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Abstract—We show that givenn and k, for ¢ sufficiently large, In fact, any error-correcting code can be used in the
there always exists an[n, k], MDS code that has a generator aforementioned scheme for sensor networks. We choose to
m(;“‘t”XSG Sat'sfy'”g;he fo"‘f’g";]g two conditions: A ~ study MDS codes first because their structure, especiadiy th
(C1) Sparsest: each row ofG has Hamming weightn — k + 1; weight distribution, is well studied (see, for instancé Ch.

(C2) Balanced: Hamming weights of the columns ofG differ . . s
from each other by at most one. 11]). Moreover, they have optimal error-correcting capigbi
given the length and the dimension. We prove that over a
|. INTRODUCTION sufficiently large field, there always exists an MDS code that

We study the existence and provide a construction ofhes a balanced and sparsest generator matrix, which igyideal
sparsestindbalancedgenerator matrix of Maximum Distancesuitable for the above encoding scheme for sensor networks.
Separable (MDS) codes. A generator matrix is the sparsesNecessary notations and definitions are provided in Sec-
if it contains the least number of nonzero entries among &ibn [l We state and prove our main result in Secfion Il1.
generator matrices of the same MDS code. A generator matrix
is balanced if every column contains approximately the same
number of nonzero entries. More specifically, we require¢ tha We denote byF, the finite field with ¢ elements. Let
the number of nonzero entries in each column differs frofy] denote the se{1,2,...,n}. The support of a vector
each other by at most one. u = (u1,...,u,) € F is defined bysupp(u) = {i € [n] :

Apart from being of theoretical interest, our study om: # 0}. The (Hamming)weightof w is [supp(u)|. We can
balanced sparsest generator matrices for MDS codes v#gp define weight and support of a row or a column of a
motivated by its application in error correction for sensdhatrix over some finite field, by regarding them as vectors

networks. Suppose sensorssy, ..., S,, collectively measure over that field. Apart from Hamming weight, we also use
k conditionsz1, . .., zx, such as temperature, pressure, ligfither standard notions from coding theory such as minimum

intensity, etc. Lete = (z1,...,xx), wherez; € T, for each distance, lineafn, k], and[n, k,d], codes, MDS codes, and

i=1,...,k (F, is afinite field ofq elements). These sensorgenerator matrices (for instance, see [1]).

transmit the information they collected to a base statidiicty ~ For a matrixG = (g; ;) € F;*™, the support matrixof G,

is a data collector. Furthermore, each sensor performs sof@gotecsupp(G), is ak x n binary matrixM = (m; ;) where
encoding on the information it has, before transmitting thei,; = 0 if g;; = 0 andm; ; = 1 if g;; # 0. Let M =
information back to the base station in the following wayt Le(mi,;) be ak x n binary matrix. We denote byar(M) =
G be ank x n generator matrix of afn, k, d],, error-correcting (vi,;) the matrix obtained frond/ by replacing every nonzero
code. Sensof, transmits the scalar product efand column entrym; ; =1 by &; ;, whereg; ;'s are indeterminates. More
i of G to the base station. It is well known in classicaformally, v; ; = 0 if m;; = 0 andv;; = & ; if m;; = 1.

coding theory that this coding scheme allows the base statid/e also denote bgr(M) the bipartite graphy = (7, &)

to retrieve x when at mostL%J sensors transmit wrong defined as follows. The vertex s&t can be partitioned into

Il. PRELIMINARIES

information. Moreover, the base station can also identifwo parts, namely, the left paft = {/,, ..., {x}, and the right
the malfunctioned sensors. For each senSgronly those partR = {ri,...,r,}. The edge set is
conditions corresponding to nonzero entries of colunofi G . .

