arXiv:1301.5684v3 [cs.IT] 19 May 2013

Computing sum of sources over an arbitrary
multiple access channel

Arun Padakandla S. Sandeep Pradhan
University of Michigan University of Michigan
Ann Arbor, Ml 48109, USA Ann Arbor, Ml 48109, USA
Email: arunpr@umich.edu Email: pradhanv@eecs.umich.edu

Abstract—The problem of computing sum of sources over a mapped into channel codewords. Since a linear MAC first
multiple access channel (MAC) is considered. Building on t8  computes a sum of the transmitted codewords, it is as if the
technique of linear computation coding (LCC) proposed by Naer codeword corresponding to the sum of messages was input to

and Gastpar [1], we employ the ensemble of nested coset code - . . N
to derive a new set of sufficient conditions for computing sum %he ensuing channel. The first question that comes to mind is

of sources over an a_rb”ra_ry MAC. The op“ma“ty of nested the fO”OWing. If the MAC is not Iinear, would it be pOSSible
coset codes[[2] enables this technique outperform LCC evenrf to decode sum of message indices without having to decode

linear MAC with a structural match. Examples of non-additive the individual codewords? In other words, what would be the

MAC for which the technique proposed herein outperforms  ganerglization of LCC for an arbitrary MAB?f there exist
separation and systematic based computation are also presed. h lizati h fficient Id it be?

Finally, this technigue is enhanced by incorporating sepaation suc a_genera Ization, how efficient would | e_' )

based strategy, leading to a new set of sufficient conditionfer In this article, we answer the above question in the af-

computing sum over a MAC. firmative. Firstly, we recognize that in order to decode the
sum of transmitted codewords, it is most efficient to employ
channel codes that are closed under addition, of which a
Consider a scenario wherein a centralized receiver is iinear code employed in LCC is the simplest example. Closure
terested in evaluating a multi-variate function, the argata under addition contains the range of the sum of transmitted
of which are available to spatially distributed transmmite codewords and thereby support a larger range for individual
Traditionally, the technique of computing functions at @-ce messages. Secondly, typical set decoding circumvents need
tralized receiver is based on it's decoding of the argumerits the MAC to be linear. Since nested coset codes have
in it's entirety. Solutions based on this technique havenbebeen proven to achieve capacity of arbitrary point-to-poin
proven optimal for particular instances of distributed reeu channels[[2] and are closed under addition, we employ this
coding. Moreover, this technique lends itself naturally feensemble for generalizing the technique of LCC. As illusia
communication based on separation. Buoyed by this partigt example§l[]2 in sectidnllll, the generalization we prepos
success and ease of implementation, the de facto framewg@ykoutperforms separation based technique for an arlitrar
for computing at a centralized receiver is by enabling tHdAC and moreover (ii) outperforms LCC even for examples
decoder decode the arguments of the function in it's egtiretvith a structural match.We remark that analysis of typical set
The problem of computing mo#-sum of distributed binary decoding of a function of transmitted codewords with nested
sources has proved to be an exception. Studied in the contex$et codes that contain statistically dependent codesword
of a source coding problem, Korner and Martdn [3] proposmntains new elements and are detailed in proof of the@lem 1.
an ingenious technique based on linear codes, that cirauimve Even in the case of a structural match, separation based
the need to communicate sources to the decoder, and therstlyemes might outperform LCCI[1, Example 4]. This raises
perform strictly better for a class of source distributiohs the following question. What then would be a unified scheme
fact, as proposed in_[[3], the decoder needs only sum feir computing over an arbitrary MAC? Is there such a scheme
message indices put out by the source encoder. This fact ti&s reduces to (i) separation when the desired function and
been further exploited by Nazer and Gastpar [1] in develppiMAC are not matched and (i) LCC when appropriately
a channel coding technique for lmear MAC, henceforth matched? We recognize that KM technique is indeed subopti-
referred to as linear computation coding (LCC), that erablenal for a class of source distributions. For such sourcds, it
the decoder reconstruct the sum of the message indices inpgie efficient to communicate sources as is. We therefoee tak
to the channel encoder. Since the decoder does not needhtapproach of Ahlswede and Han [4, Section VI], where in a
disambiguate individual message indices, this technigghen
applicable, outperforms earlier known techniques. !The technique of systematic computation coding (SCC) [1 met be
LCC [1] is built around employing the same linear cod :rn:‘lﬂﬁ;eadr ﬁﬂsA?:generallzatlon of LCC. Indeed SCC does doteeto LCC
as a channel code at both encoders. The message indmeﬁnis is expecied since linear codes achieve only symmesipacity and
output by the Korner-Marton (KM) source code is linearlyested coset codes can achieve capacity of arbitrary fsimint channels.

