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Abstract—We show that givenn and k, for q sufficiently large,
there always exists an[n, k]q MDS code that has a generator
matrix G satisfying the following two conditions:
(C1) Sparsest: each row ofG has Hamming weightn− k + 1;
(C2) Balanced: Hamming weights of the columns ofG differ

from each other by at most one.

I. I NTRODUCTION

We study the existence and provide a construction of a
sparsestandbalancedgenerator matrix of Maximum Distance
Separable (MDS) codes. A generator matrix is the sparsest
if it contains the least number of nonzero entries among all
generator matrices of the same MDS code. A generator matrix
is balanced if every column contains approximately the same
number of nonzero entries. More specifically, we require that
the number of nonzero entries in each column differs from
each other by at most one.

Apart from being of theoretical interest, our study on
balanced sparsest generator matrices for MDS codes was
motivated by its application in error correction for sensor
networks. Supposen sensors,S1, . . . ,Sn, collectively measure
k conditionsx1, . . . , xk, such as temperature, pressure, light
intensity, etc. Letx = (x1, . . . , xk), wherexi ∈ Fq for each
i = 1, . . . , k (Fq is a finite field ofq elements). These sensors
transmit the information they collected to a base station, which
is a data collector. Furthermore, each sensor performs some
encoding on the information it has, before transmitting the
information back to the base station in the following way. Let
G be ank×n generator matrix of an[n, k, d]q error-correcting
code. SensorSi transmits the scalar product ofx and column
i of G to the base station. It is well known in classical
coding theory that this coding scheme allows the base station
to retrievex when at most⌊d−1

2 ⌋ sensors transmit wrong
information. Moreover, the base station can also identify
the malfunctioned sensors. For each sensorSi, only those
conditions corresponding to nonzero entries of columni of G
are involved into encoding. So it is sufficient forSi to measure
only such conditions. Thus, ifG is sparse then in average,
each sensor only needs to measure a few amongk conditions
in order to achieve the desired error correction capability. On
top of that, if columns ofG have approximately the same
number of nonzero entries then the sensors are required to
measure approximately the same number of conditions. This
balance guarantees an even distribution of workload among
sensors, which is an important criterion for sensor networks
where energy saving is a critical issue.

In fact, any error-correcting code can be used in the
aforementioned scheme for sensor networks. We choose to
study MDS codes first because their structure, especially their
weight distribution, is well studied (see, for instance [1,Ch.
11]). Moreover, they have optimal error-correcting capability,
given the length and the dimension. We prove that over a
sufficiently large field, there always exists an MDS code that
has a balanced and sparsest generator matrix, which is ideally
suitable for the above encoding scheme for sensor networks.

Necessary notations and definitions are provided in Sec-
tion II. We state and prove our main result in Section III.

II. PRELIMINARIES

We denote byFq the finite field with q elements. Let
[n] denote the set{1, 2, . . . , n}. The support of a vector
u = (u1, . . . , un) ∈ F

n
q is defined bysupp(u) = {i ∈ [n] :

ui 6= 0}. The (Hamming)weight of u is |supp(u)|. We can
also define weight and support of a row or a column of a
matrix over some finite field, by regarding them as vectors
over that field. Apart from Hamming weight, we also use
other standard notions from coding theory such as minimum
distance, linear[n, k]q and [n, k, d]q codes, MDS codes, and
generator matrices (for instance, see [1]).

For a matrixG = (gi,j) ∈ F
k×n
q , the support matrixof G,

denotedsupp(G), is ak×n binary matrixM = (mi,j) where
mi,j = 0 if gi,j = 0 and mi,j = 1 if gi,j 6= 0. Let M =
(mi,j) be ak × n binary matrix. We denote byvar(M) =
(vi,j) the matrix obtained fromM by replacing every nonzero
entrymi,j = 1 by ξi,j , whereξi,j ’s are indeterminates. More
formally, vi,j = 0 if mi,j = 0 and vi,j = ξi,j if mi,j = 1.
We also denote bygr(M ) the bipartite graphG = (V , E )
defined as follows. The vertex setV can be partitioned into
two parts, namely, the left partL = {ℓ1, . . . , ℓk}, and the right
partR = {r1, . . . , rn}. The edge set is

E =
{
(ℓi, rj) : i ∈ [k], j ∈ [n], mi,j 6= 0

}
.