P 9 & = {(fi,rj) i elk], j€n], mi,; # 0}.

are involved into encoding. So it is sufficient f6f to measure

only such conditions. Thus, if7 is sparse then in averageFor anyk x n matrix N, we definef(N) = [[p det(P),
each sensor only needs to measure a few antoognditions where the product is taken over 4Jl) submatrices” of order
in order to achieve the desired error correction capabity % of V.
top of that, if columns ofG have approximately the same
number of nonzero entries then the sensors are required to
measure approximately the same number of conditions. ThigA sparsest generator matrix of &m k], MDS code would
balance guarantees an even distribution of workload amdfgve precisely,—k-+1 nonzero entries in every row. Moreover,
sensors, which is an important criterion for sensor networK it is balanced, then each column contains Eith@f%H)J
where energy saving is a critical issue. or [M1 nonzero entries. Hereafter, we often uBg

n
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i € [k], andC}, j € [n], to denote the supports of roivand | U;c; R;| > n—k+ |I|, for every subsew # I C [k]. (2)

columnj, respectively, of & x n binary matrix M. Note that Proof: Suppose that[{1) holds and that there exists a
R; C[n] andC; C [k]. nonempty sefl C [k] satisfying
Lemma 1. Let M = (m; ;) be ak xn binary matrix. Suppose |Uier Ril <n—k+|I| - 1. (3)

that each row ofM has weightn — k +1. ThenMis the v 5im 1o obtain a contradiction. The conditi¢n (3) is equiv-
support matrix of a generator matrix of sonte, k], MDS alent to

. ! neTry o
;O?(e\,;\gii_r?)sgfgflenﬂy large fieldl, (¢ > (k_l)) if and only ‘ Nict Ri’ > k- I +1. )
Proof: SupposeM = supp(G), where G = (g, ;)
is a generator matrix of somg, k], MDS code. Due to
a well-known property of MDS codes (setl [1, p. 319]), | Ujes Cj\ <k-—|Il<k=I4+1=1J| (5)

every submatrix of ordek of G has nonzero determinant. . . .
Therefore,f(G) # 0. Note thatf(var(M)) can be regarded We optaln a contradlctlop betvyeg!ﬁ (1) afill (5). The “only if
direction can be proved in a similar manner. [ ]

as a multivariable polynomial if¥,|...,&; ;,...]. Moreover,
since M = supp(G), we deduce thaf(G) can be obtained Lemma 5. Let M = (m; ;) be akxn binary matrix. Suppose
from f(var(M)) by substitutings; ; by ¢, ; for all ¢, j where that each row ofM has weightn — k£ 4+ 1. ThenM is the
gi,; 7 0. As f(G) # 0, we conclude thaf (var(M)) # 0. support matrix of a generator matrix of songe, k], MDS
Now suppose thaf(var(M)) # 0. Note that each column code over a sufficiently large field, (¢ > (Z:I)) if and only
of var(M) belongs to precisely} 1) submatrices of ordet if ) holds.
of var(M). Hence the exponent of eagh, in f(var(M))
is at most (}~}). Since f(var(M)) # 0, by [2, Lemma _
4, if ¢ > (Z:D then there existg;; € F, (for i, We present below our main result.
wherem; ; = 1) so thatf(var(M))(...,9i,..-) # 0. Lét Theorem 6 (Main Theorem) Supposel < k < n and ¢ >
G = (gi;) (for i, j wherem, ; = 0 we setg;; = 0). Since (n—1) Then there always exists 4n, k|, MDS code that has
H(@G) = flvar(M))(....gi;,---) # 0, again by [[1, p. 319], 3 generator matrixG satisfying the following two conditions.
we deduce thai is a generator matrix of afn, k|, MDS (C1) Sparsest: each row o has weightn — k + 1.

code. Therefore, each row 6 has weight at least —k+1, (c2) Balanced: column weights @& differ from each other
due to the Singleton Bound (se€ [1, p. 33]). Since each row by at most one.

of M also has weight: — k + 1, we deduce that; ; # 0
whenevenn, ; = 1. Therefore, M = supp(G). n By Lemmal5, to prove Theorefd 6, we need to show that

_ . there always exists & x n binary matrix M satisfying the
Lemma 2. Let M = (m,;) be ak x n binary matrix. following properties

