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Abstract—We consider the capacity of an energy harvesting
communication channel with a finite-sized battery. As an ab-
straction of this problem, we consider a system where energy
arrives at the encoder in multiples of a fixed quantity, and the
physical layer is modeled accordingly as a finite discrete alphabet
channel based on this fixed quantity. Further, for tractability, we
consider the case of binary energy arrivals into a unit-capacity
battery over a noiseless binary channel. Viewing the available
energy as state, this is a state-dependent channel with causal
state information available only at the transmitter. Further, the
state is correlated over time and the channel inputs modify the
future states. We show that this channel is equivalent to an
additive geometric-noise timing channel with causal information
of the noise available at the transmitter. We provide a single-letter
capacity expression involving an auxiliary random variable, and
evaluate this expression with certain auxiliary random variable
selection, which resembles noise concentration and lattice-type
coding in the timing channel. We evaluate the achievable rates
by the proposed auxiliary selection and extend our results to
noiseless ternary channels.

I. INTRODUCTION

We consider an energy harvesting communication system,
where energy needed for communication is harvested by the
transmitter during the course of communication; see Fig. 1. We
study the capacity of such communication channels. Capacity
of such channels has been identified in previous work for two
extreme cases: When the battery-size is unlimited, [1] showed
that the capacity is equal to the capacity of the same system
with an average power constraint equal to the average recharge
rate; an unlimited-sized battery averages out the fluctuations
in energy arrivals, and reduces energy causality constraints at
all channel uses into a single average power constraint. At
the other extreme, when the battery-size is zero, the system
becomes a stochastic amplitude-constrained channel. Refer-
ence [2] has found the capacity of this system for an AWGN
channel with independent and identically distributed (i.i.d.)
energy arrivals, by modeling it as a state-dependent channel
with causal state information available at the transmitter, and
showed that capacity is achieved by using a Shannon strategy
[3]; in particular, the capacity achieving input distribution is
discrete as in the case of [4]. The capacity for the case of a
finite-sized battery is unknown, and is the problem considered
in this paper.
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Fig. 1. Energy harvesting communication system with a finite-sized battery.

This problem has the following characteristics: The battery
can be viewed as an energy queue where energy arrives as
a stochastic process over time; for tractability, we assume an
i.i.d. energy arrival process. The codebook used to transmit
messages acts as a server to this energy queue, and determines
its dynamics. The energy available at the energy queue is
the state, which determines the set of feasible symbols that
can be transmitted. In particular, at each channel use, the
transmitted symbols are instantaneously amplitude-constrained
to the (square root of the) available energy in the battery.
This state is naturally causally known to the transmitter, but
unknown to the receiver. This state is correlated over time,
even when energy arrivals are i.i.d. In addition, transmitter’s
own actions further affect the future of the state.

From [4] and [2], we know that, when the channel inputs are
constant amplitude-constrained, or i.i.d. stochastic amplitude-
constrained, over a Gaussian channel, the optimum input
distributions are discrete. However, these discrete mass points
are arbitrary real numbers, and it is hard to track the dynamics
of the energy queue, if it is served with codebooks generated
by arbitrary real mass points. For a tractable abstraction of
the system, we model energy arrivals as multiples of a fixed
quantity, and correspondingly, consider a physical layer which
has a discrete alphabet based on this fixed quantity. For further
analytical tractability, we assume that the physical layer is a
noiseless binary channel, energy arrivals are binary, and the
battery is unit-sized. This abstraction is reminiscent of the one
in [5]. We will see that, even in this simple model, unavailabil-
ity of the battery state to the receiver, memory of the state in
time, and the fact that the state evolves based on the previous
channel inputs, render the problem challenging. The fact that
channel inputs affect future states is reminiscent of action
dependent channels in [6]. While Shannon strategy, which
is optimal in the zero-battery case in [2], yields achievable
rates for the finite-battery case, the transmitter may utilize the



memory in the battery state to achieve higher rates.
We first present the system model which is a state-dependent

channel, and derive achievable rates based on certain Shannon
strategies. We next show that our system may equivalently
be modeled as a timing channel [7], where information is
transmitted by timings between 1s, as opposed to the actual
places of 1s and 0s. This converts our problem into a timing
channel with additive geometric noise (service time), where
the service time is causally known to the transmitter. We
combine [7] and [3] to find a single-letter capacity expression
for the capacity of this equivalent channel. Shannon strategy
[3] is optimal here, because the state is i.i.d. in time. The
capacity expression involves an auxiliary random variable, and
its optimization is difficult. For this reason, we determine an
achievable rate based on a certain selection of this auxiliary
random variable. This selection resembles the concentration
idea in [8], and may be interpreted as a lattice-type coding
for the timing channel. We evaluate the achievable rate of
the proposed selection and compare it with rates achieved
by Shannon strategies in the original channel. Finally, we
extend our results to the case of a noiseless ternary channel
by means of its equivalence to a timing channel with extra
information sent inside the symbols in addition to the timings
of the symbols.

