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Abstract

For a given family of spatially coupled codes, we prove thatltP threshold on the BSC of the graph cover
ensemble is the same as the LP threshold on the BSC of thedepatially coupled ensemble. This result is in
contrast with the fact that the BP threshold of the deriveatiafly coupled ensemble is believed to be larger than
the BP threshold of the graph cover ensemble [KRU11], [KRUT® prove this, we establish some properties
related to the dual witness for LP decoding which was intoediby [FMS 07] and simplified by [DDKWOB].
More precisely, we prove that the existence of a dual witmgdssh was previously known to be sufficient for
LP decoding success is also necessary and is equivalerd txistence of certain acyclic hyperflows. We also
derive a sublinear (in the block length) upper bound on thghi®f any edge in such hyperflows, both for regular
LPDC codes and for spatially coupled codes and we provetirdidaund is asymptotically tight for regular LDPC
codes. Moreover, we show how to trade crossover probabdityl P excess” on all the variable nodes, for any

binary linear code.
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1 Introduction

1.1 Binary linear codes

A binary linear code of block lengthn is a subspace of thg,-vector spac&’;. Thee-BSC (Binary Sym-
metric Channel) with inpuX € 4 and outpufy” € F7 flips each input bit independently with probability

€. Let~ be the log-likelihood ratio vector which is given by = log (%) = (—1)¥% log % for any

i € {1,...,n}. The optimal decoder is the Maximum Likelihood (ML) decodévich is given by

n

[z pyiix, (wilwo)
Ty = argmax py|x (y|r) = argmax pr|X (yi|z;) = argmax

zeC zeC 3 ze¢ L1 Pyix; (4il0)
n
py;|x; (YilTi) > Pyi|x; (Yilwi) (yilz:)
= argmax log ( ——————~ | = argmax log = argmin YiTs
el 11;[1 Py;1x, (il0) e¢ ; Py;|x; (¥i]0) e ; o

where the second equality follows from the fact that the alehis memoryless. Since the objective function
is linear inz, replacing¢ by the convex spaeonv(() of ¢ does not change the value of the minimal solution.
Hence, we get

Ty = argmin Z’szz 1)
z€conv(() ;1
ML decoding is known to be NP-hard for general binary lineades [BMVT78]. This motivates the study
of suboptimal decoding algorithms that have small runnimgs.

1.2 Linear programming decoding

LP (Linear Programming) decoding was introduced lby [FWK@aBY is based on the idea of replacing

conv(¢) in (M) with a larger subset dk", with the goal of reducing the running time while maintagia

good error correction performance. First, note thatv(¢) = conv( () ;) where(; = {z € {0,1}" :
jec

w(z|n(j)) IS ever}@ for all 5 in the setC' of check nodes corresponding to a fixed Tanner grapf arid

whereN (j) is the set of all neighbors of check nogleThen, LP decoding is given by relaxingnu( () ¢;)
jec

'Forz € {0,1}" andS C {1,...,n}, z|s € {0,1}" denotes the restriction afto S i.e. (z|s); = z; if i € S and(z|s); = 0
otherwise, andv(z) denotes the Hamming weight of



to ﬂ conv((j):

jecC

n
T p = argmin Z%xi (2)
zeP i—1

whereP = () conv((;) is the so-called “fundamental polytope” that will be catlfwwonsidered in the
jeC
proof of The]orenﬁlz. A central property &fis that it can be described by a linear number of inequalities
which means that the linear program (2) can be solved in tiohmpmial inn using the ellipsoid algorithm
or interior point methods.
When analyzing the operation of LP decoding, one can asshaté¢he all-zeros codeword was transmitted
[FWKO5]. Then, by normalizing the expression for the Idglihood ratioy given in Sectiori 1)1 by the
positive constanlog(l—j), we can assume that the log-likelihood ratio is givemby= 1 if y; = 0 and
vi = —1ify; = 1foralli € {1,...,n}. Asin previous work, we make the conservative assumption
that LP decoding fails whenever there are multiple optinodlittons to the linear progranil(2). In other
words, under the all zeros assumption, LP decoding sucékadd only if the zero codeword is the unique
optimal solution to the linear prograrml (2). In order to shbattLP decoding corrects a constant fraction of
errors when the Tanner graph has sufficient expansion, [FMBintroduced the concept of a dual witness,
which is a dual feasible solution with zero cost and with aegiget of constraints having a positive slack.
By complementary slackness, it follows that the existerfca dual witness implies LP decoding success
[EMST07]. A simplified (but equivalent) version of this dual wisse called a hyperflow, was introduced
in [DDKWOQ38] (and later generalized in [HENL2]) and used toyadhat LP decoding can correct a larger
fraction of errors in a probabilistic setting. This hyperflwill be described in Sectidn 3. However, it was
unkown whether the existence of a hyperflow (or equivaletitht of a dual witness) is necessary for LP
decoding success. We will show, by careful consideratiaih@fundamental polytop®, that this is indeed
the case.

1.3 Spatially coupled codes

The idea of spatial coupling has been recently used in catiegry, compressive sensing and other fields.
Spatially coupled codes (or convolutional LDPC codes) wet®duced in[[JEZ99]. Recently, [KRUL1]
showed that the BP threshold of spatially coupled codesestime as the MAP (Maximum Aposteriori
Probability) threshold of the base LDPC code in the case@®Bihary Erasure Channel (BEC). Moreover,
[KRU12] showed that spatially coupled codes achieve caéparider belief propagation. In compressive
sensing,|[KMS 12] and [DJM12] showed that spatial coupling can be usedsmdelense sensing matrices
that achieve the same peformance as the optigzabrm minimizing compressive sensing decoder. In
coding theory, the intuition behind the improvement in parfance due to spatial coupling is that the check
nodes located at the boundaries have low degrees whichesntild BP algorithm to initially recover the
transmitted bits at the boundaries. Then, the other tratennbits are progressively recovered from the
boundaries to the center of the code. A similar intuitionakibd the good performance of spatial coupling
in compressive sensing [DJM12].

1.4 The conjecture

It was reported by [Burll] that, based on numerical simoitetj spatial coupling does not seem to improve
the performance of LP decoding. This lead to the conjectuaé the LP threshold of a spatially coupled



ensemble on the BSC is the same as that of the base ensemb&turAl mpproach to prove this claim is
twofold:

1. Show that the LP threshold of the spatially coupled ensemtnthe BSC is the same as that of the graph
cover ensemble.

2. Show that the LP threshold of the graph cover ensemble ®B8C is the same as that of the base
ensemble.

1.5 Contributions

We prove the first part of the conjecture. To do so, we proveesganeral results about LP decoding of
LDPC codes that may be of independent interest.

1. We prove that the existence of a dual withess which wasqursly known to be sufficient for LP decoding
success is also necessary and is equivalent to the existénegain acyclic hyperflows (Theordm B.2).

2. We derive a sublinear (in the block length) upper boundhervieight of any edge in the hyperflow, for
regular LDPC codes (Theordm b.1) and spatially coupled ¢@ieeoreni 6]1). In the regular case, we
show that our bound is asymptotically tight (Theofem 5.11).

3. We show how to trade crossover probability for “LP excessall the variable nodes, for any binary linear
code (Theorerm 811).

We leave the second part of the conjecture open.

1.6 Outline

The paper is organized as follows. In Secfidn 2, we forma#yesthe main result of the paper. In Secfion 3,
we prove that the existence of a dual witness which was pusljidknown to be sufficient for LP decoding
success is also necessary and is equivalent to the existéneetain weighted directed acyclic graphs. In
Sectiorf 4, we show how to transform those weighted direatgdlia graphs into weighted directed forests
while preserving their central properties. In Secfibn 5,ps@ve, using the result of Sectiéh 4, a sublinear
(in the block length) upper bound on the weight of any edgeiahgraphs, for regular codes. An analogous
upper bound is proved in Sectibh 6 for spatially coupled sode Sectiori ]7, we relate LP decoding on a
graph cover code and on a spatially coupled code. In Sddtime 8how how to trade crossover probability
for “LP excess” on all the variable nodes, for any binary éineode. The results of Sectidid 6, 7 ahd 8 are
finally used in Sectioh]9 where we prove the main result of tygep

1.7 Notation and terminology

We denote the set of all non-negative integerd\byFor any integers, a, b with n > 1, we denote byn]
the set{1,...,n} and by[a : b] the set{a,...,b}. For any eventd, let A be the complement ofl. For
any vertexv of a graphG, we let N (v) denote the set of all neighbors @fin G. For anyz € {0,1}" and

anyS C [n], letz|s € {0,1}" s.t. (x|g); = z; if i € S and(x|s); = 0 otherwise. A binary linear cod¢
(n—k)xn

can be fully described as the nullspace of a makfix I, , called the parity check matrix @f For
a fixed H, ¢ can be graphically represented by a Tanner gi@pi’, E') which is a bipartite graph where
V = {v1,...,v,} is the set of variable node§; = {ci,...,c,_} is the set of check nodes and for any



i € [n] and anyj € [n — k], (vi,cj) € Eifandonly if H;; = 1. If H is sparse, theq is called a Low
Density Parity Check (LDPC) code. LDPC codes were introdwarad first analyzed by Gallager [Gal62].
If the number of ones in each column Hfis d,, and the number of ones in each rowfis d..,  is called
a(dy,d.)-regular code. We lef, = (d, — 1)/2. Throughout the paper, we assume that., d, > 2.

2 Main result

First, we define the spatially coupled codes under congidera

Definition 2.1. (Spatially coupled code)
A (dy,d. = kd,, L, M) spatially coupled code, witth, an odd integer and/ divisible byk, is constructed
by considering the index st L — d, : L + d,] and satisfying the following conditioffs:

1. M variable nodes are placed at each position[iaL : L] and Mfl—z check nodes are placed at each
position in[—L — d, : L + d,].

2. Foranyj € [-L+d, : L — d,], a check node at positiojiis connected td: variable nodes at position
j+iforallie[—d,:d,].

3. Foranyj € [-L —d, : —L + d, — 1], a check node at positiofis connected td: variable nodes at
positioni forall i € [—L : j + d,].

4. Foranyj € [L — dy+1:L+ ch], a check node at positiohis connected t& variable nodes at position
iforallie[j—d,:Ll.

5. No two check nodes at the same position are connected sathe variable node.

With the exception of the non-degeneracy conditibn 5, DidimiZ.1 above is the same as that given in
Section II-A of [KRU11]. We next define the graph cover codader consideration which are similar to
the tail-biting LDPC convolutional codes introduced by HZ7].

Definition 2.2. (Graph cover code)

A (dy,d. = kd,, L, M) graph cover code, witl, an odd integer and\/ divisible byk, is constructed by
considering the index s¢t L : L] and satisfying the following conditions:

1. M variable nodes and/ ‘jl—z check nodes are placed at each positiof#L : L].

2. Foranyj € [-L : L], a check node at positiofis connected td: variable nodes at positiofyj + )
mod [—L : L]foralli € [—d, : d,].

3. No two check nodes at the same position are connected sathe variable node.

Note that “cutting” a graph cover code at any positian [—L : L] yields a spatially coupled code. This
motivates the following definition.

