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Abstract

Function computation of arbitrarily correlated discrete sources over Gaussian networks with orthogonal com-
ponents is studied. Two classes of functions are considered: the arithmetic sum function and the type function.
The arithmetic sum function in this paper is defined as a set ofmultiple weighted arithmetic sums, which includes
averaging of the sources and estimating each of the sources as special cases. The type or frequency histogram function
counts the number of occurrences of each argument, which yields many important statistics such as mean, variance,
maximum, minimum, median, and so on. The proposed computation coding first abstracts Gaussian networks into
the corresponding modulo sum multiple-access channels vianested lattice codes and linear network coding and then
computes the desired function by using linear Slepian–Wolfsource coding. For orthogonal Gaussian networks (with
no broadcast and multiple-access components), the computation capacity is characterized for a class of networks.
For Gaussian networks with multiple-access components (but no broadcast), an approximate computation capacity
is characterized for a class of networks.

Index Terms

Distributed averaging, function computation, joint source–channel coding, lattice codes, linear source coding,
network coding, sensor networks.

I. INTRODUCTION

In wireless sensor networks, the goal of communication is typically for a fusion center to learn afunctionof the
sensor observations, rather than the raw observations themselves. Examples include distributed averaging, alarm
detection, environmental monitoring, and so on. The fundamental paradigm of digital communication suggests that
each sensor should independently compress its observations (using sophisticated compression techniques, taking
into account possible correlations in the observations as well as the fact that the fusion center is only interested
in a function of the observations), whereupon these compressed versions are communicated reliably (at negligible
error probability) to the fusion center. For point-to-point communication, this architecture has been shown to be
optimal by Shannon [1], a result that is sometimes referred to as thesource–channel separation theorem.For general
networked communication, however, it is well known that this digital communication paradigm leads to suboptimal
performance, see e.g. [2]. Furthermore, in terms of the number of nodes in the network, the suboptimality can be
dramatic [3]. Hence, for the communication problem where a fusion center needs to learn a function of the sensor
observations, it is beneficial to considerjoint source–channel coding.

Communication strategies for the problem of function computation over networks have been actively studied
in the literature, see e.g. [4]–[8] and the reference therein. For one class of strategies of function computation
over wireless networks, the essence is to exploit the superposition property of wireless channels to more efficiently
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Fig. 1. Type computation over the Gaussian MAC.

compute the desired function. Roughly speaking, previous work in this area can be categorized into three classes: the
modulo-p sum computation over (noisy) modulo-p sum networks [4]–[6], [8], [9], the modulo-p sum computation
over Gaussian networks assuming an arbitrarily largep [7], [8], and the sum of Gaussian sources over Gaussian
networks under the mean squared error distortion [8], [10].All these works rely on joint source–channel coding
in order to exploit thesimilarity between sum-type functions and the superposition property of wireless channels.
We can easily find examples that this joint source–channel coding approach significantly improves an achievable
computation rate or decrease an achievable distortion compared to the source–channel separation approach.

In spite of the previous work, however, it is still unclear how to efficiently compute fundamental sample statistics
such as sample mean, variance, maximum, minimum, and so on over Gaussian networks. As mentioned before, many
sensor applications are interested in the sample mean, for instance, average temperature from several temperature
readings. For alarm detection, a relevant function will be the maximum or minimum value among the measurements.
One naive approach is to estimate each of the measurements separately, which is universal in the sense that any
function of the measurements can be deduced accordingly. Unfortunately, it turns out that this naive approach is
quite suboptimal in terms of computation rate for most functions of interest. Another extreme approach is to tackle
each function case by case, but we may want to avoid this approach too since there exist numerous important
functions to be considered. Therefore, it would be nice to come up with a general coding scheme that is able to
compute a broad class of functions including the above fundamental functions but at the same time provide a better
computation rate than the separation-based computation.

To achieve this goal, we focus on computingthe type or frequency histogram functionin this paper. For a better
understanding, consider the type computation over the Gaussian multiple-access channel (MAC) depicted in Fig. 1.
TheK sensors observe their discrete sourcesS1, S2, · · · , SK ∈ {0, 1, · · · , p−1}, which can be arbitrarily correlated
to each other, and the fusion center wishes to reliably compute its type, represented as

(

K
∑

i=1

1Si=0,

K
∑

i=1

1Si=1, · · · ,
K
∑

i=1

1Si=p−1

)

, (1)

where1(·) denotes the indicator function of an event. As pointed out in[11], computing the type function is very
powerful since it yields many important statistics such as sample mean, maximum, minimum, variance, median,
mode, and so on. Basically,any symmetric function whose function value is invariant with respect to permutations of
its arguments is computable from the type function. As seen in (1), the type function consists of multiple arithmetic
sums of indicator functions, which can be regarded as binarysources. Therefore, a fundamental question for the type
computation is how to exploit the similarity between the arithmetic sum of discrete sources and the superposition
property of real-valued transmit signals corrupted by additive noise.

In this paper, we consider the computation of a more general class of functions over a general Gaussian network
assuming some orthogonal components, which includes the problem in Fig. 1 as a special case. Two classes of
desired functions are considered: the arithmetic sum function and the type function. The former in this paper is
defined as a set of multiple weighted arithmetic sums, which includes averaging of the sources and estimating
each of the sources as special cases. The latter is counting the number of occurrences of each argument among
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the sources, see (1). Regarding the channel model, we consider two types of Gaussian channels. The first model is
orthogonal Gaussian networks in which there is no broadcastand multiple-access component, which is equivalent
to bit-pipe wired networks [12]–[14]. The second model is Gaussian networks with multiple-access components
(and no broadcast component), which includes Gaussian MACs, more generally Gaussian tree networks as special
cases [8], [15].

A. Contribution

The main contributions of the paper is as follows.
• For orthogonal Gaussian single-hop networks, we propose a general computation code which includes both

Slepian–Wolf source coding and Körner–Marton linear source coding for computing. An example is presented
to demonstrate the benefit of introducing Körner–Marton linear source coding for computing when the sources
are correlated.

• We extend Körner–Marton linear source coding for computing to general orthogonal Gaussian networks
incorporated with linear network coding at each relay node.We characterize the computation capacity for
a class of networks. The result demonstrates that, even without multiple-access component, Körner–Marton
linear source coding for computing is still beneficial for a broad class of relay networks.

• For Gaussian MACs, we propose a computation code that first abstracts the original Gaussian MAC into the
corresponding modulo sum channel via lattice codes and thenapplies Körner–Marton linear source coding
for computing on top of the transformed channel. We show thatthe proposed computation code provides a
much better computation rate than the separation-based computation, especially when the number of sources
becomes large.

• We extend the proposed computation code for Gaussian MACs togeneral Gaussian networks with multiple-
access components. For this, we establish a general transformation method from Gaussian networks with
multiple-access components into the corresponding modulosum channels. On top of this transformed network,
we apply the computation code proposed for Gaussian MACs. For a class of networks, we characterize an
approximate computation capacity that provides a bounded gap from computation capacity, independent of
powerP .

B. Related Work

In his seminal work [1], Shannon showed that separation of source and channel coding is optimal for discrete
memoryless point-to-point channels. However, source–channel separation is not optimal for general networks, for
instance, the problems of sending correlated sources over MACs [16], [17] or broadcast channels (BCs) [18],
[19]. That is, joint source–channel coding is essentially required for sending correlated sources over networks.
Furthermore, it has been proved that an uncoded transmission scheme, a simple way of joint source-channel coding,
is optimal or near-optimal for estimating a source from several correlated observations over Gaussian networks [3],
[20].

Function computation has been actively studied in the source coding perspective [4], [5], [21]–[26]. In particular,
computing the modulo-two sum has been considered in [4] under the distributed source coding framework, which
captures the potential of linear source coding [27] for function computation. A more general achievability has been
proposed for the modulo-two sum computation in [5] and for a general discrete function in [25], [26]. In [22],
computing a general function with the help of side information has been studied. Function computation has been
also considered in the context of cascade source coding [23]and interactive source coding [24].

The modulo sum or more generally linear function computation has been recently extended to relay networks
under various channel models such as bit-pipe wired networks [28]–[30], linear finite field networks [8], Gaussian
networks assuming no broadcast component [8] by incorporating linear network coding [12]–[14], [31], [32] at
each relay node. Function multicasting has been studied forlinear finite field interference channels [9] and for
undirected graphs [33], [34]. A more general classes of function computation over bit-pipe wired networks has
been considered in [28], [35].

Scaling laws on function computation has been studied basedon the collision model [11], [36], in which
concurrent transmission from multiple senders is assumed to cause a collision and, therefore, is not allowable.
In particular, it has been shown that the order of1logK scaling law is achievable as the number of sourcesK
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Fig. 2. Computation over a network in which nodeti observes the length-k sourcesi = [si[1], · · · , si[k]]
T and noded wishes to compute

the desired function{f(s[j])}kj=1, wheres[j] = [s1[j], · · · , sK [j]]T .

increases for the type or frequency histogram computation over collocated collision networks [11], [36]. Recently,
it has been shown that non-vanishing scaling law is achievable for the type-threshold function computation over
collocated Gaussian network even asK tends to infinity [37].

The potential of linear source coding has been also capturedby Nazer and Gastpar in [6], applying the linear
source coding in [4] for the function computation over MACs.An efficient way of computing the modulo sum or the
sum of Gaussian sources over Gaussian MACs is to apply lattice codes [6], [10], see also [38]–[40] for lattice code
construction. Lattice-based network computation has beenrecently extended to multiple receivers called compute-
and-forward [7] in which each relay computes or decodes linear combination of the sources. In [8], a similar lattice
code construction has been used for computing a linear function over linear finite field networks and the sum of
Gaussian sources over Gaussian networks.

II. PROBLEM FORMULATION

Throughout the paper, we denote[1 : n] := {1, 2, · · · , n}, C(x) := 1
2 log(1+x), andC+(x) := max

{

1
2 log(x), 0

}

.
For xi ∈ Fp,

⊕n
i=1 xi denotes the modulo-p sum of {xi}i∈[1:n], wherep is assumed to be a prime number. Let

1(·) denote the indicator function of an event. For random variablesA andB, H(A) denotes the entropy ofA and
I(A;B) denotes the mutual information betweenA.

A. Network Model

Consider a network represented by a directed graphG = (V,E) depicted in Fig. 2. Denote the set of incoming
and outgoing nodes at nodev ∈ V by Γin(v) = {u ∈ V : (u, v) ∈ E} andΓout(v) = {u ∈ V : (v, u) ∈ E},
respectively. Denote theith sender,i ∈ [1 : K], by ti ∈ V and suppose that it observes a length-k discrete source
vectorsi = [si[1], · · · , si[k]]T ∈ [0 : p− 1]k. Denote the set ofK sources at timej by s[j] = [s1[j], · · · , sK [j]]T .
The receiverd ∈ V wishes to compute a symbol-by-symbol function ofK sources, i.e.,f(s[j]) for all j ∈ [1 : k].
We assume thatd /∈ {ti}i∈[1:K] andG contains a directed path from all nodes inV to the receiverd. Without loss
of generality, we assume that the nodes with no incoming edgeare included in{ti}i∈[1:K] .

We mainly consider two desired functions: the arithmetic sum function and the type or frequency histogram
function, whose formal definitions are given below.

