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Abstract: This paper gives a solution to one of the long-standing open problems in network information theory: “What is the
generalization of the strong interference regime to the K-user interference channel?”

Index Terms. multi-user interference channels, strong interference regime.

|. INTRODUCTION

One of fundamental open problems in network information theory is to determine the capacity region of the Classical Interference
Channel (CIC). The importance of this problem is by now widely acknowledged. As these channels are very useful models for
wireless communication systems, in recent years they have been extensively studied. For a detailed review of the existing literatures
refer to Part | of our multi-part paper [1]. However, for the two-user CIC capacity results are known in some special cases, the multi-
user channels are far less understood [9, page 6-64].

In 1981 [10], Sato derived a regime for the two-user Gaussian CIC wherein joint decoding both messages at both receivers is optimal
and achieves the capacity. Six years later, in 1987 [11], Costa and EI Gamal extended the Sato’s result for the discrete channel. This
regime in which the capacity region is derived by decoding both messages at both receiversis called the “ strong interference regime”.
From that time, for about 25 years, it has been an open problem [9, page 6-68] that what is the generalization of the strong interference
regime for the multi-user CICs? In this paper, we give a solution to this problem. Clearly, we develop a new approach based on which
one can derive strong interference regime for any given interference network. To this end, we develop some new technical lemmas
which have a central rolein our derivations.

This manuscript addresses our main results for the classical interference channel. However, our methodology is applicable for
arbitrary single-hop communication networks with any topology. Please refer to Part 111 of our multi-part paper [3] where we have
presented a general formulato derive strong interference conditions for all single-hop communication networks of arbitrary large size.

In the following, we use the notations and definitions given in Part | of our multi-part paper [1], amost al of them are standard. Also,
channel models and information theoretic concepts such as capacity region are given as usual. Details can be found in [1].

In Section I, we present our new technical lemmas. In Section I11, we discuss a part of the ideas for our derivations. In Section IV, we
derive our main results for three-user CIC and finally in Section V, we extend the results to the K-user CIC.

'Reza K. Farsani was with the department of electrical engineering, Sharif University of Technology. He is by now with the school of cognitive
sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
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[I. NEwWLEMMAS

In what follows, we derive some technical lemmas which are repeatedly used throughout the paper. The following results indeed have
acentral role for our derivations.

Lemma 1) Let Yy, Yp, X1, X, ooy Xy s Xy 415 o0 r Xy 41, D€ @rbitrary sets, where uy, 1, € N are arbitrary natural numbers. Let also
]P’(yl,y2|x1,x2, o X Xy 410 ...,xulwz) be a given conditional probability distribution defined on the set UY; X Y, X X; X X, X

Xy X Xy 41 X oo X Xy, 4y, Consider the inequality below:

I(Xl'" H1'Y1| 1+1""’Xﬂ1+#2)S1(X1"' #1’Y2| 1+1""’Xl‘-1+#2)

(1)
If the inequality (1) holds for all PDFS Px, _x, x,. 1. X 4u, (%1 e s Xy Xy 41 w0 Xy, 41, ) With the following factorization:
PX1---Xu1Xu1+1---Xu1+uz = PX1---X;41 (xl' - xlil)PXulﬂ(xM1+1)PXu1+2(xM1+2) Xu1+ﬂ2( #1+Mz)
@)
then, we have:
1(X1s oo X3 Vil Xy 10 s Xy e D) S T (X oo, X Vo Xy 15 s Xy 4y D)
©)

for all joint PDFs Ppy,
Markov chain.

R O T (d, %1 ooy Xy X 41s oo Xy 4pr,) WHErE D = Xy, o, Xy, Xy b1 ooos Xy 4, = Y1, Yo fOrms a

Proof of Lemma 1) First we show that (1) implies the following inequality:

I(Xl' B V-l’Y1| Hpt1r ey H1+H2’W)<I(X1"' ﬂl'YZ Xu1+1"" u1+ﬂz'W)
4

for all PDFS P, . x,, Xy 41Xy ey (Wr X0 w000 Xy Xyt 410 0» Xy 1) With:

Pwxs Xy X1 Xy vy = PWPXl---Xu1|WPXu1+1|WPXu1+2|W PXu1+uz w

©)

where W - Xy, ..., X, X415 0 X

y i+, — Y1, Yo forms aMarkov chain. To prove this inequality, one can write:

I(Xl’" #1’Y1| 1+1""’X#1+H2’W)

=ZPW(W)I(X1,.. X Y| Xu 1 oo Xy by W)

=ZPW(W)I(X1,.. X, Y|X IRSTRD A I

XP XP X..XP
X1 Xpq|w Xpg W™ Xy 2|w X”1+“2|W)

a)
= ZPW(W)I(XP- - ﬂl'Yzl u1+1""'Xu1+uz)<p

xXP XP X..XP
X1.Xpq|w Xu1+1|W Xu1+2|W X#1+#2|W>

=ZPW(W)I(X1,.. Xuo YalXoons o Xy W)
w

=1(X1' e V-l’Y2| Hitls ey u1+u2'W)
(6)
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where the notation I(4; B|C)p(,, indicates that the mutual information function 1(4; B|C) is evaluated by the distribution P(.). Note
that for each certainw, the function Py x, |w X Px, . jw X Px, olw X =X Py w IS @ probability distribution defined over the
Xy up+1 n1+2 H1tp2

Set Xy X oo X Xy, X Xy 41 X oo X Xy, 4, With the factorization (2). The inequality (a) is dueto (1).

