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Abstract—This paper presents a new explicit construction
for locally repairable codes (LRCs) for distributed storage
systems which possess all-symbols locality and maximal possible
minimum distance, or equivalently, can tolerate the maximal
number of node failures. This construction, based on maximum
rank distance (MRD) Gabidulin codes, provides new optimal
vector and scalar LRCs. In addition, the paper also discusses
mechanisms by which codes obtained using this construction can
be used to construct LRCs with efficient repair of failed nodes
by combination of LRC with regenerating codes.

I. INTRODUCTION

In distributed storage systems (DSS), it is desirable that
data be reliably stored over a network of nodes in such a way
that a user (data collector) can retrieve the stored data even
if some nodes fail. To achieve such a resilience against node
failures, DSS introduce data redundancy based on different
coding techniques. For example, erasures codes are widely
used in such systems: When using an (n, k) code, data to
be stored is first divided into k blocks; subsequently, these
k information blocks are encoded into n blocks stored on
n distinct nodes in the system. In addition, when a single
node fails, the system reconstructs the data stored in the failed
node to keep the required level of redundancy. This process
of data reconstruction for a failed node is called node repair
process [1]. During a node repair process, the node which is
added to the system to replace the failed node downloads data
from a set of appropriate and accessible nodes.

There are two important goals that guide the design of codes
for DSS: reducing the repair bandwidth, i.e. the amount of
data downloaded from system nodes during the node repair
process, and achieving locality, i.e. reducing the number of
nodes participating in the node repair process. These goals
underpin the design of two families of codes for DSS called
regenerating codes (see [1]–[8] and references therein) and
locally repairable codes (see [9]–[19]), respectively.

In this paper we focus on the locally repairable codes
(LRCs). Recently, these codes have drawn significant atten-
tion within the research community. Oggier et al. [12], [13]
presents coding schemes which facilitate local node repair.
In [9], Gopalan et al. establishes an upper bound on the
minimum distance of scalar LRCs, which is analogous to the
Singleton bound. The paper also showes that pyramid codes,
presented in [16], achieve this bound with information symbols

locality. Subsequently, the work by Prakash et al. extends
the bound to a more general definition of scalar LRCs [11].
(Han and Lastras-Montano [17] provide a similar upper bound
which is coincident with the one in [11] for small minimum
distances, and also present codes that attain this bound in
the context of reliable memories.) In [10], Papailiopoulos and
Dimakis generalize the bound in [9] to vector codes, and
present locally repairable coding schemes which exhibits MDS
property at the cost of small amount of additional storage per
node.

The main contributions of our paper are as follows. First,
in Section II, we generalize the definition of scalar locally
repairable codes, presented in [11] to vector locally repairable
codes. For such codes, every node storing α symbols from a
given field F, can be locally repaired by using data stored
in at most r other nodes from a group of nodes of size
r + δ − 1 < n, which we call a local group, where n is the
number of system nodes, and r and δ are the given locality
parameters. Subsequently, in Section III, we derive an upper
bound on the minimum distance dmin of the vector codes that
satisfy a given locality constraint, which establishes a trade
off between node failure resilience (i.e., dmin) and per node
storage α. 1 The bound presented in [10] can be considered as
a special case of our bound with δ = 2. Further, we present
an explicit construction for LRCs which attain this bound on
minimum distance. This construction is based on maximum
rank distance (MRD) Gabidulin codes, which are a rank-metric
analog of Reed-Solomon codes. The scalar and vector LRCs
that are obtained by this construction are the first explicit
optimal locally repairable codes with (r + δ − 1) - n. Finally,
in Section IV, we discuss how the scalar and vector codes
obtained by this construction can be used for constructions of
repair bandwidth efficient LRCs. We conclude the paper with
Section V.

II. BACKGROUND

A. System Parameters

Let M be the size of a file f to be stored in a DSS with n
nodes. All data symbols belong to a finite field F. Each node
stores α symbols over F.

1In a parallel and independent work, [18], Kamath et al. also provide upper
bounds on minimum distance together with constructions and existence results
for vector LRCs.
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B. Locally Repairable Codes

We generalize the definition of scalar locally repairable
codes, presented in [11] to vector locally repairable codes,
where each node i, 1 ≤ i ≤ n stores a vector xi of length α
over F.

