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Abstract

For a given family of spatially coupled codes, we prove that the LP threshold on the BSC of the graph cover
ensemble is the same as the LP threshold on the BSC of the derived spatially coupled ensemble. This result is in
contrast with the fact that the BP threshold of the derived spatially coupled ensemble is believed to be larger than
the BP threshold of the graph cover ensemble [KRU11], [KRU12]. To prove this, we establish some properties
related to the dual witness for LP decoding which was introduced by [FMS+07] and simplified by [DDKW08].
More precisely, we prove that the existence of a dual witnesswhich was previously known to be sufficient for
LP decoding success is also necessary and is equivalent to the existence of certain acyclic hyperflows. We also
derive a sublinear (in the block length) upper bound on the weight of any edge in such hyperflows, both for regular
LPDC codes and for spatially coupled codes and we prove that the bound is asymptotically tight for regular LDPC
codes. Moreover, we show how to trade crossover probabilityfor “LP excess” on all the variable nodes, for any
binary linear code.
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1 Introduction

1.1 Binary linear codes

A binary linear codeζ of block lengthn is a subspace of theF2-vector spaceFn
2 . Theǫ-BSC (Binary Sym-

metric Channel) with inputX ∈ Fn
2 and outputY ∈ Fn

2 flips each input bit independently with probability

ǫ. Letγ be the log-likelihood ratio vector which is given byγi = log
(pYi|Xi

(yi|0)

pYi|Xi
(yi|1)

)
= (−1)yi log 1−ǫ

ǫ
for any

i ∈ {1, . . . , n}. The optimal decoder is the Maximum Likelihood (ML) decoderwhich is given by

x̂ML = argmax
x∈ζ

pY |X(y|x) = argmax
x∈ζ

n∏

i=1

pYi|Xi
(yi|xi) = argmax

x∈ζ

∏n
i=1 pYi|Xi

(yi|xi)∏n
i=1 pYi|Xi

(yi|0)

= argmax
x∈ζ

log

( n∏

i=1

pYi|Xi
(yi|xi)

pYi|Xi
(yi|0)

)
= argmax

x∈ζ

n∑

i=1

log

(
pYi|Xi

(yi|xi)

pYi|Xi
(yi|0)

)
= argmin

x∈ζ

n∑

i=1

γixi

where the second equality follows from the fact that the channel is memoryless. Since the objective function
is linear inx, replacingζ by the convex spanconv(ζ) of ζ does not change the value of the minimal solution.
Hence, we get

x̂ML = argmin
x∈conv(ζ)

n∑

i=1

γixi (1)

ML decoding is known to be NP-hard for general binary linear codes [BMVT78]. This motivates the study
of suboptimal decoding algorithms that have small running times.

1.2 Linear programming decoding

LP (Linear Programming) decoding was introduced by [FWK05]and is based on the idea of replacing
conv(ζ) in (1) with a larger subset ofRn, with the goal of reducing the running time while maintaining a
good error correction performance. First, note thatconv(ζ) = conv(

⋂
j∈C

ζj) whereζj = {z ∈ {0, 1}n :

w(z|N(j)) is even}1 for all j in the setC of check nodes corresponding to a fixed Tanner graph ofζ and
whereN(j) is the set of all neighbors of check nodej. Then, LP decoding is given by relaxingconv(

⋂
j∈C

ζj)

1Forx ∈ {0, 1}n andS ⊆ {1, . . . , n}, x|S ∈ {0, 1}n denotes the restriction ofx toS i.e. (x|S)i = xi if i ∈ S and(x|S)i = 0
otherwise, andw(x) denotes the Hamming weight ofx.
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to
⋂
j∈C

conv(ζj):

x̂LP = argmin
x∈P

n∑

i=1

γixi (2)

whereP =
⋂
j∈C

conv(ζj) is the so-called “fundamental polytope” that will be carefully considered in the

proof of Theorem 3.2. A central property ofP is that it can be described by a linear number of inequalities,
which means that the linear program (2) can be solved in time polynomial inn using the ellipsoid algorithm
or interior point methods.
When analyzing the operation of LP decoding, one can assume that the all-zeros codeword was transmitted
[FWK05]. Then, by normalizing the expression for the log-likelihood ratioγ given in Section 1.1 by the
positive constantlog(1−ǫ

ǫ
), we can assume that the log-likelihood ratio is given byγi = 1 if yi = 0 and

γi = −1 if yi = 1 for all i ∈ {1, . . . , n}. As in previous work, we make the conservative assumption
that LP decoding fails whenever there are multiple optimal solutions to the linear program (2). In other
words, under the all zeros assumption, LP decoding succeedsif and only if the zero codeword is the unique
optimal solution to the linear program (2). In order to show that LP decoding corrects a constant fraction of
errors when the Tanner graph has sufficient expansion, [FMS+07] introduced the concept of a dual witness,
which is a dual feasible solution with zero cost and with a given set of constraints having a positive slack.
By complementary slackness, it follows that the existence of a dual witness implies LP decoding success
[FMS+07]. A simplified (but equivalent) version of this dual witness, called a hyperflow, was introduced
in [DDKW08] (and later generalized in [HE12]) and used to prove that LP decoding can correct a larger
fraction of errors in a probabilistic setting. This hyperflow will be described in Section 3. However, it was
unkown whether the existence of a hyperflow (or equivalentlythat of a dual witness) is necessary for LP
decoding success. We will show, by careful consideration ofthe fundamental polytopeP , that this is indeed
the case.

1.3 Spatially coupled codes

The idea of spatial coupling has been recently used in codingtheory, compressive sensing and other fields.
Spatially coupled codes (or convolutional LDPC codes) wereintroduced in [JFZ99]. Recently, [KRU11]
showed that the BP threshold of spatially coupled codes is the same as the MAP (Maximum Aposteriori
Probability) threshold of the base LDPC code in the case of the Binary Erasure Channel (BEC). Moreover,
[KRU12] showed that spatially coupled codes achieve capacity under belief propagation. In compressive
sensing, [KMS+12] and [DJM12] showed that spatial coupling can be used to design dense sensing matrices
that achieve the same peformance as the optimall0-norm minimizing compressive sensing decoder. In
coding theory, the intuition behind the improvement in performance due to spatial coupling is that the check
nodes located at the boundaries have low degrees which enables the BP algorithm to initially recover the
transmitted bits at the boundaries. Then, the other transmitted bits are progressively recovered from the
boundaries to the center of the code. A similar intuition is behind the good performance of spatial coupling
in compressive sensing [DJM12].

1.4 The conjecture

It was reported by [Bur11] that, based on numerical simulations, spatial coupling does not seem to improve
the performance of LP decoding. This lead to the conjecture that the LP threshold of a spatially coupled
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ensemble on the BSC is the same as that of the base ensemble. A natural approach to prove this claim is
twofold:

1. Show that the LP threshold of the spatially coupled ensemble on the BSC is the same as that of the graph
cover ensemble.

2. Show that the LP threshold of the graph cover ensemble on the BSC is the same as that of the base
ensemble.

1.5 Contributions

We prove the first part of the conjecture. To do so, we prove some general results about LP decoding of
LDPC codes that may be of independent interest.

1. We prove that the existence of a dual witness which was previously known to be sufficient for LP decoding
success is also necessary and is equivalent to the existenceof certain acyclic hyperflows (Theorem 3.2).

2. We derive a sublinear (in the block length) upper bound on the weight of any edge in the hyperflow, for
regular LDPC codes (Theorem 5.1) and spatially coupled codes (Theorem 6.1). In the regular case, we
show that our bound is asymptotically tight (Theorem 5.11).

3. We show how to trade crossover probability for “LP excess”on all the variable nodes, for any binary linear
code (Theorem 8.1).

We leave the second part of the conjecture open.

1.6 Outline

The paper is organized as follows. In Section 2, we formally state the main result of the paper. In Section 3,
we prove that the existence of a dual witness which was previously known to be sufficient for LP decoding
success is also necessary and is equivalent to the existenceof certain weighted directed acyclic graphs. In
Section 4, we show how to transform those weighted directed acyclic graphs into weighted directed forests
while preserving their central properties. In Section 5, weprove, using the result of Section 4, a sublinear
(in the block length) upper bound on the weight of any edge in such graphs, for regular codes. An analogous
upper bound is proved in Section 6 for spatially coupled codes. In Section 7, we relate LP decoding on a
graph cover code and on a spatially coupled code. In Section 8, we show how to trade crossover probability
for “LP excess” on all the variable nodes, for any binary linear code. The results of Sections 6, 7 and 8 are
finally used in Section 9 where we prove the main result of the paper.

1.7 Notation and terminology

We denote the set of all non-negative integers byN. For any integersn, a, b with n ≥ 1, we denote by[n]
the set{1, . . . , n} and by[a : b] the set{a, . . . , b}. For any eventA, let A be the complement ofA. For
any vertexv of a graphG, we letN(v) denote the set of all neighbors ofv in G. For anyx ∈ {0, 1}n and
anyS ⊆ [n], let x|S ∈ {0, 1}n s.t. (x|S)i = xi if i ∈ S and(x|S)i = 0 otherwise. A binary linear codeζ

can be fully described as the nullspace of a matrixH ∈ F(n−k)×n
2 , called the parity check matrix ofζ. For

a fixedH, ζ can be graphically represented by a Tanner graph(V,C,E) which is a bipartite graph where
V = {v1, . . . , vn} is the set of variable nodes,C = {c1, . . . , cn−k} is the set of check nodes and for any
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i ∈ [n] and anyj ∈ [n − k], (vi, cj) ∈ E if and only if Hj,i = 1. If H is sparse, thenζ is called a Low
Density Parity Check (LDPC) code. LDPC codes were introduced and first analyzed by Gallager [Gal62].
If the number of ones in each column ofH is dv and the number of ones in each row ofH is dc, ζ is called
a (dv , dc)-regular code. We let̂dv = (dv − 1)/2. Throughout the paper, we assume thatn, dc, dv > 2.

2 Main result

First, we define the spatially coupled codes under consideration.

Definition 2.1. (Spatially coupled code)
A (dv, dc = kdv, L,M) spatially coupled code, withdv an odd integer andM divisible byk, is constructed
by considering the index set[−L− d̂v : L+ d̂v] and satisfying the following conditions:2

1. M variable nodes are placed at each position in[−L : L] and M dv
dc

check nodes are placed at each

position in[−L− d̂v : L+ d̂v].

2. For anyj ∈ [−L+ d̂v : L− d̂v], a check node at positionj is connected tok variable nodes at position
j + i for all i ∈ [−d̂v : d̂v ].

3. For anyj ∈ [−L − d̂v : −L + d̂v − 1], a check node at positionj is connected tok variable nodes at
positioni for all i ∈ [−L : j + d̂v].

4. For anyj ∈ [L− d̂v +1 : L+ d̂v], a check node at positionj is connected tok variable nodes at position
i for all i ∈ [j − d̂v : L].

5. No two check nodes at the same position are connected to thesame variable node.

With the exception of the non-degeneracy condition 5, Definition 2.1 above is the same as that given in
Section II-A of [KRU11]. We next define the graph cover codes under consideration which are similar to
the tail-biting LDPC convolutional codes introduced by [TZF07].

Definition 2.2. (Graph cover code)
A (dv, dc = kdv, L,M) graph cover code, withdv an odd integer andM divisible byk, is constructed by
considering the index set[−L : L] and satisfying the following conditions:

1. M variable nodes andM dv
dc

check nodes are placed at each position in[−L : L].

2. For anyj ∈ [−L : L], a check node at positionj is connected tok variable nodes at position(j + i)
mod [−L : L] for all i ∈ [−d̂v : d̂v].

3. No two check nodes at the same position are connected to thesame variable node.

Note that “cutting” a graph cover code at any positioni ∈ [−L : L] yields a spatially coupled code. This
motivates the following definition.

Definition 2.3. (Derived spatially coupled codes)
Let ζ be a(dv, dc = kdv , L,M) graph cover code. For eachi ∈ [−L : L], the(dv, dc = kdv , L − d̂v,M)
spatially coupled codeζ ′i is obtained fromζ by removing allM variable nodes and their adjacent edges at
each positioni + j mod [−L : L] for everyj ∈ [0 : 2d̂v − 1]. Then,D(ζ) = {ζ ′−L, . . . , ζ

′
L} is the set of

all 2L+ 1 derived spatially coupled codes ofζ.

2Informally, 2L+ 1 is the number of “layers” andM is the number of variable nodes per “layer”.
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Definition 2.4. (Ensembles and Thresholds)
LetΓ be an ensemble i.e a probability distribution over codes. The LP thresholdξ ofΓ on the BSC is defined
asξ = sup{ǫ > 0 | Pr ζ∼Γ

ǫ-BSC

[LP error onζ] = o(1)}.

We are now ready to state the main result of this paper.

Theorem 2.5. (Main result: ξGC = ξSC)
LetΓGC be a(dv , dc = kdv, L,M) graph cover ensemble withdv an odd integer andM divisible byk. Let
ΓSC be the(dv , dc = kdv , L − d̂v,M) spatially coupled ensemble which is sampled by choosing a graph
cover codeζ ∼ ΓGC and returning a element ofD(ζ) chosen uniformly at random3. Denote byξGC and
ξSC the respective LP threholds ofΓGC andΓSC on the BSC. There existsν > 0 depending only ondv and
dc s.t. ifM = o(Lν) andΓSC satisfies the property that for any constant∆ > 0,

Pr ζ′∼ΓSC
(ξSC−∆)-BSC

[LP error onζ ′] = o(
1

L2
) (3)

Then,ξGC = ξSC .