1|W

Now, having at hand the inequality (4), one can substitute W = (D,Xﬂlﬂ,Xul”, #mlz) with an arbitrary joint distribution? on
the set D XX, 41 X..XX By this substitution, we derive that (3) holds for al joint PDFs

K1t
PDXu1+1---Xu1+uz PX1---XullDXulﬂ---Xulwz . The proof is complete. &

Remark 1) It is essentid to remark that the inequality (3) holds only for those auxiliary random variables "D" where D —

Xpy oo Xy Xy 410 o Xy 4, = Y1, Yo formsaMarkov chain. For example, itiswrongto set D = Y, in (3) and deduce that:

I(Xl"' H1’y1| Myt e XP-1+H2' )_ 0
()

In general, (1) does not imply the equality (7). For more explanation, consider a two-user broadcast channel with input X and outputs
Y; and Y, with transition probability function P(y,, y,|x). Consider the following condition:

I(X;Y,) <I(X;Y;) for all joint PDFs Py (x)
(©)
The condition (8) indeed represents the class of more-capable broadcast channels [12]. According to Lemma 1, (8) imply that:
I(X;Y,|D) < I(X;Y,|D) for all joint PDFs Ppy(d, x)
)

Let us now set D =Y, in (9). We obtain that I(X;Y,|Y;) = 0. It is clear that the latter equality implies that X —» Y; - Y, forms a
Markov chain, i.e., Y, is a degraded version of Y;. But we know [12] that the more-capable broadcast channels strictly include the
degraded BCs as a subset. In other words, the condition (8) in general does not imply that I(X; Y,|Y;) = 0. Thefact isthat in (9) it is
requiredthat D — X — Y;,Y, forms a Markov chain. Therefore, the choice D = Y; isnot admissible.

Corollary 1) Let £ be an arbitrary subset of {1, ..., u;}. Denote X, £ {X; : i € L}. If the inequality (1) holds for all joint PDFs (2),
then we have:

I({Xy, o X0} — X V| Xe, Xy 1 oo Xy D) S T({X, o X} — Xio Vo X, Xy 1s o0 Xy by D)
(10)

for all joint PDFs Ppy,
Markov chain.

(d, X1, e Xy Xy 410 woes Xy b,) WHEr@ D > Xy, o, Xy Xy 41, 0 X,

o wu, — Y1, Yo forms a

Xy X 41Xy

Proof of Corollary 1) It is sufficient to replace D with (D, X,) in (3). B

Next let us consider a Gaussian transition probability function. Precisely, let the outputs Y; and Y, be given as follows:
Yl é a1X1 + a2X2 + b + a#1X#1 + a#1+1XH1+1 + A + au1+#2XH1+#Z + Zl

YZ é b1X1+b2X2 + +b X +bﬂ1+1 1+1+”'+bﬂl+ﬂ2Xﬂ1+#2 +ZZ

(11)
where Z; and Z, are zero-mean unit-variance Gaussian random variables; also, X1, X5, ..., X, , X\, 41, -, Xy 4, @€ real-valued power-
congtrained random variables independent of (Z,Z;) and ay, a, ..., Gy, Gy, 1y s Quy 4, A by, by, oo, by by 14y e, by 1y, A€ fixed

2We have this liberty because Py, (w) in (5) isarbitrary.



RezaK. Farsani, 2012

real numbers. Our purpose is to determine sufficient conditions under which for this setup the inequality (3) holds for al joint PDFs
Py Xy Xy 1Koty (d, %1, oo Xy Xy 410 -o0r Xy 4, )- The following lemma gives such conditions.

Lemma 2) Consider the Gaussian systemin (11). If the following condition satisfies:

a a a
A2y la] <1
by b, b

(12)

then, the inequality (3) holds for all joint PDFs Ppy, .
(Zl!ZZ)'

KXoy Xy sy (B X1 w00 Xy Xy 41, 00 Xy +11,) WhEre D is independent of

Proof of Lemma 2) First note that if D is independent of (Z,Z,), then D — Xy, ..., X, X, 41, -+, X,

i w+u, — Y1, Yo forms a Markov
chain. It is sufficient to prove that (1) holds. Define:

Y, 2 aY, + (abﬂ1+1 - al41+1)XH1+1 + (ab#ﬁ'z - a#1+2)X#1+2 Tt (ablh‘huz - a#1+#2)XH1+#2 +V1-a?Z,
(13)

where Z, is a Gaussian random variable with zero mean and unit variance and impendent of (Z,,Z,). Considering (11), it is readily
derived that ¥, is statistically equivalent to ¥; in the sense of:

]]1’(371|x1, o Xy Xy 41 ""xu1+uz) X ]P(y1|x1, o Xy Xy 41 ""xu1+uz)

Therefore, for al input distributions we have:

I(Xl’ " #1’ Y1| U1t '"’XP-1+H2) = I(Xl' - H1' Y1| Ut ""X#1+llz)

= I(Xl' - H1' Yl' Y2|XH1+1’ ’XH1+M2)
(@)
i I(Xl’ " I/—1’ Y2|X 1+1r H1+Hz) + I(Xl’ o Ii1’ Y1|Y2’ H1+ls ""XM1+I/—2)

= I(Xl'" Ml’y2| 1+1""’XI‘-1+#2)

where (a) holds because, according to (13), Xy, ..., X, = Y2, X, 41, s X — ¥, formsaMarkov chain. The proof is complete. B

M1ty

Remarks 2:

1. The proof style of Lemma 2 indicates that under the condition (12), given X, 41, .-, Xy, 44,5
degraded version of Y;.

2. Therelation (12) is a sufficient condition under which (1) holds; however, in general the inequality (1) may not be equivalent
to (12). It is also essentia to note that the condition (12) is not derived by evaluating (1) for Gaussian input distributions.
Only for the case of 1, = 1, the condition (12) can be equivalently derived by evaluating (1) for Gaussian input distributions.

the signal Y; is a stochastically

In the next lemma, we also provide a multi-letter extension of lemma 1 which is necessary to identify strong interference regime for
multi-user networks.

Lemma 3) Fix the conditional PDF P(yy, ¥2|X1, ..., Xy,) Xy 415 o » Xy 44, ) - ASSUMe that the inequality (1) holds for all joint PDFs (2).
For a given arbitrary natural number n, let P(yl', y2|x], x3, ...,

P(Y1, 2 |%1 X2, s Xy Xy 410 oo s Xppy sy )5 1-€10

n :
X[ Xp 410 s Xt 1y, ) DE @ MEMOTYless n-tuple extension of

n

n n n n n n n —
IP(yl,yz |x1,x2, o Xppo Xy +10 ""xll1+llz) = | | ]P(y1,try2,t|x1,t; X0 s Xy tr Xy +1,00 ""xM1+M2.t)
t=1

(14)
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Then, the following inequality holds:

I(X{l' - Ii1’ Yl | H1t+1 ""Xl-ill"'liz’D) = I(X{l’ B I‘-1’ YZ | Hi1+1 ""X;lll"'lf-z'D)
(15)

for all joint PDFsPpyn
Markov chain.

n n n n n n
(d, X7 o) X X 1y ooy X8 4y, ) WHETED = X7, L X2 X Lo, X

n n
s Xpips T, = Y1 Y7 forms a

n n n
<Xy Xpg 1 Xpg +pp

Proof of Lemmma 3) First note that, according to Lemma 1, since (1) holds for all joint PDFs (2), the inequality (3) also holds for all
joint PDFS Poy, . x, X1 Xy sy (G X0 0 Xy Xy 41 oo Xy 1) WHE® D = X1, oo, Xy, Xy 1, w000 Xy 1, = Y1, Y2 fOrms a Markov

chain. Now consider the two sides of (15). For agiven vector A™, denote A™\* 2 (A'~1, A%, ) wheret = 1,..,n. Define:

D& (X0 X YL Y, D)

Hytuz’
(16)
We have:
I(Xl" ) M1'Y2| pptls e ’XI'?1+H2'D)_I(X1" i Ii1'Y1| |56 S ’Xlz—lﬁ‘ﬂz'D)
n
:ZI(Xp,.. XI5 Vo[ XD oo, XD, YA, D) — ZI(Xl,.. XI5 Yy | X2 gy o X V0, D)
t=1
(a)
I(Xlt' o X5 Yot | X0 s s Xy Y371 D) = Zl(ch.- 1D LD 7Y D TN S £ )
t=1 t=1
®)
ZI(XU. Ky o it Vo | X0y 1y X Y47 D) = ZI(XU,-.. it V75 VK s e Ky ¥4, D)
t=1

n n
= > I(X Xy 05 Yor| X2 X1 iy Y, YEL,D) = ) I(X Xy 0 Yoe| X2 X2 sy Vs, YA71,D)
Lty o Au o 12t |8+ o Ay +pgp Mt 127 7 1t o Apgtr Yot [ Ay +10 0 Apg+py I+ 12 7

t=1 t=1

+ZI(Y1H1.Y“| st o Kb Vi1, D) = ZI(Y; LYy X0 1o XDy Vi, D)

t=1
n n
© (X Xy 0 Yo | X X7 Yl YELD) - > I(Xx Xy, oYy | X2 X7 Yl YFLD
( Lt =gty 2,t| U+ o Bugtuy T+ 120 ) ( 1t =gty 1,t| Uit o Bpuqtuy T+ 120 )
t=1 t=1
n
Z 1(Xy s s Xy 5 Yo Ky 1.0 o0 X g D) = 1K oo X 5 Ve Xy 1.0 Xy iy D) )
t=1
(@)
>0
17
where equality (a) and (b) hold because the memorylessness property (14) implies the following Markov relations:
XN XN XN Xt YET Y0, D = Xy e Xy o Xin oo Xt = Yoo Yo £=1m
(18)