First, we provide an alternate definition of the minimum
distance of a vector code [9], [10].

Definition 1. The minimum distance dmin of a vector code C
of dimension M is defined as

dmin = n− max
A⊆[n]:H(xA)<M

|A|, (1)

where A = {i1, . . . , i|A|} ⊆ [n] and xA = (xi1 , . . . ,xi|A|).

It follows from the definition of dmin that the system can
tolerate any dmin − 1 node failures, or equivalently, a data
collector can reconstruct the original data f by contacting any
set of n−dmin+1 storage nodes in the DSS. We are interested
in ensuring this property of the DSS for its entire life span
through the course of multiple failures and repairs.

Definition 2. We say that a vector code C has (r, δ) locality
if for each node i, 1 ≤ i ≤ n, storing vector xi (of length α),
there exists a set of nodes Γ(i) such that

• i ∈ Γ(i)
• |Γ(i)| ≤ r + δ − 1
• Minimum distance of C|Γ(i) is at least δ.

Note that the last two properties imply that each element
j ∈ Γ(i) can be written as a function of a set of at most r
elements in Γ(i) (not containing j) and that H(Γ(i)) ≤ rα.

Codes that satisfy these properties are called (r, δ, α) locally
repairable codes (LRCs).

Note, that these codes are generalizations of vector LRCs
given in [10], which considered only the δ = 2 case.

Remark 3. (r, δ, 1) locally repairable codes are named as
scalar (r, δ) locally repairable codes.

Prakash et al. [11] provided the following upper bound on
the minimum distance of an (r, δ, 1) LRC:

dmin ≤ n−M+ 1−
(⌈
M
r

⌉
− 1

)
(δ − 1). (2)

It was established in [11] that a family of pyramid codes,
presented in [16] attains this bound and has information
locality, i.e. only information symbols satisfy the locality
constraint. However, an explicit construction of optimal scalar
LRCs with all-symbols locality is known only for the case
n =

⌈
M
r

⌉
(r+δ−1) [11], [17]. The existence of optimal scalar

codes with all-symbols locality is shown for the case when
(r + δ − 1)|n and field size |F| >MnM [11]. In this paper,
we provide an explicit construction of optimal scalar LRCs
with all-symbols locality without the restriction (r+ δ− 1)|n.

The following upper bound on the minimum distance of
(r, 2, α) LRCs and construction of codes that attain this bound

was presented in [10]:

dmin ≤ n−
⌈
M
α

⌉
−
⌈
M
rα

⌉
+ 2 (3)

In the sequel, we generalize this bound for any δ ≥ 2 and
present (r, δ, α) LRCs that attain this bound.

C. Maximum Rank Distance (MRD) Codes

For the construction presented in this paper we propose a
precoding of the file with maximum rank distance codes [20],
[21].

Let Fqm be an extension field of Fq . Since Fqm can be
also considered as an m-dimensional vector space over Fq ,
any element γ ∈ Fqm can be represented as the vector
γ = (γ1, . . . , γm) ∈ Fmq , such that γ =

∑m
i=1 biγi, for a

fixed basis {b1, . . . , bm} of the field extension. Similarly, any
vector v = (v1, . . . , vN ) ∈ FNqm can be represented by an
m×N matrix V = [vi,j ] over Fq , where each entry vi of v
is expanded as a column vector (vi,1, . . . , vi,m)T .

Definition 4. The rank of a vector v ∈ FNqm , denoted by
rank(v), is defined as the rank of the m×N matrix V over
Fq . Similarly, for two vectors v,u ∈ FNqm , the rank distance
is defined by dR(v,u) = rank(V −U).

An [N,K,D]qm rank-metric code C ⊆ FNqm is a linear
block code over Fqm of length N , dimension K and minimum
rank distance D. A rank-metric code that attains the Singleton
bound D ≤ N−K+1 in rank-metric is called maximum rank
distance (MRD) code. For m ≥ N , a construction of MRD
codes was presented by Gabidulin [20]. In the similar way
as Reed-Solomon codes, Gabidulin codes can be obtained by
evaluation of polynomials, however, for Gabidulin codes the
special family of polynomials, called linearized polynomials,
is used:

Definition 5. A linearized polynomial f(x) over Fqm of
q−degree t has the form f(x) =

∑t
i=0 aix

qi , where ai ∈ Fqm ,
and at 6= 0.