Definition 1 (Arithmetic Sum Function):Let s = [s1, · · · , sK ]T ∈ [0 : p− 1]K . For the arithmetic sum computa-
tion, the desired function is given byf(s) = {∑K

i=1 alisi}Ll=1, whereali ∈ [0 : p−1]. Hencef(s) ∈ [0 : (p−1)2K]L

for the arithmetic sum function.
Definition 2 (Type Function):Let s = [s1, · · · , sK ]T ∈ [0 : p − 1]K and bl(s) =

∑K
i=1 1si=l for l ∈ [0 : p − 1].

For the type computation, the desired function is given byf(s) = {b0(s), · · · , bp−1(s)}. Hencef(s) ∈ [0 : K]p for
the type function.

Remark 1 (Arithmetic Sum and Type):The arithmetic sum function in this paper is defined as multiple weighted
arithmetic sums, which includes averaging of the sources and estimating each of the sources as special cases. As
shown in Definition 2, the type function can be also represented as multiple arithmetic sums. Therefore, the essence
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of the type computation is how to efficiently compute arbitrarily correlated multiple arithmetic sums over Gaussian
networks.

Remark 2 (Symmetric Function Computation):As pointed out by [11], computing the type function is very
powerful since it yields many important statistics such as sample mean, maximum, minimum, variance, median,
mode, and so on. Basically, any symmetric function whose function value is invariant with respect to permutations
of its arguments is computable from the type function. That is, symmetric functions satisfyf(s1, s2, · · · , sK) =
f(sσ1

, sσ2
, · · · , sσK

) for any permutation set{σi}i∈[1:K] and, therefore, they are deterministic functions of the type
function.

We assume arbitrarily correlated stationary and ergodic sources. The following definition formally states the
underlying probability distribution and the corresponding random variables regarding the set ofK sources.

Definition 3 (Sources):Let S = [S1, · · · , SK ]T ∈ [0 : p − 1]K be a random vector associated with a joint
probability mass functionpS(·). At each timej ∈ [1 : k], s[j] is assumed to be independently drawn frompS(·).

As a special case in Definition 3, we will consider the following doubly symmetric binary sources throughout
the paper.

Definition 4 (Doubly Symmetric Binary Sources):AssumeK = 2. Denote the doubly symmetric binary sources
with the associated probabilityα by DSBS(α). Let Bern(a) be the Bernoulli distribution with the probabilitya.
For DSBS(α), S1 follows Bern(1/2) andS2 = S1 ⊕ Z, whereZ follows Bern(α) and is independent ofS1.

Let f(S) denote the desired function induced by the random source vector S. The following two definitions
define random variables associated with the desired function, which will be used throughout the paper.

Definition 5 (Arithmetic Sum Function Induced byS): DefineUl =
∑K

i=1 aliSi for l ∈ [1 : L], which are the
random variables associated with the arithmetic sum function. Thenf(S) = (U1, · · · , UL) for the arithmetic sum
function.

Definition 6 (Type Function Induced byS): DefineBl =
∑K

i=1 1Si=l for l ∈ [0 : p − 1], which are the random
variables associated with the type function. Thenf(S) = (B0, · · · , Bp−1) for the type function.

Remark 3 (Worst Case Sources):Note thatH(f(S)) is upper bounded bymin{K log p, L log(p2K)} for the
arithmetic sum function andmin{K log p, p log(K + 1)} for the type function. For both cases,H(f(S)) scales as
the order oflogK as the number of sourcesK increases.

Associated withG = (V,E), we consider two classes of Gaussian channels, which are formally stated in the
following two definitions.

Definition 7 (Orthogonal Gaussian Networks):For this case, we assume Gaussian point-to-point channels with
no broadcast and no multiple-access for each(u, v) ∈ E. That is, the length-n time-extended input–output is given
by

yu,v = hu,vxu,v + zu,v, (2)

where the elements ofzu,v are independently drawn fromN (0, 1). Each transmit signal should satisfy1n‖xu,v‖2 ≤ P
for all (u, v) ∈ E. For notational simplicity, we will use the subscript(·)ptp to denote orthogonal Gaussian networks.

Definition 8 (Gaussian Networks With Multiple-Access):For this case, we assume Gaussian multiple-access chan-
nels with no broadcast fromu ∈ Γin(v) to eachv ∈ V . That is, the length-n time-extended input–output is given
by

yv =
∑

u∈Γin(v)

hu,vxu,v + zv, (3)

where the elements ofzv are independently drawn fromN (0, 1). Each transmit signal should satisfy1n‖xu,v‖2 ≤ P
for all (u, v) ∈ E. For notational simplicity, we will use the subscript(·)mac to denote Gaussian networks with
multiple-access.

Remark 4 (Bit-Pipe Wired Networks):The considered orthogonal Gaussian network is almost equivalent to a
bit-pipe wired network in the sense that it can be easily converted into a bit-pipe wired network by using capacity-
achieving point-to-point channel codes. Nevertheless, wewill state this paper based on Gaussian networks assuming
orthogonal components defined in Definitions 7 and 8.

Remark 5 (Single-Hop Networks):For notational simplicity, we will use the following simplified notation for the
single-hop case. For orthogonal Gaussian single-hop networks, we rewrite the length-n time-extended input–output
as

yi = hixi + zi, (4)
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Fig. 3. Two-user distributed source coding for function computation.

where i ∈ [1 : K]. For Gaussian single-hop networks with multiple-access orGaussian MACs, we rewrite the
length-n time-extended input–output as

y =

K
∑

i=1

hixi + z. (5)

B. Computation Capacity

Based on the above network model, the length-n block code for orthogonal Gaussian networks is defined as
follows, whereya denotesy[1], · · · , y[a]

• (Sender Encoding) Theith senderti transmitsx(t)ti,w = ψ
(t)
ti,w

(

si, {yt−1
u,ti }u∈Γin(ti)

)

for t ∈ [1 : n] to node
w ∈ Γout(ti).

• (Relay Encoding) Nodev /∈ {ti}i∈[1:K]

⋃{d} transmitsx(t)v,w = ψ
(t)
v,w

(

{yt−1
u,v }u∈Γin(v)

)

for t ∈ [1 : n] to node
w ∈ Γout(v).

• (Decoding) The receiverd estimatesf̂(s[j]) = ϕ(j)
(

{yu,d}u∈Γin(d)

)

for j ∈ [1 : k].

Similarly, we can define the length-n block code for Gaussian networks with multiple-access. Specifically, x(t)ti,w =

φ
(t)
ti,w

(

si,y
t−1
ti

)

, x(t)v,w = φ
(t)
v,w

(

yt−1
v

)

for v /∈ {ti}i∈[1:K]

⋃{d}, and f̂(s[j]) = ϕ(j) (yd).

The probability of error is defined byP (n)
e = Pr

[

⋃k
j=1 f̂(s[j]) 6= f(s[j])

]

. We then define the computation
capacity as the follow.

Definition 9 (Computation Capacity):The computation rateR := k
n is said to be achievable if there exists a

sequence of length-n block codes such thatP (n)
e converges to zero asn increases. The computation capacity is the

maximum over all achievable computation rates.
From Definition 9, the computation rate is the number of reliably computable functions per channel use.

III. PRELIMINARIES

Before stating our main results, we first introduce previouswork that is closely related to our work in Sections
III-A to III-C. For comparison, we introduce a cut-set upperbound in Section III-D and a separation-based lower
bound in Section III-E.

A. Distributed Source Coding

Figure 3 illustrates the two-user distributed source coding for function computation. Two senders respectively
observe the length-k sourcess1 and s2 and deliver some information for function computing via messagesw1 ∈
[1 : 2kR1 ] andw2 ∈ [1 : 2kR2 ]. The receiver wishes to compute the desired function{f(s[j]}kj=1 based on(w1, w2).

The optimal distributed lossless source coding forf(s[j]) = s[j] in Fig. 3 has been solved by Slepian and Wolf
[41]. For the two-user case, the Slepian–Wolf rate region isthe set of all rate pairs(R1, R2) satisfying

R1 ≥ H(S1|S2),
R2 ≥ H(S2|S1),

R1 +R2 ≥ H(S1, S2). (6)

Obviously, the above rate region is also an achievable rate region for any desired function. It was proved by Csiszár
in [27] that the same Slepian–Wolf rate region is achievableby linear source coding.
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w1 ∈ [1 : 2kR1 ] w2 ∈ [1 : 2kR2 ]

Fig. 4. Two-user cascade source coding for function computation.

The potential of the linear source coding has been first captured by Körner and Marton in [4] in the context of the
modulo-two sum computation. Consider binary field sourcess1 ∈ F

k
2 ands2 ∈ F

k
2 and{f(s[j]) = s1[j]⊕s2[j]}kj=1.

It was proved in [4] that the set of all rate pairs(R1, R2) satisfying

R1 ≥ H(S1 ⊕ S2),

R2 ≥ H(S1 ⊕ S2) (7)

is achievable by linear source coding. A simple outer bound shows a necessary condition on an achievable(R1, R2)
as

R1 ≥ H(S1|S2),
R2 ≥ H(S1|S2),

R1 +R2 ≥ H(S1 ⊕ S2). (8)

Example 1 (Modulo-Two Sum of DSBS(α)): For DSBS(α), the Körner–Marton rate region (7) shows that any
rate pair satisfyingR1 ≥ H2(α) andR2 ≥ H2(α) is achievable, which coincides with the outer bound in (8).

Unfortunately, the optimal rate region for the modulo-two sum computation of arbitrarily correlated binary sources
is unknown. The outer bound in (8) does not coincide with the convex hull of the union of the Slepian–Wolf rate
region (6) and the Körner–Marton rate region (7). A more general achievability containing both the Slepian–Wolf
rate region (6) and the Körner–Marton rate region (7) has been proposed by Ahlswede and Han in [5, Section VI].
Let W1 andW2 be auxiliary random variables that form a Markov chainW1 − S1 − S2 −W2. Ahlswede and Han
showed that the set of all rate pairs(R1, R2) satisfying

R1 ≥ I(W1;S1|W2) +H(S1 ⊕ S2|W1,W2),

R2 ≥ I(W2;S2|W1) +H(S1 ⊕ S2|W1,W2),

R1 +R2 ≥ I(W1,W2;S1, S2) + 2H(S1 ⊕ S2|W1,W2) (9)

is achievable. An example that this new rate region strictlyenlarges the convex hull of the union of the Slepian–Wolf
rate region (6) and the Körner–Marton rate region (7) was also provided in [5, Example 4].

B. Cascade Source Coding

Figure 4 illustrates the two-user cascade source coding forfunction computation. The first sender observes the
length-k sources1 and delivers some information for function computing via messagew1 ∈ [1 : 2kR1 ]. The second
sender observes(s2, w1) and again delivers some information of(s2, w1) for function computing via message
w2 ∈ [1 : 2kR2 ]. The receiver wishes to compute the desired function{f(s[j])}kj=1 based onw2.

The cascade source coding for function computation has beenstudied in [23] in the context of lossy computation.
For the lossless case depicted in Fig. 4, the computation capacity for a general function has been shown to be
represented by the conditional graph entropy [22].

Again, consider arbitrarily correlated binary field sources s1 ∈ F
k
2 and s2 ∈ F

k
2 and the modulo-two sum

computation of these two sources. In this case, the optimal rate region is given by the set of all(R1, R2) satisfying

R1 ≥ H(S1|S2),
R2 ≥ H(S1 ⊕ S2), (10)

which can be attained from a simple application of Slepian–Wolf source coding.
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Fig. 5. Modulo-p sum computation over the modulo-p sum channel.