Also, equdity (c) is due to Csiszar-Korner identity according which the 37¢ and the 4" expressions in the left hand side of (c) are
equal; finally, (d) is due to the inequality (3) in which D isreplaced by D. The proof is complete. B

Let us consider the specia case of u;, = 1, = 2. In[11, Appendix], it is shown that if the following condition holds:
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1(Xy;Y11X;) < 1(Xy;Y2|X,)  forall joint PDFs Py, Py,
(19

then, we have:

IXT5 YTXG) < I(XT; Y3t |XD)  forall joint PDFS PynPyn
(20)

The proof of [11] is based on induction which requires establishing some sophisticated Markov chains (see [11, Appendix]).
Moreover, the authors of [11] are able to derive (20) only for product distributions Pyn X Pyn. Our proof in Lemma 3 is considerably

simple since, instead of sophisticated induction-based arguments, it is derived by a direct application of the Csiszar-Korner identity.
Also, by using the consequence of Lemma 1, we are able to prove (20) for all arbitrary joint PDFs Pynyn. As we will see throughout
the paper, such extension is critical while deriving strong interference regime for large multi-user networks.

We also derive a variation of Lemma 1 which is useful to identify networks with a sequence of less noisy receivers (these networks
are studied in detailsin Part 1V of our multi-part paper [4]). Thisresult is given in the next lemma.

Lemma 4) Let Yy, Yo, X1, Xy ooy Xy s Xy 410 00 Xy 4, DE @rbitrary sets, where uy, p, € N are arbitrary natural numbers. Let also
P(y1, ¥2|1, X2, oo Xy Xy 410 o) X 44, ) DE @ GiVeN conditional probability distribution defined on the set Yy X Y, X Xy X Xy X ... X
Xy X Xy 41 X oo X Xy 4, Consider the inequality below:

HU; Y| Xy 10 oo X)) S T(Us Yo | Xy 00 s Xty sy

1tu2
(21)
If the inequality (21) holds for all PDFs Py, . X Xy 1 Xy 1ty (xl, s Xy Xy 410 ...,leWZ) with the following factorization:
PUX1---Xu1Xu1+1---Xu1+u2 = PUX1---X;41 (u' X1 ""xll—1)PXu1+1(xﬂ1+1)PXu1+2 (xﬂ1+2) PXu1+u2 (xll1+ll—2)
(22)
then, we have:
H(U; Y| Xy 410 oo Xy D) S T(U Y| Xy 1 oo X411y D)
(23)

for all joint PDFs Ppyy,.
forms a Markov chain.

XKy Xpg ey (G o X1 v Xy X 110 w00 Xy 4yp,) WHEre DU = Xy, o, Xy Xyt oy Xy, = Yo Vo

Proof of Lemma 4) The proof is rather similar to Lemma 1. First, note that (21) implies the following inequality:

(U Y| X4, 0 X, W) < I(U; Yol Xy, 410 0 X, w)

I Ry K P pgt g
(24)
for al PDFs PWUXl"'XM1XM1+1"'XH1+H2 (W, Uy X1y vy Xy Xy 410 wo0 s xu1+uz) with:
PWUX1...Xu1Xu1+1...Xu1+u2 = PWPUX1...Xu1|WPX#1+1|WPXu1+2|W "'PX#1+uz w
(25)
where W, U — X, ..., X, Xy 415 s Xpy 4, = Y1, Y2 forms a Markov chain. This can be proved by following the same lines as (6).

Now, having at hand the inequality (25), one can substitute W = (X#1+1,X#1+2, ...,Xu1+u2,D) with an arbitrary joint distribution on
the set X, 41 X .. X Xy, 44, XD . By this substitution, we obtain that the inequality (23) holds for al joint PDFs

PXu1+1---Xu1+u2DPUX1---Xp.1 Xyty #1- Koty 41y The proof is complete. B
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Finally, similar to Lemma 2, one can derive sufficient conditions under which for the Gaussian system (11) the inequality (23) holds

for @l joint PDFs PDUXl---Xu1Xu1+1---Xu1+uz (d, Uy Xgy ey Xy Xy 415 wo0 s xu1+uz)- We present such conditionsin the following lemma.

Lemma 5) Consider the Gaussian system in (11). If (12) holds, then the inequality (23) is satisfied for all joint PDFs
PouXy . Xy Xy a1 Xy (d,w, X, oo Xy Xy 410 s Xy 4, ) Where (D, U) isindependent of (Zy, Z,).

Proof of Lemma 5) The proof isindeed similar to Lemma 2. In essence, if the condition (12) holds, given X, 1, ..., X, 4, the signa
Y, isastochastically degraded version of Y,. This fact was previously indicated in Remark 2. Therefore, (23) is always satisfied for all

joint PDFS Poux, . %, X, 11Xy s (dyw, Xy, ooy Xy Xy 410 s Xy 4, ) - M

Remark 3) Lemma 5 provides only sufficient conditions for the Gaussian system (11) to satisfy the inequality (23) for al input
distributions.

By these preliminaries, we are ready to develop our resultsin the subsequent sections.

[Il. ANINTERESTING RELATED SCENARIO

Before establishing our main results for the multi-user CICs, let us first discuss an interesting related scenario. Consider a multi-user
broadcast channel as shownin Fig. 1.