II. THE CHANNEL MODEL

Consider a noiseless binary channel with an energy har-
vesting transmitter. The battery in the transmitter can store at
most one unit of energy. The channel input symbols, namely 0
and 1, have zero and one unit energy cost, respectively. When
channel input Xi is transmitted in the ith channel use, the
receiver gets Yi = Xi. At each channel use, the transmitter
both harvests energy and also transmits a symbol. The order
of harvesting and transmission in a channel use is as follows:
At each channel use, Si denotes the energy available in the
battery. The transmitter observes the available battery energy
Si and transmits a symbol Xi. This symbol is constrained by
the battery energy: Xi ∈ {0, 1} when Si = 1 and Xi = 0 when
Si = 0. After sending the symbol, the transmitter harvests
energy. Energy arrivals (harvesting) is modeled as an i.i.d.
Bernoulli process with Ei ∈ {0, 1} and Pr[Ei = 1] = q.
Incoming energy Ei is first stored in the battery, if there is
space, before it is used for transmission. Since the battery has
one-unit energy storage capacity, energies may overflow and
get wasted. The battery state is updated as

Si+1 = min{Si −Xi + Ei, 1}. (1)

We note that Si is a state for this channel that is causally
available to the transmitter but not to the receiver. Moreover,
perfect channel output feedback is available to the transmitter
as the channel is noiseless. Note that even though the channel
is noiseless, uncertainty of the battery energy at the transmitter
side makes it challenging for the receiver to decode the
messages of the transmitter. A crucial property of this channel
model is the fact that the state of this channel Si has memory
and the evolution of the state process is affected by the channel

input Xi. Even though the channel state is not i.i.d. in time,
Shannon strategy [3] provides some achievable rates, which
we next specify for our channel model.

A. Achievable Rates with Shannon Strategies

Consider the Shannon strategy (0, 0) and (0, 1) as in [3]
where the first and second entries denote the actual channel
input when battery state S is 0 and 1, respectively. We
represent (0, 0), (0, 1) as U = 0, 1 for simplicity, and let U be
i.i.d. with Pr[U = 1] = p. The state transition probabilities are
Pr[Si+1 = 1|Si = 0] = q and Pr[Si+1 = 0|Si = 1] = p(1−q),
yielding the stationary probability Pr[S = 1] = q

p+q−pq . Note
that the battery state is ergodic and the receiver can use the
stationary probability of the battery state for joint typicality
decoding. In this case, the channel takes the form

p(y|u) = Pr[S = 1]δ(y − u) + (1− Pr[S = 1])δ(y) (2)

where δ(·) is a unit impulse at 0 and u ∈ {0, 1}. Here, I(U ;Y )
is an achievable rate due to [3] and the fact that the battery
energy state is an ergodic process, see also [5]. We refer to this
as the naı̈ve i.i.d. Shannon strategy (NIID). The best achievable
rate by this strategy is

RNIID = max
p∈[0,1]

H

(
pq

p+ q − pq

)
− pH

(
q

p+ q − pq

)
(3)

where H(·) is the binary entropy function.
The naı̈ve approach yields a sub-optimal rate since the

memory of the system is not exploited by the decoder. Indeed,
the decoder can better exploit the memory of the system by
using the n-letter joint probability p(un, yn). The maximum
rate that can be achieved by using this scheme is given by

ROIID = max
p∈[0,1]

lim
n→∞

1

n
I(Un;Y n). (4)

We will call the scheme that achieves ROIID the op-
timal i.i.d. Shannon strategy (OIID). Here, the limit
limn→∞

1
nI(U

n;Y n) can be calculated numerically using the
method in [9]. Notice that when the input ui is i.i.d., the joint
probability p(yi, ui, si+1|si) can be expressed in the form

p(yi, ui, si+1|si) = p(yi, si+1|ui, si)p(ui) (5)

where p(yi, si+1|ui, si) is independent of i. This allows using
the iterative method in [9] to calculate the achievable rate for a
given input distribution, which is then optimized with respect
to the i.i.d. probability distribution to yield (4).