Note that forM = ω(logL), condition (3) above is expected to hold for the spatially coupled ensemble
ΓSC since under typical decoding algorithms, the error probability on the (ξSC − ∆)-BSC is expected to
decay to zero asO(Le−c×∆2×M ) for some constantc > 0. Moreover, note that in the regimeM = Θ(Lδ)
(for any positive constantδ), spatial coupling provides empirical improvements underiterative decoding and
in fact, the improvement is expected to take place as long asL is subexponential inM [OU11].

3 LP decoding, dual witnesses, hyperflows and WDAGs

The following definition is based on Definition 1 of [FMS+07].

Definition 3.1. (Dual witness)
For a given Tanner graphT = (V,C,E) and a (possibly scaled) log-likelihood ratio functionγ : V → R,
a dual witnessw is a functionw : E → R that satisfies the following 2 properties:

∀v ∈ V,
∑

c∈N(v):w(v,c)>0

w(v, c) <
∑

c∈N(v):w(v,c)≤0

(−w(v, c)) + γ(v) (4)

∀c ∈ C,∀v, v′ ∈ N(c), w(v, c) + w(v′, c) ≥ 0 (5)

The following theorem relates the existence of a dual witness to LP decoding success. The fact that
the existence of a dual witness implies LP decoding success was shown in [FMS+07]. We prove that the
converse of this statement is also true. This converse will be used in the proof of Theorem 8.1.

Theorem 3.2. (Existence of a dual witness and LP decoding success)
Let T = (V,C,E) be a Tanner graph of a binary linear code with block lengthn and letη ∈ {0, 1}n be
any error pattern. Then, there is LP decoding success forη onT if and only if there is a dual witness forη
onT .

Proof of Theorem 3.2. See Appendix A.1.

3Here,D(ζ) refers to Definition 2.3.
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The following definition is based on Definition 1 of [DDKW08].

Definition 3.3. (Hyperflow)
For a given Tanner graphT = (V,C,E) and a (possibly scaled) log-likelihood ratio functionγ : V → R,
a hyperfloww is a functionw : E → R that satisfies property (4) above as well as the following property:

∀c ∈ C,∃Pc ≥ 0,∃v ∈ N(c) s.t.w(v, c) = −Pc and∀v′ ∈ N(c) s.t. v′ 6= v,w(v′, c) = Pc (6)

By Proposition1 of [DDKW08], the existence of a hyperflow is equivalent to that of a dual witness.
Hence, by Theorem 3.2 above, we get:

Corollary 3.4. (Existence of a hyperflow and LP decoding success)
LetT = (V,C,E) be a Tanner graph of a binary linear code with block lengthn and letη ∈ {0, 1}n be any
error pattern. Then, there is LP decoding success forη onT if and only if there is a hyperflow forη onT .

Definition 3.5. (WDG corresponding to a hyperflow or a dual witness)
Let T = (V,C,E) be a Tanner graph,γ : V → R a (possibly scaled) log-likelihood ratio function and
w : E → R a dual witness or a hyperflow. The weighted directed graph (WDG) (V,C,E,w, γ) associated
with T ,γ andw has vertex setV ∪ C and for anyv ∈ V and anyc ∈ C, an arrow is directed fromv to c if
w(v, c) > 0, an arrow is directed fromc to v if w(v, c) < 0 andv andc are not connected by an arrow if
w(v, c) = 0. Moreover, a directed edge betweenv ∈ V andc ∈ C has weight|w(v, c)|.

The following theorem shows that whenever there exists a WDGcorresponding to a hyperflow or a dual
witness, there exists an acyclic WDG (denoted by WDAG) corresponding to a hyperflow.

Theorem 3.6. (Existence of an acyclic WDG)
LetT = (V,C,E) be a Tanner graph of a binary linear code with block lengthn and letη ∈ {0, 1}n be any
error pattern. IfG = (V,C,E,w, γ) is a WDG (Weighted Directed Graph) corresponding to a dual witness
for η onT , then there is an acyclic WDGG′′ = (V,C,E,w′′ , γ) corresponding to a hyperflow forη onT .

Before proving Theorem 3.6, we summarize the different characterizations of LP decoding success.

Theorem 3.7. Let T = (V,C,E) be a Tanner graph of a binary linear code with block lengthn and let
η ∈ {0, 1}n be any error pattern. Then, the following are equivalent:

1. There is LP decoding success forη onT .

2. There is a dual witness forη onT .

3. There is a hyperflow forη onT .

4. There is a WDAG forη onT .

In order to prove Theorem 3.6, we give an algorithm that transforms a WDGG satisfying Equations (4)
and (5) into an acyclic WDGG′′ satisfying Equations (4) and (6).
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Input: G = (V,C,E,w, γ)
Output: G′′ = (V,C,E,w′′ , γ)

G′ = (V,C,E,w′, γ)← G
while G′ has a directed cycledo

c← any directed cycle ofG′

wmin← minimum weight of an edge ofc ⊲ All edges alongc have a positive weight.
Subtractwmin from the weights of all edges ofc
Remove all zero weight edges
Store the resulting WDG inG′

end while

for all j ∈ C do
d(j)← degree ofj
{v1, . . . , vd(j)} ← neighbours ofj in order of increasingw′(vi, j)
if w′(v1, j) ≥ 0 then ⊲ All edges are directed towardj and can thus be removed.

w′′(vi, j)← 0 ∀i ∈ [d(j)]
else ⊲ (v1, j) is the only edge directed away fromj.

w′′(v1, j)← w′(v1, j)
w′′(vi, j)← |w

′(v1, j)| ∀i ∈ {2, . . . , d(j)}
end if

end for

Algorithm 3.1: Transforming the dual witness WDGG for γ into a hyperflow WDAGG′′ for γ

The next lemma is used to complete the proof of Theorem 3.6.

Lemma 3.8. After each iteration of the while loop of Algorithm 3.1, we have:

(I) The number of cycles ofG′ decreases by at least1.

(II) G′ satsifies the dual witness equations (4) and (5).

Proof of Lemma 3.8. (I) follows from the fact that cyclec is being broken in every iteration of the while
loop and no new cycle is added by reducing the absolute weights of some edges of the WDG. (II) follows
from the fact that during any iteration of the while loop, we are possibly repeatedly reducing the absolute
weights of one ingoing and one outgoing edge of a variable or check node by the same amount, which
maintains the original LP constraints (4) and (5).

Proof of Theorem 3.6. First, note that the while loop of Algorithm 3.1 will be executed a number of times
no larger than the number of cycles ofG, which is finite. By Lemma 3.8, after the last iteration of thewhile
loop,G′ is an acyclic WDG that satisfies (4) and (5). The for loop of Algorithm 3.1 decreases the weights of
edges that are directed away from variable nodes; thus, it maintains (4) andG′′ inherits the acyclic property
of G′. Moreover,G′′ satsifies (6), which completes the proof Theorem 3.6.

Remark 3.9. In virtue of Theorem 3.2, Theorem 3.4 and Theorem 3.6, we willuse the terms “hyperflow”,
“dual witness” and “WDAG” interchangeably in the rest of this paper.
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4 Transforming a WDAG into a directed weighted forest

The WDAG corresponding to a hyperflow has no directed cycles but it possibly has cycles when viewed as
an undirected graph. In this section, we show how to transform the WDAG corresponding to a hyperflow
into a directed weighted forest (which is by definition a directed graph that is acyclic even when viewed as
an undirected graph). This forest has possibly a larger number of variable and check nodes than the original
WDAG but it still satisfies Equations (4) and (6). Moreover, the vertices of the forest “corresponding”
to a vertex of the original WDAG will have their weights sum upto the weight of the original vertex.
Furthermore, the directed paths of the forest will be in a bijective correspondence with the directed paths of
the original WDAG. This transformation will be used when we derive an upper bound on the weight of an
edge in a WDAG of a(dv, dc)-regular LDPC code in Section 5 and of a spatially coupled code in Section 6.

Theorem 4.1. (Transforming a WDAG into a directed weighted forest)
Let G = (V,C,E,w, γ) be a WDAG. Then,G can be transformed into a directed weighted forestT =
(V ′, C ′, E′, w′, γ′) that has the following properties:

1. V ′ =
⋃
v∈V

V ′
v whereV ′

x ∩ V
′
y = ∅ for all x, y ∈ V s.t.x 6= y. For everyv ∈ V , each variable node inV ′

v is

called a “replicate” of v.

2. C ′ =
⋃
c∈C

C ′
c whereC ′

x ∩ C ′
y = ∅ for all x, y ∈ C s.t. x 6= y. For everyc ∈ C, each check node inC ′

c is

called a “replicate” of c.

3. For all v ∈ V,
∑

v′∈V ′
v

γ′(v′) = γ(v).

4. For all v ∈ V and all v′ ∈ Vv, γ′(v′) has the same sign asγ(v).

5. The forestT satisfies the hyperflow equations (4) and (6).

6. The directed paths ofG are in a bijective correspondence with the directed paths ofT . Moreover, if the
directed pathh′ of T corresponds to the directed pathh ofG, then the variable and check nodes ofh′ are
replicates of the corresponding variable and check nodes ofh.

7. If G has a single sink node with a single incoming edge that has weightα, thenT has a single sink node
with a single incoming edge and that has the same weightα.

In order to prove Theorem 4.1, we now give an algorithm that transforms the WDAGG into the directed
weighted forestT .
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Input: G = (V,C,E,w, γ)
Output: T = (V ′, C ′, E′, w′, γ′)

for eachv ∈ V taken in topological orderdo
p← number of outgoing edges ofv
{e

(v)
j }

p
j=1 ← weights of outgoing edges ofv

e
(v)
T ←

p∑

j=1

e
(v)
j

Createp replicates of the subtree rooted atv ⊲ Contains all ancestors ofv in the current WDAG
for eachl ∈ [p] do

Scale thelth subtree byel/e
(v)
T ⊲ The weights of all variable nodes and edges are scaled

Connect thelth subtree to thelth outgoing edge ofv
end for

end for

Algorithm 4.1: Transforming the WDAGG into the directed weighted forestT

We now state and prove a loop invariant that constitutes the main part of the proof of Theorem 4.1. First,
we introduce some notation related to the operation of Algorithm 4.1.

Notation 4.2. In the following, letV = {v1, . . . , vn}. For everyi, j ∈ [n], let ri,j be the number of
replicates of variable nodevj after theith iteration of the algorithm. Moreover, for everyk ∈ [ri,j ], let vi,j,k
be thekth replicate ofvj after theith iteration of the algorithm. For alli ∈ [n], let Vi, Ci, Ei, γi andwi be
the set of all variable nodes, set of all check nodes, set of all edges, log-likelihood ratio function and weight
function, respectively, after theith iteration of the algorithm and letGi = (Vi, Ci, Ei, wi, γi). Finally, we
setG0 = (V0, C0, E0, γ0, w0) to (V,C,E, γ,w).

Lemma 4.3. For anyi ≥ 0, after theith iteration of Algorithm 4.1, we have:4

(I) For all j ∈ [n],
ri,j∑

k=1

γi(vi,j,k) = γ(vj).

(II) For all j ∈ [n] and allk ∈ [ri,j], γi(vi,j,k) has the same sign asγ(vj).

(III) For all v ∈ Vi,
∑

c∈N(v):wi(v,c)>0

wi(v, c) <
∑

c∈N(v):wi(v,c)≤0

(−wi(v, c)) + γi(v).

(IV) For all c ∈ Ci, there existPc ≥ 0 and v ∈ N(c) s.t. wi(v, c) = −Pc and for all v′ ∈ N(c) s.t.
v′ 6= v,wi(v

′, c) = Pc.

(V) The directed paths ofG are in a bijective correspondence with the directed paths ofGi. Moreover, if the
directed pathh′ of Gi corresponds to the directed pathh of G, then the variable and check nodes ofh′

are replicates of the corresponding variable and check nodes ofh.

Proof of Lemma 4.3. Base Case: Before the first iteration, we have:r0,j = 1 , γ0(v0,j,1) = γ(vj) for all
j ∈ [n]. Thus, (I) and (II) are initially true. (III) and (IV) are initially true because the original WDAGG

4By “after the0th iteration”, we mean “before the1st iteration”.
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satisfies the hyperflow equations (4) and (6). Moreover, (V) is initially true sinceG0 = G.
Inductive Step: We show that, for everyi ≥ 1, if (I), (III), (IV) and (V) are true after iterationi − 1 of
Algorithm 4.1, then they are also true after iterationi.
Let i ≥ 1. In iteration i, a variable nodev with log-likelihood ratioγi−1(v) is (possibly) replaced by a
numberp of replicates{v′1, . . . , v

′
p} with log-likelihood ratios

{
el

e
(v)
T

γi−1(v) | l ∈ [p]
}

. Therefore, the total

sum of the added replicates is
p∑

l=1

( el

e
(v)
T

γi−1(v)
)
= γi−1(v) . Thus, (I) is true. By the induction assumption

and sinceel/e
(v)
T > 0, it follows that (II) is also true.