DEC-1

DEC-2

My, My, ..., My

ENC P(J’p---’YI(lx)

DEC-K -—M"

Figurel. The K-user broadcast channel.

Finding the capacity region for the broadcast networks is one the most difficult problems in network information theory, specifically
in the case of more than two receivers. One of important classes for which the capacity region is known in the two-user case is the
more-capable channels [12]. A two-user broadcast channel with receiversY; and Y, is said to be more-capable if the condition (8)
holds. For this channel, the superposition coding scheme achieves the capacity region, as given in Part | of our multi-part paper [1,
Proposition 111.3]. As a natural generalization, one may consider the multi-user broadcast channel with sequentially more-capable
receivers. Precisely, inspired by the two-user more-capable channel in (8), one may define a multi-user broadcast channel with a
sequence of more-capable receivers to be a channe for which the condition below holds:
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(26)

Unfortunately, the capacity result for the two-user more-capable broadcast channel does not seem to be straightforwardly generalized
to the multi-user case in (26). Nonetheless, we could find an insightful result in this regard. Clearly, we find the sum-rate capacity for
this network. Let us describe the procedure of the derivation in details. We claim that for the more-capable broadcast channel in (26),
the sum-rate capacity is given below:
C,Sr:lll_’)’:e—capable — n’Fl’aXI(X; Yl)
X

27)

The proof of achievability is trivial: the transmitter sends the message M, for the first user (stronger user) at its capacity rate and

withdraws transmission of the other messages. In fact, for our purposes the proof of the converse part isimportant. Consider alength-
n code with vanishing average error probability for the network. First note that, according to Lemma 3, the condition (26) implies that:

I(X™ Y2 D) < I(X™; Y74 |D) < I(X™; YP,|D) < - < I(X™; Y*|D) foraljoint PDFS Ppyn
(28)

Now using the Fano' s inequality we can write:

K
nz Ry < I(My; Y) + I(My_q; Y1) + I(My_p; Ygp) + -+ I(My; Y) + nKe,
=1

< I(MK, YI?’ MK—].’ MK—Z' ""Ml) + I(MK_]_; Y[}l_l, MK—Z' ""Ml) + I(MK—Z; Yél_z, MK_3, ""Ml) + -+ I(Ml, Yln) + TlKEn
= I(MK: YI?lMK—l'MK—Z' ""Ml) + I(MK_l; YI?—llMK—Z' ""Ml) + I(MK_Z; YI?—ZlMK—3' ""Ml) + -+ I(Ml; Yln) + nKEn

(@)
= I(Xn; YlylMK—l’ MK—Z’ ""Ml) + I(MK—l; YI?—llMK—ZI ""Ml) + I(MK—Z; Y£_2|MK_3, ""Ml) + -+ I(Ml; Yln) + nKEn

()
< I(Xn; Ylgl—llMK—ll MK—Z' ""Ml) + I(MK—I; Yly—llMK—Z’ ""Ml) + I(MK—Z; Y£_2|MK_3, "'lMl) + -+ I(Ml; Yln) + nKEn
= I(Xn, MK—l; Ylp—lIMK—ZI ""Ml) + I(MK—Z; YI?—ZlMK—3’ ""Ml) + -+ I(Ml; yln) + nKEn

©
= IX™ Y I My_gy o, M) + I(Mg_ s Yo Mg _5, oo, My) + -+ + I(My; YV) + nKe,

(@)
< I(Xn; YI?—ZlMK—ZI ""Ml) + I(MK—Z; Ylgl_leK_3, ""Ml) + -+ I(Ml; Yln) + nKEn
= (X Y7 |My_gy ooy My) + -+ I(My; YY) + 1K€, < - < I(X% V) + nKe, < nl(X;Y,) + nKe,
(29)

wheree,, » 0 asn - 0, the equality (a) holds because X™ is given by a deterministic function of (M, M, ..., M), inequality (b) is
due to (28) in which D is replaced by (My_;, Mg_,, ..., M;), equality (c) holds because, given the input sequence X", the output
seguence Y- ; isindependent of messages, inequality (d) is due to (28) and etc.

Let us review the philosophy behind the derivations. The first inequality in (29) is a direct consequence of Fano's inequality. The
second one is derived by providing (virtual) side information to the receivers. In fact, the messages are sequentially given as side
information to the non-respective receivers in a degraded order: (Mg _q, Myx_5, ..., My) t0 Yy, (Mg _5, ..., M;) tO Yi_;, €tc. Then, the
resulting mutual information functions are successively manipulated (combined) using the more-capable condition in (26) and its
extension in Lemma 3, until to reach a single mutual information function. The last mutual information function has a desirable
property: it is composed of the input signal and one of the outputs (the stronger one in (26)). This is one of the ideas for our
derivations in the following section.
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IV. THE THREE-USER CIC

Consider the three-user CIC shown in Fig. 2.

M Wl enca DEC-1 |1
MZ MZ
——3p1 ENC-2 Py, ¥2, ¥3lx1, %2, x3) DEC-2 }—¥»
M M
—=—»] ENC-3 DEC-3 —*

Figure2. Thethree-user Classicd Interference Channel (CIC).

