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Abstract—For certain degree-distribution pairs with non-zero
fraction of degree-two bit nodes, the bit-error threshold of the
standard ensemble of Low Density Parity Check (LDPC) codes is
known to be close to capacity. However, the degree-two bit nodes
preclude the possibility of a block-error threshold. Interestingly,
LDPC codes constructed using protographs allow the possibility
of having both degree-two bit nodes and a block-error threshold.
In this paper, we analyze density evolution for protograph LDPC
codes over the binary erasure channel and show that their
bit-error probability decreases double exponentially with the
number of iterations when the erasure probability is below
the bit-error threshold and long chain of degree-two variable
nodes are avoided in the protograph. We present determinis-
tic constructions of such protograph LDPC codes with girth
logarithmic in blocklength, resulting in an exponential fall in
bit-error probability below the threshold. We provide optimized
protographs, whose block-error thresholds are better than that
of the standard ensemble with minimum bit-node degree three.
These protograph LDPC codes are theoretically of great interest,
and have applications, for instance, in coding with strong secrecy
over wiretap channels.

I. INTRODUCTION

Constructing a sequence of codes with efficient en-
coders/decoders and a guarantee that block-error rate tends to
zero with increasing block-length is one of the major goals of
coding theory. At rates below capacity, such “good” sequences
are known to exist, but many classical code sequences do
not have this property. Modern code constructions, such as
Low Density Parity Check (LDPC) codes, define a sequence
of ensembles of codes with efficient decoders and probabilistic
concentration results that come close to achieving the goal of
constructing good code sequences [1]. Recently, polarization
[2] and spatial coupling [3] have been used to construct good
code sequences for binary symmetric channels.

In this work, we are primarily interested in deterministic
constructions of sequences of good LDPC codes with block-
error thresholds nearing capacity limits. We will stick to the
binary erasure channel, though the work can be extended to
other binary-input symmetric channels. Most of the prior work
in this area provides probabilistic guarantees on ensembles of
LDPC codes, and most of these guarantees are for bit-error
probabilities. The block-error threshold problem for LDPC
codes was first studied in [4], where standard ensembles with
a minimum bit-node degree (denoted lmin) of three was shown
to have block-error thresholds. For the standard irregular

ensemble with lmin = 2, the block-error rate, surprisingly,
tends to a constant as block-length increases. The main cause
for this problem is the presence of long chains of degree-two
nodes in the standard ensemble. However, (bit-error) capacity-
approaching LDPC degree distributions have a significant frac-
tion of degree-two bit nodes. For instance, the best threshold
for rate-1/2 codes with minimum left degree three is only about
0.461 leaving a significant gap to the capacity threshold of 0.5.
So, while degree-two nodes are needed to approach capacity,
they preclude the possibility of a block-error threshold. One
of the goals of this work is to construct LDPC codes with
block-error thresholds that improve this gap to capacity.

A key idea in the construction of LDPC code ensembles
with degree-two nodes and decaying block-error performance
is the notion of multi-edge type (MET) ensembles [1], [5],
of which the protograph LDPC code ensemble [6] has re-
ceived considerable practical attention because of ease of
implementation. In [5], the standard ensemble is restricted in
a suitable fashion to limit the impact of degree-two nodes.
In [6], density evolution and optimization for protograph
LDPC code ensembles was described and carried out. In [7],
protographs are optimized for thresholds nearing capacity,
and linear growth of ensemble-averaged weight distribution is
established for protograph LDPC code ensembles. There have
been numerous other work in the construction of protographs
in practical implementations.

The use of large-girth graphs in constructing LDPC codes
started with Gallager’s thesis [8], where regular LDPC codes
with large girth were constructed. The Lubotzky-Phillips-
Sarnak (LPS) constrction [9] of Ramanujan graphs has been
used in the construction of regular and irregular LDPC codes
in [10]. As shown in [11], large-girth LDPC codes with
minimum left degree, lmin > 2, achieve an exponential decay
of bit error, i.e O(exp(−c1nc2)) for constants c1, c2, over a
binary erasure channel BEC(ε), when ε is less than the density
evolution threshold ε∗. So, large-girth LDPC codes have a
block-error threshold equal to their bit-error thresholds, when
lmin > 2.