For anyk × n matrix N , we definef(N) =
∏

P
det(P ),

where the product is taken over all
(
n
k

)
submatricesP of order

k of N .

III. M AIN RESULT

A sparsest generator matrix of an[n, k]q MDS code would
have preciselyn−k+1 nonzero entries in every row. Moreover,
if it is balanced, then each column contains either⌊k(n−k+1)

n
⌋

or ⌈k(n−k+1)
n

⌉ nonzero entries. Hereafter, we often useRi,
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i ∈ [k], andCj , j ∈ [n], to denote the supports of rowi and
columnj, respectively, of ak×n binary matrixM . Note that
Ri ⊆ [n] andCj ⊆ [k].

Lemma 1. LetM = (mi,j) be ak×n binary matrix. Suppose
that each row ofM has weightn − k + 1. ThenM is the
support matrix of a generator matrix of some[n, k]q MDS
code over a sufficiently large fieldFq (q >

(
n−1
k−1

)
) if and only

if f(var(M )) 6≡ 0.

Proof: SupposeM = supp(G), where G = (gi,j)
is a generator matrix of some[n, k]q MDS code. Due to
a well-known property of MDS codes (see [1, p. 319]),
every submatrix of orderk of G has nonzero determinant.
Therefore,f(G) 6= 0. Note thatf(var(M )) can be regarded
as a multivariable polynomial inFq[. . . , ξi,j , . . .]. Moreover,
sinceM = supp(G), we deduce thatf(G) can be obtained
from f(var(M)) by substitutingξi,j by gi,j for all i, j where
gi,j 6= 0. As f(G) 6= 0, we conclude thatf(var(M )) 6≡ 0.

Now suppose thatf(var(M )) 6≡ 0. Note that each column
of var(M) belongs to precisely

(
n−1
k−1

)
submatrices of orderk

of var(M ). Hence the exponent of eachξi,j in f(var(M ))
is at most

(
n−1
k−1

)
. Since f(var(M)) 6≡ 0, by [2, Lemma

4], if q >
(
n−1
k−1

)
then there existgi,j ∈ Fq (for i, j

wheremi,j = 1) so thatf(var(M))(. . . , gi,j, . . .) 6= 0. Let
G = (gi,j) (for i, j wheremi,j = 0 we setgi,j = 0). Since
f(G) = f(var(M ))(. . . , gi,j, . . .) 6= 0, again by [1, p. 319],
we deduce thatG is a generator matrix of an[n, k]q MDS
code. Therefore, each row ofG has weight at leastn− k+1,
due to the Singleton Bound (see [1, p. 33]). Since each row
of M also has weightn − k + 1, we deduce thatgi,j 6= 0
whenevermi,j = 1. Therefore,M = supp(G).

Lemma 2. Let M = (mi,j) be a k × n binary matrix.
Thenf(var(M)) 6≡ 0 if and only if every bipartite subgraph
induced by thek left-vertices and somek right-vertices in
gr(M ) has a perfect matching.

Proof: Let G = gr(M). Each submatrixP of order k
of var(M ) corresponds to a bipartite subgraphHP induced
by the k left-vertices and somek right-vertices inG . In the
literature,P is usually referred to as theEdmonds matrixof
HP . It is well known (see [3, p. 167]) that a bipartite graph has
a perfect matching if and only if the deteminant of its Edmonds
matrix is not identically zero. Hence the proof follows.

Lemma 3. Let M = (mi,j) be ak × n binary matrix. Then
every bipartite subgraph induced by thek left-vertices and
somek right-vertices ingr(M) has a perfect matching if and
only if

∣∣ ∪j∈J Cj

∣∣ ≥ |J |, for every subsetJ ⊆ [n], |J | ≤ k. (1)
Proof: Let G = gr(M). Each submatrixP of orderk of

var(M ) corresponds to a bipartite subgraphHP induced by
thek left-vertices and somek right-vertices inG . The lemma
follows by applying Hall’s marriage theorem to each of such
subgraphs ofgr(M ).