To show that (III) is true, we first note that ifv′ ∈ Vi was not created during theith iteration, thenv′ will
satisfy (III) after theith iteration. Ifv′ was created during theith iteration, we distinguish two cases:
In the first case,v′ is not a replicate ofv (which is the variable node considered in theith iteration). Then,
v′ is a replicate ofvi−1 ∈ Vi−1. By the induction assumption,γi−1(vi−1) and the weights of the adjacent
edges tovi−1 satisfy (III) before theith iteration. Sinceγi(v′) and the weights of the edges adjacent tov′

will be respectively equal toγi−1(vi−1) and the weights of the edges adjacent tovi−1, scaled by the same
positive factor,v′ will satisfy (III) after theith iteration.
In the second case,v′ is a replicate ofv. Assume thatv′ is the replicate ofv corresponding to the edge
(v, c0) wherec0 ∈ N(v) andwi−1(v, c0) > 0. During theith iteration, the subtree corresponding tov′

will be created and in this subtree,γi(v′) and the weights of the edges incoming tov′ will be respectively

equal toγi−1(v) and the weights of the edges incoming tov, scaled byθ(v, c0) = wi−1(v, c0)/e
(v)
T where

e
(v)
T =

∑

c∈N(v):wi−1(v,c)>0

wi−1(v, c). The only outgoing edge ofv′ will be (v′, c0). Thus,

∑

c∈N(v′):wi(v′,c)>0

wi(v
′, c) = wi(v

′, c0) = wi−1(v, c0) = θ(v, c0)
∑

c∈N(v):wi−1(v,c)>0

wi−1(v, c)

< θ(v, c0)
( ∑

c∈N(v):wi−1(v,c)≤0

(−wi−1(v, c)) + γi−1(v)
)

= θ(v, c0)
∑

c∈N(v):wi−1(v,c)≤0

(−wi−1(v, c)) + θ(v, c0)γi−1(v)

=
∑

c∈N(v′):wi(v′,c)≤0

(−wi(v
′, c)) + γi(v

′)

Therefore,v′ will satisfy (III) after theith iteration.
Equation (IV) follows from the induction assumption and from the fact that we are either uniformly scaling
the neighborhood of a check node or leaving it unchanged.
To prove that (V) is true after theith iteration, letv be the variable node under consideration in theith
iteration and consider the function that maps the directed pathh of Gi−1 to the directed pathh′ of Gi as
follows:

1. If h does not containv, thenh′ is set toh.

2. If h containsv, thenh can be uniquely decomposed into the concatenationh1h2 whereh1 is a directed
path ofGi−1 that ends atv andh2 is a directed path ofGi−1 that starts atv. Let el be the first edge ofh2.
Then,h′ is set toh′1h2 whereh′1 is the directed path in thelth created subtree ofG′ that corresponds to
h1.

11



This map is a bijection from the set of all directed paths ofGi−1 to the set of all directed paths ofGi.
Moreover, if the directed pathh of Gi−1 is mapped to the directed pathh′ of Gi, then the variable and check
nodes ofh′ are replicates of the corresponding variable and check nodes ofh.

Proof of Theorem 4.1. Note that 1 and 2 in Theorem 4.1 follow from the operation of Algorithm 4.1.
Moreover, 3, 4, 5 and 6 follow from Lemma 4.3 withγ′ = γn. To prove 7, note that ifG has a single sink
nodev, thenv will be the last vertex in any topological ordering of the vertices ofG. Furthermore, ifv has
a single incoming edge with weightα, then it will have only one replicate inT , with a single incoming edge
having the same weightα.

5 Maximum weight of an edge in a regular WDAG on the BSC

In this section, we present sublinear (in the block lengthn) upper bound on the weight of an edge in a
regular WDAG. The main idea of the proof is the following. Consider a(dv, dc)-regular WDAGG (where
dv, dc > 2 are constants) corresponding to a hyperflow. Note that each variable node has a log-likelihood
ratio of±1. Thus, the total amount of flow available in the WDAG is mostn. Moreover, for a substantial
weight to get “concentrated” on an edge in the WDAG, the+1’s should “move” from variable nodes accross
the WDAG toward that edge. By the hyperflow equation (6), eachcheck node cuts its incoming flow by
a factor ofdc − 1. Thus, it can be seen that the maximum weight that can get concentrated on an edge is
asymptotically smaller thann.

Theorem 5.1. (Maximum weight of an edge in a regular WDAG on the BSC)
LetG = (V,C,E,w, γ) be a WDAG corresponding to LP decoding of a(dv , dc)-regular LDPC code (with
dv, dc > 2) on the BSC. Letn = |V | andαmax = max

e∈E
|w(e)| be the maximum weight of an edge inG.

Then,

αmax ≤ cn
ln(dv−1)

ln(dv−1)+ln(dc−1) = o(n) (7)

for some constantc > 0 depending only ondv.

We now state and prove a series of lemmas that leads to the proof of Theorem 5.1.

Definition 5.2. (Root-oriented tree)
A root-oriented tree is defined in the same way as the WDAG in Definition 3.3 and Theorem 3.6 but with the
further constraints thatT has a single sink node (which is a variable node) and thatT is a tree when viewed
as an undirected graph. Note that the name “root-oriented” is due to the fact that the edges are oriented
toward the root of the tree, as shown in Figure 1.

Remark 5.3. Algorithm 4.1 can also be used to generate the directed weighted forest corresponding to the
subset of the WDAG consisting of all variable and check nodesthat are ancestors of a given variable node
v. In this case, the output is a root-oriented tree with its single sink node being the unique replicate ofv.

Definition 5.4. (Gmax, αmax)
LetG = (V,C,E,w, γ) be a WDAG. Letemax = (vmax, cmax) = argmax

(v,c):w(v,c)≤0
|w(v, c)| and letαmax =

|w(vmax, cmax)|. Let Vmax = V1 ∪ {vmax} whereV1 is the set of all variable nodesv ∈ V s.t. cmax is

12



v0

c1 c2

v1 v2 v3 v4

Figure 1: Root-oriented tree with root the variable nodev0

reachable fromv in G and letCmax be the set of all check nodesc ∈ C s.t. cmax is reachable fromc in G.5

LetGmax = (Vmax, Cmax, Emax, wmax, γmax) be the corresponding WDAG.

Definition 5.5. (Depth of a variable node in a root-oriented tree)
LetT be a root-oriented tree with rootv0. For any variable nodev in T , the depth ofv in T is defined to be
the number of check nodes on the unique directed path fromv to v0 in T .

Definition 5.6. (F -function)
LetG = (V,C,E,w, γ) be a WDAG. For anyS ⊆ V , defineF (S) =

∑

v∈S

∑

c∈N(v):w(v,c)≥0

w(v, c). In other

words,F (S) is the sum of all the “flow” leaving variable nodes inS to adjacent check nodes.

Lemma 5.7. Let G = (V,C,E,w, γ) be a WDAG corresponding to LP decoding of a(dv, dc)-regular
LDPC code (withdv, dc > 2) on the BSC and letGmax = (Vmax, Cmax, Emax, wmax, γmax) be the WDAG
corresponding to Definition 5.4. Letnmax = |Vmax| andT = (V ′, C ′, E′, w′, γ′) be the output of Algorithm
4.1 on inputGmax. Note thatT is a root-oriented tree with rootvmax which has a single incoming edge
with weightαmax (by Theorem 4.1). Letdmax be the maximum depth of a variable node inT and for any
m ∈ {0, . . . , dmax}, let Sm be the set of all variable nodes inT with depth equal tom. Moreover, for all
i ∈ {0, . . . , dmax} and all j ∈ [nmax], let di,j denote the number of replicates of variable nodevj having
depth equal toi in T . Furthermore, for everyk ∈ [di,j], let Γi,j,k be theγ′ value of thekth replicate ofvj
among those having depth equal toi in T . Then, for allm ∈ {1, . . . , dmax}, we have:

(Pm) : F (Sm) ≥ (dc − 1)mαmax −
m−1∑

i=0

(dc − 1)m−i
nmax∑

j=1

di,j∑

k=1

Γi,j,k (8)

Proof of Lemma 5.7. For anyS ⊆ V ′, let∆(S) be the set of allv ∈ V ′ for which there exists ∈ S and a
directed path fromv to s in T containing exactly one check node. We proceed by induction onm.
Base Case:m = 1. We note thatS1 = ∆({vmax}) and thatvmax is the only variable node inT having
depth equal to0 in T . Hence, for the hyperflow to satisfy (6), we should have:

F (S1) ≥ (dc − 1)(αmax − γ′(vmax)) = (dc − 1)αmax −
0∑

i=0

(dc − 1)1
nmax∑

j=1

di,j∑

k=1

Γi,j,k

Note that the last equality follows from the facts thatd0,j = 1 if vj = vmax andd0,j = 0 otherwise, and that
Γi,j,k = γ′(vmax) if vj = vmax andk = 1 andΓi,j,k = 0 otherwise.
Inductive Step: We need to show that if(Pm) is true for some1 ≤ m ≤ dmax− 1, then(Pm+1) is also true.

5Note thatcmax ∈ Cmax.
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Assuming that(Pm) is true,Sm satisfies Equation (8). SinceT is a root-oriented tree,Sm+1 = ∆(Sm).
Hence, for the hyperflow to satisfy (6), we should have:

F (Sm+1) ≥ (dc − 1)
(
F (Sm)−

nmax∑

j=1

dm,j∑

k=1

Γm,j,k

)

≥ (dc − 1)[(dc − 1)mαmax −
m−1∑

i=0

(dc − 1)m−i
nmax∑

j=1

di,j∑

k=1

Γi,j,k −
nmax∑

j=1

dm,j∑

k=1

Γm,j,k]

= (dc − 1)m+1αmax −
m∑

i=0

(dc − 1)m+1−i
nmax∑

j=1

di,j∑

k=1

Γi,j,k

Definition 5.8. (Depth of a variable node in a WDAG with a single sink node)
LetG = (V,C,E,w, γ) be a WDAG with a single sink nodev0 ∈ V and letv ∈ V . The depth ofv in G is
defined to be the minimal number of check nodes on a directed path fromv to v0 in G.

Corollary 5.9. Let gmax be the maximum depth of a variable nodev ∈ Vmax in the WDAGGmax (which
has a single sink nodevmax).6 Then,

αmax ≤ max
(T0,...,Tgmax )∈W

f(T0, . . . , Tgmax) (9)

where:

f(T0, . . . , Tgmax) =

gmax∑

i=0

Ti

(dc − 1)i

andW is the set of all tuples(T0, . . . , Tgmax) ∈ Ngmax+1 satisfying the following three equations:

gmax∑

i=0

Ti = nmax (10)

T0 = 1 (11)

For all i ∈ {0, . . . , gmax − 1}, Ti+1 ≤ (dc − 1)(dv − 1)Ti (12)

Proof of Corollary 5.9. Settingm = dmax in Lemma 5.7 and noting that the leaves ofT have no entering
flow, we get:

nmax∑

j=1

ddmax,j∑

k=1

Γdmax,j,k ≥ F (Sdmax
) ≥ (dc − 1)dmaxαmax −

dmax−1∑

i=0

(dc − 1)dmax−i
nmax∑

j=1

di,j∑

k=1

Γi,j,k

Thus,

αmax ≤
dmax∑

i=0

1

(dc − 1)i

nmax∑

j=1

di,j∑

k=1

Γi,j,k

6Note that in generalgmax ≤ dmax but the two quantities need not be equal.
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Part 6 of Theorem 4.1 implies that for allv ∈ Vmax, the depth ofv in Gmax is equal to the minimum
depth inT of a replicate ofv. By parts 3 and 4 of Theorem 4.1, we also have that for allj ∈ [nmax],
dmax∑

i=0

di,j∑

k=1

Γi,j,k ≤ 1 and for all i ∈ {0, . . . , dmax} and allk ∈ [di,j ], Γi,j,k ≤ 1 and{Γi,j,k}i,k all have

the same sign. For everyj ∈ [nmax], let dj be the depth ofvj in Gmax and note thatdj ≤ i for every
i ∈ {0, . . . , dmax} for which there existsk ∈ [di,j ] s.t.Γi,j,k 6= 0. Thus, we get that:

αmax ≤
dmax∑

i=0

1

(dc − 1)i

nmax∑

j=1

di,j∑

k=1

|Γi,j,k| ≤
nmax∑

j=1

1

(dc − 1)dj

dmax∑

i=0

di,j∑

k=1

|Γi,j,k| =
dmax∑

i=0

1

(dc − 1)i
Ti

where the last equality follows from the fact that
dmax∑

i=0

di,j∑

k=1

|Γi,j,k| = |
dmax∑

i=0

di,j∑

k=1

Γi,j,k| = 1 for everyj ∈

[nmax] with Ti being the number of variable nodes with depth equal toi in Gmax for everyi ∈ [dmax]. Note
that the notion of depth used here is the one given in Definition 5.8 sinceGmax is a WDAG with a single
sink nodevmax. SinceTi = 0 for all gmax < i ≤ dmax, we get:

αmax ≤

gmax∑

i=0

1

(dc − 1)i
Ti

Equations (10), (11) and (12) follow from the definitions ofTi andgmax.