C. Modulo-p Sum Computation Over MAC

The potential of linear source coding has been also capturedby Nazer and Gastpar in the context of the
computation over MAC [6]. Figure 5 illustrates the modulo-p sum computation over the deterministic modulo-
p sum channel and a more general case can be found in [6, Theorem1]. The ith sender observessi ∈ F

k
p and the

receiver wishes to compute the modulo-p sum function, i.e.,f(s[j]) = {⊕K
i=1 alisi[j]}Ll=1, ali ∈ Fp. The length-n

time-extended input–output of the modulo-p sum channel is given byy =
⊕K

i=1 xi, wherexi ∈ F
n
p and p is

assumed to be a prime number.
To compress multiple modulo-p sum functions, which are in general correlated to each other, Nazer and Gastpar

applied linear Slepian–Wolf source coding as introduced inthe following lemma.
Lemma 1 (Csisźar [27]): Let (v1, · · · ,vL) be the set of length-k sources, independently drawn from some

joint probability mass functionpV1,··· ,VL
(·). For any point in the Slepian–Wolf rate region, there exist matrices

H1, · · · ,HL of sizenl×k, respectively, taking values over a finite field with associated decoding function that can
be used to compress the sources in a distributed fashion withPr[(v̂1, · · · , v̂L) 6= (v1, · · · ,vL)] → 0 ask increases.

Theorem 1 (Nazer–Gastpar [6]):Consider the modulo-p sum computation over the modulo-p sum channel de-
picted in Fig. 5. LetVl =

⊕K
i=1 aliSi. Then the computation capacity is given by

R =
log p

H(V1, · · · , VL)
. (11)

For a better understanding, we briefly explain the achievability here. From lemma 1, we setH1, · · · ,HL of size
nl×k, respectively, which corresponds to some point in the Slepian–Wolf rate region with sum rateH(V1, · · · , VL).

The ith sender transmits
xi = [a1iH1si, · · · , aLiHLsi]

T (12)

for i ∈ [1 : K], where we setn =
∑L

l=1 nl. Then (12) yields

y =

K
⊕

i=1

xi =

[

H1

(

K
⊕

i=1

a1isi

)

, · · · ,HL

(

K
⊕

i=1

aLisi

)]T

. (13)

Hence, from Lemma 1, the receiver can recover{⊕K
i=1 alisi}l∈[1:L] with an arbitrarily small probability of error

asn increases if
(

L
∑

l=1

nl

)

log p = n log p ≥ kH(V1, · · · , VL). (14)

Therefore, settingk = n log p
H(V1,··· ,VL)

, which satisfies (14), provides that

R =
log p

H(V1, · · · , VL)
(15)

is achievable.
Nazer and Gastpar recently proposed compute-and-forward [7], which provides a general framework for comput-

ing modulo-p sum functions at multiple receivers over Gaussian channels. We briefly describe compute-and-forward
here with respect to a single receiver depicted in Fig. 6. Theith sender observessi ∈ F

k
p and the receiver wishes to
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Fig. 6. Modulo-p sum computation over the Gaussian MAC.

compute the modulo-p sum functionf(s[j]) =
⊕K

i=1 aisi[j], ai ∈ Fp. Herep is assumed to be a prime number. The
length-n time-extended input–output is given byy =

∑K
i=1 hixi + z, where the elements ofz are independently

drawn fromN (0, 1) and 1
n‖xi‖2 ≤ P for all i ∈ [1 : K].

Theorem 2 (Nazer–Gastpar [7]):Consider the modulo-p sum computation over the Gaussian MAC depicted in
Fig. 6. Leta = [a1, · · · , aK ]T andh = [h1, · · · , hK ]T . Then the receiver can decode{f(s[j])}kj=1 =

⊕K
i=1 aisi

reliably for n sufficiently large if

R =
k

n
≤ C

+

(

(

‖a‖2 − P (hTa)2

1 + P‖h‖2
)−1

)

(log p)−1 (16)

andp is an increasing function ofn such thatnp → 0 asn→ ∞.
Example 2 (Gaussian MAC Whenhi = ai = 1): Suppose thathi = ai = 1 for all i ∈ [1 : K]. For this case,

Theorem 2 yields that the receiver can decode
⊕K

i=1 si reliably forn sufficiently large ifR ≤ C
+
(

1
K + P

)

(log p)−1

andp is an increasing function ofn satisfying thatp→ ∞ asn→ ∞.

D. Cut-Set Upper Bound

To describe a cut-set upper bound on the computation capacity, we first introduce the notation. For a subset
Σ ⊆ [1 : K], defineG(Σ) = (V (Σ), E(Σ)) as the subgraph ofG consisting of the nodes having a direct path from
at least one of the senders in{ti}i∈Σ. Let Λ(Σ) denote the set of all cuts dividing all of the senders in{ti}i∈Σ
from the receiverd onG(Σ). Then the minimum-cut value for general discrete memoryless networks over the cuts
in Λ(Σ) on G(Σ) is given by

max
p({xv}v∈V (Σ))

min
Ω∈Λ(Σ)

I(XΩ;YΩc |XΩc). (17)

If there exists an input cost constraint,p({xv}v∈V (Σ)) should be set to satisfy the corresponding input cost constraint.
For orthogonal Gaussian networks, the minimum-cut value isgiven by

C̄ptp(Σ) := min
Ω∈Λ(Σ)

∑

(u,v)∈E(Σ),u∈Ω,v∈Ωc

C
(

h2u,vP
)

. (18)

Similarly, for Gaussian networks with multiple-access, the minimum-cut value is upper bounded by

C̄mac(Σ) := min
Ω∈Λ(Σ)

∑

v∈Ωc

C





(

∑

u∈Γin(v),u∈Ω

|hu,v|
)2
P



 . (19)

Since the desired function is locally computable [11], for any Σ ⊆ [1 : K], f(s[j]) can be represented as
f ′({si[j]}i∈Σ) + f ′′({si[j]}i∈[1:K]\Σ). Hence, by assuming that a genie provides{si}i∈[1:K]\Σ to the receiver,
computing{f ′({si[j]}i∈Σ)}kj=1 at the receiver is enough to recover the desired function{f(s[j])}kj=1. Therefore
assuming full cooperation between the nodes inΩ and between the nodes inΩc, from the source–channel separation
theorem [1],

Rptp ≤ min
Σ⊆[1:K]

C̄ptp(Σ)

H(f(S)|{Si}i∈[1:K]\Σ)
(20)
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for orthogonal Gaussian networks. In the same manner, we have

Rmac ≤ min
Σ⊆[1:K]

C̄mac(Σ)

H(f(S)|{Si}i∈[1:K]\Σ)
(21)

for Gaussian networks with multiple-access.

E. Separation-Based Computation

We generalize the notion of the separation-based computation introduced in [6]. We refer to [6, Section III]
for the formal definition of the separation-based computation. Roughly speaking, the separation-based computation
means that a communication network is first transformed intoan end-to-end bit-pipe channel by channel coding and
then separately applied source coding for computing the desired function over the transformed end-to-end bit-pipe
channel.

Let Rf denote the distributed compression rate region for computing {f(s[j])}kj=1 (see [6, Definition 8]) and
Cptp denote the capacity region for orthogonal Gaussian networks, which can be represented as the set of all rate
tuples such that

∑

i∈Σ

Ri ≤ C̄ptp(Σ) for all Σ ⊆ [1 : K]. (22)

Then a computation rateR(sep)
ptp is achievable by separation if

Rf ∩C′
ptp 6= ∅, (23)

whereC′
ptp =

{(

R1

R
(sep)
ptp

, · · · , RK

R
(sep)
ptp

)

: (R1, · · · , RK) ∈ Cptp

}

.

Similarly, we define the achievable computation rateRmac for Gaussian networks with multiple-access by
separation. Specifically,R(sep)

mac is achievable by separation if

Rf ∩C′
mac 6= ∅, (24)

whereC′
mac =

{(

R1

R
(sep)
mac

, · · · , RK

R
(sep)
mac

)

: (R1, · · · , RK) ∈ Cmac

}

andCmac denotes the capacity region for Gaussian
networks with multiple-access, which is upper bounded by

∑

i∈Σ

Ri ≤ C̄mac(Σ) for all Σ ⊆ [1 : K]. (25)

Example 3 (I.I.D. Sources and Symmetric MAC):Suppose that the sources are i.i.d., i.e.,pS(·) =
∏K

i=1 pSi
(·)

and pSi
(·) = pS(·). Then from [6, Lemma 1] (also see [6, Example 1]),Rf is given by all rate tuples such that

Ri ≥ H(S) for both the arithmetic sum function and the type function computation. Therefore, for symmetric
MAC, see the definition in [6, Definition 11], an achievable computation rate by separation is upper bounded by

R
(sep)
ptp ≤ C̄ptp([1 : K])

KH(S)
(26)

for orthogonal Gaussian single-hop networks and

R
(sep)
mac ≤ C̄mac([1 : K])

KH(S)
(27)

for Gaussian MACs.

IV. M AIN RESULTS

In this section, we state our main results. For a better understanding, we first provide a high level description of
the proposed approach based on the single arithmetic sum computation over the Gaussian MAC in Section IV-A.
We then state our results for orthogonal Gaussian networks and Gaussian networks with multiple-access in Sections
IV-B and IV-C, respectively.
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A. Main Idea

We begin this section by explaining the essence of how to compute a single arithmetic sum, i.e.,{f(s[j]) =
∑K

i=1 si[j]}kj=1, over the Gaussian MAC with equal channel gains. For notational simplicity, we rewrite the length-
n time-extended input–output asy =

∑K
i=1 xi + z. We first apply compute-and-forward in [7] to transform the

length-n Gaussian MAC into the following length-m modulo-q sum channel:

y′ =

K
⊕

i=1

x′
i, (28)

wherex′
i ∈ Fq

m. Hereq is set to be the largest prime number among[1 : n log n] and

m = nC+

(

1

K
+ P

)

(log q)−1. (29)

Specifically, from Theorem 2 (also see Example 2), by treating y′ in (28) as the desired function, we can construct
the above modulo-q sum channel.

Now consider the computation over the transformed modulo-q sum channel. The key observation is that utilizing
a small portion of input finite field elements and then computing the corresponding modulo-q sum can attain the
desired arithmetic sum. Furthermore, linear source codingin Lemma 1 (for this case,L = 1) can compensate
the inefficiency of utilizing only a small portion of input finite field elements by compressing the corresponding
modulo-q sum in a distributed manner.