Lemma 4. Let M = (mi,j) be a k × n binary matrix. The
condition (1) is equivalent to

∣∣ ∪i∈I Ri

∣∣ ≥ n− k+ |I|, for every subset∅ 6= I ⊆ [k]. (2)
Proof: Suppose that (1) holds and that there exists a

nonempty setI ⊆ [k] satisfying
∣∣ ∪i∈I Ri

∣∣ ≤ n− k + |I| − 1. (3)

We aim to obtain a contradiction. The condition (3) is equiv-
alent to ∣∣ ∩i∈I Ri

∣∣ ≥ k − |I|+ 1. (4)

Hence there exists a setJ of k − |I|+ 1 columns ofM that
satisfies

∣∣ ∩j∈J Cj

∣∣ ≥ |I|. Equivalently we have
∣∣ ∪j∈J Cj

∣∣ ≤ k − |I| < k − |I|+ 1 = |J |. (5)

We obtain a contradiction between (1) and (5). The “only if”
direction can be proved in a similar manner.

Lemma 5. LetM = (mi,j) be ak×n binary matrix. Suppose
that each row ofM has weightn − k + 1. ThenM is the
support matrix of a generator matrix of some[n, k]q MDS
code over a sufficiently large fieldFq (q >

(
n−1
k−1

)
) if and only

if (2) holds.

Proof: The proof follows from Lemma 1-4.

We present below our main result.

Theorem 6 (Main Theorem). Suppose1 ≤ k ≤ n and q >(
n−1
k−1

)
. Then there always exists an[n, k]q MDS code that has

a generator matrixG satisfying the following two conditions.
(C1) Sparsest: each row ofG has weightn− k + 1.
(C2) Balanced: column weights ofG differ from each other

by at most one.

By Lemma 5, to prove Theorem 6, we need to show that
there always exists ak × n binary matrixM satisfying the
following properties
(P1) each row ofM has weightn− k + 1,
(P2) column weights ofM differ from each other by at most

one,
(P3)

∣∣∪i∈I Ri

∣∣ ≥ n− k+ |I|, for every subset∅ 6= I ⊆ [k],
whereRi denotes the support of rowi of M .

We prove the existence of such a binary matrix by designing
an algorithm (Algorithm 1) that starts from an initial binary
matrix which satisfies (P1) and (P3). In each iteration, the
matrix at hand is slightly modified so that it still satisfies (P1)
and (P3) and its column weights become more balanced. When
the algorithm terminates, it produces a matrix that satisfies
(P1), (P2), and (P3).

Observe that it is fairly easy to construct a binary matrix
that satisfies (P1) and (P2), using the Gale-Ryser Theorem (see
Manfred [4]). However, (P1) and (P2) do not automatically
guarantee (P3). Indeed, the matrixP given below satisfies
both (P1) and (P2). However, (P3) is violated if we choose
I = {1, 2, 3}.

P =




1 0 0 0 1 1 1 0
1 0 0 0 1 0 1 1
1 0 0 0 0 1 1 1
0 1 1 1 1 0 0 0
0 1 1 1 0 1 0 0




.
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Let M̃ be any k × n binary matrix that satisfies both
(P1) and (P3). For instance, we can shift the vector
(1 1 · · · 1︸ ︷︷ ︸

n−k+1

0 0 · · · 0) k times cyclically to producek rows

of such a matrix as below.

M̃ =




1 1 1 · · · 1 0 0 0 · · · 0
0 1 1 · · · 1 1 0 0 · · · 0
0 0 1 · · · 1 1 1 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · 1 1 1 1 · · · 1




.

The Algorithm 1 takes̃M as an input parameter.

Algorithm 1
Input: n, k, M̃ ;
Initialization: M := M̃ ;

1: repeat
2: Let max andmin be the maximum and minimum

weights of columns ofM ;
3: if max−min ≤ 1 then
4: ReturnM ;
5: end if
6: Find two columnsjmax andjmin that have weights

max andmin, respectively;
7: Find a row is satisfying mis,jmax

= 1 and
mis,jmin

= 0 and moreover, if we setmis,jmax
:=

0 andmis,jmin
:= 1 thenM still satisfies (P1) and

(P3);
8: Swapping: setmis,jmax

= 0 andmis,jmin
:= 1;

9: until max−min ≤ 1;

Due to space constraint, we have prepared a separate note
at [5] with an example to demonstrate the algorithm.