Note, that evaluation of a linearized polynomial is an
Fq−linear transformation from Fqm to itself, i.e., for any
a, b ∈ Fq and γ1, γ2 ∈ Fqm , we have f(aγ1 + bγ2) =
af(γ1) + bf(γ2) [22].

A codeword in an [N,K,D = N − K + 1]qm

Gabidulin code CGab, m ≥ N , is defined as
c = (f(g1), f(g2), . . . , f(gN )) ∈ FNqm , where f(x) is a
linearized polynomial over Fqm of q−degree K − 1 with
the coefficients given by the information message, and
g1, . . . , gN ∈ Fqm are linearly independent over Fq [20].

An MRD code CGab with minimum distance D can correct
any D−1 = N−K erasures, which we will call rank erasures.
An algorithm for erasures correction of Gabidulin codes can
be found e.g. in [23].

D. MDS Array Codes

Definition 6. A linear [α × n, k, dmin] array code C of
dimensions α × n over Fq is defined as a linear subspace



of Fαnq . Its minimum distance dmin is defined as the minimum
Hamming distance over Fαq , when we consider the codewords
of C as vectors of length n over Fαq ∼= Fqα . An array code
C is called a maximum distance separable (MDS) code if
|C| = qαk, where k = n− dmin + 1.

Constructions for MDS array codes can be found e.g.
in [24]–[26]. Note, that an MRD code (in the matrix repre-
sentation) is also an MDS array code.

E. Regenerating Codes

Regenerating codes are a family of codes for distributed
storage that allow for efficient repair of failed nodes. When
using such codes we assume that a data collector can re-
construct the original file by downloading the data stored in
any set of k out of n nodes. When a node fails, its content
can be reconstructed by downloading β ≤ α symbols from
any d, k ≤ d ≤ n − 1, surviving nodes. Given a file
size M, a trade-off between storage per node α and repair
bandwidth γ , dβ can be established. Two classes of codes
that achieve two extreme points of this trade-off are known
as minimum storage regenerating (MSR) codes and minimum
bandwidth regenerating (MBR) codes. The parameters (α, γ)

for MSR and MBR codes are given by
(
M
k ,

Md
k(d−k+1)

)
,(

2Md
2kd−k2+k ,

2Md
2kd−k2+k

)
, respectively [1].

III. OPTIMAL LOCALLY REPAIRABLE CODES

In this section, we first derive an upper bound on the
minimum distance of (r, δ, α) locally repairable codes. Next,
we propose a general code construction which attains the
derived bound on dmin. Our approach is to apply a two-
stage encoding, where we use Gabidulin codes (a rank-metric
analog of Reed-Solomon codes) along with MDS array codes.
This construction can be viewed as a generalization of the
construction proposed in [27].

A. Upper Bound on dmin for an (r, δ, α) LRC

We state a generic upper bound on the minimum distance
dmin of an (r, δ, α) code C. This bound generalizes the bound
given in [10] for LRCs with a single local parity (δ = 2) to
LRCs with multiple local parities (δ ≥ 2).

Theorem 7. Let C be an (r, δ, α) LRC. Then, it follows that

dmin(C) ≤ n−
⌈
M
α

⌉
+ 1−

(⌈
M
rα

⌉
− 1

)
(δ − 1). (4)

Proof: We follow the proof technique of [9], [10]. In
particular, the proof involves construction of a set of nodes
A for a locally repairable DSS such that total entropy of the
symbols stored in A is less than M and

|A| ≥
⌈
M
α

⌉
− 1 +

(⌈
M
rα

⌉
− 1

)
(δ − 1). (5)

Theorem 7 then follows from Definition 1 and (5). See [28]
for the detailed proof.

Remarkably, the theorem above establishes a trade-off be-
tween node failure resilience (i.e., dmin) and per node storage

α, where α can be increased to obtain higher dmin. This is of
particular interest in the design of codes having both locality
and strong resilience to node failures.

Remark 8. For the special case of δ = 2, this bound matches
with the bound (3) presented in [10]. For the case of α = 1,
the bound reduces to dmin ≤ n−M+1+(dM/re−1)(δ−1),
which is coincident with the bound (2) presented in [11].