Let g(·) denote the mapping from a subset of integers[0 : q − 1] to the corresponding finite fieldFq. Define
s′i[j] = g(si[j]) and U ′ =

⊕K
i=1 g(Si). Suppose that theith sender observess′i = [s′i[1], · · · s′i[k]]T , which can

be obtained fromsi, and the receiver wishes to computeu′ =
⊕K

i=1 s
′
i. Then, from Theorem 1, the receiver can

computeu′ reliably for m sufficiently large (equivalently, forn sufficiently large) if

k

m
≤ log q

H(U ′)
. (30)

Hence by settingk = m log q
H(U ′) , the computation rate

R =
k

n

=
m log q

nH(U ′)

=
C
+
(

1
K + P

)

H(U ′)
(31)

is achievable for the desired functionu′, where the last equality follows from (29). Since there exists n0 ≥ 0 such
that q > (p− 1)2K for all n ≥ n0 (q is the largest prime number among[1 : n log n]), we have

u′ =

[

g

(

K
∑

i=1

si[1]

)

, · · · , g
(

K
∑

i=1

si[k]

)]T

,

U ′ = g

(

K
∑

i=1

Si

)

(32)

for n sufficiently large. Sinceg(·) has one-to-one correspondence, the receiver can compute the arithmetic sum
∑K

i=1 si from u′. Finally, from the fact thatH(g(
∑K

i=1 Si)) = H(
∑K

i=1 Si), the achievable computation rate for
the desired function

∑K
i=1 si is given by

R =
C
+
(

1
K + P

)

H(
∑K

i=1 Si)
. (33)

Example 4 (Arithmetic Sum of I.I.D. Binary Sources):Suppose thatSi’s are independently and uniformly drawn
from {0, 1} and the receiver wishes to compute{f(s[j]) =

∑K
i=1 si[j]}kj=1. Let U =

∑K
i=1 Si. Then, from (33),
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Fig. 7. Computation of
∑K

i=1
Si for theK-user Gaussian MAC with equal channel gains whenP = 15 dB.

R =
C+( 1

K
+P)

H(U) is achievable, wherepU (x) =
(K
x

)

2−K . On the other hand, an achievable computation rate by

separation is upper bounded byC(K
2P )

K from (27). Lastly, the cut-set upper bound in (21) shows thatan achievable
computation rate is upper bounded byC(K

2P )
H(U) . Figure 7 plots these three rates with respect toK. SinceH(U)

scales as the order oflogK asK increases [42, Lemma 2.1], our computation-based rate decreases as the order
of logK, while the separation-based rate decreases almost linearly with an increasingK. Therefore, the rate gap
between the computation-based and separation-based approaches becomes significant asK increases.

B. Orthogonal Gaussian Networks

We first state our main result for orthogonal Gaussian single-hop networks and then extend it to general orthogonal
Gaussian networks. We also demonstrate a class of networks that achieves the computation capacity.

1) Single-hop networks:Consider orthogonal Gaussian single-hop networks in whichthe length-n time-extended
input–output is given by (4). For orthogonal Gaussian networks, we abstract each Gaussian channel into the corre-
sponding error-free bit-pipe channel using point-to-point capacity-achieving codes. Then the problem is equivalent
to the distributed source coding problem. In [5, Section VI], a general achievability containing the Slepian–Wolf
rate region and the Körner–Marton rate region has been proposed for the modulo-two sum computation of binary
sources, which has been introduced in Section III-A. The coding scheme in [5, Section VI] can be straightforwardly
generalized to more than two users and general finite field sources, and more importantly, to the arithmetic sum
and type computation.

Theorem 3 (Orthogonal Gaussian Single-Hop Networks):Consider the orthogonal Gaussian single-hop network.
Let Wi, i ∈ [1 : K], be an auxiliary random variable that forms a Markov chainWi − Si − {Sj ,Wj}j∈[1:K]\{i}.
Then any computation rate satisfying

R ≤
∑

i∈Σ C(h2iP )

I({Wi}i∈Σ;S|{Wi}i∈[1:K]\Σ) + |Σ|H(f(S)|W1, · · · ,WK)
(34)

for all Σ ⊆ [1 : K] is achievable, wheref(S) = (U1, · · · , UL) for the arithmetic sum function andf(S) =
(B0, · · · , Bp−1) for the type function.

Proof: We refer to Appendix I for the proof.
Notice that if we setWi = ∅ for all i ∈ [1 : K], then Theorem 3 provides

R ≤
∑

i∈Σ C(h2iP )

|Σ|H(f(S))
(35)
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Fig. 8. Computation ofS1 + S2 for the two-user orthogonal Gaussian single-hop network with equal channel gains whenP = 15 dB.

for all Σ ⊆ [1 : K], which corresponds to the achievable computation rate fromlinear source coding for computing.
On the other hand, if we setWi = Si for all i ∈ [1 : K], then Theorem 3 provides

R ≤
∑

i∈Σ C(h2iP )

H({Si}i∈Σ|{Si}i∈[1:K]\Σ)
(36)

for all Σ ⊆ [1 : K], which corresponds to the achievable computation rate by separation.
Unlike the computation over MAC, for example, see Section IV-A, the following example shows that without

multiple-access component linear source coding cannot improve the computation rate achievable by separation if
the sources are independent.

Example 5 (Independent Sources):Suppose that the sources are independent to each other, i.e., pS(·) =
∏K

i=1 pSi
(·).

Then (36) yieldsR ≤
∑

i∈Σ C(h2
iP )

∑
i∈Σ H(Si)

. For the arithmetic sum and type functions,H(f(S)) ≥ H(Si) for all i ∈ [1 : K]

when the sources are independent. Hence, the separation-based computation always outperforms the computation
based on linear source coding for independent sources.

When the sources are correlated, however, linear source coding is useful even without multiple-access component.
For DSBS(α), for example, the computation based on linear source coding outperforms the separation-based
computation whenα is small, which can be verified in the following example.

Example 6 (Arithmetic Sum of DSBS(α)): Suppose thatK = 2, h1 = h2 = 1, and the sources follows DSBS(α).
The receiver wishes to compute{f(s[j]) = s1[j]+s2[j]}kj=1. From Theorem 3, letW1 = S1⊕Z1 andW2 = S2⊕Z2,
whereZ1 andZ2 are independent and followBern(β). Then, due to symmetry, any computation rate satisfying

R ≤ C(P )

I(W1;S1, S2|W2) +H(S1 + S2|W1,W2)
,

R ≤ 2C(P )

I(W1,W2;S1, S2) + 2H(S1 + S2|W1,W2)
(37)

is achievable. Figure 8 plots the computation rate in (37). For comparison, we also plot the computation rates
achievable by computation (settingW1 = S1 andW2 = S2 in (37)) and separation (settingW1 = W2 = ∅),
respectively. The cut-set upper bound is given byR ≤ min{C(P )/H(Z), 2C(P )/(H(S1 + S2))} [4]. As shown
in the figure, the computation based on linear source coding is indeed helpful even if there is no multiple-access
component. For this symmetric source, the hybrid approach in Theorem 3 provides the maximum of the two
computation rates achievable by the computation and separation schemes.
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Fig. 9. An example of orthogonal Gaussian networks that achieves the computation capacity, where the channel coefficients are equal to
one on all links.

2) General networks:Now consider general orthogonal Gaussian networks. For function computation, the
previous work in [6], [7] has exploited the similarity between the channel and the desired function. Specifically,
modulo-p sum computation over (noisy) modulo-p sum channel or Gaussian MAC has been considered. It seems
that channel’s multiple-access or superposition propertyis essentially required to compute sum-type functions more
efficiently than the separation-based computation. We demonstrate that, even for orthogonal channels with no
multiple-access component, relaying based on linear network coding provides an efficient end-to-end interface for
function computation, which yields the following theorem.

Theorem 4 (Orthogonal Gaussian Networks):Consider the orthogonal Gaussian network. Then the computation
rate

Rptp =
mini∈[1:K] C̄ptp({i})

H(f(S))
(38)

is achievable, wheref(S) = (U1, · · · , UL) for the arithmetic sum function andf(S) = (B0, · · · , Bp−1) for the
type function.

Proof: We refer to Section VI-A for the proof.
For convenience, denote the cut-set upper bound in (20) forΣ = [1 : K] as

R
(u)
ptp :=

C̄ptp([1 : K])

H(f(S))
(39)

and the achievable computation rate in Theorem 4 as

R
(l)
ptp :=

mini∈[1:K] C̄ptp({i})
H(f(S))

. (40)

Remark 6 (Computation Capacity):From (39) and (40), the gap betweenR(u)
ptp andR(l)

ptp is zero if the condition
C̄ptp([1 : K]) = mini∈[1:K] C̄ptp({i}) is satisfied, which characterizes the computation capacity. Figure 9 is an
example of this class of networks. Basically, any layered network with equal channel gains can be an example.

Remark 7 (Bit-Pipe Wired Networks):As mentioned in Remark 4, we can easily interpret the resultsin Theorems
3 and 4 for bit-pipe wired networks. Hence, Remark 6 also provides the computation capacity for a certain class
of bit-pipe wired networks, which closes the gap between thelower and upper bounds in [28], [35] in the case of
the arithmetic sum function computation.

C. Gaussian Networks With Multiple-Access

We extend the idea presented in Section IV-A to the computation of multiple weighted arithmetic sums, which
contains the type function, and also to a general network topology in the following theorem. For the achievability,
we first abstract each multiple-access component by compute-and-forward and then apply linear network coding at



15

s1

{f(s[j])}kj=1

t1

t2

tK

d

s2

sK

...

Σ

zd

Σ

zrM

Σ

zr1

Σ

zr2

r1

r2

rM

Orthogonal components

Fig. 10. An example of Gaussian networks with multiple-access that satisfies the condition in Corollary 1, where the channel coefficients
are equal to one on all links.

each relay node to convert the original Gaussian network with multiple-access into the end-to-end modulo-q sum
channel.

Theorem 5 (Gaussian Networks With Multiple-Access):Consider the Gaussian network with multiple-access. Then
the computation rate

Rmac =
mini∈[1:K]C

+
mac({i})

H(f(S))
(41)

is achievable, where

C+
mac({i}) = min

Ω∈Λ({i})

∑

v∈Ωc

1Γin(v)∩Ω 6=∅C
+

(

1

|Γin(v)|
+ min

u∈Γin(v)
h2u,vP

)

. (42)

Heref(S) = (U1, · · · , UL) for the arithmetic sum function andf(S) = (B0, · · · , Bp−1) for the type function.
Proof: We refer to Section VI-B for the proof.

Similarly, denote the cut-set upper bound in (21) forΣ = [1 : K] as

R
(u)
mac :=

C̄mac([1 : K])

H(f(S))
(43)

and the achievable computation rate in Theorem 5 as

R
(l)
mac :=

mini∈[1:K]C
+
mac({i})

H(f(S))
. (44)

Then the following corollary holds.
Corollary 1 (Approximate Computation Capacity):If hu,v are the same for allu ∈ Γin(v) and C̄mac([1 : K])−

mini∈[1:K] C̄mac({i}) ≤ c1|V | log |V | for some constantc1 > 0, then

R
(u)
mac −R

(l)
mac ≤

c2|V | log |V |
H(f(S))

(45)

for any powerP , wherec2 > 0 is some constant.
Proof: We refer to VI-B for the proof.

Remark 8 (Bounds on the Capacity Gap):First of all, the gap in Corollary 1 does not depend onP and therefore
provides a universal performance guarantee for anyP . Also, sinceH(f(S))) is an increasing function ofK ≤ |V |,
the gap in Corollary 1 increases at most as|V | log |V |. Figure 10 is an example of the class of networks satisfying
the condition in Corollary 1. Basically, any layered network with equal channel gains can be an example.
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Remark 9 (Tighter Bound for the Gaussian MAC):For the single-hop case, i.e., the Gaussian MAC, we can
easily tighten the gap in Corollary 1. Specifically, ifC

(

(
∑K

i=1 hi)
2P
)

− C
(

1
K +mini∈[1:K] h

2
iP
)

≤ c3 logK for
some constantc3 > 0, then

R
(u)
mac −R

(l)
mac ≤

c4 logK

H(f(S))
(46)

for any powerP , wherec4 > 0 is some constant.