Definition 2.3. (Derived spatially coupled codes)

Let¢ be a(d,,d. = kd,, L, M) graph cover code. For eache [-L : L], the(d,,d. = kd,, L — cZU,M)
spatially coupled codg! is obtained from( by removing allM variable nodes and their adjacent edges at
each position + j mod [—L : L] for everyj € [0 : 2d, — 1]. Then,D(¢) = {¢";,..., ¢, } is the set of
all 2L + 1 derived spatially coupled codes ¢f

2Informally, 2L + 1 is the number of “layers” and/ is the number of variable nodes per “layer”.
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Definition 2.4. (Ensembles and Thresholds)
LetI’ be an ensemble i.e a probability distribution over codes IR threshold: of I" on the BSC is defined
as¢ =sup{e > 0| Pr ¢~r [LPerroron(] =o(1)}.

e-BSC

We are now ready to state the main result of this paper.

Theorem 2.5. (Main result: éac = £5¢)

LetT'¢c be a(d,, d. = kd,,, L, M') graph cover ensemble with, an odd integer and/ divisible byk. Let
I'sc be the(d,,d. = kd,, L — ch,M) spatially coupled ensemble which is sampled by choosingphgr
cover codel ~ I'g¢ and returning a element @P(¢) chosen uniformly at randdin Denote bycc and
&sc the respective LP threholds bty andI's~ on the BSC. There exists> 0 depending only od,, and
d.s.t. if M = o(L") andT g¢ satisfies the property that for any constaxt> 0,

Pr [LP error on(’] = 0(%) €))

¢~Tso
(g0 —A)-BSC

Thentae = Esc-

Note that forM = w(log L), condition [3) above is expected to hold for the spatiallypied ensemble
I'sc since under typical decoding algorithms, the error prdiglsn the (£sc — A)-BSC is expected to
decay to zero aé)(Le‘CXAQXM) for some constant > 0. Moreover, note that in the regine = ©(L?)
(for any positive constarf), spatial coupling provides empirical improvements uritggative decoding and
in fact, the improvement is expected to take place as longiasubexponential id/ [OU11].

3 LP decoding, dual witnesses, hyperflows and WDAGs

The following definition is based on Definition 1 of [FM87].

Definition 3.1. (Dual witness)
For a given Tanner grapi” = (V,C, E) and a (possibly scaled) log-likelihood ratio function V' — R,
a dual witnessy is a functionw : E — R that satisfies the following 2 properties:

voeV, Y weo< Y, (—w(e)+(v) (4)
ceN (v):w(v,c)>0 ceN (v):w(v,c)<0
Ve € C,Vu,v" € N(c), w(v,c) + w(',¢) >0 5)

The following theorem relates the existence of a dual wirtesLP decoding success. The fact that
the existence of a dual witness implies LP decoding successsivown in [FMS07]. We prove that the
converse of this statement is also true. This converse willded in the proof of Theordm 8.1.

Theorem 3.2. (Existence of a dual withess and LP decoding success)

Let7 = (V,C, E) be a Tanner graph of a binary linear code with block lengtland letn € {0,1}" be
any error pattern. Then, there is LP decoding succesgfon 7 if and only if there is a dual witness far
onT.

Proof of Theorem[3.2. See Appendik All. O

®Here,D(¢) refers to Definitiof 213.



The following definition is based on Definition 1 of [DDKWO3].

Definition 3.3. (Hyperflow)
For a given Tanner grapfi = (V, C, E) and a (possibly scaled) log-likelihood ratio functiont V' — R,
a hyperfloww is a functionw : E — R that satisfies property [4) above as well as the followingoprty:

Vee C,3P. > 0,3v € N(c) s.t.w(v,¢) = —P.andVv’ € N(c) s.t.v' #v,w(',c) = P, (6)

By Propositionl of [DDKWAQ3], the existence of a hyperflow is equivalent tottb&a dual witness.
Hence, by Theorein 3.2 above, we get:

Corollary 3.4. (Existence of a hyperflow and LP decoding success)
Let7 = (V,C, E) be a Tanner graph of a binary linear code with block lengtand letn € {0, 1}" be any
error pattern. Then, there is LP decoding success;fon 7 if and only if there is a hyperflow fojon 7.

Definition 3.5. (WDG corresponding to a hyperflow or a dual witness)

Let7 = (V,C, E) be a Tanner graphy : V — R a (possibly scaled) log-likelihood ratio function and
w : E — R adual witness or a hyperflow. The weighted directed graph @V0V, C, E, w, ) associated
with 7, andw has vertex set’ U C and for anyv € V and anyc € C, an arrow is directed from to c if
w(v,c) > 0, an arrow is directed from: to v if w(v,c) < 0 andv andc are not connected by an arrow if
w(v, c) = 0. Moreover, a directed edge betweer V andc € C has weightw(v, c)|.

The following theorem shows that whenever there exists a ViDi@&sponding to a hyperflow or a dual
witness, there exists an acyclic WDG (denoted by WDAG) gpoading to a hyperflow.

Theorem 3.6. (Existence of an acyclic WDG)

Let7 = (V,C, E) be a Tanner graph of a binary linear code with block lengtand letr € {0, 1}" be any
error pattern. IfG = (V,C, E,w,~) is a WDG (Weighted Directed Graph) corresponding to a duahess
for n on T, then there is an acyclic WDG"” = (V,C, E,w" ,~) corresponding to a hyperflow foron 7.

Before proving Theorem 3.6, we summarize the differentattarizations of LP decoding success.

Theorem 3.7.Let7T = (V,C, E) be a Tanner graph of a binary linear code with block lengtland let
n € {0,1}" be any error pattern. Then, the following are equivalent:

1. There is LP decoding success foon 7.
2. There is a dual witness fagron 7.

3. There is a hyperflow faj on 7.

4. There is a WDAG fon on 7.

In order to prove Theorefn 3.6, we give an algorithm that fianss a WDGG satisfying Equations {4)
and [3) into an acyclic WDG” satisfying Equationg {4) andl(6).



Input: G = (V,C, E,w,~)
Output: G" = (V,C, E,w",~)

G =(V,C,E,w',v) + G

while G’ has a directed cycldo
¢ < any directed cycle of’
Wmin < Minimum weight of an edge af > All edges along: have a positive weight.
Subtractw,,,;, from the weights of all edges of
Remove all zero weight edges
Store the resulting WDG i’

end while

for all j € C'do
d(j) + degree ofj

{v1,...,vq0)} < neighbours ofj in order of increasing’ (v;, j)

if w’(vy,7) > 0then > All edges are directed towardand can thus be removed.
w”(vi, §) = 0'Vi € [d(j)]

else > (v1, j) is the only edge directed away fron

w" (v1,5) < w' (v, 5)
’(U”(Ui,j) < |w’(v1,j)| Vi € {27 s 7d(])}
end if
end for

Algorithm 3.1: Transforming the dual witness WDO&for ~ into a hyperflow WDAGG” for

The next lemma is used to complete the proof of Thedrem 3.6.
Lemma 3.8. After each iteration of the while loop of AlgoritHm B.1, werba
(1) The number of cycles @' decreases by at least
(I) G satsifies the dual witness equatiohk (4) ddd (5).

Proof of Lemmal[3.8. (I) follows from the fact that cycle is being broken in every iteration of the while
loop and no new cycle is added by reducing the absolute wemftiome edges of the WDG. (Il) follows
from the fact that during any iteration of the while loop, we @ossibly repeatedly reducing the absolute
weights of one ingoing and one outgoing edge of a variableheck node by the same amount, which
maintains the original LP constrainfd (4) ahd (5). O

Proof of Theorem[3.6. First, note that the while loop of Algorithin 3.1 will be exeéed a number of times
no larger than the number of cycles@f which is finite. By Lemma_318, after the last iteration of thkile
loop, G’ is an acyclic WDG that satisfi€ls|(4) and (5). The for loop of@ithm[3.1 decreases the weights of
edges that are directed away from variable nodes; thus,iiitamas (4) and=" inherits the acyclic property
of G’. Moreover,GG" satsifies[(6), which completes the proof Theofem 3.6. O

Remark 3.9. In virtue of Theoreri 312, Theordm B.4 and Thedrerh 3.6, wausdllthe terms “hyperflow”,
“dual witness” and “WDAG" interchangeably in the rest of thpaper.



4 Transforming a WDAG into a directed weighted forest

The WDAG corresponding to a hyperflow has no directed cyalest ipossibly has cycles when viewed as
an undirected graph. In this section, we show how to transfine WDAG corresponding to a hyperflow
into a directed weighted forest (which is by definition a diesl graph that is acyclic even when viewed as
an undirected graph). This forest has possibly a larger mumwivariable and check nodes than the original
WDAG hut it still satisfies Equation$](4) and] (6). Moreovdre tvertices of the forest “corresponding”
to a vertex of the original WDAG will have their weights sum tgpthe weight of the original vertex.
Furthermore, the directed paths of the forest will be in adtiye correspondence with the directed paths of
the original WDAG. This transformation will be used when wazide an upper bound on the weight of an
edge in a WDAG of dd,, d..)-regular LDPC code in Sectién 5 and of a spatially couplecedndsection 6.

Theorem 4.1. (Transforming a WDAG into a directed weighted forest)
LetG = (V,C, E,w,v) be a WDAG. Then(z can be transformed into a directed weighted forést=
(V',C', E',w',+") that has the following properties:

1. V= {JVywhereV;NV, =@ forall 2,y € V s.t.a #y. For everyv € V, each variable node if; is
veV
called a “replicate” of v.

2. ¢"= | C. whereC;, N Cy = (forall z,y € C s.t.x # y. Foreveryc € C, each check node i@\, is
ceC
called a “replicate” of c.

3. Forallv eV, Z 7 (V") = y(v).
=

4. Forallv € V and allv’ € V,,, v/(v") has the same sign agv).
5. The foresfl" satisfies the hyperflow equation$ (4) ahd (6).

6. The directed paths @F are in a bijective correspondence with the directed path®g.oMoreover, if the
directed pathh’ of T' corresponds to the directed pathof G, then the variable and check nodeshofire
replicates of the corresponding variable and check nodés of

7. If G has a single sink node with a single incoming edge that haghwei, thenT" has a single sink node
with a single incoming edge and that has the same weight

In order to prove Theorem 4.1, we now give an algorithm thatgforms the WDAG- into the directed
weighted foresf".



Input: G = (V,C, E,w,~)
Output: T'= (V',C'", E',w',%)

for eachv € V taken in topological ordedo
p < number of outgoing edges of

{eg.”) }¥_, «+ weights of outgoing edges of

p
6 3 el
j=1

Createp replicates of the subtree rooteckat > Contains all ancestors ofin the current WDAG
for eachl € [p] do

Scale thdth subtree by; /egf’ ) > The weights of all variable nodes and edges are s¢aled
Connect théth subtree to théh outgoing edge of
end for
end for

Algorithm 4.1: Transforming the WDAG:! into the directed weighted foret

We now state and prove a loop invariant that constitutes thia part of the proof of Theorem 4.1. First,
we introduce some notation related to the operation of Atlgar(4.1.