Lemma 5.10. The RHS of Equation (9) is at mostc × (nmax)
ln(dv−1)

ln(dv−1)+ln(dc−1) for some constantc > 0
depending only ondv .

Proof of Lemma 5.10. Follows from Theorem A.6 withλ = 1, β = (dc − 1)(dv − 1) andm = nmax.

Proof of Theorem 5.1. Theorem 5.1 follows from Corollary 5.9 and Lemma 5.10 by noting that|Vmax| ≤
|V | sinceVmax ⊆ V and thatmax

e∈E
|w(e)| = Ω( max

(v,c):w(v,c)≤0
|w(v, c)|) by the hyperflow equation (6).

We now show that the bound given in Theorem 5.1 is asymptotically tight in the case of(dv , dc)-regular
LDPC codes.

Theorem 5.11. (Asymptotic tightness of Theorem 5.1 for(dv , dc)-regular LDPC codes)
There exists an infinite family of(dv, dc)-regular Tanner graphs{(Vn, Cn, En)}n, an infinite family of error
patterns{γn}n and a positive constantc s.t. there exists a hyperflow forγn on(Vn, Cn, En) and any WDAG
(Vn, Cn, En, w, γn) corresponding to a hyperflow forγn on (Vn, Cn, En) must have

max
e∈En

|w(e)| ≥ cn
ln(dv−1)

ln(dv−1)+ln(dc−1)

Proof of Theorem 5.11. See Appendix A.3.
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6 Maximum weight of an edge in the WDAG of a spatially coupled code on
the BSC

The upper bound of Theorem 5.1 holds for(dv , dc)-regular LDPC codes. In this section, we derive a similar
sublinear (in the block lengthn) upper bound that holds for spatially coupled codes.

Theorem 6.1. (Maximum weight of an edge in a spatially coupled code)
LetG = (V,C,E,w, γ) be a WDAG corresponding to LP decoding of any code of the(dv , dc = kdv , L,M)
spatially coupled ensemble on the BSC. Letn = (2L + 1)M = |V | be the block length of the code. Let
αmax = max

e∈E
|w(e)| be the maximum weight of an edge inG. Then,

αmax ≤ cn
ln(q)−ln(dc−1)

ln(q) = cn1−ǫ = o(n) (13)

for some constantc > 0 depending only ondv and whereq = dv(dc−1)
(dv−1)dv−1

dv−2 and0 < ǫ = ln(dc−1)
ln(q) <

1.

We now state and prove a series of lemmas that leads to the proof of Theorem 6.1. Note that a central
idea in the proof of Section 5 is that all check nodes beingdc-regular in that case, the flow at every check
node is “cut” by a factor ofdc − 1. On the other hand, a(dv = 3, dc = 6, L,M) spatially coupled code
has2M check nodes with degree2 and the flow is preserved at such check nodes. To show that evenin this
case, the maximum weight of an edge is sublinear in the block length, we argue that a check node that is not
dc-regular should have adc-regular check node that is “close by” in the WDAG. To simplify the argument,
we first “clean” the WDAG of the spatially coupled code to obtain a “reduced WDAG” with all check nodes
having either degreedc or degree2. We also use a notion of “regular check depth” which is the same as the
notion of depth of Section 6.1 except that onlydc-regular check nodes are now counted.

Definition 6.2. (Reduced WDAG)
LetG = (V,C,E,w, γ) be a WDAG andGmax = (Vmax, Cmax, Emax, wmax, γmax) be the WDAG corre-
sponding to Definition 5.4. The reduced WDAGGr of Gmax is obtained by processingGmax as follows so
that each check node has either degreedc or degree2:

1. For every check nodec of Gr with spatial index7 < (−L + d̂v), we remove all the incoming edges toc
except one that comes from a parent8 of c having maximal spatial index.

2. For every check nodec of T ′ with spatial index> (L− d̂v), we remove all the incoming edges toc except
for one edge that comes from a parent ofc having minimal spatial index.

3. We keep only the variable nodesv s.t. vmax is still reachable fromv and the check nodesc s.t. vmax is
still reachable fromc.

Note that in steps 1 and 2 above, the check nodes ofGr are considered in an arbitrary order.

Definition 6.3. (Reduced tree)
A reduced tree with rootv0 is a root-oriented tree with rootv0 and where every check node has either degree
dc or degree2.

7The notion of “spatial index” used here is the one from Definition 2.1.
8The notion of “parent” of a node is the one induced by the direction of the edges ofGr.
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Note that if we run Algorithm 4.1 on a reduced WDAG, the outputwill be a reduced tree.

Definition 6.4. (Regular check depth of a variable node in a reduced tree)
LetT be a reduced tree with rootv0. For any variable nodev of T , the regular check depth ofv in T is the
number ofdc-regular check nodes on the directed path fromv to v0 in T .

Lemma 6.5. Let G = (V,C,E,w, γ) be a WDAG corresponding to LP decoding of a spatially coupled
code on the BSC,Gmax = (Vmax, Cmax, Emax, wmax, γmax) be the WDAG corresponding to Definition
5.4,Gr = (Vr, Cr, Er, wr, γr) be the reduced WDAG corresponding toGmax andT = (V ′

r , C
′
r, E

′
r, w

′
r, γ

′
r)

be the output of Algorithm 4.1 on inputGr. Letnr = |Vr|. Note thatT is a reduced tree with rootvmax

which has a single incoming edge with weightαmax (by Theorem 4.1). Letrmax be the maximum regular
check depth inT of a variable nodev ∈ V ′

r . For all i ∈ {0, . . . , rmax} and all j ∈ [nr], let yi,j be the num-
ber of replicates of variable nodevj having regular check depth equal toi in T . Moreover, for allk ∈ [yi,j],
let Γi,j,k denote theγ′r value of thekth replicate ofvj among those having regular check depth equal toi in
T . Then, for allm ∈ {1, . . . , rmax}, we have:

(Pm): There existsUm ⊆ V ′
r consisting of variable nodes having regular check depthm in T and s.t.

all variable nodes ofT having regular check depth betweenm + 1 and rmax (inclusive) are ancestors of
Um in T and s.t.:

F (Um) ≥ (dc − 1)mαmax −
m−1∑

i=0

(dc − 1)m−i
nr∑

j=1

yi,j∑

k=1

Γi,j,k (14)

Proof of Lemma 6.5. For anyS ⊆ V ′
r , let∆(S) be the set of allv ∈ V ′

r for which there exists ∈ S and a
directed path fromv to s in T with the child ofv on this path being the uniquedc-regular check node on the
path.9 We proceed by induction onm.
Base Case:m = 1. LetU1 = ∆({vmax}). Note that the ancestors ofvmax (inlcudingvmax) that are proper
descendants of nodes inU1 are exactly those variable nodes having regular check depthequal to0 in T .
Hence, for the hyperflow to satisfy Equation (6), we should have:

F (U1) ≥ (dc − 1)
(
αmax −

nr∑

j=1

y0,j∑

k=1

Γ0,j,k

)
= (dc − 1)1αmax −

0∑

i=0

(dc − 1)1
nr∑

j=1

yi,j∑

k=1

Γi,j,k

Inductive Step: We need to show that if(Pm) is true for some1 ≤ m ≤ (rmax − 1) then(Pm+1) is also
true. Assuming that(Pm) is true, there existsUm ⊆ V ′

r that satisfies Equation (14) and s.t.Um consists
of variable nodes having regular check depthm in T , and all variable nodes ofT with regular check depth
betweenm+ 1 andrmax (inclusive) are ancestors ofUm in T . LetUm+1 = ∆(Um). Note that the variable
nodes that are ancestors of nodes inUm and proper descendants of nodes inUm+1 are exactly those having

9Again, the notion of “child” here is the one induced by the direction of the edges ofT .
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regular check depth equal tom in T . Hence, for the hyperflow to satisfy Equation (6), we should have:

F (Um+1) ≥ (dc − 1)
(
F (Um)−

nr∑

j=1

ym,j∑

k=1

Γm,j,k

)

≥ (dc − 1)[(dc − 1)mαmax −
m−1∑

i=0

(dc − 1)m−i
nr∑

j=1

yi,j∑

k=1

Γi,j,k −
nr∑

j=1

ym,j∑

k=1

Γm,j,k]

= (dc − 1)m+1αmax −
m−1∑

i=0

(dc − 1)m+1−i
nr∑

j=1

yi,j∑

k=1

Γi,j,k − (dc − 1)

nr∑

j=1

ym,j∑

k=1

Γm,j,k

= (dc − 1)m+1αmax −
m∑

i=0

(dc − 1)m+1−i
nr∑

j=1

yi,j∑

k=1

Γi,j,k

Definition 6.6. (Regular check depth of a variable node in a reduced WDAG)
Let Gr be a reduced WDAG with its single sink node denoted byv0. For any variable nodev of Gr, the
regular check depth ofv in Gr is the minimum number ofdc-regular check nodes on a directed path fromv
to v0 in Gr.

Lemma 6.7. LetGr be a reduced WDAG andzmax be the maximum regular check depth of a variable node
in Gr. For all i ∈ {0, . . . , zmax}, let Ti be the number of variable nodes inGr with regular check depth
equal toi. Then, for alli ∈ {0, . . . , zmax − 1}:

Ti+1 ≤ qTi

whereq = dv(dc − 1) (dv−1)dv−1
dv−2 . Moreover,T0 ≤ 1 + (dv−1)dv−1−1

dv−2 = q0.

Proof of Lemma 6.7. If, for any i ∈ {0, . . . , zmax}, we letWi be the set of all variable nodes inGr with
regular check depth equal toi, thenTi = |Wi|. Fix i ∈ {0, . . . , zmax − 1}. For a variable nodev of Gr,
define∆′(v) to be the set of all variable nodesv0 in Gr s.t. there exists a directed pathP from v0 to v
in Gr s.t. the parent ofv onP is the onlydc-regular check node onP. Note that for every variable node
u ∈Wi+1, there exists a variable nodev ∈Wi s.t.u ∈ ∆′(v). Thus,Wi+1 ⊆

⋃
v∈Wi

∆′(v) which implies that

|Wi+1| ≤ |Wi| × max
v∈Wi

|∆′(v)| ≤ |Wi| ×max
v∈Vr

|∆′(v)|

whereVr is the set of all variable nodes ofGr. We now show that for everyv ∈ Vr, |∆′(v)| ≤ q. Fix v ∈ Vr.
We claim that for allu ∈ ∆′(v), there exists a directed path fromu to v in Gr containing a singledc-regular
check node which is the parent ofv on this path and at most(dv − 1) 2-regular check nodes. To show this,
let P be a directed path fromu to v in Gr containing nodc-regular check nodes other than the parent ofv
on this path. IfP does not contain any2-regular check nodes, then the needed property holds. IfP contains
at least one2-regular check node, then,

P : u c1  v1  c2  v2  · · · cl  vl  c∗  v (15)

wherel is a positive integer,c1, c2, . . . , cl are2-regular check nodes ofGr, c∗ is adc-regular check node of
Gr andv1, v2, . . . , vl are variable nodes ofGr. For any check nodec, we denote bysi(c) the spatial index
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of c. Sincec1 is 2-regular, its spatial indexsi(c1) is either in the interval[−L− d̂v : −L+ d̂v − 1] or in the
interval [L− d̂v + 1 : L+ d̂v]. Without loss of generality, assume thatsi(c1) ∈ [L− d̂v + 1 : L+ d̂v]. For
anyi ∈ {0, . . . , l − 1}, Definition 6.2 implies thatvi is at a minimal position w.r.t.ci+1. By Definition 2.1,
if variable nodev is at a minimal position w.r.t. check nodec, thenc is at a maximal position w.r.t.v. So for
anyi ∈ {0, . . . , l − 1}, ci+1 is at a maximal position w.r.tvi and thussi(ci) ≤ si(ci+1). By condition 5 of
Definition 2.1, variable nodevi is not connected to two check nodes at the same position, which implies that
si(ci) 6= si(ci+1) for all i ∈ {0, . . . , l−1}. So we conclude thatsi(ci) < si(ci+1) for all i ∈ {0, . . . , l−1}.
Therefore,

L− d̂v + 1 ≤ si(c1) < si(c2) < · · · < si(cl) ≤ L+ d̂v

Hence,l ≤ 2d̂v = dv − 1. SoP satisfies the needed property.
For all i ∈ [dv−1], letni be the number of variable nodesu in Gr for which the smallest integerl for which
Equation (15) holds isl = i. Also, letn0 be the number of variable nodesu in Gr for which there exists a
pathP of the form

P : u c∗  v (16)

wherec∗ is adc-regular check node ofGr. Since in Equation (16)v has at mostdv neighbors inGr and
c∗ is dc-regular,n0 ≤ dv(dc − 1). Considering Equation (15) withl = 1, we note thatv1 has at mostdv
neighbors inGr andc1 is 2-regular. Thus,n1 ≤ dv(dc − 1)(dv − 1). Note that ifu is a variable node in
Gr for which the smallest integerl for which Equation (15) holds isl = i + 1 (wherei ∈ [dv − 2]), then
there exists a pathP that satisfies Equation (15) withv1 being a variable node inGr for which the smallest
integerl for which Equation (15) holds isl = i. Since for everyl ∈ [dv − 1] and everyi ∈ [l], vi has at most
dv neighbors inGr andci is 2-regular, we have thatni+1 ≤ (dv − 1)ni for all i ∈ [dv − 2]. By induction on
i, we get thatni ≤ dv(dc − 1)(dv − 1)i for all i ∈ [dv − 1]. Thus,

|∆′(v)| =
dv−1∑

i=0

ni ≤
dv−1∑

i=0

dv(dc − 1)(dv − 1)i = dv(dc − 1)
(dv − 1)dv − 1

dv − 2
= q

To show thatT0 ≤ q0, note thatu ∈ W0 if and only if there exists a directed path fromu to vmax in Gr

containing only2-regular check nodes. An analogous argument to the above implies that

T0 ≤ 1 +

dv−1∑

i=1

(dv − 1)i−1 ≤ 1 +
(dv − 1)dv−1 − 1

dv − 2
= q0

Corollary 6.8. LetGr be the WDAG (with a single sink node) given in Lemma 6.5 andzmax be the maximum
regular check depth of a variable node inGr.10 Then,

αmax ≤ max
(T0,...,Tzmax)∈W

f(T0, ..., Tzmax) (17)

where:

f(T0, ..., Tzmax) =

zmax∑

i=0

Ti

(dc − 1)i

10Note that in generalzmax ≤ rmax but the two quantities need not be equal.
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andW is the set of all tuples(T0, ..., Tzmax) ∈ Nzmax+1 satisfying the following three equations:

zmax∑

i=0

Ti = nr (18)

T0 ≤ q0 (19)

For all i ∈ {0, . . . , zmax − 1}, Ti+1 ≤ qTi (20)

whereq = dv(dc − 1) (dv−1)dv−1
dv−2 andq0 = 1 + (dv−1)dv−1−1

dv−2 .

