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Abstract—In this paper, the minimum distance distribution
of irregular generalized LDPC (GLDPC) code ensembles is
investigated. Two classes of GLDPC code ensembles are analyzed;
in one case, the Tanner graph is regular from the variable
node perspective, and in the other case the Tanner graph is
completely unstructured and irregular. In particular, for the
former ensemble class we determine exactly which ensembles
have minimum distance growing linearly with the block length
with probability approaching unity with increasing block l ength.
This work extends previous results concerning LDPC and regular
GLDPC codes to the case where a hybrid mixture of check node
types is used.

I. I NTRODUCTION

Recently, the design and analysis of coding schemes repre-
senting generalizations of Gallager’s low-density parity-check
(LDPC) codes [1] has gained increasing attention. This interest
is motivated above all by the potential capability of this class
of codes to offer a better compromise between waterfall and
error floor performance than is currently offered by state-of-
the-art LDPC codes.

In the Tanner graph of an LDPC code, any degree-s check
node (CN) may be interpreted as a length-s single parity-
check (SPC) code, i.e., as an(s, s− 1) linear block code. The
first proposal of a class of linear block codes generalizing
LDPC codes may be found in [2], where it was suggested
to replace each CN of a regular LDPC code with a generic
linear block code, to enhance the overall minimum distance.
The corresponding coding scheme is known as a regular
generalized LDPC (GLDPC) code, or Tanner code, and a CN
that is not a SPC code as a generalized CN. More recently,
irregular GLDPC codes were considered (see for instance [3]).
For such codes, the variable nodes (VNs) may exhibit different
degrees and the CN set is composed of a mixture of different
linear block codes.

In this paper, we present results on the minimum distance
distribution of two classes of GLDPC code ensembles. It
is shown that for the considered VN-regular ensembles, the
ensembles for which the minimum distance grows linearly
with the block length with probability approaching unity (with
increasing block length) are precisely those which havegood
growth rate behavioras defined in [4]. For the unstructured
irregular GLDPC ensembles, we provide an upper bound on

the probability of the minimum distance lying below a certain
fraction of the code’s block length.

II. PRELIMINARIES AND NOTATION

In this work, we will consider two GLDPC code ensembles.
These ensembles share definitions from the CN perspective, so
we begin by giving these definitions.

We define a GLDPC code ensemble as follows. There are
nc different CN typest ∈ Ic = {1, 2, . . . , nc}. For each CN
type t ∈ Ic we associate a local code denoted byCt, and we
denote bykt, st and rt, the dimension, length and minimum
distance ofCt, respectively. Fort ∈ Ic, ρt denotes the fraction
of edges connected to CNs of typet. The polynomialρ(x) is
defined byρ(x) ,

∑

t∈Ic
ρtx

st−1.
If E denotes the number of edges in the Tanner graph,

the number of CNs of typet ∈ Ic is then given byEρt/st.
Denoting as usual

∫ 1

0
ρ(x) dx by

∫

ρ, it is easily deduced that
the number of CNs is given bym = E

∫

ρ. Therefore, the
fraction of CNs of typet ∈ Ic is given by

γt =
ρt

st
∫

ρ
. (1)

The parity-check matrix for CN typet ∈ Ic is denoted byH̄t.
The weight enumerating function (WEF) for CN typet ∈ Ic
is given by

A(t)(z) =

st
∑

u=0

A(t)
u zu = 1 +

st
∑

u=rt

A(t)
u zu .

HereA(t)
u ≥ 0 denotes the number of weight-u codewords for

CNs of typet. We assume that the local codes associated with
all CNs have minimum distance of at least2 (i.e., rt ≥ 2 for
t ∈ Ic).

For ensembles which have a positive fraction of CNs with
minimum distance2, the parameterC is defined by

C = 2
∑

t:rt=2

ρtA
(t)
2

st
. (2)

The number of VNs, which is also equal to the overall block
length of the ensemble, is denoted byN . The two ensembles
differ from the perspectives of VN distribution and Tanner
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graph interconnectivity. We next provide the further definitions
for these two ensembles separately.