In this work, we provide deterministic constructions for a
sequence of good LDPC codes by using large-girth graphs
along with suitable protographs that contain degree-two nodes.
This allows us to achieve BEC block-error thresholds as high
as 0.486 with small (8×16) protographs. To do this, we begin
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by studying the density evolution for protograph ensembles,
and show that bit-error decreases double exponentially in
number of iterations at erasure probabilities smaller than the
threshold even when lmin = 2, if long chains of degree-two
variable nodes are avoided through the protograph. To avoid
chains of degree-two nodes, we allow at most one degree-two
variable node to connect to a check node in the protograph.

We then provide a construction for large-girth protograph
LDPC codes starting with a given large-girth regular graph and
performing suitable node splitting operations. Using the LPS
Ramanujan graphs, we provide deterministic constructions of
large-girth protograph LDPC codes that achieve an exponen-
tial decay for bit-error probability with blocklength and still
contain degree-two bit nodes. In comparison with prior work,
we have analyzed the density evolution for protograph LDPC
codes directly and showed the double-exponential decay with
iterations even in the presence of degree-two nodes. Our node
splitting construction is more general than the one in [10] and
provides a deterministic construction with guaranteed block-
error probability behavior.

II. PROTOGRAPH LDPC CODES

Following the notation in [6], a protograph G = (V,C,E)
is a bipartite graph with V and C being the sets of variable and
check nodes, respectively, and E being the set of undirected
edges that connect a vertex in V to a vertex in C. Multiple
edges are allowed between a pair of nodes (v, c) ∈ V × C.

A protograph can be represented by a base matrix B, where
B(i, j) is the number of edges between the i-th check node
(denoted ci) and the j-th variable node (denoted vj). For
example, consider a base matrix

B =

1 1 1 0
1 1 1 1
0 1 1 1

 .
The protograph corresponding to the above base matrix is
shown in Fig. 1(a).

A. Lifted Graphs

We can apply a copy and permute operation to a protograph
to obtain expanded or lifted graphs of different sizes [6]. A
given protograph G is copied, say T times, with the t-th
copy having nodes (v, t) and (c, t), and edges (e, t). Then,
for each edge e in the protograph, we assign a permutation
πe of the set {1, 2, · · · , T}. In the permute operation, an
edge (e, t) connecting (v, t) and (c, t) is permuted so as to
connect variable node (v, t) to check node (c, πe(t)). We will
denote the lifted graph as G′ = (V ′, C ′, E′). The lifted graph
of a protograph can be thought of as a Tanner graph of an
LDPC code, which is referred to as a protograph LDPC code.
In general, (T !)|E| lifted graphs or protograph LDPC codes
can be obtained from a protograph, each corresponding to a
different permutation, where |V | is the number of variable
nodes in the protograph. The collection of these lifted graphs
is called the protograph ensemble of LDPC codes. Protograph
LDPC codes are a special class of MET-LDPC codes, with
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(a) Example of a protograph.
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(b) Computation graph C1(v1).

Fig. 1. Protograph and computation graph.

each edge in the protograph being of a different type. The
degree distribution of check and variable nodes in the lifted
graph is the same as that of the protograph. So, the (designed)
rate of the protograph LDPC code is given by 1− |C||V | , where
|C| and |V | denote the number of check and variable nodes
in the protograph, respectively.

Let v be a variable node in the lifted graph G′. The t-
iteration computation graph associated with v, denoted Ct(v),
is defined as the subgraph of G′ obtained by traversing from v
up to the t-th iteration level along all edges [1]. The structure
of the computation graph is completely determined by the
protograph G for all lifted graphs G

′
. An example of a

computation graph is shown in Fig. 1(b).

B. Density Evolution for Protograph Codes

Let us consider the standard message-passing decoder over
a binary erasure channel (BEC(ε)) run on a lifted graph G′

derived from a protograph G = (V,C,E). Since the lifted
graphs form an MET ensemble with |E| edge types, density
evolution proceeds with |E| erasure probabilities, one for each
edge in the protograph [12]. Let E = {e1, e2, . . . , e|E|} with
edge e ∈ E connecting variable node ve with check node
ce. Let xt(i) be the probability that an erasure is sent from
variable node to check node along edge ei in the t-th iteration.
Similarly, let yt(j) be the probability that an erasure is sent
from check node to variable node along edge ej in the t-th
iteration. The density evolution recursion [1] is given by

x0(i) = ε,

yt+1(j) = 1−
∏

i∈Ec(ej)

