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Abstract—We consider upper bounds on the error proba-
bility in channel coding. We derive an improved maximum-
likelihood union bound, which takes into account events where
the likelihood of the correct codeword is tied with that of some
competitors. We compare this bound to various previous results,
both qualitatively and quantitatively. With respect to maximal
error probability of linear codes, we observe that when the
channel is additive, the derivation of bounds, as well as the
assumptions on the admissible encoder and decoder, simplify
considerably.

I. I NTRODUCTION

Consider maximum-likelihood decoding, known to be op-
timal in the sense of average error probability between equi-
probable messages. What happens whenℓ false codewords
share the maximum likelihood score with the transmitted
one? No matter how such a tie is broken, the average error
probability given this event is1 − 1/ℓ+1. Computing the
optimal error probability, taking into account all possible ties,
is exponentially hard. Can we ignore this event, i.e., assume
that in case of a tie the decoder is always right or always
wrong? The answer depends upon both the channel and the
blocklength. When the likelihood score is a continuous random
variable, the probability of ties is zero. Also, for long enough
blocks, the distribution of the score of a word can be closely
approximated by a continuous one (e.g., using the central-limit
theorem). However, for small enough alphabet size and short
enough blocks, the effect of ties on error-probability bounds
is not negligible.

We revisit the finite-blocklength achievability results of
Polyanskiy et al. [1]. For i.i.d. codewords, and when we can
neglect ties, computation of the exact average error probability
is not harder than that of the random-coding union (RCU)
achievability bound. However, ties cannot always be neglected.
As the RCU bound assumes that ties always lead to errors,
it can be improved; indeed, we derive a tighter bound. In
particular, unlike the RCU bound, the new bound is always
tighter than bounds based upon threshold decoding.

When it comes to maximal error probability, tie-breaking
is no longer a mere issue of analysis. Rather, ties have to be
broken in a manner that is “fair”, such that the error probability
given different messages is balanced. In [1], a randomized
decoder is employed in order to facilitate such fairness. But is
randomization necessary? We show that at least for additive
channels (over a finite field), a deterministic decoder suffices.

II. N OTATION AND BACKGROUND

We consider coding over a memoryless channel with some
finite blocklengthn, i.e.:

V (y|x) =
n
∏

i=1

V (yi|xi). (1)

for every x ∈ Xn, y ∈ Yn. The channel input and output
alphabets are arbitrary. For the sake of simplicity, we adopt
discrete notation; the bounds do not depend on alphabet sizes,
and the educated reader can easily translate the results to the
continuous case (which is of limited interest in the context
of tie-breaking). The codebook is given byx1, . . . , xM , where
M is the number of codewords (that is, the coding rate is
R = 1/n logM ). The decoder produces an estimatem̂, where
the transmitted message index is denoted bym. The average
error probability, assuming equiprobable messages, is given
by:

ǫ =
1

M

M
∑

m=1

P (m̂ 6= m|X = xm) . (2)

The maximum error probability is given by

ǫ = max
m=1...M

P (m̂ 6= m|X = xm) . (3)

For the sake of analyzing the error probability, it is conve-
nient to consider code ensembles. All ensembles we consider
in this work fall in the following category.

Definition 1 (Random conditionally-symmetric ensemble):
An ensemble is called random conditionally-symmetric
ensemble (RCSE) if its codewords are drawn such that for
every differentm, j, k ∈ {1, . . . M} and for everyx, x̄ ∈ Xn:

P (Xj = x̄|Xm = x) = P (Xk = x̄|Xm = x) (4)

It is easy to verify, that for an RCSE, all words are identically
distributed. We can thus define byX a word drawn under the
ensemble distribution (not necessarily memoryless)P over the
setXn. Using this input distribution, the information density
is given by:

i(x; y) = log
V (y|x)
PV (y)

, (5)

wherePV (y) is the output distribution induced byP (x) and
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V (y|x). We denote byY the output corresponding to the
random inputX, and the random variablei(X;Y) is defined
accordingly. In addition, we definei(X̄;Y) as the information
density a codeword̄X other1 than the one that generatedY.2

The importance of deriving bounds for an RCSE is due to
the fact that this class includes many interesting ensembles. An
important special case of RCSE is the pairwise-independent
ensemble:

Definition 2 (Pairwise-independent ensemble):A pairwise
independent ensemble (PIE) is an ensemble such that its code-
words are pairwise-independent and identically distributed.
That is, for any two indicesi 6= j,

P (Xi = xi|Xj = xj) = P (Xi = xi) = P (x). (6)

We note that the codewords of an RCSE are not necessarily
pairwise-independent. One example is linear random codes
with a cyclic generating matrix [2]. In this ensemble, a
codebook is a linear code, such that all the cyclic shifts of the
any codeword are also codewords. Generally, RCSE (which are
not necessarily PIE) can be constructed by first drawing a class
of codewords, and then, randomly (uniformly) drawing the
codewords from this class. Alternatively, it can be constructed
by choosing some codeword which defines the class, from
which all the other codewords will be drawn.