A. Ensemble 1

Ensemble 1 is an extension of the definition given in [5]
and in [6], [7] for regular GLDPC codes to the hybrid CN
case (a related class of codes was also considered in [8]).
The overall parity-check matrix of the code is a formed by
vertically concatenatingq ≥ 2 block rowsHℓ, ℓ = 1, 2, . . . , q.
The first block rowH1 is a block-diagonal matrix, whose
diagonal elements consist ofγtm/q matricesH̄t for each
t ∈ Ic. These are the parity-check matrices of the constituent
codes associated with thenc CN types. Each of these parity-
check matrices is repeatedγtm/q times along the diagonal.
The resulting matrixH1, which forms the first of theq block
rows of the parity-check matrix for the GLDPC code, is given
by

H1 =































H̄1 0 · · · · · · 0 0

0
. . . · · · 0 0

... H̄1

...
...

. . .
...

... H̄nc

...

0 0 · · · . . . 0

0 0 · · · · · · 0 H̄nc































The other q − 1 block rows H2, . . . ,Hq are formed by
performing random column permutationsΠ2,Π2, . . . ,Πq on
H1. Stacking the block-rows on top of one another results in
H, the parity-check matrix of the GLDPC code.

The ensemble is defined according to a uniform probability
distribution on all permutationsΠℓ, for everyℓ = 2, 3, . . . , q
(together with independence of these permutations). Note that
the Tanner graph for this ensemble isVN-regular, i.e., all VNs
have the same degreeq. The design rateR for the irregular
GLDPC codes in Ensemble 1 is given by

R = 1− q

(

1−
∑

t∈Ic

ρtkt
st

)

. (3)

B. Ensemble 2

This second ensemble we consider is a generalization of
the unstructured irregular LDPC ensemble analyzed in [9],
and is also a special case of the unstructured irregular doubly-
generalized LDPC ensemble analyzed in [10], [4]. Hereλd

denotes the fraction of edges connected to VNs of degreed,
whered ∈ {2, 3, . . . , dv}. The polynomialλ(x) is defined by
λ(x) ,

∑dv

d=2 λdx
d−1. We denote as usual

∫ 1

0
λ(x)dx by

∫

λ.
The node-perspectiveVN degree distribution is defined as

λ̃d =
λd

d
∫

λ
. (4)

Here λ̃d is the fraction of VNs having degreed.
The ensemble is defined according to a uniform probability

distribution on all permutations connecting theE edges of the

Tanner graph. Note that whereas Ensemble 1 is VN-regular,
Ensemble 2 isVN-irregular (i.e., in general, the VNs do not
all have the same degree).

III. M INIMUM DISTANCE RESULTS FORENSEMBLE 1

In [6], [7], a lower bound on the minimum distance of a reg-
ular GLDPC code was found (generalizing the corresponding
result for LDPC codes in [1]). Following a similar approach
yields the following theorem in the case of Ensemble 1.

Theorem 1. Let dmin be the minimum distance of a GLDPC
code picked randomly with uniform probability from Ensem-
ble 1 described above. Then

Pr(dmin ≤ α∗N) → 0 as N → ∞ (5)

whereα∗ is the smallest solution in the interval(0, 1) to the
equationG(α) = 0,

G(α) = (1 − q)h(α)− q α log f−1(α)

+ q (∫ρ)
∑

t∈Ic

γt logA
(t)(f−1(α)) , (6)

and the invertible functionf is given by

f(z) = (∫ρ)
∑

t∈Ic

γt
z dA(t)(z)

dz

A(t)(z)
. (7)

Here h(α) = −α log(α) − (1 − α) log(1 − α) denotes the
binary entropy function in nats. Furthermore, forq > 2, such
an α∗ always exists, while forq = 2 such anα∗ exists if and
only if C < 1, whereC is given by(2).

Proof: Let P1(d) denote the probability that a length-N
vector c which satisfiescH1

T = 0 (i.e., which satisfies the
parity checks in the first block rowH1) has Hamming weight
d. The generating function for this sequence is

φ(1)(z) =

N
∑

d=0

P1(d)z
d =

∏

t∈Ic

[ϕ(t)(z)]γtm/q

whereϕ(t)(z) = A(t)(z)/2kt is the moment generating func-
tion of the Hamming weight of a codeword inCt.

SinceP1(d) ≥ 0 ∀d, we can write (for anyz > 0)

P1(d) ≤ exp

(

m

q

∑

t∈Ic

γt log[ϕ
(t)(z)]− d log z

)

. (8)

Next, letF1(d) denote the probability that a length-N vector
of Hamming weightd satisfies the parity checks in the first
block row H1 of H. An upper bound on this probability is
readily deduced from (8) as

F1(d)≤
2m

∑
t
ktγt/q

(

N
d

) exp

(

m

q

∑

t∈Ic

γt log[ϕ
(t)(z)]− d log z

)

=

(

N

d

)−1

exp

(

m

q

∑

t∈Ic

γt log[A
(t)(z)]− d log z

)

.