Lemma 7. Suppose in every iteration, Algorithm 1 can always
find a legitimate row described in Step 7. Then the algorithm
terminates after finitely many iterations and returns a matrix
satisfying (P1), (P2), and (P3).

Proof: At a certain iteration, let∆ = max−min. After
swapping the two entriesmis,jmax

and mis,jmin
, the weight

of column jmax is decreased by one whereas the weight of
column jmin is increased by one. Therefore, after at most
⌊n/2⌋ iterations,∆ is decreased by at least one. Hence, the
algorithm must terminate after finitely many iterations. The
ouput matrix obviously satisfies (P1), (P2), and (P3).

Lemma 8. In every iteration of Algorithm 1, a rowis as
described in Step 7 of the algorithm can always be found.

Since columnjmax has a larger weight than columnjmin,
there always exists at least one rowis wheremis,jmax

= 1
andmis,jmin

= 0. Obviously, swappingmis,jmax
andmis,jmin

does not makeM violate (P1). The stricter criterion is that
M must still satisfy (P3) after the swap. We need a few more
auxiliary results before we can prove Lemma 8.

Suppose at a certain iteration, we choose some columns
jmax and jmin that have maximum and minimum weights,

respectively. Without loss of generality, we assume that the
first t rows are all the rows ofM satisfying the property that
each of them has a one at columnjmax and a zero at column
jmin. In other words, assume that

{i ∈ [k] : mi,jmax
= 1 andmi,jmin

= 0} = [t].

Sincemax−min ≥ 2, we havet ≥ 2.
Suppose, for contradiction, that none of theset rows satisfy

the condition in Step 7 of Algorithm 1. LetM (i), i ∈ [t], be
the matrix obtained fromM after swapping the two entries
mi,jmax

andmi,jmin
. ThenM (i), i ∈ [t], does not satisfy (P3).

SinceM satisfies (P3) and the only difference betweenM
(i)

andM is the rowi, the set of rows ofM (i) that violates the
condition (P3) must contain rowi. Therefore, for eachi ∈ [t],
there exists a setIi ⊂ [k], i /∈ Ii, such that{i} ∪ Ii is a set
of rows that violates (P3) inM (i). For our purpose, for each
i ∈ [t], we chooseIi to be of minimum size among those sets
that satisfied the aforementioned requirement. Since for each
i ∈ [t], |R(i)

i | = |Ri| = n− k + 1, we deduce thatIi 6= ∅.
Let R(i)

r denote the support of rowr of M (i), i ∈ [t], r ∈
[k]. Note thatRr denotes the support of rowr of M , r ∈ [k].
For simplicity, we useR(i)

I to denote the union∪r∈IR
(i)
r for

any subsetI ⊆ [k]. Since{i} ∪ Ii is the set of rows ofM (i)

that violates (P3), for everyi ∈ [t] we have

|R
(i)
{i}∪Ii

| ≤ n− k + |{i} ∪ Ii| − 1 = n− k + |Ii|. (6)

Lemma 9. For all i, i′ ∈ [t], the following statements hold

a) R
(i)
i′ =

{
Ri′ , if i′ 6= i,

(Ri′ \ {jmax}) ∪ {jmin}, if i′ = i,

b) R
(i)
Ii

= RIi , c) jmax /∈ RIi , d) jmin ∈ RIi ,

e) i /∈ Ii′ , f) |R(i)
{i}∪Ii

| = n− k + |Ii|.

Proof: Proof of a). Note that all the rows ofM (i) except
for the rowi are the same as that ofM . Therefore,R(i)

i′ = Ri′

if i′ 6= i. As row i of M (i) is obtained from rowi of M by
swappingmi,jmax

= 1 andmi,jmin
= 0, we deduce that

R
(i)
i = (Ri \ {jmax}) ∪ {jmin}.

Proof of b). By definition of Ii, i /∈ Ii. Therefore, using Part
a), we conclude thatR(i)

Ii
= RIi .

Proof of c). Suppose, for contradiction, thatjmax ∈ RIi . Due
to Part a) and b), we have

R
(i)
{i}∪Ii

= R
(i)
i ∪R

(i)
Ii

= ((Ri \ {jmax}) ∪ {jmin}) ∪RIi

= ((Ri \ {jmax}) ∪RIi) ∪ {jmin}

= (Ri ∪RIi) ∪ {jmin} ⊇ R{i}∪Ii .