(1− xt(i)), ∀t ≥ 1, (1)



xt+1(i) = ε
∏

j∈Ev(ei)

yt+1(j), ∀t ≥ 1, (2)

where Ec(ej) = {i 6= j : cej = cei} is the set of all indices
of edges adjacent to the same check node as the edge ej , and
Ev(ei) = {j 6= i : vei = vej} is the set of all indices of
edges adjacent to the same variable node as the edge ei. The
density evolution threshold, denoted εth, for the protograph-
based LDPC code ensemble is defined as the largest value of
ε for which erasure probability on each edge of the protograph
tends to zero, as t → ∞. i.e. εth = sup{ε : maxi xt(i) →
0}. Clearly, this is also the threshold value below which the
erasure probability of a variable node in the protograph goes
to zero with increasing iterations (as long as lmin > 1).

C. Asymptotic Behavior of Density Evolution

Theorem 1. For ε < εth, maxi xt(i) exhibits a double-
exponential decay with t when not more than one degree-two
variable node is connected to a check node in the protograph.

Proof: We will repeatedly use the following inequality.
For any x ∈ [0, 1] and a positive integer d,

(d− 1)x ≥ 1− (1− x)d−1. (3)

Let d be the maximum degree of a check node in the
protograph, and let x̄t = maxi xt(i). Since ε < εth, we have
x̄t → 0. We pick t large enough to have 0 ≤ (d− 1)x̄t < 1.

We note that

1− xt(j) ≥ 1− x̄t, ∀j

⇒
∏

j∈Ec(ei)

(1− xt(j)) ≥ (1− x̄t)(d−1) , ∀i

Using (1) and (3), we get

yt+1(j) ≤ (d− 1)x̄t, ∀j (4)

⇒ xt+1(i) = ε
∏

ej∈Ev(ei)

yt+1(j)

≤ ε(d− 1)(lm−1) (x̄t)
(lm−1) , ∀i (5)

Repeating the process, we get

yt+2(j′) ≤ (d− 1)xt+1(i) ≤ ε(d− 1)lm (x̄t)
(lm−1)

xt+2(i′) ≤ εl
′
m(d− 1)lm(l′m−1) (x̄t)

(lm−1)(l′m−1)

⇒ x̄t+2 ≤ εl
′
m(d− 1)lm(l′m−1) (x̄t)

(lm−1)(l′m−1)

where lm and l′m are the minimum degrees of variable nodes
in Ev(ei) and Ev(ei′), respectively. Since a check node is
connected to at most one degree-two variable node, we have
that either lm ≥ 3 or l′m ≥ 3. So, (lm − 1)(l′m − 1) ≥ 2. So,
we have

x̄t+2 ≤ A(x̄t)
2, (6)

where A = εl
′
m(d − 1)lm(l′m−1) does not vary with t. Since

ε < εth and x̄t → 0, there exists an R such that A(x̄R)2 < 1

and (d − 1)x̄R < 1. Following arguments similar to those in
[11], we can show that

x̄R+2i ≤ (Ax̄R)2
i

, (7)

which implies a double-exponential decay of x̄t with t (for
sufficiently large t).

For the standard ensemble of LDPC codes, density evolution
analysis is approximate because of the following assumptions:

1. The computation graph is a tree.
2. The node degrees in the computation graph are indepen-

dent.
Typically, probabilistic concentration results and asymptotic
guarantees are used to support the practical validity of density
evolution in the standard ensemble. In this work, we use
protograph codes and MET density evolution — these make
Assumption 2 above unnecessary. For Assumption 1 to be true,
we consider large-girth graphs.

III. LARGE-GIRTH PROTOGRAPH LDPC CODES

To achieve strong secrecy, Tanner graphs whose girth in-
creases as log n with blocklength n have been used in [11].
In this work, we extend the construction in [11] to construct
bipartite graphs from protographs with girth increasing as
log n. Once girth is Θ(log n), message error rates for iterations
up to Θ(log n) will exactly follow the protograph density
evolution of (1)- (2). Following the analysis in Section II-C,
the message error rate falls double-exponentially in log n, or
exponentially in block-length n. This results in an inverse
polynomial decay, O(1/nk) for any k, for block-error rate.