Finally, the following class of channels turns out to play a
special role.

Definition 3 (Additive channels):A channel is additive
over a finite groupG with an operation, ifX = Y = G,
and the transition distributionV (y|x) is compatible with

Y = X +N

whereN is statistically independent ofX , and “+” denotes
the operation overG.3

For example, for modulo-additive channels the alphabet is the
ring Zq, and addition is moduloq. The importance of additive
channels stems from the following.

Lemma 1:Consider an additive channel overG, and a
codebook drawn from a PIE with uniform input distribution
over Gn, i.e. P (x) = |G|−n ∀x ∈ Gn. Then, i(X̄;Y) is
statistically independent of(X,Y).

Proof: For this channel the information density (5) is
equal to

i(x; y) = log
PN(y − x)
PY(y)

, (7)

where PN(·) is the distribution of the noise, andPY(·) is
the distribution of the channel output. For this channel with
codebook drawn from a PIE with a uniform distribution over

1In a random codebook it may happen that the codebook containssome
identical codewords. Thus it is possible thatX̄ = X, as long as they represent
different messages.

2In [1], the notationi(X; Ȳ) is sometimes used; for RCSE, the two are
equivalent.

3The operation “−” over the group, which is uniquely defined by the
operation “+”, such that for anya, b, c ∈ G : a− b = c iff a = c+ b.

Gn, we have that for everyz ∈ Gn:

P
(

Y − X̄ = z
)

= P
(

X + N − X̄ = z
)

(8a)

= |G|−n, (8b)

sinceX̄ is uniformly distributed overGn and statistically inde-
pendent of(X,N). Therefore,Y−X̄ is statistically independent
of (X,Y); Moreover, any function ofY−X̄ is also statistically
independent of(X,Y), in particularPN (Y− X̄) is statistically
independent of(X,Y).

SinceX is uniformly distributed overGn, and is statistically
independent noise, then the channel outputY is also uniformly
distributed overGn, i.e. for anyy ∈ Gn:

PY(y) = |G|−n, (9)

and hence,PY(Y) is statistically independent of(X,Y). From
the two observations above, we conclude thati(X̄;Y) is
statistically independent with(X,Y).

III. I.I.D. C ODEBOOKS

Before stating the main results that apply to any RCSE, we
start by simple bounds that hold for the special case of an i.i.d.
ensemble. That is, all codewords are mutually independent,
and each one distributed according toP (X). In this case,
the average error probability is well known, although hard
to compute [1]. Denote:

W = P
(

i(X̄;Y) = i(X;Y)|X,Y
)

(10a)

Z = P
(

i(X̄;Y) < i(X;Y)|X,Y
)

. (10b)

Then, for an i.i.d. ensemble [1, Thm. 15]:

ǫ(iid) = 1−
M−1
∑

ℓ=0

1

ℓ+ 1
·

(

M − 1

ℓ

)

EX,Y
(

W ℓZM−1−ℓ
)

.

(11)

This result stems from the fact that for equiprobable words,
maximum likelihood (ML) decoding is just maximum infor-
mation density. We note thatℓ represents the number of com-
peting codewords that share the maximal information-density
score with the correct one; givenℓ, the correct codeword will
be chosen with probability1/ℓ+1. If W = 0 (as happens when
V (Y |x) is a proper density for everyx ∈ X ), the calculation
is straightforward. Otherwise, it has exponential complexity.
Thus, the main burden is with dealing with ties. In order to
avoid such burden, we suggest the following simple bounds.