Then f(var(M)) # 0 if and only if every bipartite subgraph (P1) each row ofM has weightn — k + 1

induced by thek left-vertices and somé right-vertices in (P2) column weights oM differ from each other by at most
gr(M) has a perfect matching. one

Proof: Let ¢ = gr(M). Each submatrixP of orderk (P3) |Ui€I Ri‘ > n—k+ |I|, for every subsets # I C [k],
of var(M) corresponds to a bipartite subgragt induced where R; denotes the support of rowof M.
k_Jy the & Ieft-.vertlces and somé right-vertices in¢. In _the We prove the existence of such a binary matrix by designing
literature, P is usually referred to as thEdmonds matriof  an algorithm (Algorithm 1) that starts from an initial biyar
p. Itis well known (seel[3, p. 167]) that a bipartite graph hagatrix which satisfies (P1) and (P3). In each iteration, the
a perfect matching if and only if the deteminant of its Edm®ndnatrix at hand is slightly modified so that it still satisfiel]
matrix is not identically zero. Hence the proof follows. B ¢ (P3) and its column weights become more balanced. When
Lemma 3. Let M = (m; ;) be ak x n binary matrix. Then the algorithm terminates, it produces a matrix that sasisfie

every bipartite subgraph induced by tieleft-vertices and (P1). (P2), and (P3).

only if that satisfies (P1) and (P2), using the Gale-Ryser Theoreen (s

Manfred [4]). However, (P1) and (P2) do not automatically
| Ujes Cj| = |J], for every subsef C [n], |J| <k. (1) guarantee (P3). Indeed, the matdX given below satisfies
Proof: Let ¥ = gr(M). Each submatrid” of orderk of  hoth (P1) and (P2). However, (P3) is violated if we choose
var(M) corresponds to a bipartite subgrapte induced by 1 — {1,2,3}.
the k left-vertices and somé right-vertices in. The lemma

Hence there exists a sdtof k£ — || + 1 columns of M that
satisfies| N;c; C;| > |I|. Equivalently we have

Proof: The proof follows from Lemmali}4. [ |

follows by applying Hall's marriage theorem to each of such 1 8 8 8 1 (1) i (1)
subgraphs ogr(M). [ ] P11 0000111
Lemma 4. Let M = (m, ;) be ak x n binary matrix. The 01111000
condition [1) is equivalent to 01 110100



Let M be any k x n binary matrix that satisfies bothrespectively. Without loss of generality, we assume that th
(P1) and (P3). For instance, we can shift the vectdirst¢ rows are all the rows oM satisfying the property that
(11---100 ---0) k times cyclically to producé: rows each of them has a one at colum.. and a zero at column
N—— .

Jmin- In other words, assume that

n—k+1
of such a matrix as below. .
{ie[k]: mij,., =1landm,;, =0} =[]

1 1 1 1 0 0 0 0 .
01 1 110 0 0 Sincemax — min > 2, we havet > 2.
~ 1o 0 1 111 0 0 Suppose, for contradiction, that none of thesews satisfy
M = o the condition in Step 7 of Algorithm 1. LeM ), i € [t], be
Do oo <o the matrix obtained from\ after swapping the two entries
000 -~ 1111 - 1 M j.. andm, ;.. ThenM ", i e [t], does not satisfy (P3).
_ — _ Since M satisfies (P3) and the only difference betwe”)
The Algorithm 1 takesM as an input parameter. and M is the rowi, the set of rows of\Z (") that violates the
: condition (P3) must contain row Therefore, for each € [¢],
__ Algorithm 1 there exists a sek; C [k], i ¢ I;, such that{i} U I; is a set
Input: n, k, M; of rows that violates (P3) id”). For our purpose, for each
Initialization: M := M; i € [t], we choosd; to be of minimum size among those sets
1: repeat that satisfied the aforementioned requirement. Since foin ea
2. Let max andmin be the maximum and minimum ;e [#], |R"”)| = |R;| = n — k + 1, we deduce thaf; # 0.
weights of columns ofV/; Let R\ denote the support of row of M@, i € [t], r €
3 if max—min <1 then [k]. Note thatR, denotes the support of rowof M, r € [k].
4 ReturnM; For simplicity, we user!” to denote the union,<;R\" for
5. end if , , , any subset’ C [k]. Since{i} U I; is the set of rows of\s "
6: Find two columngjy,ax _andgmin that have weighty 14t violates (P3), for everye [t] we have
max andmin, respectively; _
7. Find a row i, satisfying m; ;... = 1 and IRE?}UL,,I <n—k+[{i}ul|-1=n—-k+|L. (6)
Mi, juin = 0 @Nd moreover, if we set;, j,,,. = Lemma 9. For all i,i’ € [t], the following statements hold
0 andm;, ;... = 1 thenM still satisfies (P1) and _ R it i L
. (2) ) LIS 7£ Z,
(P3); a) R’ = . . o,
8  Swapping: setn;_ ;... =0 andm;_;... =1; _ (Rir \ Umax}) U {Jmin}, i7" =14,
9: until max — min < 1; b) R%) =Ry, C)Jmax € Rr;, d) jmin € Ry,
e) i ¢ I, MIRY | =n—k+]L