V. COMPUTATION OVER L INEAR FINITE FIELD NETWORKS

In this section, we introduce the following linear finite field network and show how to compute the desired function
over the considered network. Specifically, we first explain the computation over the modulo-q sum channel in Section
V-A. Then we introduce the network transformation method that converts a general linear finite field network into
the modulo-q sum channel in Section V-B. The computation coding and transformation method presented in this
section will be used for proving the results for general Gaussian networks with orthogonal components in Section
VI.

Again, we assume a network represented by a directed graphG = (V,E) and the same source and desired
function in Definitions 1 to 6. For the considered linear finite field network model, the input–output at timet is
given by

y(t)v =
⊕

u∈Γin(v)

hu,vx
(t)
u , (47)

wherex(t)u ∈ F
αu

q , y(t)v ∈ F
βv

q , andhu,v ∈ F
βv×αu

q . Here q is assumed to be a prime number. Then the length-n
time-extended input–output is represented as

yv =
⊕

u∈Γin(v)

Hu,vxu, (48)

wherexu =
[

x
(1)
u

T
, · · · , x(n)u

T ]T
∈ F

nαu

q , yv =
[

y
(1)
u

T
, · · · , y(n)u

T ]T
∈ F

nβv

q , andHu,v ∈ F
nβv×nαu

q denotes the
block diagonal matrix consisting ofhu,v at each block diagonal element.

Remark 10:Without loss of generality, we can assume thatαv = βv is the same for allv ∈ V since the effect of
different values ofαv andβv can be equivalently reflected by the channel matrixhu,v. However, we allow different
values ofαv andβv in this section for easy explanation of the transformation from the Gaussian network model
in Section VI.

Remark 11:The considered linear finite field network includes the bit-pipe wired channel model and the linear
finite field deterministic model proposed in [32].

A. Computation Over the Modulo-q Sum Channel

As a special case of the considered linear finite field network, first consider the modulo-q sum channel. The
following lemma shows how to compute the arithmetic sum or type function over the modulo-q sum channel when
the field sizeq is large enough. This lemma is of crucially importance to prove the main theorems in the paper.
The key observation is that utilizing a small portion of finite field elements and then computing the corresponding
modulo-q sum can attain the desired function. Furthermore, linear source coding in Lemma 1 can compensate
the inefficiency of utilizing only a small portion of finite field elements and, as a result, achieves the optimal
computation rate when the field sizeq is large enough.

Lemma 2 (Computation Over the Modulo-q Sum Channel):Consider the computation over the modulo-q sum
channel in which the length-n modulo-q sum channel is given as

y′ =

K
⊕

i=1

x′
i, (49)

wherex′
i ∈ Fq

n andq is a prime number. Ifq > (p− 1)2K, then the computation capacity is given by

R =
log q

H(f(S))
, (50)
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wheref(S) = (U1, · · · , UL) for the arithmetic sum function andf(S) = (B0, · · · , Bp−1) for the type function.
Proof: Let g(·) denote the mapping from a subset of integers[0 : q − 1] to the corresponding finite fieldFq.

First consider the arithmetic sum computation. Defines′i[j] = g(si[j]), a′li = g(ali), andU ′
l =

⊕K
i=1 a

′
lig(Si)

for i ∈ [1 : K] and l ∈ [1 : L]. Suppose that theith sender observess′i = [s′i[1], · · · s′i[k]]T , which can be obtained

from si, and the receiver wishes to compute(u′
1, · · · ,u′

L) =
(

⊕K
i=1 a

′
1is

′
i, · · · ,

⊕K
i=1 a

′
Lis

′
i

)

. From Theorem 1, the

receiver can compute(u′
1, · · · ,u′

L) reliably for n sufficiently large if

k

n
≤ log q

H(U ′
1, · · · , U ′

L)
. (51)

Hence by settingk = n log q
H(U ′

1,··· ,U
′
L)

, the computation rate

R =
k

n

=
log q

H(U ′
1, · · · , U ′

L)
(52)

is achievable for the desired function(u′
1, · · · ,u′

L). From the conditionq > (p− 1)2K, we have

u′
l =

[

g

(

K
∑

i=1

alisi[1]

)

, · · · , g
(

K
∑

i=1

alisi[k]

)]T

, (53)

U ′
l = g

(

K
∑

i=1

aliSi

)

= g(Ul). (54)

Sinceg(·) has one-to-one correspondence, from (53), the receiver cancompute
(

∑K
i=1 a1isi, · · · ,

∑K
i=1 aLisi

)

from

(u′
1, · · · ,u′

L), Finally, from the fact thatH((U ′
1, · · · , U ′

L) = H(U1, · · · , UL), which can be verified from (54), the

achievable computation rate for
(

∑K
i=1 a1isi, · · · ,

∑K
i=1 aLisi

)

is given by (50).

Now consider the type computation. Definebli[j] = 1si[j]=l. Let b′li[j] = g(bli[j]) andb′
li = [b′li[1], · · · , b′li[k]]T .

Suppose that theith sender observesb′
li, which can be obtained fromsi, and the receiver wishes to compute

{u′′
l =

⊕K
i=1 b

′
li}

p−1
l=0 . From Theorem 1, the receiver can compute{u′′

l }Ll=1 reliably for n sufficiently large if

k

n
≤ log q

H(B′
0, · · · , B′

p−1)
, (55)

whereB′
l =

⊕K
i=1B

′
li andB′

li = g(1Si=l). Hence by settingk = n log q
H(B′

0,··· ,B
′
p−1)

, the computation rate

R =
k

n

=
log q

H(B′
0, · · · , B′

p−1)
(56)

is achievable for the desired function{u′′
l }

p−1
l=0 . From the conditionq > (p − 1)2K, we have

u′′
l =

[

g

(

K
∑

i=1

bli[1]

)

, · · · , g
(

K
∑

i=1

bli[k]

)]T

,

B′
l = g

(

K
∑

i=1

1Si=l

)

= g(Bl). (57)

Sinceg(·) has one-to-one correspondence, the receiver can compute{b0(s[j]), · · · , bp−1(s[j])}kj=1 from {u′′
l }

p−1
l=0 .

Finally, from the fact thatH(B′
0, · · · , B′

p−1) = H(B0, · · · , Bp−1), the achievable computation rate for the type
function is given by (50).

The converse for both cases can be easily shown from the same cut-set argument in Section III-D, which completes
the proof.
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Remark 12 (Computation of Multiple Arithmetic Sums):Notice that the channel model in (49) is exactly the
same as in (28) except thatq is fixed in this section. Hence Lemma 2 extends the computation of a single arithmetic
sum in Section IV-A to the computation of multiple weighted arithmetic sums (the type function can be represented
as multiple arithmetic sums, see Definition 2 and Remark 1).

B. Computation Via Network Transformation

We now describe how to convert a general linear finite field network into the modulo-q sum channel in (49) in
the following lemma. The basic principle is similar to thoseproposed in [8] in the sense that linear network coding
is applied at each relay node to construct an end-to-end linear finite field channel and then precoder at each sender
to convert the end-to-end channel into the linear finite fieldchannel in (49).

To describe the following lemma, forΣ ⊆ [1 : K], let HΩ(Σ) denote the transfer matrix associated with the cut
Ω ∈ Λ(Σ) on G(Σ).

Lemma 3 (Transform Into the Modulo-q Sum Channel):Consider the linear finite field network in which the
length-n time extended input–output is given by (48) . Forn sufficiently large, the network can be transformed
into the following modulo-q sum channel:

y′
d =

K
⊕

i=1

x′
ti , (58)

wherex′
ti ∈ F

nmini∈[1:K] minΩ∈Λ({i}) rank(HΩ({i}))
q for all i ∈ [1 : K].

Proof: We refer to Appendix II for the proof.
Based on Lemmas 2 and 3, we characterize the computation capacity when q > (p − 1)2K in the following

theorem.
Theorem 6 (Linear Finite Field Networks):Consider the linear finite field network in which the length-n time-

extended input–output is given as in (48). Ifq > (p− 1)2K and

min
Ω∈Λ([1:K])

rank (HΩ([1 : K])) = min
i∈[1:K]

min
Ω∈Λ({i})

rank (HΩ({i})) , (59)

then the computation capacity is given by

R =
mini∈[1:K]minΩ∈Λ({i}) rank (HΩ({i}))

H(f(S))
, (60)

wheref(S) = (U1, · · · , UL) for the arithmetic sum function andf(S) = (B0, · · · , Bp−1) for the type function.
Proof: The achievability follows by the network transformation using Lemma 3 and then the computation over

the transformed modulo-q sum channel using Lemma 2. The converse follows by the cut-set upper bound showing
thatR ≤ minΩ∈Λ([1:K]) rank(HΩ([1:K]))

H(f(S)) and the condition in (59), which completes the proof.
Remark 13 (Type Computation):For the type computation, the conditionq > K is enough for proving Lemma

2 and Theorem 6.
Remark 14 (Computation Over Gaussian Networks):We will apply the same computation coding and network

transformation in Lemmas 2 and 3 after converting Gaussian networks into linear finite field networks in Section
VI. For this case, we setq arbitrarily large and, as a result, the conditionq > (p− 1)2K in Lemma 2 and Theorem
6 disappears for Gaussian networks.

VI. COMPUTATION OVER GAUSSAIN NETWORKS WITH ORTHOGONAL COMPONENTS

We are now ready to prove Theorems 4 and 5 and Corollary 1, which are about the computation over general
Gaussian networks with orthogonal components.

A. Orthogonal Gaussian Networks

Consider orthogonal Gaussian networks in which the length-n time-extended input–output is given as in (2).
In the following, we prove the achievable computation rate in Theorem 4. The achievability follows the network
abstraction based on capacity-achieving point-to-point channel codes and then transformation into the modulo-q
sum channel via linear network coding at each relay (the sametransformation used in Lemma 3). Finally, we apply
linear source coding for computation over the transformed modulo-q sum channel as the same manner used in
Lemma 2.
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1) Proof of Theorem 4:By applying capacity-achieving point-to-point channel codes, forn sufficiently large,
the length-n time extended orthogonal Gaussian channel in (2) can be transformed into

y′
u,v = x′

u,v (61)

for all (u, v) ∈ E, wherexu,v ∈ F
mu,v

q . Heremu,v log q ≤ nC(h2u,vP ) should be satisfied. Hence we setq = K+1
andmu,v = nC(h2u,vP )(log q)

−1.
In order to use Theorem 3, we definex′

u = {xu,v}v∈Γout(u) andy′
v = {yu,v}u∈Γin(v) and represent the input–

output as
y′
v =

⊕

u∈Γin(v)

H′
u,vx

′
u. (62)

HereH′
u,v is determined by the original channel condition in (61). Notice that the input–output in (62) is the same

linear finite field model considered in Section V, see (47). Then we can treaty′
v andx′

u as ‘super-symbol’ and
apply the multi-letter coding over these length-η super-symbols, that is, length-ηn symbols. Hence, from Lemma
3, we can transform the linear finite field network with the input–output (62) into the following modulo-q sum
channel:

y′
d =

K
⊕

i=1

x′
ti , (63)

wherex′
ti ∈ F

ηmini∈[1:K] minΩ∈Λ({i}) rank(HΩ({i}))
q for all i ∈ [1 : K].