As M satisfies (P3), we have

|R
(i)
{i}∪Ii

| ≥ |R{i}∪Ii | ≥ n− k+ |{i}∪ Ii| = n− k+ |Ii|+1.

This inequality contradicts (6).
Proof of d). Suppose, for contradiction, thatjmin /∈ RIi . Then
by Part a) and b) we have

R
(i)
{i}∪Ii

= ((Ri \ {jmax}) ∪ {jmin}) ∪RIi ⊇ {jmin} ∪RIi .

3



Therefore, using the fact thatM satisfies (P3), we deduce that

|R
(i)
{i}∪Ii

| ≥ |{jmin} ∪RIi | = 1 + |RIi | ≥ 1 + n− k + |Ii|.

This inequality contradicts (6).
Proof of e).Note thatjmax ∈ Ri. However, by Part c),jmax /∈
RI

i′
. Hence,i /∈ Ii′ .

Proof of f). Using Part a) we have

|R
(i)
{i}∪Ii

| = |R
(i)
i ∪R

(i)
Ii
| = |R

(i)
i ∪RIi | ≥ |RIi | ≥ n−k+ |Ii|,

(7)
where the last inequality comes from the fact thatM satisfies
(P3). Combining (6) and (7), the proof of f) follows.

Lemma 10. For all i, i′ ∈ [t], i 6= i′, it holds thatIi∩Ii′ = ∅.

Proof: Without loss of generality, we prove thatI1∩I2 =
∅. Suppose, for contradiction, that there existsℓ ∈ I1∩I2. We
first present three claims, which are used later in this proof.
Claim 1: For i = 1, 2 we have

|R
(i)
{i}∪Ii\{ℓ}

| = n− k + |Ii|, (8)

and
Rℓ = R

(i)
ℓ ⊆ R

(i)
{i}∪Ii\{ℓ}

. (9)

Proof of Claim 1: Indeed, because of the minimality
of Ii, the set{i} ∪ (Ii \ ℓ) does not violate (P3) inM (i).
Therefore,

|R
(i)
{i}∪Ii\{ℓ}

| ≥ n− k + |{i} ∪ (Ii \ ℓ)| = n− k + |Ii|.

On the other hand,R(i)
{i}∪Ii\{ℓ}

⊆ R
(i)
{i}∪Ii

, which also has
cardinalityn− k + |Ii|, due to Lemma 9 f). Therefore,

R
(i)
{i}∪Ii\{ℓ}

= R
(i)
{i}∪Ii

,

and
|R

(i)
{i}∪Ii\{ℓ}

| = |R
(i)
{i}∪Ii

| = n− k + |Ii|.

We also deduce thatR(i)
ℓ ⊆ R

(i)
{i}∪Ii\{ℓ}

. By Lemma 9 a), we

haveRℓ = R
(i)
ℓ . Thus we complete the proof of Claim 1.

Claim 2: Let K = (I1 \ {ℓ}) ∩ (I2 \ {ℓ}). Then fori = 1, 2,
the following holds

|R{i}∪Ii\{ℓ} \R{ℓ}∪K \ {jmax}| ≤ |R
(i)
{i}∪Ii\{ℓ}

| − |R{ℓ}∪K |.
(10)

Proof of Claim 2: Using Lemma 9 a) and b), we have

R{i}∪Ii\{ℓ} = Ri ∪RIi\{ℓ}

= Ri ∪R
(i)
Ii\{ℓ}

= ((R
(i)
i ∪ {jmax}) \ {jmin}) ∪R

(i)
Ii\{ℓ}

⊆ {jmax} ∪ (R
(i)
i ∪R

(i)
Ii\{ℓ}

)

= {jmax} ∪R
(i)
{i}∪Ii\{ℓ}

.