III. EQUIVALENT TIMING CHANNEL

Since the channel input is binary, the encoding and decoding
can be performed over the number of channel uses between
two 1s. Let us define Tn ∈ {1, 2, . . .} as the number of channel
uses between the n−1st transmitted 1 and the nth transmitted
1. After a 1 is transmitted in the ith channel use, in view of
(1), available energy in the battery drops to zero in the i+1st
channel use unless Ei = 1 as the battery can store at most one
unit of energy. The node cannot transmit another 1 until the



next energy arrival. Define the idle time Zn ∈ {0, 1, 2, . . .} as
the number of channel uses between the n− 1st transmission
of a 1 and the next energy arrival after that. This representation
yields the following timing channel:

Tn = Vn + Zn (6)

where Vn ∈ {1, 2, . . .} is the number of channel uses the
transmitter chooses to wait to transmit a 1 after the first energy
arrival proceeding the n − 1st transmission of a 1. Tn, Vn
and Zn are depicted in Fig. 2, where circles represent energy
arrivals and triangles represent transmissions of a 1. Note that
Zn is independent of any action of the transmitter; it is the
number of i.i.d. Bernoulli trials until the first energy arrives
after the n − 1st transmission of a 1, and is a geometric
random variable with parameter q. As the original channel is
noiseless, when the transmitter puts a 1 to the channel, the
receiver observes it and calculates Tn perfectly. Therefore,
the transmitter observes Zn and decides on Vn, but all that
the receiver observes is Tn. Even though the physical channel
is noiseless, the uncertainty in Zn creates difficulty for the
receiver. In fact, in terms of a timing channel, the overall
channel is an additive noisy timing channel with a geometric
noise, which is known causally to the transmitter.

It is worthwhile to mention that when the channel symbols
are considered as the time difference between two 1s, the
resulting model becomes similar to a noiseless channel with
symbols of varying durations as in Shannon’s original work
[10]. However, in our problem, the symbol durations are
affected by a random energy arrival process, while in [10] the
symbol durations are fixed. Therefore, the problem in [10] is to
pack as many symbols as possible within a given block length,
while our problem is also concerned with the randomness
introduced by energy harvesting.

In the timing channel, the transmitter has the feedback
of previous channel outputs Tn−1 and causal knowledge of
the idle time Zn before deciding Vn. In fact, the transmitter
observes energy arrivals Ei even when the battery is full. We
note that the timing channel in this section and the classical
state-dependent channel in Section II are equivalent in the
sense that they have the same capacity, using the definition
of capacity of a timing channel in [7]. This is due to the fact
that the encoders and decoders of these channels have different
representations of the same object, and the rate and capacity
of these channels are properly defined taking into account the
time cost of the codewords, i.e., the average number of channel
uses needed, following [7]. We state this fact as a lemma.

Lemma 1 The timing channel capacity with additive causally
known state CT and the classical state-dependent channel
capacity C are equal, i.e., C = CT .

IV. THE CAPACITY

The capacity of a discrete memoryless channel with causal
side information is [3], [11, Thm. 7.2]

C = max
p(u),v(u,z)

I(U ;T ), (7)

Fig. 2. Graphical representation of Tn, Vn and Zn. An energy arrival of
Ei = 1 is represented with a circle and a channel input of Xi = 1 is
represented with a triangle. Note that Z3 = 0 as a transmission of a 1 and
an energy harvesting occur in the same channel use.

where T is the channel output. The maximization requires
finding the optimal distribution for the auxiliary variable U
and the mapping v(·, ·) which can be taken as deterministic
without losing optimality [11, Thm. 7.2]. Cardinality bound on
U is |U| ≤ min{(|V|−1)|Z|+1, |T |}. We combine techniques
from [3] and [7] to prove the following theorem.

Theorem 1 The capacity of the timing channel with additive
causally known state, CT , is:

CT = max
p(u),v(u,z)

I(U ;T )

E[T ]
(8)

Proof: Let W ∈ {1, . . . ,M} denote the message, which is
uniform and let n denote the maximum number of channel
uses on average (over the message W and the energy arrivals
Ei) to send any message W = w. We note that

∑m
i=1 E[Ti] ≤

n where the expectation is over the energy arrival sequence
Ei and the message W .