B. Construction of dmin-Optimal Vector LRCs

In this subsection we present a construction of an (r, δ, α)
LRC which attains the bound given in Theorem 7.

Construction I. Consider a file f over F = Fqm of size
M≥ rα. We encode the file in two steps before storing it on
DSS. First, the file is encoded using a Gabidulin code. The
codeword of the Gabidulin code is then partitioned into local
groups and each local group is then encoded using an MDS
array code over Fq .

In particular, let M, r, δ, α,N,m be the positive integers
such that m ≥ N ≥M ≥ rα, and let CGab be an [N,M, D =
N−M+1]qm Gabidulin code. We assume in this construction
that α|N . We denote by g =

⌈
N
rα

⌉
the number of local groups

in the system.
• If N

α ≡ 0(mod r) then a codeword c ∈ CGab is first
partitioned into g = N

rα disjoint groups, each of size rα,
and each group is stored on a different set of r nodes,
α symbols per node. In other words, the output of the
first encoding step generates the encoded data stored on
rg nodes, each one containing α symbols of a (folded)
Gabidulin codeword. Second, we generate δ − 1 parity
nodes per group by applying an [α × (r + δ − 1), r, δ]
MDS array code over Fq on each local group of r nodes,
treating these r nodes as input data blocks (of length α)
for the MDS array code. At the end of the second round
of encoding, we have n = (r+ δ−1)g = N

α + N
rα (δ−1)

nodes, each storing α symbols over Fqm , partitioned into
g local groups, each of size r − δ + 1.

• If N
α ≡ β0(mod r), for 0 < β0 ≤ r−1, then a codeword

c ∈ CGab is first partitioned into g − 1 = b Nrαc disjoint
groups of size rα and one additional group of size β0α,
the first g−1 groups are stored on r(g−1) nodes, and the
last group is stored on β0 nodes, each one containing α
symbols of a (folded) Gabidulin codeword. Second, we
generate δ − 1 parity nodes per group by applying an
[α× (r + δ − 1), r, δ] MDS array code over Fq on each
of the first g−1 local groups of r nodes and by applying
a [α × (β0 + δ − 1), β0, δ] MDS array code over Fq on
the last local group. At the end of the second round of
encoding, we have n = (r+δ−1)(g−1)+(β0 +δ−1) =
N
α +

⌈
N
rα

⌉
(δ − 1) nodes, each storing α symbols over

Fqm , partitioned into g local groups, g − 1 of which of
size r − δ + 1 and one group of size β0 + δ − 1.

We denote the obtained code by C loc.

Remark 9. Note, that since an MDS array code from Con-
struction I is defined over Fq , any symbol of any node of
C loc can be written as

∑rα
j=1 ajcij =

∑rα
j=1 ajf(gij ) =



f(
∑rα
j=1 ajgij ), where aj ∈ Fq , cij ∈ Fqm are rα symbols of

the same group of c, and gij , are linearly independent over Fq
evaluation points. Hence, any s ≤ rα symbols inside a group
of C loc are evaluations of f(x) in s linearly independent over
Fq points. (If there is a group with β0 < r elements we have
the same result substituting r with β0). Thus, any δ−1+i node
erasures in a group correspond to iα rank erasures. Moreover,
if we take any rα symbols of C loc from every group (and
αβ0 symbols from the smallest group, if it exists), we obtain a
Gabidulin codeword, for a corresponding choice of evaluation
points for a Gabidulin code, which encodes the given dataM.

Theorem 10. Let C loc be the (r, δ, α) locally repairable code
C loc obtained by Construction I. Then, for N ≥M, s.t. α|N ,
• If (rα)|N then C loc attains the bound (4).
• If N

α (mod r) ≥
⌈M
α

⌉
(mod r) > 0, then C loc attains the

bound (4).

Proof: The proof is based on Remark 9 and the obser-
vation that any n−

⌈M
α

⌉
−
(⌈M

rα

⌉
− 1
)

(δ− 1) node erasures
correspond to at most D − 1 rank erasures which can be
corrected by the Gabidulin code CGab. See the details in
Appendix A.

Next, we write the conditions for the construction of dmin-
optimal code C loc in terms of the given system parameters
n,M, r, δ, α.