Now consider the computation over the above modulo-q sum channel. Sinceq = K + 1 > K, from Lemma 2,
the receiver can compute the desired function reliably forη sufficiently large if

k

ηmini∈[1:K]minΩ∈Λ({i}) rank (HΩ({i}))
≤ log q

H(f(S))
. (64)

Hence by settingk =
ηmini∈[1:K] minΩ∈Λ({i}) rank(HΩ({i})) log q

H(f(S)) , the computation rate

R =
k

ηn

=
mini∈[1:K]minΩ∈Λ({i}) rank (HΩ({i})) log q

nH(f(S))

(a)
=

mini∈[1:K]minΩ∈Λ({i})

∑

(u,v)∈E({i}),u∈Ω,v∈Ωc mu,v log q

nH(f(S))

(b)
=

mini∈[1:K]minΩ∈Λ({i})

∑

(u,v)∈E({i}),u∈Ω,v∈Ωc C(h2u,vP )

H(f(S))

(c)
=

mini∈[1:K] C̄ptp({i})
H(f(S))

(65)

is achievable, where(a) follows sincerank (HΩ({i})) assuming the channel (62) is the same as that assuming the
channel (61) andrank (HΩ({i})) =

∑

(u,v)∈E({i}),u∈Ω,v∈Ωc mu,v, (b) follows sincemu,v = nC(h2u,vP )(log q)
−1,

and (c) follows from the definition (18). In conclusion, Theorem 4 holds.

B. Gaussian Networks With Multiple-Access

Consider Gaussian networks with multiple-access in which the length-n time-extended input–output is given as
in (3). In the following, we prove the achievable computation rate in Theorem 5 and Corollary 1. The achievability
follows the network abstraction based on compute-and-forward in Theorem 2 and the rest of the procedure is similar
to that in Section VI-A.
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1) Proof of Theorem 5:For each nodev ∈ V , suppose that nodeu ∈ Γin(v) observesx′
u,v ∈ F

mv

q and nodev
wishes to decode

⊕

u∈Γin(v)
x′
u,v. Let xlattice

u,v (x′
u,v) denote a dither-added transmit lattice point from nodeu to node

v for the compute-and-forward framework in [7], which satisfies the power constraintP . Then nodeu transmits
xu,v(x

′
u,v) =

minu∈Γin(v){|hu,v|}
hu,v

xlattice
i (x′

i) to nodev. We can equivalently interpret thathu,v = 1 and the average
power constraint from nodeu to nodev is given asminu∈Γin(v){h2u,v}P . From Theorem 2 (see also Example 2), node

v can decode
⊕

u∈Γin(v)
x′
u,v reliably forn sufficiently large ifmv ≤ nC+

(

1
|Γin(v)|

+minu∈Γin(v) h
2
u,vP

)

(log q)−1

andq is an increasing function ofn satisfying thatq → ∞ asn→ ∞. Therefore, by treatingx′
u,v as the channel

input from nodeu to nodev and
⊕

u∈Γin(v)
x′
u,v as the channel output of nodev, for n sufficiently large, we

can transform each length-n Gaussian multiple-access component (3) into the followinglength-mv modulo-q sum
channel:

y′
v =

⊕

u∈Γin(v)

x′
u,v, (66)

wherex′
u,v ∈ F

mv

q . Hereq is the largest prime number among[1 : n log n] and

mv = nC+

(

1

|Γin(v)|
+ min

u∈Γin(v)
h2u,vP

)

(log q)−1. (67)

We again definex′
u = {xu,v}v∈Γout(u) and represent the input–output as

y′
v =

∑

u∈Γin(v)

H′
u,vx

′
u. (68)

HereH′
u,v is determined by the original channel condition in (66). Then, as the same manner from (62) to (65),

we can apply multi-letter coding and, from Lemmas 2 and 3, thecomputation rate

R =
k

ηn

=
mini∈[1:K]minΩ∈Λ({i}) rank (HΩ({i})) log q

nH(f(S))

(a)
=

mini∈[1:K]minΩ∈Λ({i})

∑

v∈Ωc 1Γin(v)∩Ω 6=∅mv log q

nH(f(S))

(b)
=

mini∈[1:K]minΩ∈Λ({i})

∑

v∈Ωc 1Γin(v)∩Ω 6=∅C
+
(

1
|Γin(v)|

+minu∈Γin(v) h
2
u,vP

)

H(f(S))
(69)

is achievable, where(a) follows sincerank (HΩ({i})) assuming the channel (68) is the same as that assuming
the channel (66) andrank (HΩ({i})) =

∑

v∈Ωc 1Γin(v)∩Ω 6=∅mv and (b) follows from (67). Note thatq, which is
the largest prime number among[1 : n log n], becomes arbitrarily large asn → ∞ and, as a result, satisfies the
conditionq > (p− 1)2K in Lemma 2 forn sufficiently large. In conclusion, Theorem 5 holds.

2) Proof of Corollary 1: Denote
i∗ = argmini∈[1:K]C

+
mac({i}) (70)

and

Ω∗ = argminΩ∈Λ({i∗})

∑

v∈Ωc

1Γin(v)∩Ω 6=∅C
+

(

1

|Γin(v)|
+ min

u∈Γin(v)
h2u,vP

)

. (71)
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Then

H(f(S))(R
(u)
mac −R

(l)
mac)

= C̄mac([1 : K])− min
i∈[1:K]

C+
mac({i})

(a)

≤ C̄mac({i∗})− C+
mac({i∗}) +

(

C̄mac([1 : K])− min
i∈[1:K]

C̄mac({i})
)

(b)

≤
∑

v∈Ω∗c

C





(

∑

u∈Γin(v),u∈Ω∗

hu,v

)2
P



−
∑

v∈Ω∗c

1Γin(v)∩Ω∗ 6=∅C
+

(

1

|Γin(v)|
+ min

u∈Γin(v)
h2u,vP

)

+

(

C̄mac([1 : K])− min
i∈[1:K]

C̄mac({i})
)

(c)

≤
∑

v∈Ω∗c

1Γin(v)∩Ω∗ 6=∅

(

C(|V |2h2u,vP )− C
+
(

h2u,vP
))

+

(

C̄mac([1 : K])− min
i∈[1:K]

C̄mac({i})
)

(d)

≤ |V |(log(|V |2) + 1) +

(

C̄mac([1 : K])− min
i∈[1:K]

C̄mac({i})
)

, (72)

where(a) follows from the definition ofi∗, (b) follows from the definition ofΩ∗, (c) follows from the condition
thathu,v are the same for allu ∈ Γin(v), and(d) follows sinceC(x)−C

+(x) ≤ 1 for all x ≥ 0. Finally, from the
condition C̄mac([1 : K])−mini∈[1:K] C̄mac({i}) ≤ c1|V | log |V |, we have (45), which completes the proof.

VII. E XTENSIONS

In this section, we apply our computation code to other interesting scenarios for computing over Gaussian
networks.

A. Modulo-p Sum Computation

Consider the modulo-p sum computation over Gaussian networks with orthogonal components. In [6], [8],
achievable computation rates have been derived assuming anarbitrarily large source field size, i.e.,p → ∞ as
the block lengthn increases. When the source field size is fixed, it is hard to apply the previous work to find a
better computation rate than the separation-based computation. From our framework, on the other hand, one naive
approach is for the fusion center to first compute the corresponding arithmetic sum over networks and then take
the modulo-p operation in order to obtain the desired modulo-p sum. Hence the achievable computation rates for
the arithmetic sum in this paper can also be achievable computation rates for the corresponding modulo-p sum.
Obviously, this approach is not optimal but we can easily findexamples that it outperforms the separation-based
computation.

B. Superposition Approach for Unequal Channel Coefficients

One drawback of the achievability in Theorem 5 is when the channel coefficients have different values. For the
single-hop case, i.e., the Gaussian MAC in which the length-n time-extended input–output is given by (5), Theorem
5 provides

R =
C
+
(

1
K +mini∈[1:K] h

2
iP
)

H(f(S))
. (73)

As shown in (73), the achievable computation rate is boundedby the minimum of the channel gains. In order
to achieve computation rates scalable withP from the compute-and-forward framework [7], the transmit power of
each lattice should be reduced to let the received power for each lattice be the same at the receiver side, resulting
mini∈[1:K] h

2
i in (73). An improved computation rate is achievable by the superposition of multiple codes and then
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allocating residual transmit power to high layer codes. Thefollowing theorem provides an improved computation
rate for the two-user case.

Theorem 7:Consider the2-user Gaussian MAC withh22 ≥ h21. Then the computation rate satisfying

R ≤ C
+
(

1
2 + h21P

)

H(S1|S2)
,

R ≤ C
+
(

1
2 + h21P

)

H(f(S))
+
H(f(S))−H(S1|S2)

H(S2)

C

(

(h2
2−h2

1)P
1+2h2

1P

)

H(f(S))
(74)

is achievable.
Proof: Let xlattice

i denote a dither-added transmit signal from lattice codebook of the ith sender for compute-
and-forward in [7], which satisfies the power constraintP . Let xrandom denote the transmit signal from a capacity-
achieving point-to-point Gaussian codebook, which satisfies the power constraintP . Then the first sender transmits

x1 = xlattice
1 and the second sender transmitsx2 = h1

h2
xlattice
2 +

√
h2
2−h2

1

h2
xrandom. Let R2 denote the message rate

delivered byxrandom. The receiver first decodes the message delivered byxrandom that is reliably decodable if
R2 ≤ C

(

(h2
2−h2

1)P
1+2h2

1P

)

. The receiver then subtractsxrandom from the received signal. Then, from the same argument

in the proof of Theorem 5, we can construct the modulo-q sum channel in (49) withm = nC+
(

1
K + h21P

)

(log q)−1,
whereq is set to be the largest prime number among[1 : n log n]. By utilizing the lengthnR1(log q)

−1 of this
modulo-q sum channel, the first sender is able to transmit its message at the rate ofR1 if R1 ≤ C

+
(

1
2 + h21P

)

.
The remaining modulo-q sum channel has the length ofn

(

C
+
(

1
2 + h21P

)

−R1

)

(log q)−1.
For the bit-pipe channels with the ratesR1 andR2, we apply Slepian–Wolf source coding to deliver two sources

separately, then compute the desired function. For the remaining modulo-q sum channel, we apply linear source
coding for computation in Lemma 2. This approach achieves the compute rate represented by the following rate
constraints:

R = R′ +R′′,

R1 ≤ C
+

(

1

2
+ h21P

)

,

R2 ≤ C

(

(h22 − h21)P

1 + 2h21P

)

,

R′ ≤ R1

H(S1|S2)
,

R′ ≤ R2

H(S2|S1)
,

R′ ≤ R1 +R2

H(S1, S2)
,

R′′ ≤ C
+
(

1
2 + h21P

)

−R1

H(f(S))
. (75)

After Fourier–Motzkin elimination, we have (74), which completes the proof.
Example 7 (Arithmetic Sum of I.I.D. Binary Sources):Suppose thatK = 2, h1 = 1, h2 ≥ 1, andS1, S2 are

independently and uniformly drawn from{0, 1}. The receiver wishes to compute{f(s[j]) = s1[j] + s2[j]}kj=1.
Figure 11 plots the achievable computation rate by the superposition in Theorem 7. Ash2 increases, the separation-
based computation outperforms the computation scheme in Theorem 5 and the gap to the cut-set upper bound
decreases. As shown in the figure, the superposition approach can attain both of the computation in Theorem 5 and
the separation-based computation.