Any vector which satisfies allq of the block-rows ofH is a
valid codeword for the GLDPC code, and satisfaction of the
different block rows are independent events. Thus, an upper
bound onF (d), the probability that a length-N vector of
weight d is a codeword of the GLDPC code, is given by

F (d)= [F1(d)]
q

≤
(

N

d

)−q

exp

(

m
∑

t∈Ic

γt log[A
(t)(z)]− qd log z

)

.

The expected number of codewords of weightd, for a code
chosen uniformly at random from Ensemble 1, is thus

M(d)=

(

N

d

)

F (d)

≤
(

N

d

)−(q−1)

exp

(

m
∑

t∈Ic

γt log[A
(t)(z)]− qd log z

)

.

For any value ofd, the tightest bound is obtained whenz
is chosen to minimize the exponent; this leads tof(z) = α,
wheref is given by (7), and where we letα = d/N .

We use this result to bound the probability of the event
dmin ≤ d0. Using Markov’s inequality,

Pr(dmin ≤ d0) ≤
d0
∑

d=1

M(d)

≤ d0 max
1≤d≤d0

{

(

N

d

)−(q−1)

× exp

(

m

nc
∑

t=1

γt log[A
(t)(z)]− qd log z

)}

.

Using the relation [11]
(

N

d

)

≥
√

N

8d(N − d)
exp

(

Nh

(

d

N

))

and again using the substitutionα = d/N , leads to

Pr(dmin ≤ d0) ≤ max
1≤d≤d0

exp[NG(α) + o(N)] (9)

whereG(α) is given by (6), and we have used the fact that the
total number of edges in the Tanner graph isE = m/

∫

ρ =
Nq. Here

o(N) = log
[

d0 (8Nα(1− α))
q−1
2

]

.

Note thato(N)/N → 0 asN → ∞.
To prove thatPr(dmin ≤ α0N) → 0 asN → ∞ for a given

α0, it suffices to show thatG(α) < 0 for 0 < α < α0; in this
case, the bound in (9) guarantees a decrease ofPr(dmin ≤
α0N) to zero with increasingN . Next, note thatG(α) is
identical to the growth rate of the weight distribution as defined
at the beginning of [4, Section III] in the context of the GLDPC
ensemble considered therein (to see this connection explicitly,
see in particular Definition 4.1 and Theorem 4.2 in [4]). Also,
the smallest positive valueα∗ which solvesG(α) = 0 exactly
matches the value of thecritical exponent codeword weight
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Fig. 1. Ratios of minimum distance to block length for irregular GLDPC
codes, plotted against the design rateR of the ensemble.

ratio of this ensemble [4, Section III]. From the analysis of
the functionG(α) previously conducted in [10], we know that
G(α) < 0 for 0 < α < α∗ if and only if eitherq > 2 or q = 2
andC < 1.

It is interesting to note that, while the ensemble considered
in this latter result is also VN-regular, and the ensemble
definitions match from the CN side, they are in fact slightly
different ensembles. However, the above result shows that their
respective weight distribution behaviors are tightly connected.

Example 1. In this example, the ensemble relative minimum
distanceα∗ for some irregular GLDPC code ensembles of
ensemble type 1 are evaluated using Theorem 1, and plotted
against the design rate of the ensemble (as given by (3)) –
these results are plotted in Figure 1. Here we use Hamming
(63, 57), (31, 26) and(15, 11) codes as the local codes at the
CNs. Note that for Hamming codes of lengthst, we have

A(t)(z) =
1

(st + 1)

(

(1 + z)st

+st(1 + z)(st−1)/2(1− z)(st+1)/2
)

.

In each case, two of the three code types are used (Ic =
{1, 2}), with γ1 being varied between 0 and 1 - this results
in the blue curves joining pairs of points corresponding to
regular GLDPC code ensembles. Note that while mixing CN
types tends to bring us further from the Gilbert-Varshamov
bound, the threshold of the ensemble will be optimized for
some mixture of CN types.