Proof of Corollary 6.8. The proof is similar to that of Corollary 5.9. Settingm = rmax in Lemma 6.5 and
noting that the leaves ofT have no entering flow, we get:

nr∑

j=1

yrmax,j∑

k=1

Γrmax,j,k ≥ F (Urmax) ≥ (dc − 1)rmaxαmax −
rmax−1∑

i=0

(dc − 1)rmax−i
nr∑

j=1

yi,j∑

k=1

Γi,j,k

Thus,

αmax ≤
rmax∑

i=0

1

(dc − 1)i

nr∑

j=1

yi,j∑

k=1

Γi,j,k

Part 6 of Theorem 4.1 implies that for everyv ∈ Vr, the regular check depth ofv in Gr is equal to the
minimum regular check depth inT of a replicate ofv. By parts 3 and 4 of Theorem 4.1, we also have that

for all j ∈ [nr],
rmax∑

i=0

yi,j∑

k=1

Γi,j,k ≤ 1 and for alli ∈ {0, . . . , rmax} and allk ∈ [yi,j], Γi,j,k ≤ 1 and{Γi,j,k}i,k

all have the same sign. Thus, we get that:

αmax ≤
rmax∑

i=0

1

(dc − 1)i
Ti

where for everyi ∈ {0, . . . , rmax}, Ti is the number of variable nodes with regular check depth equal to i
in Gr. SinceTi = 0 for all zmax < i ≤ rmax, we get that:

αmax ≤
zmax∑

i=0

1

(dc − 1)i
Ti

By the definitions ofTi andzmax,
zmax∑

i=0

Ti = nr. The facts thatTi+1 ≤ qTi for all i ∈ {0, . . . , zmax − 1}

andT0 ≤ q0 follow from Lemma 6.7.

Lemma 6.9. The RHS of (17) is< c × n1−ǫ
r for some constantc > 0 depending only ondv and where

0 < ǫ = ln(dc−1)
ln(q) < 1.

Proof of Lemma 6.9. Let c = q0

(
q

dc−1

)2
q

dc−1
−1

. If nr ≥ q0, the claim follows from Theorem A.6 withλ = q0,

β = q andm = nr. If nr < q0, then the RHS of (17) is at mostnr < q0 < c, so the claim is also true.

Proof of Theorem 6.1. Theorem 6.1 follows from Corollary 6.8 and Lemma 6.9 by noting that|Vr| ≤ |V |
sinceVr ⊆ V and thatmax

e∈E
|w(e)| = Ω( max

(v,c):w(v,c)≤0
|w(v, c)|) by the hyperflow equation (6).
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7 Relation between LP decoding on a graph cover code and on a derived
spatially coupled code

Definition 7.1. (Special variable nodes)
Let ζ be a graph cover code andζ ′ be a fixed element ofD(ζ). Then, the “special variable nodes” ofζ are
all those variable nodes that appear inζ but not inζ ′.

Lemma 7.2. Letζ be a(dv, dc = kdv, L,M) graph cover code and letζ ′ be a be a fixed element ofD(ζ).11

Letn = (2L + 1)M be the block length ofζ and consider transmission over the BSC. Assumeα(n) is s.t.,
for any error patternη′ on ζ ′, the existence of a dual witness forη′ on ζ ′ implies the existence of a dual
witness forη′ on ζ ′ with maximum edge weight< α(n).
Then, for any error patternη′ on ζ ′ and any extensionη of η′ into an error pattern onζ, the existence of a
dual witness forη′ on ζ ′ is equivalent to the existence of a dual witness forη on ζ with the special variable
nodes having an “extra flow” ofdvα(n) + 1.

Proof of lemma 7.2. First, we prove the forward direction of the equivalence. Assume that there exists a
dual witness forη′ on ζ ′. Then, there exists a dual witness forη′ on ζ ′ and with maximum edge weight
< α(n). This implies the existence of a dual witness forη onζ with the special variable nodes being source
nodes and having an “extra flow” ofdvα(n) + 1.
The reverse direction follows from the fact that given a dualwitness forη on ζ, we can get a dual witness
for η′ onζ ′ by repeatedly removing the special variable nodes. The WDAGsatisfies the LP constraints after
each step since every check node inζ ′ has degree≥ 2.

Corollary 7.3. (Relation between LP decoding on a graph cover code and on a derived spatially coupled
code)
Let ζ be a(dv, dc = kdv , L,M) graph cover code and letζ ′ be a be a fixed element ofD(ζ). Let n =
(2L + 1)M be the block length ofζ and consider transmission over the BSC. Then, for any error pattern
η′ on ζ ′ and any extensionη of η′ into an error pattern onζ, the existence of a dual witness forη′ on ζ ′

is equivalent to the existence of a dual witness forη on ζ with the special variable nodes having an “extra
flow” of dvcn1−ǫ + 1 for somec > 0 and0 < ǫ < 1 given in Theorem 6.1.

Proof of Corollary 7.3. By Theorem 6.1, the existence of a dual witness forη′ on ζ ′ is equivalent to the
existence of a dual witness forη′ on ζ ′ and with maximum edge weight< cn1−ǫ for somec > 0. Plugging
this expression in Lemma 7.2, we get the statement of Corollary 7.3.

8 Interplay between crossover probability and LP excess

In this section, we show that if the probability of LP decoding success is large on some BSC, then if we
slightly decrease the crossover probability of the BSC, we can find a dual witness with a non-negligible
“gap” in the inequalities (4) with high probability.

Theorem 8.1. (Interplay between crossover probability and LP excess)
Let ζ be a binary linear code with Tanner graph(V,C,E) whereV = {v1, · · · , vn}. Let ǫ, δ > 0 and
ǫ′ = ǫ + (1 − ǫ)δ. Assume thatǫ, ǫ′, δ < 1. Letqǫ′ be the probability of LP decoding error on theǫ′-BSC.

11Here,D(ζ) refers to Definition 2.3.
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For every error patternx ∈ {0, 1}n, if G = (V,C,E,w, γ) is a WDAG corresponding to a dual witness for
x, let f(w) ∈ Rn be defined by

fi(w) =
∑

c∈N(vi):w(vi,c)>0

w(vi, c)−
∑

c∈N(vi):w(vi,c)≤0

(−w(vi, c)) =
∑

c∈N(vi)

w(vi, c) (21)

for all i ∈ [n]. Then,

Prx∼Ber(ǫ,n){∃ a dual witnessw for x s.t.fi(w) < γ(vi)−
δ

2
, ∀i ∈ [n]} ≥ 1−

2qǫ′

δ

In other words, if we letγ(vi) − fi(w) be the “LP excess” on variable nodei, then the probability (over
the ǫ-BSC) that there exists a dual witness with LP excess at leastδ/2 on all the variable nodes is at least
1−

2qǫ′
δ

.

Proof of Theorem 8.1. Decompose theǫ′-BSC into the bitwise OR of theǫ-BSC and theδ-BSC as follows.
Let x ∼ Ber(ǫ, n), e′′ ∼ Ber(δ, n) ande = x∨ e′′. Hence,e ∼ Ber(ǫ′, n). For everyx ∈ {0, 1}n, we will
construct a dual witnesswx with excessδ/2 on all variable nodes by averaging and scaling the dual witnesses

of x∨e′′ wheree′′ ∼ Ber(δ, n). More precisely, for everyx ∈ {0, 1}n, letwx =
(1+ δ

2
)

(1− δ
2
)
Ee′′∼Ber(δ,n){v

x∨e′′}

wherevx is an arbitrary dual witness forx if x has one andvx is the zero vector otherwise. Note thatwx

always satisfies the check node constraints, i.e. for anyx ∈ {0, 1}n, anyc ∈ C and anyv, v′ ∈ V , we have
wx(v, c) + wx(v′, c) ≥ 0. We now show that, with probability at least1 − 2qǫ′

δ
overx ∼ Ber(ǫ, n), wx

satisfies (4) with LP excess at leastδ/2 on all variable nodes. For any weight functionw : V × C → R
on the Tanner graph(V,C,E), we definef(w) by Equation (21). For everyx ∈ {0, 1}n, define the event
Lx = {x has a dual witness} and definẽx by x̃i = (−1)xi for all i ∈ [n]. We have that:

f(wx) =
(1 + δ

2 )

(1− δ
2 )

Ee′′∼Ber(δ,n){f(w
x∨e′′)}

=
(1 + δ

2 )

(1− δ
2 )

(
Ee′′∼Ber(δ,n){f(w

x∨e′′)|Lx∨e′′}Pre′′∼Ber(δ,n){L
x∨e′′}

+ Ee′′∼Ber(δ,n){f(w
x∨e′′)|Lx∨e′′}Pre′′∼Ber(δ,n){Lx∨e′′}

)

=
(1 + δ

2 )

(1− δ
2 )

Ee′′∼Ber(δ,n){f(w
x∨e′′)|Lx∨e′′}Pre′′∼Ber(δ,n){L

x∨e′′} (sinceEe′′∼Ber(δ,n){f(w
x∨e′′)|Lx∨e′′} = 0)

≤
(1 + δ

2 )

(1− δ
2 )

Ee′′∼Ber(δ,n){x̃ ∨ e′′|Lx∨e′′}Pre′′∼Ber(δ,n){L
x∨e′′} (by equation (4))

=
(1 + δ

2 )

(1− δ
2 )

(
Ee′′∼Ber(δ,n){x̃ ∨ e′′} − Ee′′∼Ber(δ,n){x̃ ∨ e′′|Lx∨e′′} × φx

)

whereφx = Pre′′∼Ber(δ,n)

{
Lx∨e′′

}
. Note that for everyi ∈ [n], we have:

(
Ee′′∼Ber(δ,n){x̃ ∨ e′′}

)

i

=

{
−1 if xi = 1.

δ(−1) + (1− δ)(+1) = 1− 2δ if xi = 0.
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Moreover,Ee′′∼Ber(δ,n){x̃ ∨ e′′|Lx∨e′′} ≥ −1 since every coordinate of̃x ∨ e′′ is≥ −1. Therefore,

fi(w
x) ≤





(1 + δ
2)

(1− δ
2)
(−1 + φx) if xi = 1.

(1 + δ
2)

(1− δ
2)
(1− 2δ + φx) if xi = 0.

We now find an upper bound onφx. Note thatφx is a non-negative random variable with mean

Ex∼Ber(ǫ,n){φx} = Ex∼Ber(ǫ,n)

{
Pre′′∼Ber(δ,n){Lx∨e′′}

}
= Prx∼Ber(ǫ,n),e′′∼Ber(δ,n)

{
Lx∨e′′

}

= Pre∼Ber(ǫ′,n)

{
Le

}
= qǫ′ (by Theorem 3.2)

By Markov’s inequality,Prx∼Ber(ǫ,n){φx ≥
δ
2} ≤

Ex∼Ber(ǫ,n){φx}
δ
2

=
2qǫ′
δ

. Thus, the probability over

x ∼ Ber(ǫ, n) that for all i ∈ [n], fi(wx) <
(1+ δ

2
)

(1− δ
2
)
(−1 + δ

2) if xi = 1 andfi(wx) <
(1+ δ

2
)

(1− δ
2
)
(1 − 3δ

2 ) if

xi = 0, is at least

Prx∼Ber(ǫ,n){φx <
δ

2
} = 1− Prx∼Ber(ǫ,n){φx ≥

δ

2
} ≥ 1−

2qǫ′

δ

Note that for all0 ≤ δ < 1, we have that
(1+ δ

2
)

(1− δ
2
)
(1− 3δ

2 ) ≤ 1− δ
2 . Thus, the probability overx ∼ Ber(ǫ, n)

thatfi(wx) < (−1)xi − δ
2 for all i ∈ [n], is at least1− 2qǫ′

δ
. So we conclude that

Prx∼Ber(ǫ,n){∃ a dual witnessw for x s.t.fi(w) < γ(vi)−
δ

2
, ∀i ∈ [n]} ≥ 1−

2qǫ′

δ

9 ξGC = ξSC

In this section, we use the results of Sections 6, 7 and 8 to prove the main result of the paper which is restated
below.