We intend to derive a strong interference regime for this network. We remark that the following theory which is presented for the
three-user CIC can be developed for other interference networks with any arbitrary topology, as given in Part 111 of our multi-part
paper [3, Sec. V.B.3].

First note that according to our definition (see [3, Definition 4]) in the strong interference regime each receiver decodes all messages.
The resulting achievable rate region by this scheme is given below:

(R1, Ry, R3):

Ry < min{l(Xy; 11X, X3, Q), I(X1; V21X, X3, Q), 1(X1; V31X, X5, Q)}
R, < min{I(X,; V11X, X3, Q), 1(X2; Y2 | X1, X5, Q), I(Xy; V3| X1, X3,Q)}
R; < min{I(X3; Y11X1, X5, Q), 1(X3; V2| X1, X5, Q), I(X5; Y3|X1, X2, @)}

PP P p Rl +R2 S min{I(Xszi Y1|X3! Q)’I(XI’XZ;Y2|X3; Q)vI(XDXZ; Y3|X3, Q)}
exleTNITNSIC N Ry + Ry < min{l (Xp, X35 V1 1X1, Q), (X5, X33 Y21 Xy, Q), 1(X, X35 Y51 X1, Q)3
Rl + R3 < min{I(Xl,X3; Y1|X2; Q), 1(X1,X3i Y2|X2' Q); I(X1,X3; Y3|X2, Q)}

Ry + R, + Ry < min{l(Xy, X, X3; Y11Q), (X1, X5, X33 Y21Q), (X1, X5, X33 Y31Q)}
(30)

We need to derive conditions under which this rate region is optimal. Consider a length-n block code for the network with vanishing
error probability.

Claim: if the network transition probability function satisfies the following conditions:
I(Xz; Y2|X1,X3) < I(Xz; Y3|X1,X3) fOI‘ all ]Olnt PDFs PX1PX2PX3

I(Xz,X3; Y3|X1) < I(Xz,X3; Y1|X1) for a11]01nt PDFs PX1PX2X3
(1)

then, we have:

n(Ry + Ry + R3) < I(XP, XE, XY 4+ ney < X1y I(Xy o Xop Xa s Yar) + 1€y
(32

wheree,, - 0asn — 0.
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Proof of Claim: Based on the Fano’ s inequality one can write:

Tl(R1 + RZ + R3) < I(Mz; an) + I(M3; Y371) + I(Ml; Yln) + ney
< I(Mz; anlMlﬂ M3) + I(M3; Y371|M1) + I(Ml; Yln) + ney

(a)
= (X YRIXE, X2, My, My) + [(X2, My; YRIXE, M) + [(X2, My; Y1) + ne,

(b)
< (X YRXT, XE, My, M) + I(XE, Mg; Y2 XT, M) + T(XT, My; YY) + ne,
=I(XZ, X3 YXT, M) + I(XT, My; Y*) + ne,

©
< I(XE XT YRIXT My) + [(XT, My; YY) + ney,

= IX X5 X5V + ey < 301Xy Xop Xaps Yar) + 1
(33)

where equality (a) holds because the input sequence X/ is given by a deterministic function of the message M;,i = 1,2,3, inequality
(b) is due to the first condition in (31) and its n-tuple extension in Lemma 3, and inequality () is due to the second condition in (31)
and itsn-tuple extension in Lemma 3.

Therefore, under the conditions (31), we derived one of the desired constraints on the sum-rate capacity in (30). Indeed, by the
conditions (31), one can achieve further results. Clearly, these conditions imply that decoding all messages at the first receiver is
optimal. Let us prove this conclusion. Consider the constraints on the partial sum rates. First note that, according to Corollary 1, the
second condition of (31) imply that:

{I(Xzi Y3|X1,X3) < I(Xzi Y1|X1;X3)
I1(X3; Y31X1, X,) < 1(X3; V11X, X,)

(34
Comparing the first condition in (31) and the first condition of (34), we also obtain:
1(X3; Y, 1X1, X3) < 1(Xo; Y11X4, X3)
(35)
Now, we have:
n(Ry + Ry) < I(My; YY) + I(My; Y*) + ne,
< I(My; Y3 My, M3) + I(My; Y' | M3) + ne,
= I(X;l’ Y2n|XZ‘lan§1ﬂ Mll M3) + I(XIL! Mll Ylanglﬂ M3) + nen
(a)
< I(Xf; Y1"|X{1,X§1, M1.M3) + I(Xf,Mﬂ y1n|X§1,M3) +ne,
= I(XT XT YIXE, Ms) 4+ ney < X1y 1(Xy e Xo 0 Yie|Xse) + ney
(36)

where inequality (a) is dueto (35) and its n-tuple extension in Lemma 3. Also, by following the same lines as (33), one can derive:

Ry + Ry < I(XP, XT YTIXE, My) + ney < X0y (X Xa s Yer|Xo ) + nEy
37)

Note that (37) actually is the inequality (c) of (33) in which the term I (X7}, M;; Y{*) from the right side and the corresponding rate R,
from the left side are removed. Lastly, we have:

Tl(R1 + R3) S 1(M3; st) + I(Ml; Yln) + Tlen
< I(XE; Y3XT, XT3, My, My) + I(XT, My; Y IXS, M) + ney,
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(@)
< IXE YXT XT My, My) + T(XT, My; YR XS, M) + ne,
= I(XT X YIXT, My) 4+ ney < X1y 1(Xy e Xa s Yie]|Xar) + ney
(38)
where inequality (@) is due to the second condition in (34). Finally, the desired constraints on the individual rates can be easily derived
using the second condition of (34) and the condition (35). Thus, if (31) holds, then it is optimal to decode all messages at the first
receiver. It is clear that we can follow the same procedure for the other receivers to derive conditions under which the strong

interference criterion, i.e., the optimality of decoding all messages, is satisfied. For example, one can verify that if the following
conditions hold:

1(X3; V31X, X;) < I(X3;Y1|X1,X;)  foralljoint PDFs Py Py, Py,

1(X1, X3;Y11X,) < 1(Xy, X3;Y|X;)  foralljoint PDFs Py x, Py,

(39)
the second receiver, and if the following hold:
1(Xy; V11X, X3) < I(Xy;Y51X5, X5)  for all joint PDFs Py Py Py,
I(X1, X35 Y21X3) < I(Xy,X5;Y5|X3)  foralljoint PDFs Py, x, Py,
(40)

the third receiver experience strong interference. Therefore, the collection of the conditions (31), (39) and (40) constitutes a strong
interference regime for the three-user CIC in Fig. 2. A remarkable point is that the necessary conditions for deriving the desired
constraints on the sum-rate such as (33) are indeed sufficient to prove the optimality of decoding all messages at the receivers. In other
words, once we derived the desired constraints on the sum-rate capacity using certain conditions, no additional condition is required to
be introduced to prove the desired constraints on the partial sum-rates.

Let us concentrate on this collection. According to Corollary 1, the second condition of (31) implies the first condition of (39), the
second condition of (39) implies the first condition in (40) and the second condition of (40) implies the first condition of (31).
Therefore, a strong interference regime for the three-user is given as follows:

A strong interference regime for the 3-user interference channel

1(Xp, X3;Y3|X1) < I(X5, X3;Y1|X,)  foraljoint PDFs Py Py x,
I(X]_,X3; Y1|X2) < I(Xl,X3; Y2|X2) fOI’a”jOInt PDFs PX1X3PX2

I(Xl,Xz;Y2|X3) SI(Xl,Xz;Y3|X3) fOI’a”JOInt PDFs PX1X2PX3

(41)

The conditions (41) to some extent represents a fact regarding the CICs that is the signal of each receiver is impaired by the joint
effect of interference from all non-corresponding transmitters rather by each transmitter’s signal separately. Note that the termsin the
right side of the inequalitiesin (41) indeed measure the amount of interference experienced by the receivers.

It should be noted that using the conditions (41) we are able to derive al the constraints in the rate region (30); nevertheless, some of
these constraints are actually redundant. In fact, if the conditions (41) hold, the rate region (30) is simplified below:
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(R1, Ry, R3):

R < 1(X1;Y1|X2'X3'Q)
R, < 1(Xy; 21Xy, X3, Q)
R; < I(X3; V31X1, X5, Q)

Rl + RZ < min{I(Xl,Xz; Y1|X3’ Q)F I(XllXZ; Y2|X3l Q)} |
pop. 52 b R, + Rz < min{I(X,, X3; V21X, Q), I(X2, X3; Y31X1,Q)}
XXX | Ry + Ry < min{I(Xy, X35 V11X2, Q), 1(Xy, X35 Y3 1X5, @)}

1(X1’X2'X3iY1|Q),
R]_ + Rz + R3 S min 1(X1!X2’X3; YZlQ):
I(Xl,Xz;X3iY3|Q)

(42)

The other constraints of (30) are relaxed by the conditionsin (41). Let us now consider the three-user Gaussian CIC as formulated in
the following standard form:

Y, 1 a; a3][X Z;
Yl =021 1 a||Xz|+|22
Y3 as; az; 11LX; Z3

(43)

where Z,, Z,, Z5 are zero-mean unit-variance Gaussian noises and E[X?] < P;, i = 1,2,3. Using Lemma 2, one can derive explicit
constraints on the network gains under which the strong interference regime (41) holds, as given below:

’

[|a13| =1, lazi] =1, las,| =1

A1, = Qq13032, Q31 = Qz103, Qz3 = Az1013

(44)

Let examine the conditions (44). Among six parameters in the network gain matrix (43), the parameters a3, a,; and a;,, which no
pair of them liesin either a same row or a same column, are given by arbitrary real numbers greater than one and the other parameters
are given in terms of these parameters by specific relations.