Due to space constraint, we have prepared a separate note
at [5] with an example to demonstrate the algorithm. Proof: Proof of a). Note that all the rows oM (V) except

Lemma 7. Suppose in every iteration, Algorithm 1 can alwayisor,/the row; are the sam(% as that of. Therefore,RE,) = Ri
find a legitimate row described in Step 7. Then the algorithth ¢ 7 i- As rows of M is obtained from row of M by
terminates after finitely many iterations and returns a rixatr SWaPPINgi 5, = 1 andm;,,, = 0, we deduce that
satisfying (P1), (P2), and (P3). Rz@ = (Ri \ {jmax}) U {Jmin}-

Proof: At a certain iteration, lefA\ = max — min. After
swapping the two entriesq;, ;... andm,, ; .. the weight

S . , we conclude thak'” = Ry,
of column j,,.. is decreased by one whereas the weight roof of c). Suppose for contradiction thithex € Ry, DUE
column j.,;, is increased by one. Therefore, after at mos ' ' :

b Part a) and b), we h
|n/2] iterations,A is decreased by at least one. Hence, the arta) and b), we have

Proof of b). By definition of I;, i ¢ I;. Therefore, using Part

algorithm must terminate after finitely many iterations.eTh Rf{?}u L= Rl@ U Rfr?
ouput matrix obviously satisfies (P1), (P2), and (P3). ®m = ((Bi \ {jmax}) U {jmin}) U Ry,
Lemma 8. In every iteration of Algorithm 1, a row, as = ((Ri \ {Jmax}) URL) U {jmin}

described in Step 7 of the algorithm can always be found. )
P g Y = (Rl U Rlz) U {]min} 2 R{z}ull

Since columnj,. has a larger weight than colunyi,;,,, As M satisfies (P3), we have

there always exists at least one rewwherem,;_; =1 ‘
andm, j,,,, = 0. Obviously, swappingni, ;,... andmi_ ;... R, | > [Raor| > n—k+ [{i}UL] =n—k+|L|+1.
Jd\i)[es not rr_1|i':1kd\_/l violate (fPl).hThe stricter cntecr;onfls that.l.hiS inequality contradictSs).
must sti satisfy (P3) after the swap. We need a few MOBo0f of d). Suppose, for contradiction, that:, ¢ Ry,. Then
auxiliary results before we can prove Lemfia 8. by Part a) and b) we have
Suppose at a certain iteration, we choose some coluers_
Jmax and juin that have maximum and minimum weights,R&)}Uh = ((Ri \ {Jmax}) U {Jmin}) U Rz, 2 {jmin} U Ry,.