Theorem 11. Let C loc be a code obtained by Construction I.
• If (r + δ − 1)|n, then C loc is optimal, with the length of

the corresponding Gabidulin code equal to N = nrα
r+δ−1

and the field size F ≥ qN .
• If n(mod r + δ − 1) − (δ − 1) ≥

⌈M
α

⌉
(mod r) > 0

then C loc is optimal, with the length of
the corresponding Gabidulin code equal to
N = α

(
n− δ + 1− (δ − 1)

⌊
n

r+δ−1

⌋)
and the

field size F ≥ qN .

Remark 12. For the case α = 1 Construction I provides
dmin-optimal scalar LRCs. Note that this is the first explicit
construction of optimal scalar locally repairable codes with
(r + δ − 1) - n.

Remark 13. The required field size |F| = qm for the proposed
construction should satisfy m ≥ N , for any choice of q. So
we can assume that |F| = qN , for N given in Theorem 11.
Note that we can reduce the field size to |F| = qN/α by
stacking [18] of α independent optimal scalar LRCs, obtained
by Construction I.

We illustrate the construction of C loc in the following
examples. First we consider the scalar case.

Example 14. Consider the following system parameters:

(M, n, r, δ, α) = (9, 14, 4, 2, 1).

Let N = 14 − 2 + 1 − 1 ·
⌊

14
4+2−1

⌋
= 11. First, M = 9

symbols over F = F211 are encoded into a codeword c
of a [11, 9, 3]211 Gabidulin code CGab. This codeword is

M  ∈ 𝔽211
9  

11,9,3  𝔽
211

 

Gabidulin code 

𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒑𝒂 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒑𝒄 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒑𝒃 

group 1 group 2 group 3 

𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒄𝟏 𝒄𝟐 𝒄𝟑 

MDS codes 

Fig. 1: Illustration of the construction of a scalar
(r = 4, δ = 2, α = 1) LRC for n = 14,M = 9 and dmin = 4.

partitioned into three groups, two of size 4 and one of size 3,
as follows: c = (a1, a2, a3, a4|b1, b2, b3, b4|c1, c2, c3). Then,
by applying a [5, 4, 2] MDS code in the first two groups and
a [4, 3, 2] MDS code in the last group we add one parity to
each group. The symbols of c with three new parities pa, pb, pc
are stored on 14 nodes as shown in Fig 1. By Theorem 7, the
minimum distance dmin of this code is at most 4. By Remark 9,
any 3 node erasures correspond to at most 2 rank erasures and
then can be corrected by CGab, hence dmin = 4. In addition,
when a single node fails, it can be repaired by using the data
stored on other nodes from the same group.

Next, we illustrate Construction I for a vector LRC.

Example 15. We consider a DSS with the following parame-
ters:

(M, n, r, δ, α) = (28, 15, 3, 3, 4).

By (4) we have dmin ≤ 5. Let N = 15·3·4
3+3−1 = 36 and

(a1, . . . , a12, b1, . . . , b12, c1, . . . , c12) be a codeword of an
[36, 28, 9]q36 code CGab, which is obtained by encoding M =
28 symbols over F = Fq36 of the original file. The Gabidulin
codeword is then divided into three groups (a1, . . . , a12),
(b1, . . . , b12), and (c1, . . . , c12). Encoded symbols in each
group are stored on three storage nodes as shown in Fig. 2. In
the second stage of encoding, a [4× 5, 3, 3] MDS array code
over Fq is applied on each local group to obtain δ − 1 = 2
parity nodes per local group. The coding scheme is illustrated
in Fig. 2.

By Remark 9, any 4 node failures correspond to at most 8
rank erasures in the corresponding codeword of CGab. Since
the minimum rank distance of CGab is 9, these node erasures
can be corrected by CGab, and thus the minimum distance of
Cloc is exactly 5.

Remark 16. The efficiency of the decoding of the codes
obtained by Construction I depends on the efficiency of the
decoding of the MDS codes and the Gabidulin codes.