Theorem 9.1. (Main result: ξGC = ξSC)
LetΓGC be a(dv , dc = kdv, L,M) graph cover ensemble withdv an odd integer andM divisible byk. Let
ΓSC be the(dv , dc = kdv , L − d̂v,M) spatially coupled ensemble which is sampled by choosing a graph
cover codeζ ∼ ΓGC and returning a element ofD(ζ) chosen uniformly at random12. Denote byξGC and
ξSC the respective LP threholds ofΓGC andΓSC on the BSC. There existsν > 0 depending only ondv and
dc s.t. ifM = o(Lν) andΓSC satisfies the property that for any constant∆ > 0,

Pr ζ′∼ΓSC
(ξSC−∆)-BSC

[LP error onζ ′] = o(
1

L2
) (22)

Then,ξGC = ξSC .

12Here,D(ζ) refers to Definition 2.3.
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Lemma 9.2. Assume that the ensembleΓSC satisfies the property (22) for every constant∆ > 0. Then, for
all constants∆1,∆2, α, β > 0, there exists a graph cover codeζ ∈ ΓGC , with derived spatially coupled
codesζ ′−L, . . . , ζ

′
L, satisfying the following two properties for sufficiently largeL:

1. Pr(ξGC+∆2)-BSC [LP decoding success onζ] ≤ α.

2. For all i ∈ [−L : L], Pr(ξSC−∆1)-BSC [LP decoding error onζ ′i] ≤ β/(2L+ 1).

Proof of lemma 9.2. Note that a random codeζ ∼ ΓGC satisfies the2 properties above with high probabil-
ity:

Prζ∼ΓGC

[
Pr(ξGC+∆2)-BSC [Success onζ] > α or ∃i ∈ [−L : L] s.t.Pr(ξSC−∆1)-BSC [Error onζ ′i] > β(2L+ 1)

]

≤
1

α
Pr ζ∼ΓGC

(ξGC+∆2)-BSC

[LP decoding success onζ] +
(2L+ 1)2

β
Pr ζ′∼ΓSC

(ξSC−∆1)-BSC

[LP decoding error onζ ′]

= o(1)

Note that the inequality above follows from Markov’s inequality and the union bound. We conclude that
there exists a graph cover codeζ ∈ ΓGC satisfying the2 properties above.

Lemma 9.3. ξGC ≥ ξSC

Proof of lemma 9.3. We proceed by contradiction. Assume thatξGC < ξSC . Let:

δ = (ξSC − ξGC)/2

η = ξSC − δ

λ = η − δ/2 = ξGC + δ/2

Note thatη > λ + (1 − λ)δ/2. Let ζ be one of the graph cover codes whose existence is guaranteedby
Lemma 9.2 with∆1 = δ, ∆2 = δ/2 andα, β > 0 with α < 1 − 2β/δ and letζ ′−L, . . . , ζ

′
L be the spatially

coupled codes that are derived fromζ. Letµ be an error pattern onζ and letµi be the restriction ofµ to ζ ′i
for everyi ∈ [−L : L]. Define the event:

E1 = {∀i ∈ [−L : L],∃ a dual witness forµi on ζ
′

i with excessδ/2 on all variable nodes}

Then,

E1 = {∃i ∈ [−L : L] s.t.∄ a dual witness forµi on ζ
′

i with excessδ/2 on all variable nodes}

Thus,

Prλ-BSC{E1} ≤
L∑

i=−L

Prλ-BSC{∄ a dual witness forζ
′

i with excessδ/2 on all variable nodes}

≤
L∑

i=−L

2

δ
Prη-BSC{LP decoding error onζ

′

i} (by Theorem 8.1)

≤
L∑

i=−L

2

δ
×

β

2L+ 1
=

2β

δ
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If eventE1 is true, then by Corollary 7.3, for everyl ∈ [−L : L], there exists a dual witness{τ lij | i ∈ V, j ∈

C} for µ on ζ with the special variable nodes being at positions[l, l + 2d̂v − 1] and having an “extra flow”
of dvcn1−ǫ + 1 with c > 0 andǫ > 0 given in Theorem 6.1 and with the non-special variable nodeshaving
excessδ2 . Then, we can construct a dual witness forµ on the graph cover codeζ (with no extra flows) by
averaging the above2L+ 1 dual witnesses as follows. For everyi ∈ V and everyj ∈ C, let:

τavgij =
1

2L+ 1

L∑

l=−L

τ lij

We claim that{τavgij }i,j forms a dual witness forµ on ζ. In fact, for eachi ∈ V , j ∈ C andl ∈ [−L : L],

τ lij + τ li′j ≥ 0 which implies that:

τavgij + τavgi′j =
1

2L+ 1

L∑

l=−L

(τ lij + τ li′j) ≥ 0

Moreover, for alli ∈ V , we have that:

∑

j∈N(i)

τavgij =
∑

j∈N(i)

( 1

2L+ 1

L∑

l=−L

τ lij

)

=
1

2L+ 1

L∑

l=−L

( ∑

j∈N(i)

τ lij

)

<
1

2L+ 1

(
(dv − 1)(dvc(M(2L + 1))1−ǫ + 1 + γi) + (2L+ 1− (dv − 1))(γi −

δ

2
)
)

= γi + (dv − 1)dvc
(M(2L + 1))1−ǫ

2L+ 1
+

(dv − 1)δ

2(2L+ 1)
+

dv − 1

2L+ 1
−

δ

2

< γi if M = o(Lν), L sufficiently large andν = ǫ/(1− ǫ)

SincePrλ-BSC{LP decoding success onζ} ≥ Prλ-BSC{E1} = 1− Prλ-BSC{E1}, then,

Prλ-BSC{LP decoding success onζ} ≥ 1−
2β

δ

which contradicts the fact that:

Prλ-BSC [LP decoding success onζ] = Pr(ξGC+∆2)-BSC [LP decoding success onζ] ≤ α < 1−
2β

δ

Lemma 9.4. ξGC ≤ ξSC

Proof of Lemma 9.4. Let ζ be a graph cover code andD(ζ) be the set of all derived spatially coupled codes
of ζ. Let µ be an error pattern onζ andµ′ be the restriction ofµ to ζ ′ for someζ ′ ∈ D(ζ). Given a dual
witness forµ on ζ, we can get a dual witness forµ′ on ζ ′ by repeatedly removing the special variable nodes
of ζ. Note that the dual witness is maintained after each step since every check node inζ ′ has degree≥ 2.
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So if there is LP decoding success forη on ζ, then for everyζ ′ ∈ D(ζ), there is LP decoding success forη′

on ζ ′, whereη′ is the restriction ofη to ζ ′. Therefore, for everyǫ > 0 and everyζ ′ ∈ D(ζ), we have that:

Prǫ-BSC [LP decoding error onζ ′] ≤ Prǫ-BSC [LP decoding error onζ]

This implies that for everyǫ > 0, we have that:

Pr ζ′∼ΓSC
ǫ-BSC

[LP decoding error onζ ′] ≤ Pr ζ∼ΓGC
ǫ-BSC

[LP decoding error onζ]

So we conclude thatξGC ≤ ξSC .

Proof of Theorem 9.1. Theorem 9.1 follows from Lemma 9.3 and Lemma 9.4.

A Appendix

A.1 Proof of Theorem 3.2

The goal of this section is to prove Theorem 3.2 which is restated below.

Theorem 3.2. (Existence of a dual witness and LP decoding success)
Let T = (V,C,E) be a Tanner graph of a binary linear code with block lengthn and letη ∈ {0, 1}n be
any error pattern. Then, there is LP decoding success forη onT if and only if there is a dual witness forη
onT .

Note that the “if” part of the statement was proved in [FMS+07]. The argument below establishes both
directions. We first state some definitions and prove some facts from convex geometry that will be central
to the proof of Theorem 3.2.

Definition A.1. Let S be a subset ofRn. The convex span ofS is defined to beconv(S) = {αx + (1 −
α)y | x, y ∈ S andα ∈ [0, 1]}. The conic span ofS is defined to becone(S) = {αx + βy | x, y ∈
S andα, β ∈ R≥0}. The setS is said to be convex ifS = conv(S) andS is said to be a cone ifS =
cone(S). Also,S is said to be a convex polyhedron ifS = {x ∈ Rn | Ax ≥ b} for some matrixA ∈ Rm×n

and someb ∈ Rn andS is said to be a polyhedral cone ifS is both a convex polyhedron and a cone. The
interior of S is denoted byint(S) and the closure ofS is denoted bycl(S).
LetK be a polyhedral cone of the formK = {x ∈ Rn | Ax ≥ 0} for some matrixA ∈ Rm×n. For any
x ∈ K s.t. x 6= 0, the ray ofK in the direction ofx is defined to be the setR(x) = {λx | λ ≥ 0}. A ray
R(x) ofK is said to be an extreme ray ofK if for anyy, z ∈ Rn and anyα, β ≥ 0, R(x) = αR(y)+βR(z)
implies thaty, z ∈ R(x).

Lemma A.2. If S is a convex subset ofRn, thenint
(
(R≥0)

n + S
)
= (R>0)

n + S.

Proof of Lemma A.2. For allα ∈ (R>0)
n + S, α = r + s wherer ∈ (R>0)

n ands ∈ S. Thus, the ball
centered atα and of radiusmini∈[n] ri > 0 is contained in

(
(R≥0)

n + S
)
. Hence,α ∈ int

(
(R≥0)

n + S
)
.

Therefore,(R>0)
n + S ⊆ int

(
(R≥0)

n + S
)
.

Conversely, for allα ∈ int
(
(R≥0)

n + S
)
, α = r + s wherer ∈ (R≥0)

n ands ∈ S. Moreover, since
α ∈ int

(
(R≥0)

n + S
)
, there existsu ∈ (R>0)

n s.t. α + u ∈
(
(R≥0)

n + S
)

andα − u ∈
(
(R≥0)

n + S
)
.

Note thatα + u = r + u + s and thatα − u = r′ + s′ for somer′ ∈ (R≥0)
n and s′ ∈ S. Thus,

α = (α+u)+(α−u)
2 = r+u+r′

2 + s+s′

2 = r′′ + s′′ wherer′′ = r+u+r′

2 ∈ (R>0)
n ands′′ = s+s′

2 ∈ S sinceS
is a convex set. Hence,int

(
(R≥0)

n + S
)
⊆ (R>0)

n + S.
Therefore,int

(
(R≥0)

n + S
)
= (R>0)

n + S.
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Lemma A.3. LetS1, .., Sp be finite subsets ofRn each containing the zero vector. Then,

cone
( p⋂

j=1

conv(Sj)
)
=

p⋂

j=1

cone(Sj).

Proof of Lemma A.3. Clearly,cone
( p⋂

j=1

conv(Sj)
)
⊆

p⋂

j=1

cone(Sj). To prove the other direction, we first

note that0 ∈ cone
( p⋂

j=1

conv(Sj)
)
. For any non-zerox ∈

p⋂

j=1

cone(Sj), we have that for allj ∈ [p],

x =
∑

s∈Sj

as,js where for anys ∈ Sj, as,j ≥ 0. Let jmax = argmax
j∈[p]

∑

s∈Sj

as,j. Sincex 6= 0, D =

∑

s∈Sjmax

as,jmax > 0. Thus, for anyj ∈ [p], we have x
D

=
∑

s∈Sj

(as,j
D

)
s +

(
1 −

∑

s∈Sj

as,j
D

)
0. Since for

all j ∈ [p], 0 ≤
∑

s∈Sj

as,j ≤ D and0 ∈ Sj, we conclude thatx
D
∈ conv(Sj) for all j ∈ [p]. Hence,

x ∈ cone
( p⋂

j=1

conv(Sj)
)
. Therefore,

p⋂

j=1

cone(Sj) ⊆ cone
( p⋂

j=1

conv(Sj)
)
.

Lemma A.4. LetK be a polyhedral cone of the formK = {x ∈ Rm | Ax ≥ 0} for some matrixA ∈ Rl×m

of rankm. For anyx ∈ K s.t.x 6= 0, we have:

1. If R(x) is an extreme ray ofK, then there exists an(m − 1) ×m submatrixA′ of A s.t. the rows ofA′

are linearly independent andA′x = 0.

2. K = cone(R) whereR =
⋃

extreme raysR(x) of K
R(x).

Proof of Lemma A.4. See Section8.8 of [Sch98].