Notation 4.2. In the following, letV = {vq,...,v,}. For everyi,j € [n], letr;; be the number of
replicates of variable node; after theith iteration of the algorithm. Moreover, for evekyc [r; ;], letv; j »
be thekth replicate ofv; after theith iteration of the algorithm. For ali € [n], letV;, C;, E;, v; andw; be
the set of all variable nodes, set of all check nodes, set efigles, log-likelihood ratio function and weight
function, respectively, after thigh iteration of the algorithm and let:; = (V;, C;, E;, w;, ;). Finally, we
setGo = (Vo, Co, Eo, v0, wo) to (V,C, E, v, w).

Lemma 4.3. For any: > 0, after theith iteration of Algorithmi 4.11, we ha:
Ti,j

() Forall j € [n], Z’Yi(”i,j,k) = v(vj).
k=1

(I) Forall j € [n]and allk € [r; ], vi(v; ;1) has the same sign agv;).

() Forall v eV, Z wi(v,c) < Z (—w;(v,¢)) + 7yi(v).

ceN (v):w;(v,c)>0 ceN (v):w;(v,c)<0

(IV) For all ¢ € C;, there existP. > 0 andv € N(c¢) s.t. w;(v,e) = —P, and for allv’ € N(c) s.t.
v £ v,wi(v, ¢) = P..

(V) The directed paths @F are in a bijective correspondence with the directed path& ofMoreover, if the
directed pathh’ of G; corresponds to the directed pathof G, then the variable and check nodeshof
are replicates of the corresponding variable and check saxfé.

Proof of Lemmal4.3. Base Case: Before the first iteration, we haxg; = 1, vo(vo 1) = ~(v;) for all
j € [n]. Thus, (1) and (Il) are initially true. (lll) and (IV) are itially true because the original WDAG

4By “after the(th iteration”, we mean “before thist iteration”.
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satisfies the hyperflow equations (4) and (6). Moreover, $\iitially true sinceGy = G.

Inductive Step: We show that, for eveiy> 1, if (1), (lll), (IV) and (V) are true after iteration — 1 of

Algorithm[4.], then they are also true after iteration

Leti > 1. In iterationi, a variable node with log-likelihood ratio~;_;(v) is (possibly) replaced by a

numberp of replicates{v/, ..., v} with log-likelihood ratios{-%~;_1(v) | I € [p]}. Therefore, the total
er

p
sum of the added replicatesE (%%_1(11)) =v;_1(v) . Thus, (1) is true. By the induction assumption
=1 €r
and sincez; /el > 0, it follows that (I1) is also true.
To show that () is true, we first note thatdf € V; was not created during théh iteration, thernv’ will
satisfy (lll) after theith iteration. Ifv” was created during thih iteration, we distinguish two cases:
In the first casey’ is not a replicate of (which is the variable node considered in thieiteration). Then,
v" is a replicate ofy;_; € V;_;. By the induction assumption,_;(v;—1) and the weights of the adjacent
edges ta;_; satisfy (lll) before theith iteration. Sincey;(v') and the weights of the edges adjacent’to
will be respectively equal te;_(v;—1) and the weights of the edges adjacentto,, scaled by the same
positive factory’ will satisfy (lll) after theith iteration.
In the second casey is a replicate ofv. Assume that’ is the replicate ofy corresponding to the edge
(v,co) wherecy € N(v) andw;_1(v,co) > 0. During theith iteration, the subtree correspondinguto
will be created and in this subtree;,(v) and the weights of the edges incomingutawill be respectively
equal toy;_1(v) and the weights of the edges incomingutcscaled byl (v, ¢p) = wi_l(v,co)/e,}”) where
e}“) = Z w;—1(v, ¢). The only outgoing edge af will be (v, ¢y). Thus,
c€N(v):w;—1(v,c)>0

Z w; (v, ¢) = w;(v', co) = wi—1(v,c0) = O(v, o) Z w;i—1(v,c)

ceN(v'):w; (v ,¢)>0 ceN(v):w;—1(v,c)>0

< H(U,CO)( Z (—w;—1(v,c)) —I—%_l(v))

ceN (v):w;—1(v,c)<0

= 0(v, co) > (—wi-1(v,¢)) + 0(v, co)yi-1(v)

ceN(v):w;—1(v,c)<0

= > (—wi(v, €)) + 7 (V')

ceN(v"):w; (v',e)<0

Thereforep’ will satisfy (Ill) after theith iteration.

Equation (1V) follows from the induction assumption andnfr¢the fact that we are either uniformly scaling
the neighborhood of a check node or leaving it unchanged.

To prove that (V) is true after théth iteration, letv be the variable node under consideration in ite
iteration and consider the function that maps the directtl pp of G;_; to the directed path’ of G; as
follows:

1. If h does not contaim, thenh' is set toh.

2. If h containsv, thenh can be uniquely decomposed into the concatenatidrz whereh; is a directed
path ofG;_; that ends at andh, is a directed path off;_; that starts at. Lete; be the first edge of,.
Then, 1’ is set toh} he whereh is the directed path in thith created subtree @ that corresponds to
hi.
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This map is a bijection from the set of all directed pathsG6f; to the set of all directed paths 6f;.
Moreover, if the directed path of G;_; is mapped to the directed patthof G;, then the variable and check
nodes ofh’ are replicates of the corresponding variable and checksnoide

O

Proof of Theorem[4.1. Note that 1l and]2 in Theorem_ 4.1 follow from the operation ofjgkithm[4.].
Moreover[B[#[ b andl 6 follow from Lemnia #.3 with = ~,,. To provel 7, note that if7 has a single sink
nodew, thenv will be the last vertex in any topological ordering of thetiggs of G. Furthermore, iy has
a single incoming edge with weight then it will have only one replicate i, with a single incoming edge
having the same weiglat.

O

5 Maximum weight of an edge in a regular WDAG on the BSC

In this section, we present sublinear (in the block lengthupper bound on the weight of an edge in a
regular WDAG. The main idea of the proof is the following. Guter a(d,, d.)-regular WDAGG (where
d,,d. > 2 are constants) corresponding to a hyperflow. Note that eaghble node has a log-likelihood
ratio of +1. Thus, the total amount of flow available in the WDAG is mastMoreover, for a substantial
weight to get “concentrated” on an edge in the WDAG,thiés should “move” from variable nodes accross
the WDAG toward that edge. By the hyperflow equatibh (6), edwdck node cuts its incoming flow by
a factor ofd. — 1. Thus, it can be seen that the maximum weight that can geteotrated on an edge is
asymptotically smaller than.

Theorem 5.1. (Maximum weight of an edge in a regular WDAG on the BSC)

LetG = (V,C, E,w,~) be a WDAG corresponding to LP decoding of#, d.)-regular LDPC code (with

dy,d. > 2) on the BSC. Let = |V| and ayar = m&g{|w(e)| be the maximum weight of an edgeGh
ec

Then,
In(dy—1)
Oma S cnn(dyv—1)+In(de—1) — O(n) (7)

for some constant > 0 depending only od,.
We now state and prove a series of lemmas that leads to theqirdbeoreni 5.1

Definition 5.2. (Root-oriented tree)

A root-oriented tree is defined in the same way as the WDAG fimifden [3.3 and Theorefn 3.6 but with the
further constraints thaf” has a single sink node (which is a variable node) and hé& a tree when viewed
as an undirected graph. Note that the name “root-orientegl’'iie to the fact that the edges are oriented
toward the root of the tree, as shown in Figlte 1.

Remark 5.3. Algorithm[4.1 can also be used to generate the directed weiglorest corresponding to the
subset of the WDAG consisting of all variable and check ntluigsare ancestors of a given variable node
v. In this case, the output is a root-oriented tree with itgéinsink node being the unique replicatevof

Definition 5.4. (Gnazr Cmaz)

LetG = (V,C, E,w,~v) be a WDAG. Let,.oe = (Vmaz, Cmaz) = argmax |w(v,c)| and leta,g, =
(v,¢):w(v,c)<0
|w(Vmazs Cmaz)|- L€t Vinae = Vi U {vma. } WhereV; is the set of all variable nodes € V' s.t. ¢jqz IS
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Figure 1: Root-oriented tree with root the variable nogle

reachable fromv in G and letC,,,,, be the set of all check nodesc C s.t. ¢, iS reachable front in GE
LetGrar = (Vinazs Cmaz s Emazs Wmazs Ymaz) D€ the corresponding WDAG.

Definition 5.5. (Depth of a variable node in a root-oriented tree)
LetT be a root-oriented tree with roaty. For any variable node in T', the depth ob in T is defined to be
the number of check nodes on the unique directed pathdrtomy in 7.

Definition 5.6. (F'-function)

LetG = (V,C, E,w,) be a WDAG. For anys C V/, defineF'(S) =) > w(v, ). In other
vES ceN (v):w(v,c)>0

words, F'(S) is the sum of all the “flow” leaving variable nodes mto adjacent check nodes.

Lemma 5.7. Let G = (V,C, E,w,~) be a WDAG corresponding to LP decoding of &, d..)-regular
LDPC code (withi,, d. > 2) on the BSC and l&%,,,.. = (Vinaz, Crmazs Emazs Wmaz, Ymaz) D€ the WDAG
corresponding to Definition 5.4. Let, .. = |Vinae| @ndT = (V/,C’, E',w’,~") be the output of Algorithm
[4.7 on inputG.,,.... Note thatT is a root-oriented tree with root,,,, which has a single incoming edge
with weighta,,,. (by Theorenh 411). Let,,.. be the maximum depth of a variable nodefirand for any
m € {0,...,dnae}, 1€t S, be the set of all variable nodes if with depth equal ton. Moreover, for all

i €{0,...,dnqez} and all j € [n,q42], letd; ; denote the number of replicates of variable negéraving
depth equal ta in T'. Furthermore, for every: € [d; ;], letT; ; , be they’ value of thekth replicate ofv;

among those having depth equalkitm 7. Then, for allm € {1, ..., dmq. }, we have:
m—1 Nmax d
(Pm): F(Sm) > (de — D)™ oz — Y (de — 1) Z Z ik (8)
i=0 j=1 k=1

Proof of Lemmal5.7. For anyS C V', let A(S) be the set of alb € V' for which there exist € S and a
directed path fromv to s in T" containing exactly one check node. We proceed by inductiom o

Base Casem = 1. We note thatS; = A({vq.}) and thatv,,,, is the only variable node iff" having
depth equal t® in 7. Hence, for the hyperflow to satisfyl (6), we should have:

0 Nmax diwj

(Sl) (d - 1)(amax - ’Y,(vma:c)) = (dc - 1)amax - Z(dc - 1)1 Fi,j,k
=0 j=1 k=1

Note that the last equality follows from the facts thgt = 1 if v; = v,,4, anddp ; = 0 otherwise, and that
Lk =7 (Vmaz) If vj = Upmae @andk = 1 andT’; ; ;, = 0 otherwise.
Inductive Step: We need to show that i, ) is true for somd < m < d,,., — 1, then(P,,+1) is also true.

SNote thatcmaz € Crmas.
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Assuming that P,,) is true, S,, satisfies Equatiori{8). Sincg is a root-oriented treeS,,+1 = A(S,).
Hence, for the hyperflow to satisfyl(6), we should have:

Nmax dm]
F(Smi1) > (de = 1)(F(Sm) = > > Tomjik)
j=1 k=1
m—1 Nmaz dLJ nmaz
> (de = D[(de = 1) tmaz — > _(de =™ D3 "Tiju— > Zr m
=0 j=1 k=1 j=1 k=1
Nma dLJ
= (dc - 1)m+1ama:c - Z(d - 1 e Z JJf
i=0 j=1 k=1

O

Definition 5.8. (Depth of a variable node in a WDAG with a single sink node)
LetG = (V,C, E,w,~) be a WDAG with a single sink nodg € V" and letv € V. The depth of in G is
defined to be the minimal number of check nodes on a directixdiean v to vy in G.