Therefore,R{i}∪Ii\{ℓ} \ {jmax} ⊆ R
(i)
{i}∪Ii\{ℓ}

. Hence

|(R{i}∪Ii\{ℓ} \R{ℓ}∪K) \ {jmax}| = |(R{i}∪Ii\{ℓ} \ {jmax})

\R{ℓ}∪K |

≤ |R
(i)
{i}∪Ii\{ℓ}

\R{ℓ}∪K |

= |R
(i)
{i}∪Ii\{ℓ}

| − |R{ℓ}∪K |,

where the last equality can be explained by the fact that
R{ℓ}∪K ⊆ R

(i)
{i}∪Ii\{ℓ}

. Indeed, we have

Rℓ ⊆ R
(i)
{i}∪Ii\{ℓ}

due to (9). Moreover,K ⊆ Ii \{ℓ}. Hence the aforementioned
inclusion holds. We complete the proof of Claim 2.
Claim 3: If I1 ∩ I2 = {ℓ} then for i = 1, 2, we have

|R{i}∪Ii\{ℓ} \Rℓ \ {jmax}| ≤ |Ii| − 1. (11)

Proof of Claim 3: Applying (10) withK = ∅, we obtain

|R{i}∪Ii\{ℓ} \Rℓ \ {jmax}| ≤ |R
(i)
{i}∪Ii\{ℓ}

| − |Rℓ|

(8)
= (n− k + |Ii|)− (n− k + 1)

= |Ii| − 1.

We complete the proof of Claim 3.
The remaining of the proof of Lemma 10 is divided into

two cases. Our goal is to obtain contradictions in both cases.
Case 1:I1 ∩ I2 = {ℓ}.
We aim to show that

|R{1,2}∪I1∪I2 | < n− k + |{1, 2} ∪ I1 ∪ I2|. (12)

This is a contradiction of our assumption thatM satisfies (P3).
Firstly, sinceI1 ∩ I2 = {ℓ}, we have

n− k + |{1, 2} ∪ I1 ∪ I2| = n− k + |I1|+ |I2|+ 1. (13)

Secondly, we consider

R{1,2}∪I1∪I2 = Rℓ ∪ (R{1}∪I1\{ℓ} \Rℓ) ∪ (R{2}∪I2\{ℓ} \Rℓ)

= Rℓ ∪ {jmax} ∪ ((R{1}∪I1\{ℓ} \Rℓ) \ {jmax})

∪ ((R{2}∪I2\{ℓ} \Rℓ) \ {jmax}).

Therefore,

|R{1,2}∪I1∪I2 | ≤ |Rℓ|+ 1 + |(R{1}∪I1\{ℓ} \Rℓ) \ {jmax}|

+ |(R{2}∪I2\{ℓ} \Rℓ) \ {jmax}|

(11)
≤ (n− k + 1) + 1 + (|I1| − 1) + (|I2| − 1)

= n− k + |I1|+ |I2|.
(14)

Combining (13) and (14), we obtain (12). We complete the
analysis of Case 1.
Case 2:(I1 \ {ℓ}) ∩ (I2 \ {ℓ}) = K 6= ∅.
We aim to prove that

Rℓ ⊆ RK , (15)

and
|RK | = n− k + |K|. (16)

If both (15) and (16) hold then

|R{ℓ}∪K | = |RK | = n− k + |K| < n− k + |{ℓ} ∪K|,

which contradicts our assumption thatM satisfies (P3).
Let δ = |Rℓ \RK | ≥ 0. As M satisfies (P3), let

|RK | = n− k + |K|+ ε,
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whereε ≥ 0. Then

|R{ℓ}∪K | = |RK |+ |Rℓ \RK | = n− k + |K|+ ε+ δ. (17)

We have

R{1,2}∪I1∪I2 = R{ℓ}∪K ∪ (R{1}∪I1\{ℓ} \R{ℓ}∪K)

∪ (R{2}∪I2\{ℓ} \R{ℓ}∪K)

= R{ℓ}∪K ∪ {jmax}

∪ ((R{1}∪I1\{ℓ} \R{ℓ}∪K) \ {jmax})

∪ ((R{2}∪I2\{ℓ} \R{ℓ}∪K) \ {jmax}).

