If node3 + j is one of the failed node, forj = 1, 2, 3,
a surviving node takes the inner product of the stored
vector anduj , and sends it to newcomer3 + j.

By the symmetry of the code structure, it is sufficient to
discuss the repair of (i) two parity-check nodes, and (ii) one
systematic node and one parity check node.

Repair of two parity-check nodes.Without loss of gen-
erality, we consider the repair of nodes 4 and 5. After the
first phase of the repair process, newcomer 4 receives four
symbols,

ut
1x1, ut

1x2, ut
1x3 andut

1y3 = δut
3z1 + ǫut

1z3.

The symbols received by newcomer 5 are

ut
2x1, ut

2x2, ut
2x3 andut

2y3 = δut
3z2 + ǫut

2z3.



Recall that newcomer 5 wants to compute

y2 = δ(v̂1u
t
2x1 + v̂2u

t
2x2 + v̂3u

t
2x3) + ǫz2. (11)

The first term can be obtained fromut
2x1, ut

2x2 andut
2x3.

For the second term, newcomer 5 first calculates

ut
2z2 = p12u

t
2x1 + p22u

t
2x2 + p32u

t
2x3,

ut
3z2 =

1

δ

(

ut
2y3 − ǫp13u

t
2x1 − ǫp23u

t
2x2 − ǫp33u

t
2x3

)

.

and then asks newcomer 4 for a copy

ut
1z2 = p11u

t
1x1 + p21u

t
1x2 + p31u

t
1x3,

which can be computed by newcomer 4. In the computation
of ut

3z2, it is obvious that we need to impose the condition
that δ 6= 0. Then, by the linear independence ofu1, u2 and
u3, newcomer 5 can regenerating the second term in (11).

Similarly, newcomer 4 can regeneratey1 after newcomer 5
has sentut

2z1 to newcomer 4.

Repair of a systematic node and a parity-check node.
Without loss of generality, we consider the repair of nodes 1
and 5. After the first phase of the repair process, newcomer 1
receivesvt

1x2, vt
1x3,

vt
1y1 = δut

1x1 + ǫvt
1z1, andvt

1y3 = δut
3x1 + ǫvt

1z3,

while newcomer 5 receivesut
2x2, ut

2x3,

ut
2y1 = δut

1z2 + ǫut
2z1, andut

2y3 = δut
3z2 + ǫut

2z3.

Newcomer 5 computes a linear combination of the received
symbols,

q11u
t
2y1 + q31u

t
2y3 + (δ + ǫ)[p22q21u

t
2x2 + p32q21u

t
2x3].

The coefficients are chosen so that it can be simplified to

δvt
1z2 + (ǫ − (ǫ+ δ)p12q21)u

t
2x1, (12)

which is a linear combination ofvt
1z2 andut

2x1. (We have
used the orthogonality relation

∑

ℓ piℓqℓj is equal to the
Kronecker delta functionδij .) In the second phase of the repair
process, newcomer 5 sends the symbol in (12) to newcomer 1.

Since newcomer 1 knowsvt
1x2 andvt

1x3, newcomer 1 can
compute

(

δp12v
t
1 + (ǫ − (ǫ+ δ)p12q21)u

t
2

)

x1

by subtractingδp22vt
1x2 and δp32v

t
1x3. Next, newcomer 1

calculates

vt
1y1 − ǫp21v

t
1x2 − ǫp31v

t
1x3 = (δut

1 + ǫp11v
t
1)x1, and

vt
1y3 − ǫp23v

t
1x2 − ǫp33v

t
1x3 = (δut

3 + ǫp13v
t
1)x1.

The vectorx1 can be recovered if the matrix




(ǫ− (ǫ + δ)p12q21)u
t
2 + δp12v

t
1

δut
1 + ǫp11v

t
1

δut
3 + ǫp13v

t
1





is non-singular.
Using the symmetry of the code, newcomer 5 can recover

the lost information in a similar way.

V. PROOF OF THEMAIN THEOREM

We use the first encoding method of the Suh-Ramchandran
code; the entries inX are the source symbols and the entries in
Y are the parity-check symbols calculated by (5). In the first
phase of the repair procedure, the packet sent from a surviving
node to a newcomer is computed as follows:

1) If node i is one of the failed node, fori = 1, 2, . . . , k,
then a surviving node takes the inner product of the
stored vector andvi, and sends it to newcomeri.

2) If nodek+i is one of the failed node, fori = 1, 2, . . . , k,
then a surviving node takes the inner product of the
stored vector andui, and sends it to newcomerk + i.

Repair of r parity-check or systematic nodes,1 ≤ r ≤ k.
By the symmetry betweenX andY, it suffices to consider

the repair of parity-check nodes.
Suppose that nodesk + 1 to k + r fail. For i = 1, 2, . . . , r,

the symbols received by newcomerk + i are ut
ix1 to ut

ixk

andut
iyj = δut

jzi + ǫut
izj for j = r + 1, r + 2, . . . , k.

Recall that newcomerk + i wants to regenerate

(

δ

k
∑

ℓ=1

v̂ℓu
t
ixℓ

)

+ ǫzi.