Corollary 5.9. Let g,,4. be the maximum depth of a variable node V... in the WDAGG, ... (Which
has a single sink nodemax)@ Then,

Qmaz < max T""7Tma;v 9
(1, B e ST o) ®)
where: ,
max CZ—;
To, ..., T, = B S
f( 05 ’ gmaw) — (dC _ 1)2
and W is the set of all tuplesTy, ..., T,,...) € N9me=T1 satisfying the following three equations:
9mazx
Z T; = Nmax (10)
To=1 (12)
Forall i € {07 <3 9maz — 1}7 Tit1 < (dc - 1)(dv — l)TZ (12)

Proof of Corollary Settingm = d,,., iIn LemmdX5.¥ and noting that the leavesiohave no entering
flow, we get:

Nmax ddmaz »J dmaxz—1 Nmax d; »J
Z Z deazv.? k > F(Sdmaz) (d - 1) e’ Omaz — (d - 1 dmaz i Z Zrly.]vk
7j=1 k=1 =0 =1 k=1
Thus,
_ dmaz 1 Nmazx dLaJ
Omazr > Z (d — 1)2 Z Fz,j,k
i=0 V¢ j=1 k=1

®Note that in generafmqz < dmaz but the two quantities need not be equal.
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Part[6 of Theorem 411 implies that for all € V,,.., the depth ofv in G,,.. is equal to the minimum
depth inT of a replicate ofv. By partsL8 and]4 of Theorem 4.1, we also have that foy al [n.42],

dmaz dlv]

>N Iijx < landforalli € {0,...,dmeo} and allk € [dij], Tyjp < 1 and{L;;x}ix all have
=0 k=1

the same sign. For every € [nn,q.], letd; be the depth ob; in G4, and note thatl; < i for every
i € {0,...,dmas} for which there existg € [d; ;] s.t.I'; ; , # 0. Thus, we get that:

dmacv Nmaz Nmaz dmacv 1,5 dmacv

d;
e £ 3 Ty Z; Pl € 3 g 2 2llisl = 3

=1 j=1 =0 k=1
dmaz i dimagz i
where the last equality follows from the fact tht_ > "Dyl = [ > Y Tyl = 1 foreveryj €
i=0 k=1 i=0 k=1

[nmaz] With T; being the number of variable nodes with depth equaitaG,, ... for everyi € [d,,q.|. Note
that the notion of depth used here is the one given in Defimii@ sinceG.,,... is a WDAG with a single
sink nodev,,,q... SinceT; = 0 for all gez < 7 < dimaz, WE get:

9mazx

amaxgzd_l

Equations[(10)[(11) an@(IL2) follow from the definitionsIgfandg,,,q. . O

In(dy—1)
Lemma 5.10. The RHS of Equatiori9) is at mastx (1,4, ) =@ -+ nd-1) for some constant > 0

depending only od,,.
Proof of Lemmal5.10. Follows from Theorerh Al6 withh = 1, 5 = (d. — 1)(d, — 1) andm = npq,. O

Proof of Theorem[5.1. Theoren{ 511 follows from Corollafy 5.9 and Lemma®.10 by mpthat| V.| <
|V| sinceV,,q € V and thatmagc lw(e)| = Q(( )m?x - |w(v, c)|) by the hyperflow equation6). O
ec v,c):w(v,c)<
We now show that the bound given in Theorlem 5.1 is asympthtitght in the case ofd,, d..)-regular
LDPC codes.

Theorem 5.11. (Asymptotic tightness of Theoréml5.1 fdy, d..)-regular LDPC codes)

There exists an infinite family 64, d..)-regular Tanner graphg(V,,, C,,, E,,) }», an infinite family of error
patterns{~, }, and a positive constants.t. there exists a hyperflow foy, on(V,,, C,,, E,,) and any WDAG
(Vi Cpy By w, 7y, ) corresponding to a hyperflow foy, on (V;,, C,,, E,,) must have

In(dy—1)

max|w(e)| > cnMdv—1+n(de—1)
ecby,
Proof of Theorem[5.11. See Appendik’/AlB. -
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6 Maximum weight of an edge in the WDAG of a spatially coupled ode on
the BSC

The upper bound of Theordm 5.1 holds fdy;, d.)-regular LDPC codes. In this section, we derive a similar
sublinear (in the block length) upper bound that holds for spatially coupled codes.

Theorem 6.1. (Maximum weight of an edge in a spatially coupled code)

LetG = (V,C, E,w,~) be a WDAG corresponding to LP decoding of any code ofdhed,. = kd,,, L, M)
spatially coupled ensemble on the BSC. ket (2L + 1)M = |V| be the block length of the code. Let
Omaz = reneaédw(e)\ be the maximum weight of an edgefin Then,

In(q)—In(dc—1)
Oz < CN In(q) =cn " “=o(n) (13)

for some constant > 0 depending only od, and where; = d,,(d. — 1)M and0 < e = % ( ) L -
1.

We now state and prove a series of lemmas that leads to thé gfrdbeorent6.l. Note that a central
idea in the proof of Sectiol 5 is that all check nodes belrgegular in that case, the flow at every check
node is “cut” by a factor ofl. — 1. On the other hand, &, = 3,d. = 6, L, M) spatially coupled code
has2M check nodes with degrezand the flow is preserved at such check nodes. To show thairetieis
case, the maximum weight of an edge is sublinear in the blrdth, we argue that a check node that is not
d.-regular should have &.-regular check node that is “close by” in the WDAG. To simplifie argument,
we first “clean” the WDAG of the spatially coupled code to obta “reduced WDAG” with all check nodes
having either degreé. or degree2. We also use a notion of “regular check depth” which is theesamthe
notion of depth of Section 6.1 except that odlyregular check nodes are now counted.

Definition 6.2. (Reduced WDAG)

LetG = (V,C, E,w,~) be a WDAG and+ .. = (Vinazs Crmazs Emazs Wmaz, Ymaz) D€ the WDAG corre-
sponding to Definition 5]4. The reduced WDAG of G,,,... is obtained by processing,,.. as follows so
that each check node has either degie®r degree2:

1. For every check nodeof G, with spatial indel < (=L + d »), we remove all the incoming edgesdo
except one that comes from a pa@otc having maX|maI spatial index.

2. For every check nodeof 7" with spatial index> (L — dv), we remove all the incoming edgesctexcept
for one edge that comes from a parentdfaving minimal spatial index.

3. We keep only the variable nodes.t. v,,,. is still reachable fromv and the check nodess.t. v,,q. IS
still reachable fronr.

Note that in steps]1 arid 2 above, the check nodés. @fre considered in an arbitrary order.

Definition 6.3. (Reduced tree)
A reduced tree with roat is a root-oriented tree with roaty and where every check node has either degree
d. or degree2.

"The notion of “spatial index” used here is the one from Defini2.1.
8The notion of “parent” of a node is the one induced by the dioecof the edges of,..
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Note that if we run Algorithni_4]1 on a reduced WDAG, the outwilt be a reduced tree.

Definition 6.4. (Regular check depth of a variable node in a reduced tree)
LetT be a reduced tree with roaty. For any variable node of T', the regular check depth efin T is the
number ofd.-regular check nodes on the directed path frono vg in 7.

Lemma 6.5. LetG = (V,C, E,w,~) be a WDAG corresponding to LP decoding of a spatially coupled
code on the BSQ7 4 = (Vinazs Crmazs Emazs Wimaz, Ymaz) D€ the WDAG corresponding to Definition
54,G, = (V;,C,, E,, w,,,) be the reduced WDAG corresponding@,,, andT = (V,/,C.., E!., wl.,~.)

be the output of Algorithii 4.1 on inpGt,.. Letn, = |V,|. Note thatT is a reduced tree with root,,,
which has a single incoming edge with weight.. (by Theorenh 4]1). Let,,,, be the maximum regular
check depth iff” of a variable node € V/. Forall i € {0, ..., rmq } and allj € [n,], lety; ; be the num-
ber of replicates of variable nodg having regular check depth equaliin T'. Moreover, for allk € [y; ;]

letT'; ; » denote they, value of thekth replicate ofv; among those having regular check depth equalito

T. Then, forallm € {1, ..., 74}, We have:

(P): There existdJ,,, C V. consisting of variable nodes having regular check deptlin 7" and s.t.
all variable nodes ofl” having regular check depth between+ 1 andr,,., (inclusive) are ancestors of
U,, iInT and s.t.:

zs yZJ

F(Up) > (de — 1) tmaz — Z (de =)™ T (14)

71=1k=1

Proof of Lemmal6.5. For anyS C V/, let A(S) be the set of alb € V/ for which there exist € S and a
directed path fromv to s in T" with the child ofv on this path being the uniquk-regular check node on the
patfﬁ We proceed by induction om.

Base Casemn = 1. LetU; = A({vmas }). Note that the ancestors of,,, (inlcudingv,,,...) that are proper
descendants of nodes i, are exactly those variable nodes having regular check dapihl to0 in 7.
Hence, for the hyperflow to satisfy Equatidn (6), we shouldeha

nyr Y0,5 ny Yi,j

(Ul) (d _1 amax_zzrodk d —1) Oéma;p—Zd —1 1ZZI‘J,€

7j=1 k=1 =1 k=1

Inductive Step: We need to show that(#,,) is true for somel < m < (74 — 1) then(P,,41) is also
true. Assuming thatP,,) is true, there exist#/,,, C V. that satisfies Equation_(14) and slf,,, consists
of variable nodes having regular check depthn 7', and all variable nodes d@f with regular check depth
betweenn + 1 andr,,., (inclusive) are ancestors 6f,, in T'. LetU,,+1 = A(U,,). Note that the variable
nodes that are ancestors of node#/jj and proper descendants of node#/jp, | are exactly those having

°Again, the notion of “child” here is the one induced by theedtion of the edges df.
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regular check depth equal to in T'. Hence, for the hyperflow to satisfy Equatian (6), we showddeh

Ny Ym,j
F(Unmt1) > (de = D(F(Un) = > Toji)
=1 k=1
Ny yZJ zs ymj
SYTRSTTTOMI ST UED 5 D WD 5) 3y
i=0 j=1 k=1 J=1 k=1
m—1 Ny Yi,j ny Ym,j
TR ST L) 9 B TTRT) 5) e
1=0 j=1k=1 =1 k=1
m 4 ny Yi,j
= (de = )™M otmar — > (de = 1)™NNT
i=0 j=1 k=1

O

Definition 6.6. (Regular check depth of a variable node in a reduced WDAG)

Let G, be a reduced WDAG with its single sink node denotedgbyFor any variable nodes of G, the
regular check depth af in G,. is the minimum number @f.-regular check nodes on a directed path from
tovg in G,.