Define Ui = (W,T i−1). Note that even though T i depends
on W , since Ei is an i.i.d. random process, Zi is independent
of W and T i−1 and hence of Ui. We have the following
sequence of inequalities:

log(M)−H(W |Tm) = H(W )−H(W |Tm) (9)
= I(W ;Tm) (10)

=

m∑
i=1

I(W ;Ti|T i−1) (11)

≤
m∑
i=1

I(W,T i−1;Ti) (12)

=

m∑
i=1

I(Ui;Ti) (13)

≤ n∑m
i=1 E[Ti]

m∑
i=1

I(Ui;Ti) (14)

≤ n sup
U

I(U ;T )

E[T ]
= nCT (15)

where (14) follows from the fact that n ≥
∑m
i=1 E[Ti], and the

inequality in (15) holds due to the fact that Ui are independent
of Zi and

∑
i ai∑
i bi
≤ maxi

ai
bi

for ai, bi > 0. Whenever the
probability of error goes to zero as m→∞, H(W |Tm)→ 0

by Fano’s inequality and therefore, log(M)
n = R ≤ CT , which

completes the converse proof.
For the direct part, we simply use an encoding scheme that

does not use the available feedback information T i−1 and the



achievability of R = I(U ;T )
E[T ] follows from [3], [7] and [11]. �

We note that the capacity expression in (8) is similar to the
capacity of a telephone signaling channel [7], augmented with
Shannon strategy to utilize the causal state information at the
transmitter. It is worth remarking that the transmitter, in fact,
has more freedom in that, it is free to update its decision after
observing Zi; however, as the converse proof of Theorem 1
shows, this does not yield a higher achievable rate.

For the timing channel, the input, output and state alphabets
have infinite cardinalities. Therefore, the cardinality bound on
U is infinite and the solution to the maximization problem in
(8) is difficult. While the capacity achieving auxiliary selection
is still an open problem, we continue our capacity analysis by
resorting to a family of auxiliary random variables with finite
cardinality, in the next section. We will also devise an upper
bound in Section VI in closed form which will help us assess
the performance of the proposed finite cardinality auxiliary
random variables.

V. FINITE CARDINALITY AUXILIARY VARIABLES

In this section, we propose to use a finite cardinality auxil-
iary random variable selection parameterized by a variable N
to be optimized later. Let U have a probability mass function
(pmf) p(u) over a support set U ∈ {0, 1, . . . , N − 1}, where
N is the cardinality of U . Moreover, we fix the mapping from
U and Z to V as

V = (U − Z mod N) + 1 (16)

The output of the timing channel is T = V + Z. Let T ′ =
T − 1 mod N . Note that T ′ = U . We have

max
p(u)

I(U ;T )

E[V + Z]
≤ max

p(u)

H(U)

E[V + Z]
(17)

= max
p(u)

I(U ;T ′)

E[V + Z]
(18)

where (17) is due to the non-negativity of entropy. Therefore,
for fixed N , this scheme achieves

R
(N)
A = max

p(u)

H(U)

E[V + Z]
(19)

We further maximize R
(N)
A over N and obtain the best

achievable rate by this scheme: RA = max
N

R
(N)
A .

In the original binary energy harvesting channel, this strat-
egy corresponds to channel uses being divided into frames of
length N and indexed in base N . The transmitter constructs
a codebook with symbols U ∈ {0, 1, . . . , N − 1} and conveys
each symbol by transmitting a 1 at the earliest channel use
indexed with this symbol as illustrated in Fig. 3 for N = 5.
This coding strategy can be interpreted as concentrating the
effective state Z to multiples of a frame length N as in
[8]. The receiver decodes intended codeword U with U =
T − 1 mod N , which treats Z as if it is eliminated with the
modulo operation. Therefore, this scheme is a variation of
the concentration scheme of Willems in [8] for the timing
channel. It can also be interpreted as lattice-coding the timing
via modulo operation.

Fig. 3. Coding scheme: each message symbol Ui is conveyed by transmitting
a 1 at the earliest channel use possible with index equal to Ui. Here, N = 5.

VI. AN UPPER BOUND

In order to get an upper bound, we provide the channel state
of the timing channel Z to the receiver.

CUB = max
p(v)

H(V )

E[V ] + E[Z]
(20)

= max
µ≥0

1

µ+ E[Z]
max

E[V ]≤µ
H(V ) (21)

Here, the inner problem requires finding the entropy maximiz-
ing probability distribution with an expectation constraint of µ
over a discrete positive support, which is solved by a geomet-
rically distributed V with parameter 1

µ . Thus, H(V ) = H(p)
p

where H(p) is the binary entropy function. Substituting in (21)
and noting that Z ∈ {0, 1, . . .} is geometrically distributed
with parameter q, the upper bound is found as

CUB = max
p≥0

H(p)/p
1
p +

1−q
q

= max
p≥0

qH(p)

q + p(1− q)
(22)

VII. NUMERICAL RESULTS

In this section, we provide simple numerical results for the
achievable scheme proposed in Section V, how it compares
to the i.i.d. Shannon strategies in the classical state-dependent
channel given in Section II-A, and the upper bound in Sec-
tion VI. We also provide comparisons with the capacities in
the extreme cases of batteries with zero and unlimited energy
storage (still operating over a noiseless binary channel). Next,
we briefly mention the capacities under these extreme cases.