A. LPS Graphs Xp,q

While the construction method can use any sequence of
regular large-girth graphs, one explicit possibility is the LPS
construction [9]. LPS graphs belong to the class of Cayley
graphs. Given a group G and an inverse-closed subset S of
G, i.e, s−1 ∈ S,∀s ∈ S, the Cayley graph (Γ(G,S)) is the
undirected simple graph defined as follows:
• The vertex set of Γ(G,S) is G.
• For any g ∈ G and s ∈ S, there is an edge between g

and gs.
Let p and q be distinct, odd primes with q > 2

√
p. The LPS

graph, denoted Xp,q [9], is a connected, (p+1)-regular graph
and has the following properties:
• If p is a quadratic residue mod q, then Xp,q is a

non-bipartite graph with q(q2 − 1)/2 vertices and girth
g(Xp,q) ≥ 2 logp q.

• If p is a quadratic non-residue mod q, then Xp,q

is a bipartite graph with q(q2 − 1) vertices and girth
g(Xp,q) ≥ 4 logp q − logp 4.

When Xp,q is non-bipartite, we can convert it to a bipartite
graph using the following algorithm [11]:
• Given a graph G with vertices V (G) and edges E(G),

construct a copy G′ with a new vertex set V (G′) and a
new edge set E(G′). Let f : V (G)→ V (G′) be the 1-1
mapping from a vertex in G to its copy in G′.



• Create a bipartite graph H with vertex set V (G)∪V (G′)
and edge set E(H) = {(x, f(y)) : (x, y) ∈ E(G)}.

Following [13], it was shown in [11] that g(H) ≥ g(G).
For constructing a sequence of d-regular large-girth graphs

for an arbitrary d using the LPS graphs, we use the following
trick from [11]. There exists an infinite number of primes p
such that d|(p+1). For each such prime p and a suitable q, we
construct Xp,q and split each (p+1)-degree node into (p+1)/d
nodes of degree d. As shown in [11], the node splitting does
not reduce girth and we have a large-girth graph of the required
degree d.

B. Node Splitting for MET-LDPC Codes

The construction of a large-girth protograph LDPC code
starts with a d-regular large-girth bipartite graph G with d
being the number of edges in the protograph. The bipartition of
G will contain |V (G)|/2 left and right vertices. We associate
d sockets with each vertex of G, and associate each edge
connected to a vertex with one of the sockets.

According to König’s theorem, the edge chromatic number
of a bipartite graph is equal to the maximum degree of its
nodes. Therefore G has an edge coloring involving d colors.
Based on this edge coloring, we define a coloring of the
sockets in G by the colors S = {s1, s2, . . . , sd}. Let P and
Q be two fixed partitions of S, with P = {P1, P2, . . . , Pl}
and Q = {Q1, Q2, . . . , Qr}. If G is a Cayley graph, then the
colors S can be associated with the generating set, along with
a direction.

The main step in the construction is splitting the left and
right vertices of G according to P and Q, respectively. A
left vertex v is split into sub-vertices v1, v2, . . . , vl, such that
for any i, the sockets of v in Pi get associated with vi. A
right vertex c is split into sub-vertices c1, c2, . . . , cr, such that
for any j, the sockets of c in Qj get associated with cj .
The resulting Tanner graph, denoted T (G,P,Q), will have
l|V (G)|/2 variable nodes and r|V (G)|/2 check nodes, and
the associated MET-LDPC code will have design rate 1− r

l .
We note the following important properties of T (G,P,Q).
1) It was shown in [11] that the above node-splitting proce-

dure does not decrease girth. So, the girth of T (G,P,Q)
is not less than the girth of G for any P and Q.

2) The Tanner graph T (G,P,Q) is, in fact, a lifted version
of a protograph with l variable nodes indexed by Pi,
1 ≤ i ≤ l, and r check nodes indexed by Qj , 1 ≤ j ≤ r.
Variable node Pi in the protograph is connected by an
edge to a check node Qj , whenever Pi ∩ Qj 6= ∅. So,
the number of edges in the protograph is |S|.

3) The protograph is copied |G|/2 times and the edge
permutation is induced by the edge connections of the
original graph G.

The procedure to generate a sequence of large-girth pro-
tograph LDPC codes can be summarized as follows. By
fixing the degree d and the partitions P and Q, we fix a
protograph. We then apply the above node-splitting procedure
to a sequence of large-girth d-regular bipartite graphs. This

...
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Fig. 2. Illustration of (a) variable node splitting, and (b) protograph for III-C.

results in a sequence of large-girth Tanner graphs that are
liftings of the protograph defined by (d, P,Q). From the above
construction, we have the following theorem.

Theorem 2. For a given protograph with threshold εth, there
exists a deterministic sequence of large-girth liftings with
increasing length n such that block error probability falls as
ne−cn, for a constant c > 0, over a BEC(ε) with ε < εth.