Lemma 6.7. LetG,. be a reduced WDAG ang,,., be the maximum regular check depth of a variable node
in G,. Forall i € {0,...,2ma}, letT; be the number of variable nodes @). with regular check depth
equal toi. Then, for alli € {0, ..., zpnee — 1}:

Tiy1 < qT;
whereq = d,(d. — 1)M MoreoverTy < 1 + % = 0.
Proof of Lemmal6.7. If, for any i € {0,..., 24}, We letW; be the set of all variable nodes @, with

regular check depth equal tpthenT; = |W;|. Fixi € {0,..., zmq — 1}. For a variable node of G,,
define A’(v) to be the set of all variable nodes in G, s.t. there exists a directed pathfrom v, to v
in G, s.t. the parent ob on P is the onlyd.-regular check node oR. Note that for every variable node

u € W;41, there exists a variable nodes W; s.t.u € A’(v). Thus,W;; C |J A’(v) which implies that
veW;

[Wiga| < [Wi] x max|A'(v)| < [W;| x max|A"(v)]
veW; veEV,

whereV/. is the set of all variable nodes 6f.. We now show that for every € V., |A’(v)| < q. Fixv € V.
We claim that for alu € A’(v), there exists a directed path franto v in G, containing a single.-regular
check node which is the parentobn this path and at mos$t/, — 1) 2-regular check nodes. To show this,
let P be a directed path from to v in GG, containing nad.-regular check nodes other than the parent of
on this path. IfP does not contain ard+regular check nodes, then the needed property hold3 ctintains
at least on@-regular check node, then,

Pt~ €]~ U~ Cg ~ Vg~ v v e~ O~ U~ Cy M U (15)
wherel is a positive integerf;, ¢, . . . , ¢; are2-regular check nodes @f,., ¢, is ad.-regular check node of
G, andvy,ve, ..., v; are variable nodes a¥,. For any check node, we denote byi(c) the spatial index
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of c. Sincec, is 2-regular, its spatial indexi(c, ) is either in the interval-L — d,, : —L +d,, — 1] orin the
interval [L — d, + 1 : L + d,]. Without loss of generality, assume thatc,) € [L — d, + 1 : L + d,]. For
anyi € {0,...,l — 1}, Definition[6.2 implies that; is at a minimal position w.r.tz; 1. By Definition[2.1,
if variable nodev is at a minimal position w.r.t. check nodgethenc is at a maximal position w.r.t.. So for
anyi € {0,...,l — 1}, ¢;41 is at a maximal position w.rit; and thussi(c;) < si(c;4+1). By condition[% of
Definition[2.1, variable node; is not connected to two check nodes at the same positionhvirhiglies that
si(c;) # si(eiqq) foralli € {0,...,1—1}. Sowe conclude thati(c;) < si(c;41) foralli € {0,...,1—1}.

Therefore,

L—dy,+1<si(c1) < si(eg) < -+ < si(¢)) < L+d,

Hence, < 2d, = d, — 1. SoP satisfies the needed property.
For alli € [d, — 1], letn; be the number of variable nodesn G, for which the smallest integérfor which
Equation [(I5) holds i$ = i. Also, letny be the number of variable nodesn G, for which there exists a
pathP of the form

Piu~sce~ v (16)

wherec, is ad.-regular check node af,.. Since in Equation (16y has at mostl, neighbors inG,. and
¢, is de-regular,ng < d,(d. — 1). Considering Equatiori_(15) with= 1, we note that, has at mostl,
neighbors inG,. ande; is 2-regular. Thusp; < d,(d. — 1)(d, — 1). Note that ifu is a variable node in
G, for which the smallest integérfor which Equation[(15) holds is= i 4+ 1 (wherei € [d, — 2]), then
there exists a patP that satisfies Equatiof (IL5) with being a variable node i@, for which the smallest
integer! for which Equation[(1b) holds is= i. Since for every € [d,, — 1] and everyi € [I], v; has at most
d, neighbors in, andc; is 2-regular, we have that;,; < (d, — 1)n; for all i € [d, — 2]. By induction on
i, we get that; < d,(d. — 1)(d, — 1)* for all i € [d, — 1]. Thus,

dv—1 dy—1
N = 3 ms S dde—Didy— 1) = dy(a, ~ D=L
=0 B i=0 dv — 9

To show thatly < ¢g, note thatu € W, if and only if there exists a directed path framto v, in G,
containing only2-regular check nodes. An analogous argument to the aboJesripat

dy—1
Th<1+ > (dy—1)"'<1+
=1

(d, — 1)4=1 -1
dy — 2

=4qo

O

Corollary 6.8. LetG, be the WDAG (with a single sink node) given in Lerhmh 6.52a54 be the maximum
regular check depth of a variable noded 19 Then,

Cma = Ty, o W f(To, s T (17)
where:
Zmax T
Tos oo Top) = Y e
f( 0, Y Z’mam) ZZ:; (dc _ 1)2

0Note that in generat,na. < rmae but the two quantities need not be equal.
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andW is the set of all tuple$Ty, ..., T, ) € N*mee*1 satisfying the following three equations:

Zmaz

To < qo (19)
Foralli € {0,..., 2maz — 1}, Tix1 < qT; (20)

whereq = d(d, — 1)% andgy =1+ %.

Proof of Corollary 6.8] The proof is similar to that of Corollafy 5.9. Setting = r,,,., in Lemmd&.5 and
noting that the leaves @ have no entering flow, we get:

Ny Yrmaz,j Tmaz—1 e Yi,j
Z Z Frmm,j k2 F(Urmaz) (dc - 1)Tmawamam - Z (dc - 1)Tmaw_l Z Zri,j,k
j=1 k=1 i=0 Jj=1k=1
Thus,
Tmax ny Yijg
Qmaz < Z d — 1 Z Z i,J,k
7j=1k=1

Part[6 of Theorerh 411 implies that for evewye V., the regular check depth afin G, is equal to the
minimum regular check depth ifi of a replicate ofv. By partd_ 8 andl4 of Theorem 4.1, we also have that

Tmax Yi,J

forall j € [n,], Z Zri,j,k <1landforalli € {0,...,7ma} and allk € [y; ], Tijx < 1and{T; x}ix
=0 k=1

all have the same sign. Thus, we get that:

Tmax 1

o < —1;
max — (dc _ 1)2 K3

where for everyi € {0, ..., a4}, T; IS the number of variable nodes with regular check depthleaqua

in G,.. SinceT; = 0 for all z;n4 < @ < Tonaz, We get that:

Zmazx

amaxgz d—l

Zmax

By the definitions ofl; and z,,,4., Z T; = n,. The facts thafl;,; < ¢T; foralli € {0,..., zpmar — 1}
i—0

andTy < qo follow from Lemmd®&.7. O
Lemma 6.9. The RHS of[{17) is< ¢ x nl~¢ for some constant > 0 depending only owl, and where
0 _ In(d.—1)

<€ = (g < 1.

2
Proof of Lemmal6.9. Letc = ¢g M If n,, > qo, the claim follows from Theoref AlL6 with = ¢,
B =qandm = n,. If n, < qq, then the RHS of (17) is at most. < ¢ < ¢, so the claim is also true. [
Proof of Theorem[6.1. Theoreni 6.1 follows from Corollafy 6.8 and Lemmal6.9 by nptinat|V,.| < |V|

sinceV, C V and thatmag( lw(e)| = Q(( )m?x <0 |w(v, ¢)|) by the hyperflow equatiof(6). O
ec v,c)w(v,C)s
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7 Relation between LP decoding on a graph cover code and on ariked
spatially coupled code

Definition 7.1. (Special variable nodes)
Let¢ be a graph cover code and be a fixed element @(¢). Then, the “special variable nodes” gfare
all those variable nodes that appearrbut not in¢’.

Lemma 7.2. Let( be a(d,, d. = kd,, L, M) graph cover code and l&t be a be a fixed element@f(c‘)
Letn = (2L + 1) M be the block length af and consider transmission over the BSC. Assuifng is s.t.,
for any error patternyy’ on (’, the existence of a dual witness f@ron ¢’ implies the existence of a dual
witness form’ on ¢’ with maximum edge weight «(n).

Then, for any error patterm’ on ¢’ and any extension of 1/ into an error pattern on(, the existence of a
dual witness for’ on (' is equivalent to the existence of a dual witnessifon ¢ with the special variable
nodes having an “extra flow” ofl,a(n) + 1.

Proof of lemmalZ.2. First, we prove the forward direction of the equivalencesuse that there exists a
dual witness fom’ on ¢’. Then, there exists a dual witness fgron ¢’ and with maximum edge weight
< a(n). This implies the existence of a dual witnessasn ¢ with the special variable nodes being source
nodes and having an “extra flow” &f,a(n) + 1.

The reverse direction follows from the fact that given a duihess forn on {, we can get a dual witness
for ” on¢’ by repeatedly removing the special variable nodes. The WB&tifies the LP constraints after
each step since every check nodg’ihas degree> 2. O

Corollary 7.3. (Relation between LP decoding on a graph cover code and omigedespatially coupled
code)

Let ¢ be a(dy,d. = kd,, L, M) graph cover code and lef’ be a be a fixed element #f(¢). Letn =
(2L 4+ 1) M be the block length of and consider transmission over the BSC. Then, for any erattem

1’ on ¢’ and any extension of »’ into an error pattern or(, the existence of a dual witness fgron ¢’

is equivalent to the existence of a dual withessrfan ¢ with the special variable nodes having an “extra
flow” of d,cn'=¢ + 1 for somec > 0 and0 < € < 1 given in Theorer 6/1.

Proof of Corollary 7.3 By Theoreni 6.1, the existence of a dual witnessrfoon ¢’ is equivalent to the
existence of a dual witness fgf on ¢’ and with maximum edge weight cn'— for somec > 0. Plugging
this expression in Lemnia 7.2, we get the statement of Coydlla. O

8 Interplay between crossover probability and LP excess

In this section, we show that if the probability of LP decaglisuccess is large on some BSC, then if we
slightly decrease the crossover probability of the BSC, am find a dual witness with a non-negligible
“gap” in the inequalities[(4) with high probability.

Theorem 8.1. (Interplay between crossover probability and LP excess)
Let ¢ be a binary linear code with Tanner gragly, C, E) whereV = {vy,--- ,v,}. Lete,d > 0 and
€ =e+ (1 —¢€)d. Assume that,¢’,6 < 1. Letg. be the probability of LP decoding error on theBSC.

"Here,D(¢) refers to Definitiol 213.
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For every error patternc € {0,1}",if G = (V,C, E,w,~) is a WDAG corresponding to a dual witness for
z, let f(w) € R™ be defined by

filw) = Z w(v;, c) — Z (—w(vs,c)) = Z w(v;, ¢) (21)

ceN (vy):w(vi,c)>0 ceN (v):w(vi,c)<0 cEN(v;)
forall i € [n]. Then,

2(]6’
)

PryBer(en)13 @ dual witnessw for z s.t. f;(w) < v(v;) — g Vien|}>1-

In other words, if we lety(v;) — fi(w) be the “LP excess” on variable node then the probability (over
the e-BSC) that there exists a dual witness with LP excess at fgasbn all the variable nodes is at least

2q./
1 - T.