IV. M INIMUM DISTANCE RESULTS FORENSEMBLE 2

In this section, we analyze the minimum distance distribu-
tion of Ensemble 2. We will assume throughout this section
that the GLDPC ensemble under consideration has at least one
CN type with minimum distance equal to2. In this context,
we will derive an upper bound onPr(dmin ≤ α∗N) – note by



contrast that for Ensemble 1, Theorem 1 represents a related
but stronger result, as it defines precisely the conditions under
which this value tends to zero asN → ∞. The results of this
section rely on the following basic Lemma.

Lemma 1. For any positive integerj,

lim
N→∞

Coef

[

∏

t∈Ic

[

A(t)(x)
]γtm

, x2j

]

=
(EC/2)j

j!
(10)

where Coef
[

f(x), xi
]

denotes the coefficient ofxi in the
Taylor expansion off(x) (as in [12]), and the parameterC
is given by(2).

Proof: The proof is notationally cumbersome, so we
present it for the example whereIc = 2, with A(1)(x) =
1 +A2x

2 +A3x
3 andA(2)(x) = 1 +B2x

2 +B4x
4. Then

P (x) = (1 +A2x
2 +A3x

3)γ1m(1 +B2x
2 +B4x

4)γ2m.

The multinomial theorem then gives

P (x) =
∑

i2+i3≤γ1m
j2+j4≤γ2m

(

γ1m

i2 i3

)(

γ2m

j2 j4

)

×Ai2
2 Ai3

3 Bj2
2 Bj4

4 x2(i2+j2)+3i3+4j4 .

The coefficient ofx2j in P (x) is then given by

Coef
[

P (x), x2j
]

=
∑

i2,i3,j2,j4
2(i2+j2)+3i3+4j4=2j

(

γ1m

i2 i3

)(

γ2m

j2 j4

)

×Ai2
2 Ai3

3 Bj2
2 Bj4

4 .
(11)

Consider first the sum of all terms wherei3 = j4 = 0. This is

S1 =
∑

i2+j2=j

(

γ1m

i2

)(

γ2m

j2

)

Ai2
2 Bj2

2

=

j
∑

i2=0

(

γ1m

i2

)(

γ2m

j − i2

)

Ai2
2 Bj−i2

2 .

As N → ∞ we have

S1 →
j
∑

i2=0

(γ1m)i2

i2!

(γ2m)j−i2

(j − i2)!
Ai2

2 Bj−i2
2

j!

j!

=
1

j!

j
∑

i2=0

(

j

i2

)

(γ1mA2)
i2 (γ2mB2)

j−i2

=
1

j!
(γ1mA2 + γ2mB2)

j (12)

Note that this term isΘ(mj) asN → ∞. In general, the
(i2, j2, i3, j4) term is

Θ((γ1m)i2+i3(γ2m)j2+j4) = Θ(mi2+i3+j2+j4)

= Θ(mκ)

where the exponentκ satisfies

κ =
2(i2 + i3 + j2 + j4)

2
≤2(i2 + j2) + 3i3 + 4j4

2
≤j

and we conclude thatκ ≤ j, with strict inequality unlessi3 =
j4 = 0.

Sincemj terms dominate all termsmκ with κ < j, the
limiting expression for (11) asN → ∞ involves only those
product terms inP (x) for which rt = 2. Therefore, in general
we obtain

lim
N→∞

Coef

[

∏

t∈Ic

[

A(t)(x)
]γtm

, x2j

]

=
1

j!

(

∑

t:rt=2

γtmA
(t)
2

)j

=
1

j!

[

∑

t:rt=2

ρtm

st
∫

ρ
A

(t)
t

]j

=

(

EC
2

)j

j!
.

Next we use this result to generalize [12, Lemma 9] as
follows.

Theorem 2. For GLDPC code Ensemble 2, we have

lim
N→∞

Pr(dmin = 1) = 1− exp

(

−λ′(0)C

2

)

> 0.

Proof: We restrict ourselves to considering only degree-2
variable nodes (this may be justified in a manner similar to
that described in the proof of [12, lemma 9]). Recall that there
are λ̃2n of these VNs.

From Lemma 1 in the special casej = 1, we have

lim
N→∞

Coef

[

∏

t∈Ic

[

A(t)(x)
]γtm

, x2

]

=
EC

2
.