𝟏 𝟐 𝟑 𝟒 𝟓 

𝒂𝟏 𝒂𝟓 𝒂𝟗 𝒑𝟏𝟏
𝒂  𝒑𝟏𝟐

𝒂  

𝒂𝟐 𝒂𝟔 𝒂𝟏𝟎 𝒑𝟐𝟏
𝒂  𝒑𝟐𝟐

𝒂  

𝒂𝟑 𝒂𝟕 𝒂𝟏𝟏 𝒑𝟑𝟏
𝒂  𝒑𝟑𝟐

𝒂  

𝒂𝟒 𝒂𝟖 𝒂𝟏𝟐 𝒑𝟒𝟏
𝒂  𝒑𝟒𝟐

𝒂  

group 1 

𝟔 𝟕 𝟖 𝟗 𝟏𝟎 

𝒃𝟏 𝒃𝟓 𝒃𝟗 𝒑𝟏𝟏
𝒃  𝒑𝟏𝟐

𝒃  

𝒃𝟐 𝒃𝟔 𝒃𝟏𝟎 𝒑𝟐𝟏
𝒃  𝒑𝟐𝟐

𝒃  

𝒃𝟑 𝒃𝟕 𝒃𝟏𝟏 𝒑𝟑𝟏
𝒃  𝒑𝟑𝟐

𝒃  

𝒃𝟒 𝒃𝟖 𝒃𝟏𝟐 𝒑𝟒𝟏
𝒃  𝒑𝟒𝟐

𝒃  

group 2 

𝟏𝟏 𝟏𝟐 1𝟑 𝟏𝟒 𝟏𝟓 

𝒄𝟏 𝒄𝟓 𝒄𝟗 𝒑𝟏𝟏
𝒄  𝒑𝟏𝟐

𝒄  

𝒄𝟐 𝒄𝟔 𝒄𝟏𝟎 𝒑𝟐𝟏
𝒄  𝒑𝟐𝟐

𝒄  

𝒄𝟑 𝒄𝟕 𝒄𝟏𝟏 𝒑𝟑𝟏
𝒄  𝒑𝟑𝟐

𝒄  

𝒄𝟒 𝒄𝟖 𝒄𝟏𝟐 𝒑𝟒𝟏
𝒄  𝒑𝟒𝟐

𝒄  

group 3 

Fig. 2: Example of an (r = 3, δ = 3, α = 4) locally repairable
code with n = 15 and dmin = 5.

IV. REPAIR EFFICIENT LRCS

In this section, we discuss the hybrid codes which for
a given locality parameters minimize the repair bandwidth.
These codes are based on a combination of locally repairable
codes with regenerating codes.

In a naı̈ve repair process for a locally repairable code, a
newcomer contacts r nodes in its local group and downloads
all the data stored on these nodes. Following the line of work
of bandwidth efficient repair in DSS given by [1], we allow
a newcomer to contact d ≥ r nodes in its local group and
to download only β ≤ α symbols stored in these nodes in
order to repair the failed node. The motivation behind this is
to lower the repair bandwidth for a LRC. So the idea here is
to apply a regenerating code in each local group. (We note
that, in a parallel and independent work, Kamath et al. [18]
also proposed utilizing regenerating codes in the context of
LRCs.)

In particular, by applying an (r + δ − 1, r, d, α, β) MSR
code in each local group instead of an MDS array code in the
second step of Construction I we obtain a code, denoted by
MSR-LRC, which has the maximal minimum distance (since
an MSR code is also an MDS array code), the local minimum
storage per node, and the minimized repair bandwidth. (The
details of this construction can be found in [28].)

In addition, the optimal scalar codes obtained by Construc-
tion I can be used for construction of MBR-LRCs (codes with
an MBR code in each local group) as it has been shown by
Kamath et al. [18].

V. CONCLUSION

We presented a novel construction for (scalar and vector) lo-
cally repairable codes. This construction is based on maximum
rank distance codes. We derived an upper bound on minimum
distance for vector LRCs and proved that our construction
provides optimal codes for both scalar and vector cases. We
also discussed how the codes obtained by this construction can
be used to construct repair bandwidth efficient LRCs.
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APPENDIX A
PROOF OF THEOREM 10

To prove that C loc attains the bound (4) we need to show
that any E , n−

⌈M
α

⌉
−
(⌈M

rα

⌉
− 1
)

(δ−1) node erasures can
be corrected by C loc. For this purpose we will prove that any
E erasures of C loc correspond to at most D−1 rank erasures
of the underlying Gabidulin code and thus can be corrected by
the code CGab. Here, we point out the the worst case erasure
pattern is when the erasures appear in the smallest possible
number of groups and the number of erasures inside a local
group is maximal.