Proof of Theorem[8.1. Decompose thé-BSC into the bitwise OR of theBSC and thé-BSC as follows.
Letx ~ Ber(e,n), ¢’ ~ Ber(d,n) ande = x \VV ¢’. Hencege ~ Ber(€¢/,n). For everyx € {0,1}", we will

construct a dual witness” with excess /2 on all variable nodes by averaging and scaling the dual eéee

of x\ve” wheree” ~ Ber(d,n). More precisely, for every € {0,1}", letw® = 8+5§E6,,NBW(5,”){U

wherev® is an arbitrary dual witness far if = has one and?” is the zero vector otherwise Note that
always satisfies the check node constraints, i.e. forra@y{0,1}", anyc € C’ and anyv, v’ € V, we have
w*(v,¢) +w*(v',¢) > 0. We now show that, with probability at least— qﬁ overxz ~ Ber(e,n), w”
satisfies[(#) with LP excess at least on all variable nodes. For any Welght function: V x C' — R
on the Tanner grapltV, C, E), we definef (w) by Equation[(2lL). For every € {0,1}", define the event
L* = {z has a dual witnegsand definet by z; = (—1)* for all i € [n]. We have that:

:c\/e”}

o (1D v
f(w ) ? Ee”~Ber(6,n){f(w v )}
(1-3)
1 + é T 6” x e// T e//
( (2;) <Ee”~Ber(5,n){f(w v )|L v }Pre”wBer(cS,n){L v }
S 1-9%)
+ Ee”NBer(é,n){f(wxve”)’Lmve”}PTe”NBer(é,n){Lmve”})
_ (1 + g)E zVe' Lw\/e” P Lm\/e” : E zVe' W _
= m e”wBer(&,n){f(w )| } Te”wBer(&,n){ } (smce e”wBer(&,n){f(w )| } -
2
(1 + g) m raxVve’ Ve
> (1 5)Ee”~Ber(6n {x Ve ’L }Pre”wBer((S n){L } (by equatlonm‘l))
2
(1+3) — e —
(1 (2;) <Ee”~Ber(6,n){x v 6//} - Ee”NBer(é,n) {:L' v e//|vae } X ¢m>
2
whereg, = Prepersn){L*V¢" }. Note that for every € [n], we have:
<E {/;/\///}> -1 if z; = 1.
e’ ~Ber(§,n)1L V € = .
Ber(ém) i S+ (1 =0)(+1)=1—-25 ifz;=0.

22

0)



Moreover,E i ger(s.n) {2 V €| L#V¢"} > —1 since every coordinate af v ¢’ is > —1. Therefore,

7(—1+¢x) if Ty = 1.
fi(w®) <

(1—26+¢,) ifx; =0.

We now find an upper bound a#).. Note thaty,. is a non-negative random variable with mean

ExNBer(E’"){qsm} = EJ/’NBGT(Q"){PTGNNBGT(&"){LI\/@”}} = Pr:cNBer(e,n)76”~Ber’(6,n){W}
= PreNBer(e’,n) {F} =qe (by ThGOfGn@)

By Markov's inequality, P, geq(em{¢e > 5} < M = % Thus, the probability over
2
) )
 ~ Ber(e,n) that for alli € [n], fi(w®) < Y52 (=14 &) if 2 = 1 and fi(w?) < 2 (1 — 3y if

—
[
|
Nl
N4

z; = 0, is at least

2qe’
1)

) 0
PrwNBer(e,n){qbw < 5} =1- PrwNBer(e,n){qsm > 5} >1-

5
Note that for all0 < § < 1, we have thaﬁJr—?;( — 30) <1 4. Thus, the probability over ~ Ber (e, n)
-2

that f;(w®) < (—1)% — $ for all i € [n], is at leastl — 2qT So we conclude that
. 0 . 2QE’
PryBer(en)13 @ dual witnessu for x s.t. fi(w) < y(v;) — 3 Vien]}>1- 5

9 Sac =&se

In this section, we use the results of Sectiaig 6, 7and 8 teghe main result of the paper which is restated
below.

Theorem 9.1. (Main result: éao = £5¢)

LetT'¢c be a(d,, d. = kd,, L, M) graph cover ensemble with, an odd integer and/ divisible byk. Let
I'sc be the(d,,d. = kd,, L — ch,M) spatially coupled ensemble which is sampled by choosingphgr
cover code; ~ I'g¢ and returning a element @p(¢) chosen uniformly at rand Denote bysc and
¢sc the respective LP threholds by andI's~ on the BSC. There exists> 0 depending only od,, and
d. s.t. if M = o(L") andT' g satisfies the property that for any constakt> 0,

1
[LP error on('] = o

Pr ﬁ) (22)

¢'~Tsc
(ésc—A)-BSC

Thentae = Esc-

2Here, D(¢) refers to Definitiol 213
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Lemma 9.2. Assume that the ensemlilg. satisfies the property (22) for every constant> 0. Then, for
all constantsA1, Ao, a, 5 > 0, there exists a graph cover codec I'g¢, with derived spatially coupled
codes(’ ;,...,(}, satisfying the following two properties for sufficientédyde L:

1. Prie,o+a,)-Bsc|LP decoding success @i < a.

2. Foralli € [—L: L], Prieg.—na,)-sc[LP decoding error orj] < 8/(2L + 1).
Proof of lemmal9.2. Note that a random code~ I'¢ satisfies th@ properties above with high probabil-
ity:

Preatee [Preao+ns)-Bsc[Success og] > a or Ji € [—L : L] s.t. Prg,,_a,)-psc|Errorongj] > B(2L + 1)

1 _ 2L +1)2
< —Pr ¢wrge [LP decoding success @+ uPr T
QO (¢go+Ag)-BSC B (€50-A )\ BSC

=o0(1)

[LP decoding error og’]

Note that the inequality above follows from Markov’s ineliiyaand the union bound. We conclude that
there exists a graph cover coglec I' o satisfying the2 properties above. O

Lemma 9.3. {ge > Eso

Proof of lemmal9.3. We proceed by contradiction. Assume that < {s¢. Let:

d=(&sc —&ae)/2
n=2E&sc—9
A=n—10/2=¢qc+ /2

Note thatn > A + (1 — A\)d/2. Let{ be one of the graph cover codes whose existence is guarangeed
Lemmé&9.2 withA; = ¢, Ay = /2 anda, 8 > Owith o < 1 —23/d and let(’ ;, ..., (}; be the spatially
coupled codes that are derived frgmLet u be an error pattern ofiand letyu; be the restriction of: to ¢/

for everyi € [—L : L]. Define the event:

Ey = {Vi € [-L : L], 3 a dual witness foy,; on¢; with excess/2 on all variable nodes
Then,

E, = {3i € [~ L : L] s.t. 3 a dual witness foy; on¢; with excessi/2 on all variable nodes

Thus,
L
Prypsc{Er} < Z Pry.psc{# a dual witness fot; with excess/2 on all variable nodes
i=—L
Lo
< Z gPrn-Bsc{LP decoding error orj;} (by Theoreni 811)
i=—L
L
P 38 28
< z _ P
= Z;L 515
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If event £, is true, then by Corollary 713, for evetye [—L : L], there exists a dual Wltne$ |lieV,je

C'} for p on ¢ with the special variable nodes being at positigns+ 2d, — 1] and having an “extra flow”
of dy,cn'=¢ 4+ 1 with ¢ > 0 ande > 0 given in Theorem 6]1 and with the non-special variable nd@eing
excess‘%. Then, we can construct a dual witness foon the graph cover code(with no extra flows) by
averaging the abovl + 1 dual witnesses as follows. For everg V and everyj € C, let:

avg

We claim that{7;;"}; ; forms a dual witness fou on ¢. In fact, for eachi € V, j € C'andl € [-L : L],
w + TZ/j > 0 which implies that:

L
;;Ug"i_ avg j : —I-T/

Moreover, for all; € V', we have that:

L
.= (2L1+1!:§_:LT£J')

JEN(i) JEN(i)

:2L1+1 ZL: ( 2. Tfﬂ')

I=—L jEN()

1 1—c , d — 1
< 577 (@ = (e QL+ 1) + 14 5) + 2L+ 1= (dy = D)% — 5))
- (ML +1)'"¢ (dy—1)§6 d,—1 6
=%+ (do = Ddve—o7" 22L+1) 2L+1 2

<, if M =o(L"), L sufficiently large and’ = ¢/(1 — ¢)

SincePry_psc{LP decoding success @} > Pry.gsc{F1} =1 — Pry.gsc{FE1}, then,

Pry.psc{LP decoding success @i > 1 — ?
which contradicts the fact that:
Pry.psc[LP decoding success @i = P +a,)-psc[LP decoding success @i < a < 1 — ?
U

Lemma9.4. {qe < Eso

Proof of Lemmal9.4. Let{ be a graph cover code aii#f ¢) be the set of all derived spatially coupled codes
of ¢. Let . be an error pattern ofrand .’ be the restriction of: to ¢’ for some¢’ € D(({). Given a dual
witness foru, on ¢, we can get a dual witness fpf on ¢’ by repeatedly removing the special variable nodes
of ¢. Note that the dual witness is maintained after each stee simery check node i¢f has degree> 2.
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So if there is LP decoding success fpon ¢, then for every(’ € D((), there is LP decoding success fgr
on’, wherer/ is the restriction of) to ¢’. Therefore, for every > 0 and every(’ € D((), we have that:

Prepsc|LP decoding error og’] < Pr..psc|LP decoding error oq]
This implies that for every > 0, we have that:

Pr .y [LP decoding error og’] < Prc.r. [LP decoding error oq]
e-BSC e-BSC

So we conclude thdlge < £5¢.

Proof of Theorem[9.1. Theoreni 9.1 follows from Lemnia 9.3 and Lemima 9.4. O

A Appendix

A.1 Proof of Theorem[3.2
The goal of this section is to prove Theorem] 3.2 which is tedthelow.

Theorem[3.2. (Existence of a dual witness and LP decoding success)

Let7 = (V,C, E) be a Tanner graph of a binary linear code with block lengtland letn € {0,1}" be
any error pattern. Then, there is LP decoding succesgfon 7 if and only if there is a dual witness far
onT.

Note that the “if” part of the statement was proved|in [FME]. The argument below establishes both
directions. We first state some definitions and prove sormts famm convex geometry that will be central
to the proof of Theorer 3.2.

Definition A.1. Let S be a subset dR™. The convex span & is defined to beonv(S) = {az + (1 —
o)y | z,y € Sanda € [0,1]}. The conic span of is defined to beone(S) = {az + By | =,y €
Sanda, 8 € R>p}. The setS is said to be convex if = conv(S) and S is said to be a cone if =
cone(S). Also, S is said to be a convex polyhedronSf= {x € R" | Az > b} for some matrix4d € R"*"
and somé € R™ and S is said to be a polyhedral cone §f is both a convex polyhedron and a cone. The
interior of S is denoted bynt(.S) and the closure of is denoted byi(S).

Let K be a polyhedral cone of the fordd = {x € R™ | Az > 0} for some matrixd € R™*". For any

x € K s.t. z # 0, the ray ofK in the direction ofx is defined to be the sét(z) = {\z | A\ > 0}. Aray
R(z) of K is said to be an extreme ray éf if for anyy, = € R” and anyw, 8 > 0, R(z) = aR(y) + BR(z)
implies thaty, z € R(z).

Lemma A.2. If S'is a convex subset &", thenint((R>)" + S) = (Rx0)" + S.