Therefore using the fact thatl satisfies (P3), we deduce thatvhere the last equality can be explained by the fact that

k+ |L]. Ripux C R% Aur\ (- Indeed, we have
Th|s mequality contradict§{6). R, C RE(?}uz-\{z}
Proof of e). Note thatj,,.x € R;. However, by Part C)jmax ¢ ]
Ry,. Hence,i ¢ I;. due to [9). MoreoverK C I, \ {¢}. Hence the aforementioned
Prgof of f). Using Part a) we have inclusion holds. We complete the proof of Claim 2. m
@) o) @) Claim 3: If I; NIz = {¢} then fori = 1,2, we have

|R{ honl = [RTUR | = [R;VURL| > |Ry,| > ils ,

@) IRiyoragey \ Be \ {Jmax}| < [1i] = 1. (11)
where the last inequality comes from the fact thdt satisfies Proof of Claim 3: Applying (I0) with K — &, we obtain

(P3). Combining[{) and{7), the proof of f) follows. m
< _
Lemma 10. For all 4,4’ € [t], i # 7, it holds that;NI; = @. I Rgiyor oy \ Be\ {max}] |R{ }va\{f}l | el

, . (&)

Proof: Without loss of generality, we prove thatn I, = =Mm—k+|L)-(n—-k+1)
@. Suppose, for contradiction, that there exists I; N 1. We =|L;| - 1.
glztigreiee;;rthreel czla\:vrzsr,];i//rgch are used later in this proo(Ne complete the proof of Claim 3, -

' b= The remaining of the proof of Lemniall0 is divided into
|R?}UI \{£}| =n—k+|L, (8) two cases. Our goal is to obtain contradictions in both cases
and - \C/:vase_ 1:{1 mhlg :t;{f}t.
i i e aim to show tha
Re= Ry C Rigyor ey ©)

Proof of Claim 1: Indeed, because of the minirgj;allity |Rii2yununl <n—k+[{1,2}ULULL  (12)

'(I)'Le,?e;:ree set{i} U (Z; \ £) does not violate (P3) iM""”. 15 is a contradiction of our assumption tHett satisfies (P3).

Firstly, sincel; N I, = {¢}, we have

n—k+{1,2} UL UL|=n—k+|L|+ |2 +1. (13)
On the other handR{ AT} R(Z , Which also has Secondly
cardinalityn — k + |I;|, due to Lemm&lg f). Therefore, ’

|R{ Aoy Zn—k+ i UL\ O =n—k+[L].

we consider

Royonun = ReU (Rpnungey \ Re) U (Rizyun\ (e \ Re)

R O _ .
{ifuL\{£} {iyur = Ry U {Jmax} U (Rinyurngey \ Be) \ {Jmax})
N T U((Reyor i \ R\ Umas))
| iYUI; Z|_| 'U1|_n + | 1.
ul{e {(} Therefore,
We also ded tha!” CR Y By L , )
e also de (‘:)CE‘ ¢ {ijuriey- BY emm‘ﬂ’_a) Y R syunun| < IRl + 1+ [(Rajon g \ Be) \ {imax}]
haveR, = R,’. Thus we complete the proof of Claim 1m + (R \ Re) \ {jmax}
Claim 2: Let K = (I; \ {¢}) N (L5 \ {£}). Then fori = 1,2, oy 2L e
the following holds < (n—k+D)+1+(0L]-1)+ (L] -1)
|Reivurngey \ Rigpur \ {max | < |R{ YUT; \{z}| |Reeyuk |- =n—k+ |L|+ L2
(a0 (14)
Proof of Claim 2: Using L d b), h L .
foot ot Liaim sing Lemma.B &) and b), we have Combining [I8) and[{14), we obtaifi {12). We complete the
Reyon\ey = iU Br\ (g analysis of Case 1.
=R, U RY)\{g} Case 2:(11 \ {é}) N (_[2 \ {f}) =K # 2.
() We aim to prove that
= ((R;"” U{jmax}) \ {Jmin}) U RL\{@}
_ O |, g Ry € Rk, (15)
c {]max} U (Ri RI \{l})
_ @) and
= Umax} U Rjur oy |Ric| =n—k+]|K]|. (16)
Therefore,R;yur,\(e3 \ {Jmax} € R{ Jur (- Hence If both (I8) and[(16) hold then
[(Reiyurngey \ Reeyur) \ {dmax} = [(Rgyurgey \ {Jmax}) |Ripyur| = |Rx| =n—k+|K|<n—k+|{{} UK],
\ Bgyul which contradicts our assumption thaf satisfies (P3).
|R?}UL\{€} \ Ripukl Leté = |R¢ \ Ri| > 0. As M satisfies (P3), let
= R0y — [ Renyoxcl, Ri| =n—k+|K|+e,