Let α0, α1, β1, γ1 be the integers such that N = α(α0r +
β0), M = α(α1r + β1) + γ1, α0 ≥ α1, 0 ≤ β0, β1 ≤ r − 1,
and 0 ≤ γ1 ≤ α− 1. Then

D − 1 = N −M = rα(α0 − α1) + α(β0 − β1)− γ1. (6)

Then, given n = N
α +

⌈
N
rα

⌉
(δ − 1), we can rewrite the

bound (4) in the following way.

dmin−1 ≤ N

α
−
⌈
M

α

⌉
+

(⌈
N

rα

⌉
−
⌈
M

rα

⌉
+ 1

)
(δ−1). (7)

1) Let (rα)|N . Then β0 = 0 and
⌈
N
rα

⌉
= α0.

• If γ1 = β1 = 0 then
⌈
M
α

⌉
= α1r and

⌈
M
rα

⌉
= α1.

In this case by (7) we have dmin − 1 ≤ (r + δ −
1)(α0 − α1) + δ − 1. Hence, in the worst case we
have (α0 − α1) groups with all the erased nodes
and one additional group with δ − 1 erased nodes,
which by Remark 9 corresponds to rα rank erasures
in (α0−α1) groups of the corresponding Gabidulin
codeword. Since by (6), D− 1 = rα(α0−α1), this
erasures can be corrected by the Gabidulin code.

• If γ1 = 0, β1 > 0 then
⌈
M
α

⌉
= α1r + β1 and⌈

M
rα

⌉
= α1 + 1. Then by (7) we have dmin − 1 ≤

(r+δ−1)(α0−α1−1)+(r−β1+δ−1). Hence, in the
worst case we have (α0−α1−1) groups with all the
erased nodes and one additional group with r−β1+
δ−1 erased nodes, which by Remark 9 corresponds
to rα(α0 − α1) − αβ1 = D − 1 rank erasures that
can be corrected by the Gabidulin code.

• If γ1 > 0 then
⌈
M
α

⌉
= α1r + β1 + 1 and

⌈
M
rα

⌉
=

α1 + 1. Then by (7) we have dmin − 1 ≤ (r + δ −
1)(α0 − α1 − 1) + (r − β1 − 1 + δ − 1). Hence, in
the worst case we have (α0 − α1 − 1) groups with
all the erased nodes and one additional group with
r−β1− 1 + δ− 1 erased nodes, which corresponds
to rα(α0 − α1)− αβ1 − α < D − 1 rank erasures
that can be corrected by the Gabidulin code.

2) Let N
α (mod r) ≥ Mα (mod r) > 0. Then, β0 ≥ β1 > 0

and
⌈
N
rα

⌉
= α0 + 1.

• If γ1 = 0 then
⌈
M
α

⌉
= α1r + β1 and

⌈
M
rα

⌉
=

α1 + 1. Then by (7), we have dmin − 1 ≤ (r + δ −
1)(α0−α1)+(β0−β1 +δ−1). Hence, in the worst
case we have (α0 − α1) groups with all the erased
nodes and one additional group with β0−β1 +δ−1

erased nodes (or β0 + δ − 1 erased nodes in the
smallest group, (α0 − α1 − 1) groups with all the
erased nodes and one group with r − β1 + δ − 1
erased nodes). This by Remark 9 corresponds to
rα(α0 − α1)− α(β0 − β1) = D − 1 rank erasures
that can be corrected by the Gabidulin code.

• If γ1 > 0 then
⌈
M
α

⌉
= α1r + β1 + 1 and

⌈
M
rα

⌉
=

α1 + 1. Then by (7) we have dmin − 1 ≤ (r +
δ − 1)(α0 − α1) + (β0 − β1 − 1 + δ − 1). Hence,
in the worst case we have (α0 − α1) groups with
all the erased nodes and one additional group with
β0 − β1 − 1 + δ − 1 erased nodes (or β0 + δ − 1
erased nodes in the smallest group, (α0 − α1 − 1)
groups with all the erased nodes and one group with
r−β1−1 + δ−1 erased nodes). This by Remark 9
corresponds to rα(α0−α1)−α(β0−β1)−α < D−1
rank erasures that can be corrected by the Gabidulin
code.
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