Proof of LemmalA.2. For alla € (R>)" + S, « = r + s wherer € (R>¢)" ands € S. Thus, the ball
centered at and of radiusmin;c,, 7; > 0 is contained in((R>o)" + 5). Hencex € int((Rxo)" + S).
Therefore(R~0)" + S C int((R>0)" + 5).

Conversely, for alv € int((R>o)" + S), @ = r + s wherer € (R>)" ands € S. Moreover, since
a € int((R>0)™ + 5), there existss € (R~)" s.t. v+ u € ((Rx)" + S) andar — u € ((R>0)" + 5).
Note thata + v = 7 + u + s and thata — u = ' + s’ for somer’ € (R>g)" ands’ € S. Thus,
o = (a—l—u)—g(a—u) _ r+1§+r’ + %s’ — " + ¢ wherer” = r+1§+r’ c (R>O)n ands” — %s’ e S sinceS
is a convex set. Hencépt ((R>p)" + S5) € (Rso)" + S.

Thereforeint ((R>0)™ + S) = (Rx0)" + S. O
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LemmaA.3. Let Sy, .., S, be finite subsets &" each containing the zero vector. Then,

p

cone ﬂ COTLU ﬂ cone

7j=1
p
Proof of LemmalA.3. Clearly, cone( () conu( ﬂ cone(S;). To prove the other direction, we first
j=1
p p
note thatd € cone( (") conv(S;)). For any non-zera: € () cone(S;), we have that for allj € [p],
Jj=1 j=1
T = Z as;s where for anys € S;, a,; > 0. Letjpae = argmax Z as;. Sincexr # 0, D =
sES; JEll  ses;
. _ ), as7j 1
> Gsjpe, > 0. Thus, for anyj € [p], we haved = > (f)s +(1-) —7)0. Since for
SESjmaz SESJ' SGS]‘
allj € [p], 0 < Z as; < D and0 € S;, we conclude that; € conv(S;) for all j € [p]. Hence,
s€S;
p p
x € cone ﬂ conv(S;)). Therefore ﬂ cone(S;) C cone ﬂ conv(S;)). O
Jj=1 j=1 j=1

Lemma A.4. Let K be a polyhedral cone of the fori = {z € R™ | Az > 0} for some matrixd € R>*™
of rankm. For anyz € K s.t.x # 0, we have:

1. If R(x) is an extreme ray of{, then there exists afm — 1) x m submatrixA’ of A s.t. the rows of4’
are linearly independent and’z = 0.

2. K = cone(R) whereR = U R(x).
extreme rayR(z) of K
Proof of LemmalA.4. See Sectio.8 of [Sch98]. O

Lemma A.5. For all m > 2, we have that

{y € R>0)™| Z Yi > Yig, Vip € [m]} = cone{z € {0,1}" | w(z) = 2}
i=1, iio

Proof of LemmalAS. Let K,,, = {y € (R>0)™ | Z Yi > Yig, Vip € [m]} and X, = cone{z €
i=1, i#ig

{0,1}™ | w(z) = 2}. Clearly, X,,, C K,,. We now prove thaf<,, C X,,. Note thatK,,, can be written in

the following form:

Km={yeR™|y;>0Viec[mland Y v >y, Vi€ [m]}
i=1, iio
= {y € R™ | Ay > 0} whereA € R*™*™ has rankn
By part(2 of Lemm& A}, we then havéX,,, = cone(R) whereR = U R(y). Therefore,

extreme raysk(y) of K,
by partl1 of Lemm&AM, it is sufficient to show thatife R™ satisfies anym — 1) equations of,, with
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equality, therny should be an element @bne{z € {0,1}" | w(z) = 2}. Note that we have two types of
equations:

m
0] Z vi — ¥i, = 0 for someig € [m)].
i=1, iio

(1) y; = 0 for somei € [m].

Consider anym — 1) equations ofi,,, satisfied with equality. We distinguish two cases:

Case 1: At leastm — 2) of those equations are of Type (II). Without loss of gengralve can assume that
y; =0foralli € {3,...,m}. Moreover, since € K,,, we have that; — y2 > 0 andys — y; > 0, which
implies thaty; = y». Therefore, we conclude that=y;(110 ... 0) € X,,.

Case 2: At mostm — 3) equations are of Type (I). Hence, at leastiquations are of Type (I). Without loss

of generality, we can assume thad ~ y; =y and Y y; = 2. Adding up the lasg equations, we
i=1, 1#£1 i=1, i#£2

getZy, = 0. Sincey € K,,,, we havey; > 0 forall i € {3,...,m}. Therefore, we gey; = 0 for all

1€ {3 .,m}. Similarily to Case 1 above, this implies that X,,,. O

Proof of Theorem[3.2. The “fundamental polytopeP considered by the LP decoder was introduced by

[KVO3] and is defined byP = (1 conv(C;) whereC; = {z € {0,1}" : w(z|y(;)) is ever} for any
jec
j € C. For any error pattern € {0,1}", letn; € {—1,1}" be given by, = (—1)" for all i € [n]. Also,

foranyz,y € R, let their inner product béx, y) = Zw,yl Then, under the all zeros assumption, there

is LP decoding success fgron ¢ if and only if the zérolvector is the unique optimal solutiorthe LP [2),
i.e. if and only if(,0) < (17,y) for every non-zerg; € P, which is equivalent tg) € int(P*) = int(K*)
whereC = cone{P} is the “fundamental cone” and for arfy C R", the dualS* of S is given by S* =
{zeR"|(z,2) >0Vz € S}. By Lemmas A.B an Al5, we have:

K = cone ﬂ conv( ﬂ cone( ﬂ cone{z € {0,1}" | w(z|y(;)) is ever}
jeC jec jec
= [eone{z € {0,1}" |w(zlng) =2} = [J{v € ®R=0)"| Y. i > wip,¥io € N(j)}
jeC jec ieN(j)\{io}

= {y € (R>0)" | (y, vip,j) = 0Vio € N(j), Vj € C}
wherev;, ; € {—1,0,1}" is defined as follows: For all [n],
0 ifi¢ N(j).
(vig,j); = § =1 if i =1o.
1 ifie NG\ {io}.

K= (R>0) ﬂ m cone{viy jlio € N(j)} ﬂ ﬂ

jecC jecC

where for anyj € C, D; = cone{vj, jlio € N(j)}. Note that if . C R" is a cone, then its dudl* is also
a cone. We will use below the following basic properties didrones:

Thus,
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i) If Ly, Ly C R™ are cones, thef; + L9)* = Lj N L.
i) If L CR™isacone,theltL*)* = cl(L).

Therefore, there is LP decoding successifon K if and only if € D where:

D = int(Kc*) mt<( R20)" ) ﬂD*) > - mt<< (R=0)")" ﬂD*) > - mt((((Rzo)n + ZDJ')*>*>

jeC
and where the third equality follows from the fact th&@>()" is a self-dual cone and the last equality
follows from property (i) above. Note that for agye C, D, is a cone. Moreover, sind®>()" is a cone
and the sum of any two cones is also a cone, it follows tRat,)" + Z D;j is also a cone. Furthermore,

jeC
by property (i) above, we get th@ = int (cl ((RZO)" +) Dj>> . Being a cone(Rx)" + Y _Djisa
jeC jeC

convex set. For any convex sgtC R”", we have thaint(cl(S)) = int(S) (See Lemma.28 of [ABOG]).
Therefore,

D = int((Rx0)" + Y _ D;)

jec
= (R>0)" + Y _ D; (using Lemm&AR and the fact th3t_ D; is a convex subset ")
jeC jeC
={zeR"|Jye ZDjs.t.z >y}
jec

= {Z e R" | H{Aio,j}ioeN(j),jGC S.t. Aio,j >0Vig € N(]),\V/j € C and Z Aio,jvio,j < Z}
i0EN(j),jeC
={ D Xgsvioy +ul X =0Vig € N(j),Vj € Candu € (Rso)"}
10eN(j),jeC

Thus, there is LP decoding successjasn ¢ if and only if there exist\;, ; > 0 for all ip € N(j) and all

JECSL Y Nigyvip; <7 Letw(i,j) = (D iy jvip,), foralli € [n] and allj € C. Since

ineN(j),jeC ZOEN(J)
(vig,;)i = 0 wheneveri ¢ N (j), we have that for every e [n]:

Z w(i, j) Z Z Aig,jVio ,J Z Z Aig J”w ( Z Aig ]vZOJ) <7

JEN(3) JEN(i) d0eN(J) JEC ipeN(j) i0EN(j),j€C

Moreover, for allj € C, i1,i3 € N(j) S.t.4; # i2, we have

w(ilv ) —|—UJ 227 Z /\20,j< 'Uzoj + (Uio’j)iz) >0

10EN(F)

since (UiOJ)il + (vz-o,j)i2 > 0 becausé; # iy € N(j). We conclude that LP decoding success:famn ¢
is equivalent to the existence of a dual witnessifan ¢. O
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A.2 Proof of Lemmas[5.10 and 6.9
The goal of this section is prove the following theorem whikhsed in the proofs of Lemmpas 5110 6.9.

Theorem A.6. Let )\, 5, m be positive integers witl¥ > d. — 1 andm > A. Consider the optimization
problem:

* —
v = <TO,.¥.I}%3)(ewh f(To,...,Th) (23)
heEN,h>1

where:
h

T;
f(T07---7Th)—iz:;m

and W}, is the set of all tuple$Ty, ..., T,) € N+ satisfying the following three equations:

ZTi =m (24)

Ty < A (25)
T;41 < pT;forallie{0,...,h—1} (26)
Then,

2
(d B 1) In B—In(d¢c—1)
—~re— -7 In B
m
B 1

de—1

v* <\

We will first prove some lemmas which will lead to LemmalA.6.
Definition A.7. Letl = [logs(™5=1 4 1)] — 1.
Note that! > 0 sincem > .
Lemma A.8. Let(Ty,...,Ty) € Wy,. Then,T; < A\B¢forall i € {0,...,h}.
Proof of LemmalA.8. Follows from equations (25) and (26). O
Lemma A.9. Let
T = \g' forall i € {0,...,1}

ﬁl—i—l _ 1)
T =m- A =1
I+1 (ﬁ _ 1)
Then,(T}, ..., T}, ) € Wi
Proof of LemmalA9. First, note that7y, ..., 7/, ,) € N'*2 sinceT},, > 0 by Definition[A7. Moreover,

I+1 l

. +1 _ 1
YT = N+ T/, = /\L(ﬁ Y ) +T/ =m
i=0 i=0
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We have thafly < A and for everyi € {0,...,1 -1}, T{,; < BT;. We still need to show thay , < 7;.
We proceed by contradiction. Assume tﬁl}ij;l > BT;. Then, T}, , > A8"*1. Thus,

m = ZT’>Z/\52— 1) > A2 (5—1) =m

sincel 4+ 2 = Uogﬁ(m(ﬁ D 1] +1 > logg(™5— ( D 1).

Lemma A.10. (T, ..

Equation [(Z3B).

Proof of LemmalA.10. By LemmdA.9(Ty,..., T}, ,) € Wiy 1. Let(Tp, ..., Ty) € Wy, suchthat Ty, . ..

and (T, . ..