Here, we return to the calculations (33) where we derived the constraint (32) on the sum-rate using the conditions (31). If we review
these calculations, we observe that by exchanging the order of manipulating mutual information functions, one can derive conditions
other than those in (31) under which decoding of all messages at the first receiver is optimal. Specifically, consider the following
conditions:

1(X3; Y3|X1, X;) < 1(X5;Y,1X,,X,)  forall joint PDFs Py, Py, Py,

1(X5, X3 Yo1X,) < (X5, X33 Y41X,)  foralljoint PDFs Py Py x,
(45)

The conditions (45) are obtained by exchanging the indices “2” and “3” in (31). One can readily verify the conditions (45) also imply
that decoding all messages at the first receiver is optimal. The derivation is similar to (33)-(38) except that the indices “2” and “3” are
exchanged everywhere. Therefore, the collection of (45), (39) and (40) is aso a strong interference regime for the three-user CIC. This
second collection of strong interference conditions can be represented in the form of below:

I1(X3; Y31X1, X2) < I(X3; Y |X,,X,)  foralljoint PDFs Py Py, Py,
1(X5, X3 Y,1X,) < 1(X,, X35 Y11X,)  forall joint PDFs Py, Py x,
1(Xy, X3; Y11X) < 1(Xy, X3;Y,1X,)  foralljoint PDFs Py, y, Py,
(X1, X2; Ya|X3) < 1(X1, X5 Y31X5)  foralljoint PDFs Py x Py,
(46)

For the Gaussian network in (43) Lemma 2 impliesthat if the following constraints hold:
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then, the conditions (46) are satisfied.

(47)

In fact, by following the same procedure, one can derive 23 = 8 different strong interference regimes for the three-user CIC. Among
these regimes, (3 — 1)! = 2 ones are more significant: the regime in (41) and the regime that is derived by exchanging 1 by 3 in (41).
The other regimes, for example that in (46), lead to rather trivia situations, specifically for the Gaussian networks.

Now, let us examine the CIC with arbitrary number of users as shownin Fig. 3.

s

ENC-1

s

ENC-2

ENC-K

V. THEK-UsSeEr CIC

P(yq, o) YilXq, oo

Figure3. TheK-user Classical Interference Channel (CIC).

DEC-1 _M>1
pece |2
DEC-K _1\;["

An open problem in network information theory has been to determine a strong interference regime for this network [9, page 6-68].
We now present a solution to this problem. Specifically, by following the same approach as three-user channel, one can derive the
following strong interference regime for the K-user CIC:
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I(Xz,X3, X4_, ...,XK; YK|X1) < I(Xz,X3,X4, ...,XK; Y1|X1)
1(X1, X3, X4, o, X V11Xo) < 1(Xy, X3, Xy, -0, Xk Yol X5)

1(X1, X5, Xgy oo, Xis Y21 X3) < 1(X1, X5, Xy, 0, X3 Y3l X3)

[(X0, X g0 s Xe—1; Yieea |1Xi) < T(X0, Xoy oo, Xie—1; Yic| Xi0)

for al joint PDFs
for all joint PDFs

for al joint PDFs

for al joint PDFs

A Strong Interference Regime for the K-User Interference Channel

Py, x2 %, xPxy
Py, xox4.x1Px,

Py, x,%,..x1c Pxs

Py, x,.xk-1 Pxx

(48)

Note that the regime (48) is described by K inequalities. In fact, for the K-user CIC by following the same lines as the three-user CIC,
one can derive ((K - 1)!)K different strong interference regime. However, among these regimes, (K — 1)! ones are more significant
which are derived by exchanging the indices 1,2,3, ..., K, with 9(1),9(2), ..., 9(K), respectively, in (48) where 9(.) is a cyclic
permutation of the elements of the set {1,2,3, ..., K}. It is worth noting that, up to our knowledge, this is the first time where a full

characterization of the capacity region is derived for a general multi-user CIC in a non-trivial case (for both discrete and Gaussian
channels).

Let us consider the Gaussian network which is formulated below:

Y]_ = X1 + a12X2 + a13X3 + -+ alKXK + Zl
YZ = a21X1 + Xz + a23X3 + -+ aZKXK + Zz

YK = aK1X1 + aKzXZ + -+ aKK_lxK_l + XK + ZK
(49)

where Z, ..., Z are zero-mean unit-variance Gaussian noises and E[X?] < P;, i = 1, ..., K. Using Lemma 2, one can show that if the
following conditions are satisfied:

agz _ AK3 _ AKK-1 1

===.="""0=—=q
a2 a3 a1K-1 a1k
L _ds e _ %K _
- - - - - Y2
azi azs az4 azk
{81 _ 1 _ G _ G2k _ s , lel<1, i=12,..,K
asi asz aszq ask
aK-11 _ 9K-12 _ Ak-13 _  _ _ 1 _ a
- - - - - YK
a1 ak2 aks AKK-1

(50)

then, the strong interference regime (48) holds. According to the conditions (50), the parameters a g, a,4, asy, ..., Agx—1, Which no
pair of them liesin either a same row or a same column of the gain matrix, are given by arbitrary real numbers greater than one and
the other parameters are given in terms of these parameters by specific relations determined in (50). It is clear that (K — 1)! other
strong interference regimes are derived by exchanging the indices 1,2,3, ..., K, with9(1),9(2), ..., 9(K), respectively, in (50) where
9(.) isacyclic permutation of the elements of the set {1,2,3, ..., K}.

Please refer to our multi-part paper for a detailed systematic study of fundamental limits of communications in interference networks
[1-8].
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