Remark 15 (Multiple Layering for More Than Two Users):For more than two users, we can apply the same
superposition approach by layering multiple lattice codes. We refer to [8, Section III. F] for the detailed lattice
code construction and encoding, decoding procedure.
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Fig. 11. Computation ofS1 + S2 for the two-user Gaussian MAC with unequal channel gains when P = 15 dB.

C. Fading Networks

Consider fading Gaussian MAC in which channel coefficients vary independently over time. The length-n time-
extended input–output is given by

y =

K
∑

i=1

Hixi + z, (76)

whereHi = diag
(

h
(1)
i , · · · , h(n)i

)

andh(t)i denotes the complex channel coefficient at timet from the ith sender

to the receiver. We assume that{h(t)i } are independently drawn fromCN (0, 1) and also independent over time. We
further assume that the elements ofz are independently drawn fromCN (0, 1). Global channel state information is
assumed to be available at each sender and the receiver. Since {h(t)i } are i.i.d. over time, we drop the time index
hereafter for simplicity.

If we simply apply Theorem 5 for each time slot, then due tomini∈[1:K] |hi|2 in Theorem 5, the achievable
computation rate for fading will decrease asK increases.1 We can fix this problem and achieve an approximate
computation capacity similar to Corollary 1 and Remark 9 forfading Gaussian MAC.

To achieve this, we modify Theorem 5 to the fading scenario ina similar approach as given by Goldsmith and

Varaiya [43]. At each time slot, thejth sender transmits with power
mini∈[1:K] |hi|2P

|hj |2 E[mini∈[1:K] |hi|2/|hj |2]
, which satisfies

the average power constraint. Then from the same analysis inTheorem 5, the computation rate

R =
1

H(f(S))
E

[

C
+

(

1

K
+

mini∈[1:K] |hi|2P
E[mini∈[1:K] |hi|2/|h1|2]

)]

:= R
(l)
fading (77)

is achievable, whereC+(x) := max {log(x), 0}. On the other hand, the cut-set upper bound is given by

R ≤ 1

H(f(S))
max

φ1,··· ,φK

E



C





(

K
∑

i=1

|hi|φi(h1, · · · , hK)

)2






 := R
(u)
fading, (78)

1Although we describe the paper including Theorem 5 based on the real channel model, the results in the paper can be straightforwardly
extended to the complex channel model.
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whereφi denotes the power allocation policy of theith sender that should satisfyE[φ2i (h1, · · · , hK)] ≤ P and
C(x) := log(1 + x). The following theorem establishes an approximate computation capacity for i.i.d. Rayleigh
fading.

Theorem 8 (Approximate Computation Capacity for Fading MAC): Consider fading Gaussian MAC with time-
varying channel coefficients. For i.i.d. Rayleigh fading,

R
(u)
fading −R

(l)
fading ≤ 3 logK + 2 + log e

H(f(S))
(79)

for anyP , wheref(S) = (U1, · · · , UL) for the arithmetic sum function andf(S) = (B0, · · · , Bp−1) for the type
function.

Proof: Let {φ∗i } denote an optimum power allocation policy maximizing (78).Then

H(f(S))(R
(u)
fading −R

(l)
fading)

(a)

≤ E






log







1 +
(

∑K
i=1 |hi|φ∗i (h1, · · · , hK)

)2

1 +K
mini∈[1:K] |hi|2

E[mini∈[1:K] |hi|2/|h1|2]
P












+ logK

≤ E






log







K
mini∈[1:K] |hi|2

E[mini∈[1:K] |hi|2/|h1|2]
+ 1

P

(

∑K
i=1 |hi|φ∗i (h1, · · · , hK)

)2

K
mini∈[1:K] |hi|2

E[mini∈[1:K] |hi|2/|h1|2]












+ logK

(b)

≤ 2E

[

log

(
√

K
mini∈[1:K] |hi|2

E[mini∈[1:K] |hi|2/|h1|2]
+

1√
P

(

K
∑

i=1

|hi|φ∗i (h1, · · · , hK)

))]

+ log

(

E

[

min
i∈[1:K]

|hi|2/|h1|2
])

− E

[

log

(

min
i∈[1:K]

|hi|2
)]

(c)

≤ 2 log

(
√

K
E
[

mini∈[1:K] |hi|2
]

E[mini∈[1:K] |hi|2/|h1|2]
+

1√
P

(

K
∑

i=1

E [|hi|φ∗i (h1, · · · , hK)]

))

+ log

(

E

[

min
i∈[1:K]

|hi|2/|h1|2
])

− E

[

log

(

min
i∈[1:K]

|hi|2
)]

(d)

≤ 2 log

(
√

K
E
[

mini∈[1:K] |hi|2
]

E[mini∈[1:K] |hi|2/|h1|2]
+K

)

+ log

(

E

[

min
i∈[1:K]

|hi|2/|h1|2
])

− E

[

log

(

min
i∈[1:K]

|hi|2
)]

= 2 log

(
√

K E

[

min
i∈[1:K]

|hi|2
]

+K

√

E

[

min
i∈[1:K]

|hi|2/|h1|2
]

)

− E

[

log

(

min
i∈[1:K]

|hi|2
)]

≤ 2 log(
√
K +K)− E

[

log

(

min
i∈[1:K]

|hi|2
)]

. (80)

where(a) follows sinceC+
(

1
K + P

)

≥ 1
2 log(1 +KP )− 1

2 logK, (b) follows sincelog(a+ b) ≤ 2 log(
√
a+

√
b)

for a ≥ 0 and b ≥ 0, (c) follows from Jensen’s inequality, and(d) follows sinceE [|hi|φ∗i (h1, · · · , hK)] ≤
√

E[|hi|2]E [(φ∗i (h1, · · · , hK))2] ≤
√
P .

For Rayleigh fading,|hi|2 is exponentially distributed. Thus, we have

E

[

log

(

min
i∈[1:K]

|hi|2
)]

=

∫ ∞

0
log(x)K exp(−Kx) dx

= − logK +

∫ ∞

0
log(u) exp(−u) du

≥ − logK +

∫ 1

0
log(u) du+

∫ ∞

1
log(u) exp(−u) du

≥ − logK − log e. (81)
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Therefore, from (80) and (81),

R
(u)
fading −R

(l)
fading ≤

3 logK + 2 + log e

H(f(S))
, (82)

which completes the proof.

D. Scaling Laws

One interesting performance metric is to focus on how the computation rate scales as the number of sources
K increases. The work [11] studied scaling laws on the computation rate under collocated collision networks
assuming that concurrent transmission from multiple nodescauses collisions and, therefore, is not allowed. It was
shown in [11] that the order of1K rate scaling law is achievable for the type computation, which is the same scaling
law achievable by the separation-based computation. Whereas, Theorem 5 provides the order of1logK rate scaling
law for collocated Gaussian networks. The gain comes from a more efficient physical layer abstraction using the
compute-and-forward framework and exploiting the superposition property of the abstracted channel for function
computation, which is not allowed for collocated collisionnetworks.

E. Function Multicast

Throughout the paper, we assume that a single receiver wishes to compute the desired function. Now consider
the function multicasting problem in which multiple receivers wish to compute the same desired function. It has
been shown in [9] that function alignment is essentially required for linear finite field single-hop networks in order
to optimally compute the modulo sum function at multiple receivers. For the multihop case, if there is a relay node
that is connected from all senders and also at the same time connected to all receivers, this relay node can first
compute the desired function and then broadcast it to multiple receivers. For the first task, i.e., function computation
at a single relay node, our coding schemes are applicable. For the second task, i.e., function broadcast to multiple
receivers, quantize-map-and-forward [32] or noisy network coding [44] achieves a near-optimal rate. Although this
approach is not applicable for any network topology, we can easily find examples of interest that it achieves a
near-optimal computation rate. A similar approach has beenalso proposed in [33], analyzing the rate scaling law
under a bit-pipe wired network represented by an undirectedgraph.

VIII. C ONCLUSION

In this paper, we studied the function computation over Gaussian networks assuming orthogonal components.
We proposed a novel computation coding that is able to compute multiple weighted arithmetic sums including
the type function. Computing the type function is very powerful since any symmetric function such as the same
mean, maximum, minimum, and so on, can be obtained from the type function. Hence, the proposed computation
coding is useful not only for the arithmetic sum computation, but for any symmetric function computation. The
main ingredients of the proposed computation coding are thenetwork transformation via lattice codes and linear
network coding and then the computation based on linear Slepian–Wolf source coding for computing. In many cases,
the proposed computation coding outperforms the separation-based computation, especially when the number of
sources becomes large. We established the computation capacity for a class of orthogonal Gaussian networks and
an approximate capacity for a class of Gaussian networks with multiple-access.

APPENDIX I
HYBRID APPROACH

In this appendix, we prove Theorem 3. First consider a distributed source coding problem with rate tuple
(R1, · · · , RK) to compute the desired function. Theith bit-pipe orthogonal channel with rateRi can be treated as
the orthogonal finite field channel withFkRi(log q)−1

q . From the same argument in Lemma 2, settingq > (p− 1)2K
and computing the corresponding modulo-q sum function yields the desired function. We generalize thecoding
scheme in [5, Section VI] to theK-user case, (Also see [25, Theorem III.2] for the rate constraints for decoding
the set of auxiliary random sequences). Then any rate tuple(R1, · · · , RK) satisfying

∑

i∈Σ

Ri ≥ I({Wi}i∈Σ;S|{Wi}i∈[1:K]\Ω) + |Σ|H(f(S)|W1, · · · ,WK) (83)
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for all Σ ⊆ [1 : K] is a necessary condition for the desired function computation. By abstracting theith orthogonal
Gaussian channel using point-to-point capacity-achieving codes, we have error-free bit-pipe channel with rateC(h2i ).
Hence if a rate tuple(C(h

2
i )

R , · · · , C(h2
K)

R ) is located inside the region (83), the computation rateR is achievable,
which provides the rate constraint onR as in (34). In conclusion, Theorem 3 holds.

APPENDIX II
NETWORK TRANSFORMATION

In this appendix, we prove Lemma 3.

A. Layered Networks

In this subsection, we prove Lemma 3 for the layered case. Forlayered networks, we can partition the set of
nodes intoM layers. LetV [j] ⊆ V denote the set of nodes at thejth layer, wherej ∈ [1 : M ]. We assume that
V [1] is the set of senders and the node at theM th layer is the receiver. That is,V [1] = {ti}Ki=1 andV [M ] = {d}.
The encoding functions are set as follows:

• (Sender Encoding) Nodev ∈ V [1] transmitsxv = Fvx
′′
v , whereFv ∈ F

nαv×nτ
q andx′′

v ∈ F
nτ
q . We will specify

τ later.
• (Relay Encoding) Nodev ∈ ⋃M−1

j=2 V [j] transmitsxv = Fvyv, whereFv ∈ F
nαv×nβv

q .

Then the receiver generatesy′
d = Fdyd, whereFd ∈ F

nτ×nβd

q .
Let Γu

in(v) = {w : there exists a direct path fromu to w,w ∈ Γin(v)}. From the definition,Γu
in(v) ⊆ Γin(v).