Proposition 1 (Bounds for i.i.d. codebooks):For an i.i.d.
ensemble,

1− EX,Y
[

(W + Z)M−1
]

≤ ǫ(iid) ≤ 1− EX,Y
[

ZM−1
]

.
(12)

This result can be shown either from (11) or directly. For the
lower bound, in case multiple codewords (including the correct
one) attain the maximal information density, the correct one is
always chosen; for the upper bound, it is never chosen under
such circumstances. Of course, as the upper bound is just the
first term in (11), one may tighten it by taking more terms.
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Fig. 1. The effect of tie-breaking on the performance of i.i.d. codebooks.
We demonstrate the effect using a BSC with crossover probability 0.3, at
blocklengthn = 100. The triangle- and square- marked solid curves give
the lower and upper bounds of Proposition 1, respectively. The ×-marked
solid curve is the exact error probability of the i.i.d. ensemble (11), evaluated
by taking enough terms in the sum, such that the effect of additional ones
is numerically insignificant. For reference, the circle-marked dashed curve
gives the tightest lower bound on the error probability, which holds forany
codebook [1, Theorem 16].

The difference between the lower and upper bounds may be
quite significant, as demonstrated in Figure 1.

IV. B OUNDS FORRCSE

A. Maximum-Likelihood Union Bounds

When the codewords are not i.i.d., we cannot use anymore
products of probabilities as done in the previous section.
However, for providing a lower bound on the error probability,
we can use a union bound. We derive a result that is close in
spirit to the RCU bound [1, Theorem 16], which states that
ǫ(iid) ≤ ǫRCU,4 where

ǫRCU , EX,Y [min {1, (M − 1) · (1− Z)}] . (13)

We improve this bound in two ways: First, it is extended to any
RCSE, and second, the case of equal maximal information-
density scores is taken into account.

Theorem 1 (RCU∗ bound): The average error probability
of an RCSE satisfiesǫ(RCSE)≤ ǫRCU∗ where

ǫRCU∗ , EX,Y

[

min

{

1, (M − 1) ·

(

1− Z −
W

2

)}]

, (14)

where the conditional probabilitiesW andZ are given by (10).
Proof: Without loss of generality, assume that the trans-

mitted codeword index ism = 1. The ML decoder will choose
the codeword with maximal information density; in case of
equality, it will uniformly draw a winner between the maximal
ones. LetCj be the event that the codewordj was chosen in

4Indeed, it is noted in [1, Appendix A] that pairwise independence is
sufficient.

such a lottery. Denote the following events:

Aj
△
= {i(Xj ;Y) > i(X;Y)} (15a)

Bj
△
= {i(Xj ;Y) = i(X;Y)} . (15b)

Also denoteA
△
=

⋃M
j=2 Aj andB

△
=

⋃M
j=2 Bj . Then, the error

probability is given by:

ǫ(RCSE) = P
(

A ∪
[

B ∩ C̄1

]∣

∣m = 1
)

(16a)

= EX1,YP
(

A ∪
[

B ∩ C̄1

]
∣

∣m = 1,X1,Y
)

. (16b)

= EX1,Y min
{

1,P
(

A ∪
[

B ∩ C̄1

]∣

∣m = 1,X1,Y
)}

(16c)
△
= P

(

A ∪
[

B ∩ C̄1

]∣

∣m = 1,X1,Y
)

. (16d)

Using the union bound between events of equality and inequal-
ity, we have:

S ≤ P (A|m = 1,X1,Y) + P
(

B ∩ C̄1

∣

∣m = 1,X1,Y
)

. (17)

Now, the eventC1 depends on the the rest of the variables only
through the number of codewords that achieve equal score.
Specifically, if there areℓ impostors, thenP (C1) = 1/ℓ+1.
Since the second term is non-zero only ifℓ ≥ 1, it follows
that:

S ≤ P (A|m = 1,X1,Y) +
1

2
P (B|m = 1,X1,Y) . (18)

We now use the union bound, as in [1]:

S ≤
M
∑

j=2

P (Aj |m = 1,X1,Y) +
1

2

M
∑

j=2

P (Bj |m = 1,X1,Y) .

(19)

Noting that for an RCSE each element in the left (resp. right)
sum equals1−W −Z (resp.W ), and substituting this bound
in (16d) we arrive at the desired result.

Remark 1:We can give the RCU∗ bound the following
interpretation. First, each potential inputxj is given an
information-density score (equivalent to a likelihood score)
ij. Then, these scores are fed to a comparison process. The
process is biased against the correct codeword, in the sense
that it has to beat each and every impostor. However, each
pairwise comparison itself is optimal (the correct codeword
will beat an impostor with lower score), and fair (in case of a
tie, both codewords are equally likely to win). This comparison
mechanism is worse than the actual decoder used in the proof,
since in case the correct codeword shares the maximal score
with ℓ impostors, it has probability2−ℓ to be chosen, rather
than1/ℓ+1; yet, the union bound for both is equal.