Let Ai denote the event that VN{vi} is a codeword (of
Hamming weight1) of the GLDPC code:

Ai = {{vi} is a codeword}
= {{vi} ∈ C} ,

ThenPr(dmin = 1) may be written as a union of such events,
which may then be expanded using the inclusion-exclusion
principle:

Pr(dmin = 1) = Pr (∪iAi)

=
∑

1≤i1≤λ̃2n

Pr(Ai1 )−
∑

1≤i1,i2≤λ̃2n

Pr(Ai1 , Ai2) + · · · (13)

The general term in this alternating sum is the sum, evaluated
over all setsV2 = {vi1 , vi2 , . . . , vij} of j degree-2 VNs, of
the probability that all VNs in the setV2 individually form
codewords (of Hamming weight1), i.e.,

∑

1≤i1<i2<···<ij≤λ̃2n

Pr
(

{vi1} , {vi2} , . . . ,
{

vij
}

∈ C
)

=

(

λ̃2n

j

)

{

Coeff
[

∏

t∈Ic

[

A(t)(x)
]γtm

, x2
]}j

(

E
2 2 2··· 2

) .



In the fraction above, the denominator is the number of ways
of choosingj pairs of edges in the Tanner graph, while the
numerator counts the number of these such that each pair
individually satisfies the CN constraints (i.e., when 1s are
placed on this pair of edges, and zeros on the other edges). In
the limit asN → ∞ we obtain (invoking Lemma 1)

lim
N→∞

∑

1≤i1<i2<···<ij≤λ̃2n

Pr
(

{vi1} , {vi2} , . . . ,
{

vij
}

∈ C
)

=

(

λ′(0)E
2

)j

j!

(

EC
2

)j

E2j
2j

=

[

λ′(0)C
2

]j

j!
,

where we have made use of the fact that

λ̃2n =
λ2E

2
=

λ′(0)E

2
. (14)

Substituting this result into (13) and using the Taylor series of
the exponential function yields the result of the Theorem.

This result shows that codes from Ensemble 2 (assuming the
existence of CN types of minimum distance2) have a nonzero
probability of having minimum distance equal to1. Note that
such codes can be removed by ensemble expurgation.

Next we prove an upper bound on the probability of the
minimum distance for a GLDPC code, which generalizes [12,
Lemma 22].

Theorem 3. For GLDPC code Ensemble 2,

Pr(dmin ≤ α∗N) ≤ 1
√

1− λ′(0)C
− 1.

Proof: We denote byV andC the set of length-N binary
vectors and the set of codewords, respectively. Consider events
{S ∈ C}, whereS ∈ V. The probability thatdmin ≤ α∗N for
a code is equal to the probability that for all possibleS with
|S| ≤ α∗N , at leastone of them is a member ofC, which in
turn is equal to the probability of the union of events{S ∈ C}
where|S| ≤ α∗N , i.e.,

Pr(dmin ≤ α∗N) = Pr





⋃

S,|S|≤α∗N

{S ∈ C}



 .

Using the union bound,

Pr





⋃

S,|S|≤α∗N

{S ∈ C}



 ≤
∑

S,|S|≤α∗N

Pr(S ∈ C)

=

α∗N
∑

j=1





∑

S,|S|=j

Pr(S ∈ C)



 . (15)

Since all of the summands in the innermost summation in (15)
are equal, we have

∑

S,|S|=j

Pr(S ∈ C)=

(

λ̃2n

j

)Coef
[

∏

t∈Ic

[

A(t)(x)
]γtm

, x2j
]

(

E
2j

) .

In the fraction above, the denominator is the number of ways
of choosing2j edges in the Tanner graph, while the numerator
counts the number of these such that placing 1s on these edges
and 0s on the other edges, satisfies all of the CN constraints.
Taking the limit asN → ∞ and invoking Lemma 1, we obtain

lim
N→∞

∑

S,|S|=j

Pr(S ∈ C) =

[

λ′(0)E
2

]j

j!

[

EC
2

]j

j!

(2j)!

E2j

=

(

2j

j

)(

λ′(0)C

4

)j

,

where we have again used (14). Therefore,

Pr(dmin ≤ α∗N) ≤
∞
∑

j=1

(

2j

j

)(

λ′(0)C

4

)j

. (16)

The generating function for the central binomial coefficient is
given by [13]

∞
∑

j=0

(

2j

j

)

xj =
1√

1− 4x
. (17)

Finally, inserting (17) into (16) we arrive at the statementof
the theorem.
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