C. An Example
Let d = 12, and let the socket colors S = {s1, s2, · · · , s12}

be split into two partitions P and Q given by

P1 = {s1, s2} P2 = {s3, s4, s5}
P3 = {s6, s7, s8} P4 = {s9, s10, s11, s12}

Q1 = {s1, s3, s6, s9, s10, s11}
Q2 = {s2, s4, s5, s7, s8, s12}

The variable nodes are split as shown in Fig. 2(a). The
protograph generated by this choice of (d, P,Q) is shown in
Fig. 2(b). The design rate of this protograph is 1/2.

IV. OPTIMIZATION OF PROTOGRAPHS

We have optimized protographs using differential evolution
[14] [15], where we use the threshold given by density evolu-
tion as the cost function. The salient steps of the differential
evolution algorithm are described briefly in the following:



1. Initialization: For generation G = 0, we randomly choose
NP base matrices Bk,G, with 0 ≤ k ≤ NP − 1, of size
|C| × |V |, where NP = 10|C||V |. Each entry of Bk,G is
binary, chosen independently and uniformly.

2. Mutation: Protographs of a particular generation are in-
terpolated as follows.

Mk,G = [Br1,G + 0.5(Br2,G −Br3,G)], (8)

where r1, r2, r3 are randomly-chosen distinct values in
the range [0, NP − 1], and [x] denotes the absolute value
of x rounded to the nearest integer.

3. Crossover: A candidate protograph B′k,G is chosen as
follows. The (i, j)-th entry of B′k,G is set as the (i, j)-
th entry of Mk,G with probability pc, or as the (i, j)-th
entry of Bk,G with probability 1− pc. We use pc = 0.88
in our optimization runs. In B′k,G, if any check node is
connected to more than one degree-two variable node,
edges are reassigned. So, each B′k,G avoids long chain of
degree-two variable nodes.

4. Selection: For generation G+1, protographs are selected
as follows. If the threshold of Bk,G is greater than that
of B′k,G, set Bk,G+1 = Bk,G; else, set Bk,G+1 = B′k,G.

5. Termination: Steps 2–4 are run for several generations
(we run up to G = 6000) and the protograph that gives
the best threshold is chosen as the optimized protograph.

Results from our optimization runs are given in Table I. We
see that the optimized protographs give better thresholds than
irregular standard ensemble codes with minimum degree 3.
An optimized 4× 8 protograph with threshold 0.479 is given
by the following base matrix:

1 2 2 3 4 1 1 0
0 1 0 0 5 0 0 1
1 0 0 0 3 0 4 1
1 0 1 0 6 1 0 0

 (9)

An optimized 8×16 protograph with threshold 0.486 is given
by the following base matrix:

1 2 0 0 1 0 0 4 0 0 0 0 0 0 0 1
0 1 0 0 0 1 0 0 2 2 1 0 0 0 1 1
0 3 1 2 1 0 0 0 4 0 0 3 2 2 0 3
0 5 0 0 0 0 1 1 0 0 1 0 0 1 0 0
1 3 1 1 1 2 0 0 1 0 0 0 0 0 0 0
1 5 0 0 0 3 1 0 0 0 1 0 0 0 0 0
0 4 0 0 0 0 0 1 1 0 0 0 0 0 0 1
0 5 0 0 0 0 0 0 0 1 0 0 1 0 1 0


(10)

Note that the above protographs have block-error threshold
same as the bit-error threshold, and the block-error rate falls
inverse polynomially in block-length under the large girth
construction as described in Sections II and III.

In future work, we hope to obtain better thresholds that are
closer to capacity limits, by further increasing the size of the
protograph.

Code type Threshold
Standard ensemble (lmin = 3) 0.461

4× 8 protograph in (9) 0.479
8× 16 protograph in (10) 0.486

TABLE I
OPTIMIZED PROTOGRAPHS AND THRESHOLDS (RATE 1/2).

V. CONCLUSION

In this work, we presented a deterministic construction for a
sequence of codes for the binary erasure channel with block-
error rate falling inverse polynomially with block-length at
rates close to the capacity. The codes are protograph LDPC
codes that avoid long degree-two variable node chains and
are constructed from large-girth graphs. To the best of our
knowledge, this is the first deterministic construction of LDPC.
codes with guaranteed block-error thresholds nearing capacity
limits.
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