B. Relation to Gallager’s Type-I bound

The following bound is due to Gallager.
Proposition 2 (Gallager type-I bound [3], Sec. 3.3):For

any constantt:

ǫ(RCSE) ≤ ǫG-I, (20)



where

ǫG-I
△
= P (i(X;Y) < t)+

+ (M − 1)P
(

i(X;Y) ≥ t ∧ i(X̄;Y) ≥ i(X;Y)
)

. (21)

Just like the RCU, this bound is based upon a union bound
for the ML decoder. However, it is inferior to the RCU bound,
due to the following consideration. Taking the minimum
between the union and one in the RCU bound is similar to the
thresholdt in (21), in the way that it avoids over-estimating
the error probability in cases where the channel behavior was
“bad”. However, the RCU bound uses the optimal threshold
given X and Y; the Gallager bound uses aglobal threshold,
which reflects a tradeoff. Nevertheless, for additive channels
(recall Definition 3) the local and global thresholds coincide.

Proposition 3: For any RCSE:

ǫG-I ≥ ǫRCU, (22)

where ǫG-I and ǫRCU are defined in (21) and in (13) respec-
tively. If the channel is additive and the code ensemble is PIE
with uniform distribution overX , then equality holds.

Proof: For the first part, define the eventsA
△
=

{

i(X̄;Y) ≥ i(X;Y)
}

andT
△
= {i(X;Y) ≥ t} (T c denotes the

complementary event). Then:

ǫRCU = EX,Y [min {1, (M − 1) · (1− Z)}] (23a)

= P (T c) · EX,Y [min {1, (M − 1) · (1− Z)}|T c]

+ P (T ) · EX,Y [min {1, (M − 1) · (1− Z)}|T ] (23b)

≤ P (T c) + P (T ) · EX,Y [(M − 1)P (A|X,Y)|T ] (23c)

= P (T c) + (M − 1)P (T ) · P (A|T ) (23d)

= ǫG-I (23e)

For the second part, recall that by Lemma 1,i(X̄;Y) is
statistically independent of(X,Y). Denote byt∗ the minimal
thresholdt such that

(M − 1)P
(

i(X̄;Y) ≥ t
)

≤ 1.

Then(M −1)P
(

i(X̄;Y) ≥ i(X;Y)
∣

∣i(X;Y) < t∗
)

≥ 1. Under
the notation ofU from the first part the proof, we have
that: EX,Y [min {1, U}|i(X;Y) < t∗] = 1, i.e., the inequality
in (23c) is equality in this case.

Remark 2: It follows, that for the BSC,ǫG-I = ǫRCU. Indeed,
it is noted in [1] that for the BSC, the RCU bound is equal
to Poltyrev’s bound [4]; this is not surprising, since the latter
is derived from (21) (Poltyrev’s bound uses linear codes, see
Section V in the sequel).

Remark 3:Gallager’s type I bound can be improved by
breaking ties, similar to the improvement of RCU∗, leading
to G-I∗. An analysis result to Proposition 3 relates G-I∗ and
RCU∗.

C. Threshold-Decoding Union Bounds

The average error probability of an RCSE can be further
lower-bounded using the sub-optimalthreshold decoder[5].
This decoder looks for a codeword that has a likelihood score
above some predetermined threshold. In [1, Theorem 18] a

union bound is derived for such a decoder, where if multiple
codewords pass the threshold, the winner is chosen uniformly
from among them.5 The resulting “dependence testing” (DT)
bound is given by:

ǫDT , P (i(X;Y) ≤ γ) +
M − 1

2
P
(

i(X̄,Y) > γ
)

, (24a)

where the optimal threshold is given by6

γ = log
M − 1

2
. (24b)

A troubling behavior, demonstrated in [1] using the binary
erasure channel (BEC), is that sometimesǫRCU > ǫDT. This is
counter-intuitive since the DT bound is derived from a sub-
optimal decoder. We find that this artifact stems from the fact
that the RCU bound ignores ties, and prove that the improved
bound, denoted by RCU∗, always satisfiesǫRCU∗ ≤ ǫDT. To
that end, we prove a (very slightly) improved bound for the
threshold decoder, that is closer in form to the ML bounds (13)
and (21). It uses the following definitions (cf. (10)).