Lemma A.5. For all m ≥ 2, we have that

{
y ∈ (R≥0)

m |
m∑

i=1, i 6=i0

yi ≥ yi0 ,∀i0 ∈ [m]
}
= cone{z ∈ {0, 1}m | w(z) = 2}

Proof of Lemma A.5. Let Km =
{
y ∈ (R≥0)

m |
m∑

i=1, i 6=i0

yi ≥ yi0 ,∀i0 ∈ [m]
}

andXm = cone{z ∈

{0, 1}m | w(z) = 2}. Clearly,Xm ⊆ Km. We now prove thatKm ⊆ Xm. Note thatKm can be written in
the following form:

Km =
{
y ∈ Rm | yi ≥ 0 ∀i ∈ [m] and

m∑

i=1, i 6=i0

yi ≥ yi0 ,∀i0 ∈ [m]
}

= {y ∈ Rm | Ay ≥ 0} whereA ∈ R2m×m has rankm

By part 2 of Lemma A.4, we then have:Km = cone(R) whereR =
⋃

extreme raysR(y) of Km

R(y). Therefore,

by part 1 of Lemma A.4, it is sufficient to show that ify ∈ Rm satisfies any(m− 1) equations ofKm with
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equality, theny should be an element ofcone{z ∈ {0, 1}m | w(z) = 2}. Note that we have two types of
equations:

(I)
m∑

i=1, i 6=i0

yi − yi0 = 0 for somei0 ∈ [m].

(II) yi = 0 for somei ∈ [m].

Consider any(m− 1) equations ofKm, satisfied with equality. We distinguish two cases:
Case 1: At least(m− 2) of those equations are of Type (II). Without loss of generality, we can assume that
yi = 0 for all i ∈ {3, . . . ,m}. Moreover, sincey ∈ Km, we have thaty1 − y2 ≥ 0 andy2 − y1 ≥ 0, which
implies thaty1 = y2. Therefore, we conclude thaty = y1(1 1 0 . . . 0)T ∈ Xm.
Case 2: At most(m− 3) equations are of Type (II). Hence, at least2 equations are of Type (I). Without loss

of generality, we can assume that
m∑

i=1, i 6=1

yi = y1 and
m∑

i=1, i 6=2

yi = y2. Adding up the last2 equations, we

get
m∑

i=3

yi = 0. Sincey ∈ Km, we haveyi ≥ 0 for all i ∈ {3, . . . ,m}. Therefore, we getyi = 0 for all

i ∈ {3, . . . ,m}. Similarily to Case 1 above, this implies thaty ∈ Xm.

Proof of Theorem 3.2. The “fundamental polytope”P considered by the LP decoder was introduced by
[KV03] and is defined byP =

⋂
j∈C

conv(Cj) whereCj = {z ∈ {0, 1}n : w(z|N(j)) is even} for any

j ∈ C. For any error patternη ∈ {0, 1}n, let η̃ ∈ {−1, 1}n be given byη̃i = (−1)ηi for all i ∈ [n]. Also,

for anyx, y ∈ Rn, let their inner product be〈x, y〉 =
n∑

i=1

xiyi. Then, under the all zeros assumption, there

is LP decoding success forη on ζ if and only if the zero vector is the unique optimal solution to the LP (2),
i.e. if and only if〈η̃, 0〉 < 〈η̃, y〉 for every non-zeroy ∈ P , which is equivalent tõη ∈ int(P ∗) = int(K∗)
whereK = cone{P} is the “fundamental cone” and for anyS ⊆ Rn, the dualS∗ of S is given byS∗ =
{z ∈ Rn | 〈z, x〉 ≥ 0 ∀x ∈ S}. By Lemmas A.3 and A.5, we have:

K = cone
(⋂

j∈C

conv(Cj)
)
=

⋂

j∈C

cone(Cj) =
⋂

j∈C

cone{z ∈ {0, 1}n | w(z|N(j)) is even}

=
⋂

j∈C

cone{z ∈ {0, 1}n | w(z|N(j)) = 2} =
⋂

j∈C

{
y ∈ (R≥0)

n |
∑

i∈N(j)\{i0}

yi ≥ yi0 ,∀i0 ∈ N(j)
}

=
{
y ∈ (R≥0)

n | 〈y, vi0,j〉 ≥ 0 ∀i0 ∈ N(j), ∀j ∈ C
}

wherevi0,j ∈ {−1, 0, 1}
n is defined as follows: For alli ∈ [n],

(
vi0,j

)
i
=





0 if i /∈ N(j).

−1 if i = i0.

1 if i ∈ N(j) \ {i0}.

Thus,
K = (R≥0)

n
⋂ ⋂

j∈C

(
cone{vi0,j|i0 ∈ N(j)}

)∗
= (R≥0)

n
⋂ ⋂

j∈C

(
Dj

)∗

where for anyj ∈ C, Dj = cone{vi0,j|i0 ∈ N(j)}. Note that ifL ⊆ Rn is a cone, then its dualL∗ is also
a cone. We will use below the following basic properties of dual cones:
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i) If L1, L2 ⊆ Rn are cones, then(L1 + L2)
∗ = L∗

1 ∩ L∗
2.

ii) If L ⊆ Rn is a cone, then(L∗)∗ = cl(L).

Therefore, there is LP decoding success forη onK if and only if η̃ ∈ D where:

D = int(K∗) = int

((
(R≥0)

n
⋂ ⋂

j∈C

D∗
j

)∗
)

= int

(((
(R≥0)

n
)∗ ⋂ ⋂

j∈C

D∗
j

)∗
)

= int

(((
(R≥0)

n +
∑

j∈C

Dj

)∗)∗
)

and where the third equality follows from the fact that(R≥0)
n is a self-dual cone and the last equality

follows from property (i) above. Note that for anyj ∈ C, Dj is a cone. Moreover, since(R≥0)
n is a cone

and the sum of any two cones is also a cone, it follows that(R≥0)
n +

∑

j∈C

Dj is also a cone. Furthermore,

by property (ii) above, we get thatD = int

(
cl
(
(R≥0)

n +
∑

j∈C

Dj

))
. Being a cone,(R≥0)

n +
∑

j∈C

Dj is a

convex set. For any convex setS ⊆ Rn, we have thatint(cl(S)) = int(S) (See Lemma5.28 of [AB06]).
Therefore,

D = int
(
(R≥0)

n +
∑

j∈C

Dj

)

= (R>0)
n +

∑

j∈C

Dj (using Lemma A.2 and the fact that
∑

j∈C

Dj is a convex subset ofRn)

= {z ∈ Rn | ∃y ∈
∑

j∈C

Dj s.t. z > y}

=
{
z ∈ Rn | ∃{λi0,j}i0∈N(j),j∈C s.t.λi0,j ≥ 0 ∀i0 ∈ N(j),∀j ∈ C and

∑

i0∈N(j),j∈C

λi0,jvi0,j < z
}

=
{ ∑

i0∈N(j),j∈C

λi0,jvi0,j + u | λi0,j ≥ 0 ∀i0 ∈ N(j),∀j ∈ C andu ∈ (R>0)
n
}

Thus, there is LP decoding success forη on ζ if and only if there existλi0,j ≥ 0 for all i0 ∈ N(j) and all

j ∈ C s.t.
∑

i0∈N(j),j∈C

λi0,jvi0,j < η̃. Letw(i, j) =
( ∑

i0∈N(j)

λi0,jvi0,j
)
i

for all i ∈ [n] and allj ∈ C. Since

(vi0,j)i = 0 wheneveri /∈ N(j), we have that for everyi ∈ [n]:

∑

j∈N(i)

w(i, j) =
∑

j∈N(i)

( ∑

i0∈N(j)

λi0,jvi0,j
)
i
=

∑

j∈C

( ∑

i0∈N(j)

λi0,jvi0,j
)
i
=

( ∑

i0∈N(j),j∈C

λi0,jvi0,j
)
i
< η̃i

Moreover, for allj ∈ C, i1, i2 ∈ N(j) s.t. i1 6= i2, we have

w(i1, j) + w(i2, j) =
∑

i0∈N(j)

λi0,j

((
vi0,j

)
i1
+

(
vi0,j

)
i2

)
≥ 0

since
(
vi0,j

)
i1
+

(
vi0,j

)
i2
≥ 0 becausei1 6= i2 ∈ N(j). We conclude that LP decoding success forη on ζ

is equivalent to the existence of a dual witness forη on ζ.
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A.2 Proof of Lemmas 5.10 and 6.9

The goal of this section is prove the following theorem whichis used in the proofs of Lemmas 5.10 and 6.9.

Theorem A.6. Let λ, β,m be positive integers withβ > dc − 1 andm ≥ λ. Consider the optimization
problem:

v∗ = max
(T0,...,Th)∈Wh

h∈N,h≥1

f(T0, . . . , Th) (23)

where:

f(T0, . . . , Th) =
h∑

i=0

Ti

(dc − 1)i

andWh is the set of all tuples(T0, . . . , Th) ∈ Nh+1 satisfying the following three equations:

h∑

i=0

Ti = m (24)

T0 ≤ λ (25)

Ti+1 ≤ βTi for all i ∈ {0, . . . , h− 1} (26)

Then,

v∗ ≤ λ

(
β

dc−1

)2
β

dc−1 − 1
m

lnβ−ln(dc−1)
lnβ

We will first prove some lemmas which will lead to Lemma A.6.

Definition A.7. Let l = ⌊logβ(
m(β−1)

λ
+ 1)⌋ − 1.

Note thatl ≥ 0 sincem ≥ λ.

Lemma A.8. Let (T0, . . . , Th) ∈Wh. Then,Ti ≤ λβi for all i ∈ {0, . . . , h}.

Proof of Lemma A.8. Follows from equations (25) and (26).

Lemma A.9. Let

T ′
i = λβi for all i ∈ {0, . . . , l}

T ′
l+1 = m− λ

(βl+1 − 1)

(β − 1)

Then,(T ′
0, . . . , T

′
l+1) ∈Wl+1.

Proof of Lemma A.9. First, note that(T ′
0, . . . , T

′
l+1) ∈ Nl+2 sinceT ′

l+1 ≥ 0 by Definition A.7. Moreover,

l+1∑

i=0

T ′
i =

l∑

i=0

λβi + T ′
l+1 = λ

(βl+1 − 1)

(β − 1)
+ T ′

l+1 = m
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We have thatT ′
0 ≤ λ and for everyi ∈ {0, . . . , l− 1}, T ′

i+1 ≤ βT ′
i . We still need to show thatT ′

l+1 ≤ βT ′
l .

We proceed by contradiction. Assume thatT ′
l+1 > βT ′

l . Then,T ′
l+1 > λβl+1. Thus,

m =

l+1∑

i=0

T ′
i >

l+1∑

i=0

λβi = λ
(βl+2 − 1)

(β − 1)
> λ

(m(β−1)
λ

+ 1)− 1

(β − 1)
= m

sincel + 2 = ⌊logβ(
m(β−1)

λ
+ 1)⌋ + 1 > logβ(

m(β−1)
λ

+ 1).

Lemma A.10. (T ′
0, . . . , T

′
l+1) is the unique (up to leading zeros) element that achieves themaximum in

Equation (23).

Proof of Lemma A.10. By Lemma A.9,(T ′
0, . . . , T

′
l+1) ∈Wl+1. Let(T0, . . . , Th) ∈Wh such that(T0, . . . , Th)

and(T ′
0, . . . , T

′
h) are not equal up to leading zeros and without loss of generality assume thath ≥ l + 1 by

extendingT with zeros if needed. In order to show thatf(T0, . . . , Th) < f(T ′
0, . . . , T

′
h), we distinguish two

cases:
Case 1:(T0, . . . , Tl) 6= (T ′

0, . . . , T
′
l ). By Lemma A.8, there existsk1 ∈ {0, . . . , l} such thatTk1 < λβk1.