/
ST

O

) is the unique (up to leading zeros) element that achievesndgsdmum in

>Th)

,T}) are not equal up to leading zeros and without loss of gemgrdsume thak > [ + 1 by

extendingl’ with zeros if needed. In order to show thdty, ..., Ty) < f(T}, ..., T} ), we distinguish two

cases:

Case 1:(Tp, . ..

l

l

Therefore» "7/ — > T, > 0. Note that:
i=0

1=0

1)) # (T4, ..., T)). By Lemma[A8, there exists; € {0,...,1} such thatly,, < A3k

l / h
~T! Tz+1 T T;
To, ..., Th) — f(T},..., T} I 1 —
f( 0 ) h) f( 0 ’ l-‘rl ; 1 3 d _ 1)l+1 +Z:§H:-2 (dc _ 1)2
!
) Ty — Tz+1
d_1lz d—1)l+1 d—1l+1ZT
=142
/
d_llz — 1) d—l)l“ ZT Ti41)
i=l+1
/
d_llZT ;) d_ll—i-lz
Consequently,
! ! ! l
Q1= QT-21)
Tor. .., Ty) < f(T3, ..., T}, ,) — =2 =0 =0 =
f( 0 I h)—f( 0> ? l+1) (dc—l)l + dc—l)ll
l l
Q_T-3.7)
_ ! / 1=0 =0
= f(To, - Tiy) — (de — 2) d, — 1)1
< f(TO,7'--7CTl,+1)
h
Case 2:(Ty, ..., Ti) = (Ty, ..., T}). Then Ty, # T . SinceT;, | = Z T;, we should have}, , —

i=l+1
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T;11 > 0. We have that

h

/
FTor o To) — f(T0 Ty = DL i Z T
T - T A (- 1)
Tl+1 - 17.;.1 Z T
= EERVAS 1)i+2
(dc 1) i=l+2
o CZjl—i—l - ]}/_;’_1 lii
D 4 1 I+2
Tiv1 — Tl,+1 (Tl+1 - Tl+1)
= (d, — 1) (d, —1)1+2
Consequently,
(T} = Ti41)  (Ty — Tign)
/ / +1 I+1 +
A ) L BN C ) o
(T — Tit)
= / / +1
= ST Th) = e =D 5
< f(Té, te 7Tl/+1)

Proof of LemmalA.8. Letr = §/(d. — 1). By Lemmas A.ID and Al8, we have that

I+1 I+1

+
T’ s2 2
—— = V= <A
Z_;d—l’_z d—l Z v—1 v—1
Jlogs (M 1) 41 2
<A VlogBm
v—1 v —
]j2 Inv
< In 8

A.3 Proof of Theorem[5.11

The goal of this section is to prove Theorem 5.11 which isatestbelow.

Theorem[5.11. (Asymptotic tightness of Theoréml5.1 €dr, d..)-regular LDPC codes)

There exists an infinite family 6f,, d.)-regular Tanner graphg(V,,, C,, E,,) }»., an infinite family of error
patterns{~, }, and a positive constants.t. there exists a hyperflow for, on (V,,, C,, E,) and any WDAG
(Vo Cn, By w, ~yy,) corresponding to a hyperflow for, on (V,,, Cy,, E,,) must have

In(dy—1)
max|w(e)| > cnm@—D+mld-1)
ecky

We now prove some lemmas that lead to the proof of Theérenm 5.11
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Definition A.11. (Construction of (V,,, Cy, Ey) }n)
Let8 = (dy, — 1)(d. — 1). The Tanner grap{(V,,, C,,, E,,) }», is constructed by connecting copies of the
following two basic blocks:

1.

Lety = = ima=

The “A block” A, with parameter the non-negative integer A, is an undirected complete tree rooted
at a(d, — 1)-regular variable node. The internal nodes 4f other than the root are eithef.-regular
check nodes af,,-regular variable nodes. The leaves4f are all 1-regular variable nodes of dep
Thus, A, hasS” leaves. An exampld block is given in Figur€12.

The “B block” B, with parameter the non-negative integerB, is an undirected tree rooted at(d, —1)-
regular variable node. The internal nodes8f other than the root are eithef,-regular variable nodes
or 2-regular check nodes. The leaves/gf are 1-regular variable nodes. The nodes Bf, are divided
into y + 1 layers indexed frong to 0. Layery consists of the root and thel, — 1) check nodes that are
connected to the root. Each check node in layisrconnected to a single variable node in layer 1 for
alli=y,y—1,...,1. Each variable node in layeris connected td, — 1 check nodes in the same layer
forall i = y,y — 1,...,1. Thus, layer0 consists ofd, — 1)¥ leaves which are all-regular variable
nodes. An examplB block is given in Figurél3.

In(dy—1)

7y Forevery non-negative intege lety,, = |logq,_1yn"] andb, = (d, —1)¥" =

©(n"). The Tanner grapH(V,,, Cy, E,,)}, is constructed using a root check node, ddélock, manyA
blocks and some auxiliary variable and check nodes as fatlow

1.
2.

Start with a check nod.

Connectky to the roots ofd. — 1 A, 1 blocks and to the root of onB,, block. Note that3,, hasb,
leaves.

For everyi = yp,yn—1, ..., 1, connect each check node in layef B,, to the roots ofd. —2) A; blocks.
Note that there aréd, — 1)Y= ~**! check nodes in layer

LetT,, be the tree constructed so far ahgdbe its number of leaves. Note that all the leaved,pare
1-regular variable nodes. Completg, into a (d,,d.)-regular graph by adding)(l,,) d.-regular new
check nodes and (if neede@),,) d,-regular new variable nodes in such a way that each new check i
either connected to zero or to at least two leaves offiralock*

We call the check and variable nodes added in Blep 4 the “aimg check and variable nodes respec-
tively.

Definition A.12. (Construction of v, },)
Let{(V,,, Cy, E,)}, be the Tanner graph given in Definitibn Al11. The error pattey is defined by:

1.
2.
3.

For every variable node in an A block, v, (v) = 1.
For every variable node in the B block,~, (v) = —1.

For every connecting variable node~y, (v) = 1.

3The depth of a variable nodeis the number of check nodes on the unique path from the raot to
“Note that if(d, — 1)I is divisible byd., we don’t need any extra variable nodes. In the worst caseaweddd,. copies of

T, so that(d, — 1)d.l, is divisible byd..
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U1
a1 C2
U4 Us U6 vr vs Vg

Figure 2: Example of anl block with parametex = 1 whered,, = 3 andd,. = 4

V0
/ N\
C1 (&)
U1 V2

fert] [/

C3 C4 Cs Ce

Figure 3: Example of & block with parametey = 2 whered,, = 3

Lemma A.13. (Size of the code)
For any positive integer, the Tanner grapH (V,,, Cy,, E,,) }», given in Definitio A1 is &d,,, d..)-regular
code with©(n) variable nodes.

Proof of LemmalA.I3. It is enough to show that the numbigrof leaves ofT;, is O(n). The number of
leaves of blockB,, is b, = ©(n”). The number of leaves of block, is (d, — 1)¥. Thus, the number of
leaves in all thed-blocks is

= (de = 1(dy — D+ (4~ 2) Y (d, — g
i=1
Yn
=0((dy, — 1)¥") +O((d, — 1)¥" Z(dc _ 1)2)
i=1
= O(b, + ")

Yn
becauséd, — 1)V = b, andZ(dv —1)" = O((d. — 1)¥"). SincepB¥» = O(n) andb,, = o(n), we get that

i=1

ly, = by + a, = 0O(n). O
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Lemma A.14. (Existence of a hyperflow fdry,, },, on{(V,,, Cy, Ey) }n)
Let{(V,, Cyn, E,)}, be the Tanner graph given in Definition Al11 and-gtbe the error pattern given in
Definition[A.12. Then, for every positive integerthere exists a hyperflow for, on (V,,, C,,, E,,).

Proof of LemmalA.14. Lete > 0. We will further specifye at the end of the proof. Consider the following
assignment of weigths to edgesiof:

1. In everyA block, the edges are directed toward the root of the block &dyges outgoing from the leaves
have weightl — e. For every check node, the weight of the outgoing edge isleque common weight
of its incoming edges. For each variable node, the sum of #ights of the outgoing edges is equal to
the sum of the weights of the incoming edges dlus e. Thus, the weight of the edge outgoing from the
root of theA,, block is

. _ 1\=z+1 _
mz(1—6)Z(dv—1)t=(1—6)(dv dvl)—Q :

t=0

2. In the B block, the edges are directed toward the leaves. The edgectimgc, to the root of blockB
has weightu,,, where for any; € {0,...,y,}:

' 4 ) (dv _ 1)i+1 -1
w; = (1+ E)Z(dv —1Y =01+ G)T
7=0
For every internal variable node the weight of each outgoing edge froimis Z;lil_f) wherez is the
weight of the edge incoming te. For every internal check nodegthe weight of the edge outgoing from
c is equal to the weight of the edge incomingctoBy induction on the layer indek= y,, yn_1,---,0,
for every variable node in layer i, the weight of its incoming edge is; and (if v is not a leaf) the

weight of each of its outgoing edges:is_; (sincew; satisfies the recurrenae; 1 = % for all

2": yn?yn_l7"'71)'

3. All edges adjacent to connecting check or variable nodes tveight zero.

By construction, the weights satisfy the dual witness eqnat{4) and[(b) for all check and variable nodes
in A blocks, all internal variable nodes in tti#block and all the connecting check and variable nodes. To

guarantee that equations (4) ahd (5) hold for the root chedk®, we need that,, ., > w,, . To guarantee

them for the internal check nodes of tieblock, we need that;,; > w; foralli =y, — 1,...,1. To
guarantee them for the leaves of thdlock, we need thaiy — 1 > 0, which holds sincevg = 1+ €. Thus,
for everyi = y,, yn—1, ..., 1, we need that,;; > w;, i.e.
(dv _ 1)i+2 -1 (dv _ 1)i+1 -1
-2 —— > (142~ —
R R S A
which can be guaranteed by lettifig< ¢ < 1 — %. O

Lemma A.15. (Lower bound for any hyperflow fdry,, },, on{(V,,, Cp, Ev) }n)
For any positive integen, any WDAGV,,, C.,, E,,, w, v, ) corresponding to a hyperflow far, on(V;,, Cy,, E,,)
must have ity 1)

max|w(e)| > enB@-DHade=T)
ecky

for some constant > 0.

35



Proof of LemmalA.18. Let(V,,, Cy, E,, w,,) be a WDAG corresponding to a hyperflow fgron(V;,, C.,, E,,).
Since~, (v) = —1 for every leafv of the B block (which hag,, leaves) and since each connecting check
node adjacent to a leaf of thB block is connected to at least two leaves of #heblock, there should

be a flow of total value larger tha, from the non-leaf and non-connecting nodes of thélock to its
leaves. Applying the same argument inductively and usiedgdbt that for every variable nodeof the B

block v, (v) = —1, we get that all the edges of tii¢ block should be oriented toward its leaves and that
there should be a flow of value larger thianentering the root of thé? block. Thus, the edge connecting

co to the root of theB block should be oriented toward the block and should have value larger than
In(dy—1

Proof of Theorem[5.11. Follows from LemmaBA.13, A.14 and Al15. O
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