Wq = P
(

q(i(X̄;Y)) = q(i(X;Y))|X,Y
)

(25a)

Zq = P
(

q(i(X̄;Y)) < q(i(X;Y))|X,Y
)

, (25b)

whereq(i) is the indicator function:

q(i) = 1{i>γ}. (25c)

Proposition 4: For an RCSE,

ǫ(RCSE)≤ ǫTU, (26)

where

ǫTU , EX,Y

[

min

{

1, (M − 1) ·

(

1− Zq −
Wq

2

)}]

. (27)

Furthermore,ǫTU ≤ ǫDT.
Proof: For proving achievability, consider a decoder iden-

tical to the ML decoder, except that before comparing the
words, the information-density scores are quantized according
to (25c). For the comparison to the DT bound,

ǫDT = EX,Y

[

1{i(X;Y)≤γ} +
M − 1

2
P
(

i(X̄,Y) > γ
∣

∣X,Y
)

]

(28a)

≥ EX,Y

[

min

{

1, (M − 1) ·

[

1{i(X;Y)≤γ}

+
1

2
P
(

i(X̄,Y) > γ
∣

∣X,Y
)

]}]

(28b)

≥ EX,Y

[

min

{

1,
M − 1

2
·
[

1{i(X;Y)≤γ}

+P
(

i(X̄,Y) > γ
∣

∣X,Y
)]

}]

(28c)

= ǫTU. (28d)

5In fact, the proof states that the “first” codeword to pass thethreshold is
selected. However, such ordering of the codewords is not required.

6In [6], the threshold is further optimized, depending on thecompeting
codeword and on the received word



Remark 4: It is not obvious that the optimal threshold for
the TU bound isγ of (24b). However, it is good enough for
our purposes.

Proposition 5: For any channel,ǫRCU∗ ≤ ǫTU. Thus, the
RCU∗ bound is tighter than the DT bound, i.e.:

ǫRCU∗ ≤ ǫDT.

Proof: Recalling Remark 1, the RCU∗ bound reflects
optimal (ML) pairwise decision. Thus, necessarily the pairwise
error probabilities satisfy:

Z +
W

2
≥ Zq +

Wq

2
. (29)

Remark 5: In fact, the case of the BEC, whereǫRCU∗ =
ǫTU = min (1, ǫDT) is very special. In the BEC, an impostor
cannot have a higher score than the true codeword; if the chan-
nel realization is such that the non-erased elements ofx and
x̄ are equal, theni(x̄; y) = i(x; y), otherwisei(x̄; y) = −∞.
Thus,

ǫRCU∗ = EX,Y

[

min

{

1,
(M − 1)W

2

}]

. (30)

Let k be the number of non-erased symbols out of the block
of n, thenW = 2−k. Consequently,(M − 1)W/2 > 1 if and
only if i(x, y) < γ, whereγ is given by (24b).

D. Performance Comparison

Comparison of the different union bounds is given in
Figure 2. In particular, the effect of tie-breaking on the bounds
is shown by the comparison of the RCU bound (13) and the
RCU∗ bound (14). Notice that this bound depends on the
ensemble. Due to Lemma 1, the computation of the RCU
and RCU∗ bounds for PIE becomes simple, hence show the
bounds for this ensemble. Since an i.i.d. ensemble is also PIE,
the exact error probability for i.i.d. ensemble (11) is given as
a reference.

V. L INEAR CODES

Most known good codes are linear. Beyond that, linear
codes have an important role for two reasons. First, they allow
to improve performance (both capacity and error probability)
in many network problems (see, e.g., [7], [8]). Second, for
some channels, the average error probability and maximal
error probability coincide for linear codes.

A. The Dithered Linear Codes Ensemble

For any finite fieldFq of cardinalityq, we define the dithered
linear codes ensemble by

Xj = Hwj + D. (31)

Here, all operations are defined over the field, all elements of
then×k generator matrixH and length-k dither vectorD are
drawn uniformly and independently from the field elements,
and {wj} are all k-vectors over the field. It follows that the
codebook size isM = qk. An important special case is whenr
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Fig. 2. The effect of tie-breaking on the performance of PIE codebooks of the
different union-bounds. We demonstrate the effect using a BSC with crossover
probability0.3, at blocklengthn = 100. The triangle-marked dashed curve is
the DT bound (24). The asterisk-marked dashed curve is the TUbound (27).
The dashed curve is the RCU bound (13). The diamond-marked solid curve is
the RCU∗ bound (14). For reference, we repeat two of the curves of Figure 1.
The×-marked solid curve is the exact performance of the i.i.d. ensemble (11),
while the circle-marked dashed curve is the lower bound for any codebook [1,
Theorem 16]. The non-smoothness of some of the curves is not an artifact,
but comes from the fact that they involve integers.

is prime, and modulo arithmetic is used, e.g., binary (dithered)
linear codes.