4



wheree > 0. Then (S3) Jjmin € Ry, forall i € [t],
R — R R\ Rl = K 5 (17 (S4) NI, =w, foralli,i €[t], i #4.
[Byor| = [R| +|Re\ B[ =n—k+[K|+e+d (17) et (S2) and (S3), for eadte [t], there exists a row(i) €
We have I; that has a zero at columjy,.x and a one at columpi;y,.
By (S1) and (S4)r(¢) # ' for all ¢,:" € [t] andr(i) # (i’
R 2yunun = Ruur U (Riyone \ Ryguk) W)rce(ne\aeri 2 E,_ (@) # 1 (@) # (@)

U (Ry2yur\{ey \ Ryeyuk)

= Riyur U {Jmax} row 1 1 0
U (R ; row 2 1 0  rows
(Rgyunngey \ Brauk) \ {dmax}) . :
U((Ryun\ger \ Ripur) \ {Jmax})- ow ¢ : :
Therefore row (1) . X
|R123unun| < [Rigpuk U {jmax}| row r(2) 0 1 © rows
+ |(Riyongey \ Ryeyor) \ {Jmax row () : :

+ [(Rizpon\ger \ Breyur) \ {Jmax}|
Along the rows in the seft] U {r(¢) : ¢ € [t]}, the weights

< [Reguk|+1 of the two columnsj,,.. andj,i, are the same (equal t).
+ |R§(11)}u11\{z}| — |Rypyuk| The other rows ofM, because of[(Z_O), must contribute at
) (18) least as much to the weight of columip;, as to the weight
+ |R{2}u12\{13}| - |R{f}uK| of column j..... Therefore, in total, the weight of column
_ |R(1) | + |R(2) | Jmax IS not larger than the weight of colum,;,, of M. This
E}UI]\{T: 1 2R conclusion contradicts the fact thatax > min +2. ]
— [vgyuk
®@TD e We now discuss the complexity of Algorithm 1. In the
= (n—k+|L|)+(n—Fk+|L2) initial matrix M, the difference between the maximum and
—(n—k+|K|+e+6)+1 the mir_wimum column weights is at mot— 1. Theref(_)r_e,
<n—k+ ||+ || - |K|+1. according to the proof of _Lemrﬂa 7, th_e repegt loop finishes
after at most(k — 1) %] iterations. It is obvious that all
Moreover, asl; N I, = {{} U K, we have steps in each iteration can be done in polynomial time: in
{1,2Y UL UL| =2+ L]+ |Is] - |{{} UK] and k, except for Step 7. It is not straightforward that the

(19) verification of (P3) for a giverk x n matrix can be done in
= L]+ L] = | K[+ 1. polynomial time. However, it can be shown that by considgrin
As M satisfies (P3), froni (18) an@ (19), we conclude that @ special one-sourdesink network (of linear size ik andn)
associated with each matrix, (P3) is equivalent to the daordi
[Royonunl =n—k+ L] + || — [K]+ 1. that in this network, the minimum capacity of a cut between
Therefore, all of the inequalities ifi{18) must be equaitim (e Source and any sink is at least On any network, this
particular, the last equality forces= 0 andd = 0. As § = 0 condition can be verified in polynomial time using the famous

implies that [T5) holds and = 0 implies that [I5) holds, we network flow algorithm (see, for instancél [6]). Therefore,
complete the analysis of Case 2. Algorithm 1 runs in polynomial time ik and n. We omit

In any cases, we always derive a contradiction. Therefof8€ Proof due to lack of space. Interested reader can find the
our assumption that there exists some I; N I is wrong. Proof online at[[].
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