A. Capacity with Zero Energy Storage

Consider the model with no energy storage, that is, Xi =
1 is allowed only if Ei = 1, which is known causally by
the transmitter. In this case, the state of the system, Ei, is
i.i.d. The capacity of this channel is achieved by a Shannon
strategy as in [2], which chooses among Xi ∈ {0, 1} with
Pr[Xi = 1|Ei = 1] = p whenever Ei = 1, and is forced to
transmit Xi = 0 whenever Ei = 0. The capacity is:

CZS = max
p

H(pq)− pH(q) (23)

where H(p) is the binary entropy function.

B. Capacity with Infinite Energy Storage

When there is an unlimited battery, as the average energy
arrival rate is q, the capacity is the maximum of H(p) over p ≤
q, which is achieved by using the save-and-transmit scheme



in [1]. When evaluated, the capacity becomes:

CIS =

{
H(q), q ≤ 1

2

1, q > 1
2

(24)

We are now ready to compare the capacities and achievable
rates, which are shown in Fig. 4 as a function of the energy
arrival probability q. We first remark that the achievable rate
by the specified family of finite cardinality auxiliary variables
in Section V is higher than the best achievable rate by the
naı̈ve i.i.d. Shannon strategy in the classical state-dependent
channel where the receiver uses the stationary distribution of
the battery energy. This achievable rate also outperforms the
optimum i.i.d. Shannon strategy for low arrival probabilities.
We also remark that in comparison to zero and infinite energy
storage capacities, a battery of unit size provides a significant
rate improvement.

For the achievable rate proposed in Section V, a large N
provides a larger cardinality for U , sending more information
with a single unit of energy. However, as N increases, each
symbol takes more time and more harvested energy is po-
tentially wasted. We observe numerically that for low harvest
rates the optimal N decreases with increasing q so that more of
the scarcely available energy is utilized. This trend is reversed
for high harvest rates, e.g., q > 0.7, as wasting energy becomes
less of a concern then.

VIII. EXTENSION TO NOISELESS TERNARY CHANNEL

In this section, we consider an extension with a third
channel input −1, which also requires one unit of energy.
Specifically, we represent the ternary output vector Y n with
T ` ∈ {1, 2, . . .}`, defined as the number of zeros between
the ` − 1st and the `th nonzero output, and S` ∈ {−1, 1}`,
defined as the sign of the `th nonzero output. Once again, note
that Y n can be perfectly reconstructed from (T `, S`) and vice
versa. With this representation, the equivalent model consists
of two parallel channels, Tn = Vn+Zn and Sn = Rn, where
Rn is the sign of the `th nonzero input, conveyed noise-free
to the receiver. The equivalence to the original channel can
be established by an extension of Lemma 1. Noting that the
binary side channel and the timing channel are used equally
many times, the information conveyed with each of their use
is I(U ;T ) + 1 where U is the Shannon strategy. This is
similar to queues with information bearing packets, since each
nonzero symbol can be considered as a packet bearing 1 bit
of information. Hence, as in [7, Section IV], coding over
symbol energy and over symbols of the same energy are done
independently and this yields the capacity.

Theorem 2 The capacity with ternary symbols is:

Cter = max
p(u),v(u,s)

I(U ;T ) + 1

E[T ]
(25)

IX. CONCLUSION

In this paper, we considered an energy harvesting transmitter
with a unit-capacity battery communicating over a noiseless
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binary channel. Classical view of this channel is a state-
dependent channel with causal state information at the trans-
mitter where the evolution of the state is affected by the
channel input. This coupling of the state and the channel input
creates a challenge. We show that this channel is equivalent to
a timing channel with feedback and causal state information
at the transmitter, and find a single-letter capacity expression
for its capacity. As evaluation of this capacity expression is
difficult, we resort to finite cardinality auxiliary random vari-
ables and numerically study the achievable rates. We compare
these achievable rates with rates achievable by naı̈ve and
optimum i.i.d. Shannon strategies in the original channel.
Finally, we extend our results to a noiseless ternary channel
where information is transmitted via timing and contents of
symbols.
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