Then the input–output fromx′
u, u ∈ V [1], to y′

d assumingx′
v = 0 for all v 6= u is given by

y′
d|x′

v=0,∀v 6=u

= Fd

⊕

vM−1∈Γu
in(d)

HvM−1,dxvM−1

= Fd

⊕

vM−1∈Γu
in(d)

HvM−1,dFvM−1

⊕

vM−2∈Γu
in(vM−1)

HvM−2,vM−1
FvM−2

· · ·
⊕

v2∈Γu
in(v3)

Hv2,v3xv2

= Fd

⊕

vM−1∈Γu
in(d)

HvM−1,dFvM−1

⊕

vM−2∈Γu
in(vM−1)

HvM−2,vM−1
FvM−2

· · ·
⊕

v2∈Γu
in(v3)

Hv2,v3Fv2Hu,v2Fux
′′
u. (84)

Let us denote
Hu := Fd

⊕

vM−1∈Γu
in(d)

· · ·
⊕

v2∈Γu
in(v3)

HvM−1,dFvM−1
· · ·Hv2,v3Fv2Hu,v2Fu, (85)

which is thenτ × nτ dimensional end-to-end channel matrix fromx′′
u to y′

d. Theny′
d can be represented as

y′
d =

⊕

u∈V [1]

Hux
′′
u

=

K
⊕

i=1

Htix
′′
ti . (86)

The following theorem and corollary show that if the size of the end-to-end channel matrixHti is smaller than
the corresponding minimum-cut value, thenHti becomes a full-rank matrix for alli ∈ [1 : K] with probability
approaching one asn increases.

Theorem 9 (Avestimehr–Diggavi–Tse [32]):For anyi ∈ [1 : K], let {x′′
ti(w)}w∈[1:2nτ log q] be a set of randomly

chosen2nτ log q vectors inFn
q and {y′

d(w)}w∈[1:2nτ log q] be the corresponding set of output vectors, i.e.,y′
d(w) =

Htix
′′
ti(w). Suppose that the elements ofFv are i.i.d. drawn uniformly fromFq for all v ∈ V . Then there exists

one-to-one correspondence between{x′′
ti(w)}w∈[1:2nτ log q] and {y′

d(w)}w∈[1:2nτ log q] with probability approaching
one asn increases, provided that

τ ≤ min
Ω∈Λ({i})

rank (HΩ({i})) . (87)

Proof: We refer to [32, Theorem 4.1] for the proof.
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Corollary 2: Suppose that the elements ofFv are chosen i.i.d. uniformly fromFq for all v ∈ V . If τ ≤
mini∈[1:K]minΩ∈Λ({i}) rank (HΩ({i})), then

rank(Hti) = nτ (88)

for all i ∈ [1 : K] with probability approaching one asn increases.
Proof: Assume thatrank(Hti) < nτ . Then, since the vector space spanned byHti is F

rank(Hti
)

q space, it
contains strictly less thanqnτ distinguishable vectors inFnτ

q . On the other hand, Theorem 9 shows that it is possible
to have2nτ log q = qnτ distinguishabley′

d’s with probability approaching one asn increases, which contradicts the
assumption. In conclusion, from the union bound, (88) holdsfor all i ∈ [1 : K] with probability approaching one
asn increases, which completes the proof.

Based on Corollary 2, we set such that the elements ofFv are independently and uniformly chosen fromFq for
all v ∈ V and

τ = min
i∈[1:K]

min
Ω∈Λ({i})

rank (HΩ({i})) , (89)

which guarantees the existence ofH−1
ti for all i ∈ [1 : K] with probability approaching one asn increases. Then

by settingx′′
ti = H−1

ti x′
ti , x

′
ti ∈ F

nτ
q , for n sufficiently large, we have

y′
d =

K
⊕

i=1

x′
ti (90)

from (86). In conclusion, Lemma 3 holds for layered networks.

B. Arbitrary Networks

In this subsection, we prove Lemma 3 for a general linear finite field network (not necessarily layered). We can
unfold the networkG over time to establish the corresponding layered network. The underlying approach is similar
to that proposed in [32, Section V. B]. Let

C̄min := min
i∈[1:K]

min
Ω∈Λ({i})

rank (HΩ({i})) log q (91)

Define theT time-steps unfolded networkGTU = (VTU, ETU) as follows.

• The network hasT + 2 stages, numbered from0 to T + 1.
• Stage0 has the senderst1[0] to tK [0], which are the senders, and stageT +1 has noded[T +1], which is the

receiver.
• Stagej has all nodesv ∈ V denoted byv[j], wherej ∈ [1 : T ]. These nodes will act as relay nodes.
• There are finite-capacity links with the rate ofT C̄min between

– (ti[0], ti[1]) for all i ∈ [1 : K] and (d[T ], d[T + 1]).
– (v[j], v[j + 1]) for all v ∈ V andj ∈ [1 : T ].

• Nodev[j] is connected to nodew[j + 1] with the linear finite field channel of the original networkG for all
(v,w) ∈ E, v 6= w.

The length-n time-extended transmit signal ofv[j], j ∈ [0 : T ], is given by the pair of
(

x
(1)
v[j],x

(2)
v[j]

)

, where

x
(1)
v[j] ∈ F

nTC̄min/ log q
q and x

(2)
v[j] ∈ F

nαv[j]

q . The length-n time-extended received signal ofv[1] ∈ Γout(ti[0]), i ∈
[1 : K], is given byy(1)

v[1] = x
(1)
v[0]. The length-n time-extended received signal ofv[j], j ∈ [2 : T ], is given by

(

y
(1)
v[j],y

(2)
v[j]

)

, wherey(1)
v[j] = x

(1)
v[j−1] andy

(2)
v[j] =

⊕

v[j−1]∈Γ(v[j])Hv[j−1],v[j]x
(2)
v[j−1] (see the input–output relation

(48)). The length-n time-extended received signal ofv[T + 1] is given byy(1)
v[T+1] = x

(1)
v[T ]. For other unspecified

received signals, they receive all-zero vectors. For a better understanding, Fig. 12 illustrates an example of anT
time-steps unfolded network.

Since this unfolded networkGTU is layered, we can apply the same linear coding as in AppendixII. A to GTU.
Specifically,
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t1

t2

d

T C̄min

TC̄min

TC̄min

TC̄min

TC̄min

TC̄min

t1[0]

t2[0]

t1[1]

t2[1]

r[1]

d[1]

TC̄min

TC̄min

TC̄min

TC̄min

t1[2]

t2[2]

r[2]

d[2]

t1[3]

t2[3]

r[3]

d[3]

· · ·

TC̄min

TC̄min

TC̄min

TC̄min

t1[T − 1]

t2[T − 1]

r[T − 1]

d[T − 1]

t1[T ]

t2[T ]

r[T ]

d[T ]

TC̄min

d[T + 1]

r

(a) (b)

Fig. 12. Unfolded network example, where(a) is the original network and(b) is the corresponding unfolded network.

• (Sender Encoding) Nodev[0] transmitsx(1)
v[0] = F

(1)
v[0]x

′′
v[0] andx(2)

v[0] = F
(2)
v[0]x

′′
v[0], whereF(1)

v[0] ∈ F
nTC̄min/ log q×nτ
q ,

F
(2)
v[0] ∈ F

nαv[0]×nτ
q , andx′′

v[0] ∈ F
nτ
q . We will specify τ later.

• (Relay Encoding) Nodev[j], j ∈ [1 : T ], transmitsx(1)
v[j] = F

(1)
v[j]

[

y
(1)
v[j]

T
,y

(2)
v[j]

T
]T

andx(2)
v[j] = F

(2)
v[j]

[

y
(1)
v[j]

T
,y

(2)
v[j]

T
]T

,

whereF(1)
v[j]

∈ F
nTC̄min/ log q×n(T C̄min/ log q+βv[j])
q andF(2)

v[j]
∈ F

nαv[j]×n(T C̄min/ log q+βv[j])
q .

Then the receiver generatesy′
v[T+1] = F

(1)
v[T+1]y

(1)
v[T+1], whereF(1)

v[T+1] ∈ F
nτ×nTC̄min/ log q
q .

Similar to (86), the input–output from{x′′
v[0]}v[0]∈V [0] to y′

v[T+1] can be represented as

y′
v[T+1] =

⊕

v[0]∈V [0]

Hv[0]x
′′
v[0], (92)

whereV [0] denotes the set of nodes at stage0, which is the set of senders, andv[T +1] is the node at stateT +1,
which is the receiver. HereHv[0] is the end-to-end channel matrix fromx′′

v[0] to y′
v[T+1].

Now consider the minimum-cut value ofGTU with respect to a subset of nodes inV [0]. In the same manner in
Section III-D, forΣ ⊆ V [0], we can defineGTU(Σ) andΛTU(Σ). Then the minimum-cut value is given by

C̄TU(Σ) := min
Ω∈ΛTU(Σ)

rank
(

HTU
Ω (Σ)

)

log q, (93)

whereHTU
Ω (Σ) denotes the transfer matrix associated with the cutΩ ∈ ΛTU(Σ) onGTU(Σ).

Hence, from Theorem 9 and Corollary 2, by setting the elements of F(1)
v[j] andF(2)

v[j] i.i.d. drawn uniformly from
Fq, we can guarantee that

rank(Hv[0]) = nτ (94)

for all v[0] ∈ V [0] with probability approaching one asn increases if

τ ≤ min
v[0]∈V [0]

C̄TU({v[0]})
log q

. (95)

For v[0] ∈ V [0], the minimum-cut value is lower bounded by

C̄TU({v[0]}) = min
Ω∈ΛTU({v[0]})

rank
(

HTU
Ω ({v[0]})

)

log q

≥ (T − |V |) min
Ω∈Λ({i})

rank(HΩ({i})) log q, (96)

whereti = v[0]. The inequality follows from the same analysis in [32, Lemma5.2].
From (95) and (96), we set

τ = (T − |V |) min
i∈[1:K]

min
Ω∈Λ({i})

rank(HΩ({i})) (97)
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and the elements ofF(1)
v[j] and F

(2)
v[j] i.i.d. drawn uniformly fromFq. This guarantees the existence ofH−1

v[0] for

all v[0] ∈ V [0] with probability approaching one asn increases. Therefore from (92), settingx′′
v[0] = H−1

v[0]x
′
v[0],

x′
v[0] ∈ F

nτ
q , provides

y
(1)
v[T+1] =

⊕

v[0]∈V [0]

x′
v[0]. (98)

Finally, since any coding scheme for theT time-steps unfolded networkGTU can be performed in the original
networkG usingnT time slots, see the argument in [32, Lemma 5.1], we have

y′
d =

K
⊕

i=1

x′
ti , (99)

wherex′
ti ∈ F

nτ
q for all i ∈ [1 : K] using nT time slots for the original networkG. Here, we simply rewrite

{x′
ti}i∈[1:K] = {x′

v[0]}v[0]∈V [0] and y′
d = y

(1)
v[T+1] from (98) sinceV [0] is the set of senders andv[T + 1]

is the receiver. Then usingn time slots, we have (99) withx′
ti ∈ F

nτ/T
q . From the fact thatlimT→∞

τ
T →

mini∈[1:K]minΩ∈Λ({i}) rank(HΩ({i})), Lemma 3 holds for any arbitrary networks.
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