By [9], any dithered linear codes ensemble over this field is
PIE. Consequently, the RCU∗ bound applies to this ensemble.
Further, it is proven in [1, Appendix A] that for a class
of channels, which includes the BSC and the BEC, there
exists arandomizedML decoder such that themaximalerror
probability ǫ (3) coincides with the average one.

B. Additive Channels

We now restrict our attention to channels that are additive,
in the sense of Definition 3. Further, assume that the channels
are additive over a finite field, which is the same field over
which the code is linear. Clearly, in this situation the dither
does not change the distance profile of the codebook, thus it
suffices to consider the linear codes ensemble

Xj = Hwj , (32)

where againH is i.i.d. uniform overFq. More importantly, in
order to achieve good maximal error probability, there is no
need to use randomized decoders.

Theorem 2:For any channel that is additive over a finite
field, for an ensemble of linear codes over the field, there
exists a deterministic decoder satisfying:

ǫ ≤ ǫRCU∗

Remark 6:Recall that the size of linear code isM = qk

for an integerk. Thus, the theorem does not givēǫ for all
n,M .



Proof: Let Ω1, . . . ,ΩM be a partition of the output space
Yn into decision regions (for any1 ≤ m ≤ M , Ωm is
associated with codewordm). A partition is optimal in the
average error probability sense, if and only if it satisfies:

Ωm ⊆ {y ∈ Yn|∀m′ 6= m : V (y|xm) ≥ V (y|xm′)} (33a)

Ωm ⊇ {y ∈ Yn|∀m′ 6= m : V (y|xm) > V (y|xm′)} , (33b)

and for allm 6= m′ Ωm ∩ Ωm′ = ∅. By (7), we have that for
an additive channel, (33) is equivalent to

Ωm ⊆
{

y ∈ F
n
q

∣

∣∀m′ 6= m : PN(y − xm) ≥ PN(y − xm′)
}

.
(34a)

Ωm ⊇
{

y ∈ F
n
q

∣

∣∀m′ 6= m : PN(y − xm) > PN(y − xm′)
}

.
(34b)

Since for any such optimal partitionǫ ≤ ǫRCU∗ , it is sufficient
to show that there exists a partition satisfying (34) for which
ǭ = ǫ.

Let C ⊆ F
n
q be a linear code, and without loss of generality

assume thatx1 = 0. We construct decoding regions forC in
the following way. Recall thatC induces a (unique) partition
of the linear spaceFn

q into disjoint cosetsS1, . . . ,Sn−k, where
each coset is a translation of the linear code. For each coset
Sj let the coset leaderyj,1 be some word that may belong to
Ω1 according to (34a). By definition, all coset elements of the
coset can be uniquely labeled as

yj,m = yj,1 + xm.

Assign each wordyj,m to Ωm. It then satisfies that for all
m′ = 1, . . . ,M

PN(yj,m − xm) = PN(yj,1) (35a)

≥ PN(yj,1 − (xm′ − xm)) (35b)

= PN(yj,m − xm′), (35c)

where in (35b) we have used the facts thatyj,1 satisfies (34a)
and that the sum of codewords is a codeword. It follows, that
the partition indeed satisfies (34). To see thatǭ = ǫ, we have
that for allm = 1, . . . ,M :

P (Y ∈ Ωm|X = xm) = P (X + N ∈ Ωm|X = xm) (36a)

= P (N ∈ Ωm − xm|X = xm) (36b)

= P (N ∈ Ω1|X = xm) (36c)

= P (N ∈ Ω1) (36d)

= P (x1 + N ∈ Ω1) (36e)

= P (Y ∈ Ω1|X = x1) , (36f)

where (36c) is due to the construction ofΩm, and (36d) is
since the noise is statistically independent of the channelinput.

Remark 7:The partition used in the proof is not unique, in
the sense that for some cosets the choice of the coset leader is
arbitrary. However, for any such choice the coset is partitioned
in a fair way between the decision regions.
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