The first term is known to newcomerk+i after the first phase,
and can be reconstructed fromut

ix1 to ut
ixk. For the second

term, newcomerk + i calculates

ut
izi =

k
∑

ℓ=1

pℓiu
t
ixℓ, and

ut
jzi =

1

δ
ut
iyj −

ǫ

δ

(

k
∑

ℓ=1

pℓju
t
ixℓ

)

,

for j = r+1, r+2, . . . , k, and asks the otherr−1 newcomers
each for a copy ofut

jzi, for 1 ≤ j ≤ r, j 6= i. Using the fact
thatu1,u2, . . . ,uk are linearly independent, newcomerk + i
can then solve forzi.

Repair of a systematic node and a parity-check node.
Suppose nodesa andk+ b fail, wherea andb are integers

between 1 andk. We want to replace them by newcomera
and newcomerk + b. Let [k] denote{1, 2, . . . , k}.

After the first phase of the repair process, newcomera
receives

vt
axi for i ∈ [k] \ {a}, and

vt
ayj = δut

jxa + ǫvt
azj for j ∈ [k] \ {b},

and newcomerk + b receives

ut
bxi for i ∈ [k] \ {a}, and

ut
byj = δut

jzb + ǫut
bzj for j ∈ [k] \ {b}.

In the second phase, newcomerk+ b sends the linear combi-
nation

∑

j 6=b

qjau
t
byj + (δ + ǫ)

∑

i6=a

pibqbau
t
bxi

= δvt
azb + (ǫ − (ǫ+ δ)pabqba)u

t
bxa,



where j runs over[k] \ {b} and i runs over [k] \ {a}, to
newcomera. Newcomera then calculates

(

δpabv
t
a + (ǫ − (ǫ+ δ)pabqbau

t
b

)

xa,

and(δut
j + ǫpajv

t
a)xa for j ∈ [k] \ {b}. The vectorxa can be

recovered if the followingk × k matrix
























(ǫ− (ǫ + δ)pabqba)u
t
b + δpabv

t
a

δut
1 + ǫpa1v

t
a

...
δut

b−1 + ǫpa,b−1v
t
a

δut
b+1 + ǫpa,b+1v

t
a

...
δut

k + ǫpakv
t
a

























(13)

is non-singular. We will show in Prop. 5 that the determinant
of this matrix is non-zero ifpabqba 6= 1.

Using the symmetric of the code, newcomerk + b can
recover the lost information after receiving

δ′ut
bz

′
a + (ǫ′ − (ǫ′ + δ′)qbapab)v

t
ayb

from newcomera, provided thatpabqba 6= 1.

Proposition 5. Suppose thatV, P, ǫ, δ, ǫ′ and δ′ satisfy the
criteria in Theorem 3. Then the determinant of the matrix in
(13) is non-zero.

Proof: We divide the proof into two cases.
Case 1:ǫ − (ǫ + δ)pabqba = 0. In this case, we can row-

reduce the matrix in (13) to
[

δpabv
t
a

δUt
[k]\{b}

]

=

[

δpab
∑k

ℓ=1 qℓau
t
ℓ

δUt
[k]\{b}

]

whereU[k]\{b} denotes thek × (k − 1) matrix

U[k]\{b} =
[

u1 . . . ub−1 ub+1 . . . uk

]

.

It can further be row-reduced to a non-singular matrix, and
thus has non-zero determinant.

Case 2:ǫ − (ǫ + δ)pabqba 6= 0. After substitutingva by
∑k

ℓ=1 qℓauℓ, the matrix in (13) can be factored as
[

ǫ− ǫpabqba δpabq
t
[k]\{b},a

ǫqbapa,[k]\{b} δI+ ǫpa,[k]\{b}q
t
[k]\{b},a

]

[

ut
b

Ut
[k]\{b}

]

(14)
whereI is the(k − 1)× (k − 1) identity matrix,pa,[k]\{b} is
the column vector

pa,[k]\{b} := [pa1 · · · pa,b−1 pa,b+1 · · · pak]
t,

andq[k]\{b},a is the column vector

q[k]\{b},a := [q1a · · · qb−1,a qb+1,a · · · qka]
t.

The non-singularity of (13) is equivalent to the non-
singularity of the first factor in (14), which in turn can be
decomposed as

A+ ght,

where

A =

[

ǫ − (ǫ+ δ)pabqba 0

0 δI

]

is a diagonal matrix, and

g =

[

δpab
ǫpa,[k]\{b}

]

, h =

[

qba
q[k]\{b},a

]

are column vectors.
The first summand is non-singular becauseǫ−(ǫ+δ)pabqba

and δ are non-zero. By the Sherman-Morrison formula [15,
p.18], we see that the matrix in (13) is invertible if

1 + htA−1g

is non-zero. Using the identity
∑k

ℓ=1 paℓqℓa = 1, the above
expression can be simplified to

ǫ(ǫ + δ)(1− pabqba)
2

ǫ− (ǫ + δ)pabqba
,

which is nonzero becauseǫ 6= 0, δ2 6= ǫ2, andpabqba 6= 1.

VI. CONCLUDING REMARKS

In this paper we show that with the regenerating code
constructed by Suh and Ramchandran, which is originally
designed for repairing any single node failure, multiple-node
failures can also be repaired cooperatively with optimal repair
bandwidth. Indeed, we can repair any set of systematic nodes,
any set of parity-check nodes, or any pair of nodes. However,
the technique that we used in this paper cannot be extended to
the optimal repair of one systematic node and two parity-check
nodes.
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