Therefore,
l∑

i=0

T ′
i −

l∑

i=0

Ti > 0. Note that:

f(T0, . . . , Th)− f(T ′
0, . . . , T

′
l+1) =

l∑

i=0

Ti − T ′
i

(dc − 1)i
+

Tl+1 − T ′
l+1

(dc − 1)l+1
+

h∑

i=l+2

Ti

(dc − 1)i

≤
1

(dc − 1)l

l∑

i=0

(Ti − T ′
i ) +

Tl+1 − T ′
l+1

(dc − 1)l+1
+

1

(dc − 1)l+1

h∑

i=l+2

Ti

=
1

(dc − 1)l

l∑

i=0

(Ti − T ′
i ) +

1

(dc − 1)l+1
(

h∑

i=l+1

Ti − T ′
l+1)

=
1

(dc − 1)l

l∑

i=0

(Ti − T ′
i ) +

1

(dc − 1)l+1

l∑

i=0

(T ′
i − Ti)

Consequently,

f(T0, . . . , Th) ≤ f(T ′
0, . . . , T

′
l+1)−

(

l∑

i=0

T ′
i −

l∑

i=0

Ti)

(dc − 1)l
+

(

l∑

i=0

T ′
i −

l∑

i=0

Ti)

(dc − 1)l+1

= f(T ′
0, . . . , T

′
l+1)− (dc − 2)

(

l∑

i=0

T ′
i −

l∑

i=0

Ti)

(dc − 1)l+1

< f(T ′
0, . . . , T

′
l+1)

Case 2:(T0, . . . , Tl) = (T ′
0, . . . , T

′
l ). Then,Tl+1 6= T ′

l+1. SinceT ′
l+1 =

h∑

i=l+1

Ti, we should haveT ′
l+1 −
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Tl+1 > 0. We have that

f(T0, . . . , Th)− f(T ′
0, . . . , T

′
l+1) =

Tl+1 − T ′
l+1

(dc − 1)l+1
+

h∑

i=l+2

Ti

(dc − 1)i

≤
Tl+1 − T ′

l+1

(dc − 1)l+1
+

1

(dc − 1)l+2

h∑

i=l+2

Ti

=
Tl+1 − T ′

l+1

(dc − 1)l+1
+

1

(dc − 1)l+2

l+1∑

i=0

(T ′
i − Ti)

≤
Tl+1 − T ′

l+1

(dc − 1)l+1
+

(T ′
l+1 − Tl+1)

(dc − 1)l+2

Consequently,

f(T0, . . . , Th) ≤ f(T ′
0, . . . , T

′
l+1)−

(T ′
l+1 − Tl+1)

(dc − 1)l+1
+

(T ′
l+1 − Tl+1)

(dc − 1)l+2

= f(T ′
0, . . . , T

′
l+1)− (dc − 2)

(T ′
l+1 − Tl+1)

(dc − 1)l+2

< f(T ′
0, . . . , T

′
l+1)

Proof of Lemma A.6. Let ν = β/(dc − 1). By Lemmas A.10 and A.8, we have that

v∗ ≤
l+1∑

i=0

T ′
i

(dc − 1)i
≤

l+1∑

i=0

λ
βi

(dc − 1)i
= λ

l+1∑

i=0

νi = λ
νl+2 − 1

ν − 1
< λ

νl+2

ν − 1

≤ λ
ν logβ(

m(β−1)
λ

+1)+1

ν − 1
≤ λ

ν2

ν − 1
ν logβ m

≤ λ
ν2

ν − 1
m

ln ν
lnβ

A.3 Proof of Theorem 5.11

The goal of this section is to prove Theorem 5.11 which is restated below.

Theorem 5.11. (Asymptotic tightness of Theorem 5.1 for(dv , dc)-regular LDPC codes)
There exists an infinite family of(dv, dc)-regular Tanner graphs{(Vn, Cn, En)}n, an infinite family of error
patterns{γn}n and a positive constantc s.t. there exists a hyperflow forγn on(Vn, Cn, En) and any WDAG
(Vn, Cn, En, w, γn) corresponding to a hyperflow forγn on (Vn, Cn, En) must have

max
e∈En

|w(e)| ≥ cn
ln(dv−1)

ln(dv−1)+ln(dc−1)

We now prove some lemmas that lead to the proof of Theorem 5.11.
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Definition A.11. (Construction of{(Vn, Cn, En)}n)
Let β = (dv − 1)(dc − 1). The Tanner graph{(Vn, Cn, En)}n is constructed by connecting copies of the
following two basic blocks:

1. The “A block” Ax with parameter the non-negative integerx. Ax is an undirected complete tree rooted
at a (dv − 1)-regular variable node. The internal nodes ofAx other than the root are eitherdc-regular
check nodes ordv-regular variable nodes. The leaves ofAx are all 1-regular variable nodes of depthx.13

Thus,Ax hasβx leaves. An exampleA block is given in Figure 2.

2. The “B block” By with parameter the non-negative integery. By is an undirected tree rooted at a(dv−1)-
regular variable node. The internal nodes ofBy other than the root are eitherdv-regular variable nodes
or 2-regular check nodes. The leaves ofBy are 1-regular variable nodes. The nodes ofBy are divided
into y + 1 layers indexed fromy to 0. Layery consists of the root and the(dv − 1) check nodes that are
connected to the root. Each check node in layeri is connected to a single variable node in layeri− 1 for
all i = y, y− 1, . . . , 1. Each variable node in layeri is connected todv − 1 check nodes in the same layer
for all i = y, y − 1, . . . , 1. Thus, layer0 consists of(dv − 1)y leaves which are all1-regular variable
nodes. An exampleB block is given in Figure 3.

Letγ = ln(dv−1)
ln(dv−1)+ln(dc−1) . For every non-negative integern, letyn = ⌊log(dv−1) n

γ⌋ andbn = (dv−1)
yn =

Θ(nγ). The Tanner graph{(Vn, Cn, En)}n is constructed using a root check node, oneB block, manyA
blocks and some auxiliary variable and check nodes as follows:

1. Start with a check nodec0.

2. Connectc0 to the roots ofdc − 1 Ayn+1 blocks and to the root of oneByn block. Note thatByn hasbn
leaves.

3. For everyi = yn, yn−1, . . . , 1, connect each check node in layeri ofByn to the roots of(dc−2) Ai blocks.
Note that there are(dv − 1)yn−i+1 check nodes in layeri.

4. LetTn be the tree constructed so far andln be its number of leaves. Note that all the leaves ofTn are
1-regular variable nodes. CompleteTn into a (dv , dc)-regular graph by addingO(ln) dc-regular new
check nodes and (if needed)O(ln) dv-regular new variable nodes in such a way that each new check is
either connected to zero or to at least two leaves of theB block.14

We call the check and variable nodes added in step 4 the “connecting” check and variable nodes respec-
tively.

Definition A.12. (Construction of{γn}n)
Let{(Vn, Cn, En)}n be the Tanner graph given in Definition A.11. The error pattern γn is defined by:

1. For every variable nodev in anA block,γn(v) = 1.

2. For every variable nodev in theB block,γn(v) = −1.

3. For every connecting variable nodev, γn(v) = 1.

13The depth of a variable nodev is the number of check nodes on the unique path from the root tov.
14Note that if(dv − 1)ln is divisible bydc, we don’t need any extra variable nodes. In the worst case, wecan adddc copies of

Tn so that(dv − 1)dcln is divisible bydc.
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v1

c1 c2

v4 v5 v6 v7 v8 v9

Figure 2: Example of anA block with parameterx = 1 wheredv = 3 anddc = 4

v0

c1 c2

v1 v2

c3 c4 c5 c6

v3 v4 v5 v6

Layer2

Layer1

Layer0

Figure 3: Example of aB block with parametery = 2 wheredv = 3

Lemma A.13. (Size of the code)
For any positive integern, the Tanner graph{(Vn, Cn, En)}n given in Definition A.11 is a(dv, dc)-regular
code withΘ(n) variable nodes.

Proof of Lemma A.13. It is enough to show that the numberln of leaves ofTn is O(n). The number of
leaves of blockByn is bn = Θ(nγ). The number of leaves of blockAy is (dv − 1)y. Thus, the number of
leaves in all theA-blocks is

an = (dc − 1)(dv − 1)yn+1 + (dc − 2)

yn∑

i=1

(dv − 1)yn−i+1βi

= O((dv − 1)yn) +O((dv − 1)yn
yn∑

i=1

(dc − 1)i)

= O(bn + βyn)

because(dv − 1)yn = bn and
yn∑

i=1

(dv − 1)i = O((dc− 1)yn). Sinceβyn = Θ(n) andbn = o(n), we get that

ln = bn + an = Θ(n).
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Lemma A.14. (Existence of a hyperflow for{γn}n on{(Vn, Cn, En)}n)
Let {(Vn, Cn, En)}n be the Tanner graph given in Definition A.11 and letγn be the error pattern given in
Definition A.12. Then, for every positive integern, there exists a hyperflow forγn on (Vn, Cn, En).

Proof of Lemma A.14. Let ǫ > 0. We will further specifyǫ at the end of the proof. Consider the following
assignment of weigths to edges ofEn:

1. In everyA block, the edges are directed toward the root of the block. The edges outgoing from the leaves
have weight1− ǫ. For every check node, the weight of the outgoing edge is equal to the common weight
of its incoming edges. For each variable node, the sum of the weights of the outgoing edges is equal to
the sum of the weights of the incoming edges plus1− ǫ. Thus, the weight of the edge outgoing from the
root of theAx block is

rx = (1− ǫ)
x∑

t=0

(dv − 1)t = (1− ǫ)
(dv − 1)x+1 − 1

dv − 2

2. In theB block, the edges are directed toward the leaves. The edge connectingc0 to the root of blockB
has weightwyn where for anyi ∈ {0, . . . , yn}:

wi := (1 + ǫ)

i∑

j=0

(dv − 1)j = (1 + ǫ)
(dv − 1)i+1 − 1

dv − 2

For every internal variable nodev, the weight of each outgoing edge fromv is z−(1+ǫ)
dv−1 wherez is the

weight of the edge incoming tov. For every internal check nodec, the weight of the edge outgoing from
c is equal to the weight of the edge incoming toc. By induction on the layer indexi = yn, yn−1, . . . , 0,
for every variable nodev in layer i, the weight of its incoming edge iswi and (if v is not a leaf) the
weight of each of its outgoing edges iswi−1 (sincewi satisfies the recurrencewi−1 = wi−(1+ǫ)

dv−1 for all
i = yn, yn−1, . . . , 1).

3. All edges adjacent to connecting check or variable nodes have weight zero.

By construction, the weights satisfy the dual witness equations (4) and (5) for all check and variable nodes
in A blocks, all internal variable nodes in theB block and all the connecting check and variable nodes. To
guarantee that equations (4) and (5) hold for the root check nodec0, we need thatryn+1 ≥ wyn . To guarantee
them for the internal check nodes of theB block, we need thatri+1 ≥ wi for all i = yn − 1, . . . , 1. To
guarantee them for the leaves of theB block, we need thatw0−1 > 0, which holds sincew0 = 1+ ǫ. Thus,
for everyi = yn, yn−1, . . . , 1, we need thatri+1 ≥ wi, i.e.

(1− ǫ)
(dv − 1)i+2 − 1

dv − 2
≥ (1 + ǫ)

(dv − 1)i+1 − 1

dv − 2

which can be guaranteed by letting0 < ǫ < 1− 2
dv

.

Lemma A.15. (Lower bound for any hyperflow for{γn}n on{(Vn, Cn, En)}n)
For any positive integern, any WDAG(Vn, Cn, En, w, γn) corresponding to a hyperflow forγn on(Vn, Cn, En)
must have

max
e∈En

|w(e)| ≥ cn
ln(dv−1)

ln(dv−1)+ln(dc−1)

for some constantc > 0.
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Proof of Lemma A.15. Let (Vn, Cn, En, w, γn) be a WDAG corresponding to a hyperflow forγn on(Vn, Cn, En).
Sinceγn(v) = −1 for every leafv of theB block (which hasbn leaves) and since each connecting check
node adjacent to a leaf of theB block is connected to at least two leaves of theB block, there should
be a flow of total value larger thanbn from the non-leaf and non-connecting nodes of theB block to its
leaves. Applying the same argument inductively and using the fact that for every variable nodev of theB
block γn(v) = −1, we get that all the edges of theB block should be oriented toward its leaves and that
there should be a flow of value larger thanbn entering the root of theB block. Thus, the edge connecting
c0 to the root of theB block should be oriented toward theB block and should have value larger than

bn = Θ(n
ln(dv−1)

ln(dv−1)+ln(dc−1) ).

Proof of Theorem 5.11. Follows from Lemmas A.13, A.14 and A.15.
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reconstruction in compressed sensing.Physical Review X, 2(2):021005, 2012.

36



[KRU11] S. Kudekar, T.J. Richardson, and R.L. Urbanke. Threshold saturation via spatial coupling:
Why convolutional ldpc ensembles perform so well over the bec. Information Theory, IEEE
Transactions on, 57(2):803–834, 2011.

[KRU12] S. Kudekar, T. Richardson, and R. Urbanke. Spatially coupled ensembles universally achieve
capacity under belief propagation. InInformation Theory Proceedings (ISIT), 2012 IEEE In-
ternational Symposium on, pages 453–457. IEEE, 2012.

[KV03] R. Koetter and P.O. Vontobel. Graph-covers and iterative decoding of finite length codes. In
Proceedings of the IEEE International Symposium on Turbo Codes and Applications, pages
75–82. Citeseer, 2003.

[OU11] P.M. Olmos and R. Urbanke. Scaling behavior of convolutional ldpc ensembles over the bec. In
Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on, pages 1816–
1820. IEEE, 2011.

[Sch98] A. Schrijver.Theory of linear and integer programming. Wiley, 1998.

[TZF07] M. Tavares, K.S. Zigangirov, and G.P. Fettweis. Tail-biting ldpc convolutional codes. In
Information Theory, 2007. ISIT 2007. IEEE International Symposium on, pages 2341–2345.
IEEE, 2007.

37


	1 Introduction
	1.1 Binary linear codes
	1.2 Linear programming decoding
	1.3 Spatially coupled codes
	1.4 The conjecture
	1.5 Contributions
	1.6 Outline
	1.7 Notation and terminology

	2 Main result
	3 LP decoding, dual witnesses, hyperflows and WDAGs
	4 Transforming a WDAG into a directed weighted forest
	5 Maximum weight of an edge in a regular WDAG on the BSC
	6 Maximum weight of an edge in the WDAG of a spatially coupled code on the BSC
	7 Relation between LP decoding on a graph cover code and on a derived spatially coupled code
	8 Interplay between crossover probability and LP excess
	9 GC = SC
	A Appendix
	A.1 Proof of Theorem 3.2
	A.2 Proof of Lemmas 5.10 and 6.9
	A.3 Proof of Theorem 5.11