Therefore

|R{1,2}∪I1∪I2 | ≤ |R{ℓ}∪K ∪ {jmax}|

+ |(R{1}∪I1\{ℓ} \R{ℓ}∪K) \ {jmax}|

+ |(R{2}∪I2\{ℓ} \R{ℓ}∪K) \ {jmax}|

(10)
≤ |R{ℓ}∪K |+ 1

+ |R
(1)
{1}∪I1\{ℓ}

| − |R{ℓ}∪K |

+ |R
(2)
{2}∪I2\{ℓ}

| − |R{ℓ}∪K |

= |R
(1)
{1}∪I1\{ℓ}

|+ |R
(2)
{2}∪I2\{ℓ}

|

− |R{ℓ}∪K |+ 1

(8)(17)
= (n− k + |I1|) + (n− k + |I2|)

− (n− k + |K|+ ε+ δ) + 1

≤ n− k + |I1|+ |I2| − |K|+ 1.

(18)

Moreover, asI1 ∩ I2 = {ℓ} ∪K, we have

|{1, 2} ∪ I1 ∪ I2| = 2 + |I1|+ |I2| − |{ℓ} ∪K|

= |I1|+ |I2| − |K|+ 1.
(19)

As M satisfies (P3), from (18) and (19), we conclude that

|R{1,2}∪I1∪I2 | = n− k + |I1|+ |I2| − |K|+ 1.

Therefore, all of the inequalities in (18) must be equalities. In
particular, the last equality forcesε = 0 andδ = 0. As δ = 0
implies that (15) holds andε = 0 implies that (16) holds, we
complete the analysis of Case 2.

In any cases, we always derive a contradiction. Therefore,
our assumption that there exists someℓ ∈ I1 ∩ I2 is wrong.
HenceI1 ∩ I2 = ∅. It follows immediately thatIi ∩ Ii′ = ∅

for every i, i′ ∈ [t], i 6= i′.

We are now in position to prove Lemma 8, which in turn
implies Theorem 6.

Proof of Lemma 8: Recall that we assume that

{i ∈ [k] : mi,jmax
= 1 andmi,jmin

= 0} = [t]. (20)

Moreover, we suppose, for contradiction, that none of theset
rows satisfy the second condition in Step 7 of Algorithm 1. As
shown by Lemma 9 c), d), e), and Lemma 10, we can associate
to eachi ∈ [t] a subsetIi ⊂ [k] satisfying the following

(S1) i /∈ Ii′ , for all i, i′ ∈ [t],
(S2) jmax /∈ RIi , for all i ∈ [t],

(S3) jmin ∈ RIi , for all i ∈ [t],
(S4) Ii ∩ Ii′ = ∅, for all i, i′ ∈ [t], i 6= i′.
Due to (S2) and (S3), for eachi ∈ [t], there exists a rowr(i) ∈
Ii that has a zero at columnjmax and a one at columnjmin.
By (S1) and (S4),r(i) 6= i′ for all i, i′ ∈ [t] andr(i) 6= r(i′)
wheneveri 6= i′.

1 0row 1
1 0row 2

1 0row t

0 1row r(1)

0 1row r(2)

0 1row r(t)

t rows

t rows

b
b
b

b
b
b

b
b
b

b
b
b

Along the rows in the set[t] ∪ {r(i) : i ∈ [t]}, the weights
of the two columnsjmax and jmin are the same (equal tot).
The other rows ofM , because of (20), must contribute at
least as much to the weight of columnjmin as to the weight
of column jmax. Therefore, in total, the weight of column
jmax is not larger than the weight of columnjmin of M . This
conclusion contradicts the fact thatmax ≥ min+2.

We now discuss the complexity of Algorithm 1. In the
initial matrix M̃ , the difference between the maximum and
the minimum column weights is at mostk − 1. Therefore,
according to the proof of Lemma 7, the repeat loop finishes
after at most(k − 1)⌊n

2 ⌋ iterations. It is obvious that all
steps in each iteration can be done in polynomial time inn
and k, except for Step 7. It is not straightforward that the
verification of (P3) for a givenk × n matrix can be done in
polynomial time. However, it can be shown that by considering
a special one-sourcek-sink network (of linear size ink andn)
associated with each matrix, (P3) is equivalent to the condition
that in this network, the minimum capacity of a cut between
the source and any sink is at leastn. On any network, this
condition can be verified in polynomial time using the famous
network flow algorithm (see, for instance [6]). Therefore,
Algorithm 1 runs in polynomial time ink and n. We omit
the proof due to lack of space. Interested reader can find the
proof online at [5].
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