I. INTRODUCTION
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two layer source code accomplishes distributed compnessiby encoderj that has access to inpgitof a two user discrete

The first layer generates message indices of those parts thamoryless multiple access channel (MAC) that is used with-

are best reconstructed as is, and the second employs a K feedback. Le&’;, X, be the finite input alphabet sets ayid

technique. In section IV, we propose a two layer channel cotte finite output alphabet set of MAC. LBty | x, x, (y|21, z2)

for MAC that is compatible with the above two layer sourcedenote MAC transition probabilities. We refer to this as MAC

code. The first layer of the MAC channel code communicatéd’, ), Wy x). The objective of the decoder is to compute

the message indices as is, while the second enables thealecSd @ S». In this article, we provide a characterization of a

decode the sum of second layer message indices, and themaifficient condition for computing; &S, with arbitrary small

develop a unifying strategy that subsumes separation a@l L@robability of error. The relevant notions are made preaise
We highlight the significance of our contribution. Firstlythe following definitions.

we propose a strategy based on nested coset codes and deril2efinition 1: A computation coden, e, d) for computing

a set of sufficient conditions for the problem of computingum of sourcesS, W) over the MAC(X, Y, Wy | x ) consists

sum of sources over arbitrary MAC. The proposed strategy of (i) two encoder mapsg; : S" — X' : j = 1,2 and (i) a

subsumes all current known strategies and performs gtrictlecoder magl : Y™ — S".

better for certain examples (sectlod 111). Secondly, oudifigs Definition 2: The average error probabilit§(e,d) of a

highlight the utility of nested coset codes [2] as a gener@gomputation codén, e, d) is

ensemble of structured codes for communicating over arlyitr

multi-terminal communication problems. Thirdly, and pepk Z Z Wyn xn (y"[e(s")) Wsn (s").

more importantly, our findings hint at a general theory of S€S" y™d(y")#

structured codes. Linear and nested linear codes have been 1o

employed to derive communication strategies for particula Definition 3: The sum of source$S, Wg) is computable

symmetric additive source and channel coding problems tiater MAC (X, ), Wy x) if for all » > 0, there exists an

outperform all classical unstructured-code based tectesiq N(n) € N such that for alln > N(7), there exists an

However the question remains whether these structured cddee™, d™) computation code such thate™,d™) <.

based techniques can be generalized to arbitrary muitiibed The main objective in this article is to provide a sufficient

communication problems. Our findings indicate that stiateg condition for computability of sum of sources over a MAC.

based on structured codes can be employed to analyze more | _ )

intelligent encoding and decoding techniques for an atyitr C. Linear Computation Coding

multi-terminal communication problem. We describe the technique of LCC in a simple setting and
highlight the key aspects. Consider binary sources andayin
Il. PRELIMINARIES AND PROBLEM STATEMENT additive MAC, i.e.,S = X, = X, = {0,1} andY = X; &

Following remarks on notatiofi{Il3A) and problem statement> © N, where N is independent of the inputs am(N =
(I=B), we briefly describe LCC for a linear MAQ(IIIC) and 1) = ¢. Furthermore assume sources are symmetric, uniform,
set the stage for it's generalization. e, P(S = (0,0) = 52 = P(S = (1,1)) and P(S =
_ (0,1)) = P(S = (1,0)) = & such thath,(p) < 1 — hy(q).

A. Notation By employing a KM source code, the two message indices at

We employ notation that is now widely adopted in theateh,(p) can be employed to decodk @ S. Let h € Sk*»
information theory literature supplemented by the follogii denote a parity check matrix for the KM source code, with
We let 7, denote a finite field of cardinality. When the % arbitrarily close toh,(p). Nazer and Gastpar observe that
finite field is clear from context, we leb denote addition in the decoder only requires the sumiS? & S§) = h(ST) &
the same. When ambiguous, or to enhance clarity, we spedify55) of message indices. If the map from message indices
addition inF, using®,. In this article, we repeatedly refer toto channel code is linear, then the decoder can ihféf') ®
pairs of objects of similar type. To reduce clutter in natati h(S%) by decoding the codeword corresponding to sum of
we use an underlin® refer to aggregates of similar type. Fotransmitted codewords. Since sum of transmitted codewords
example, (i)S abbreviateqS;, S), (ii) if X}, X> are finite passes through a BS@( they employ a capacity achieving
alphabet sets, we let either denote the Cartesian produdinear code of rate arbitrarily close fio- h,(q) with generator
X, x X, or abbreviate the paift;, X, of sets. More non matrix g € X}*". Each encoder employs the same linear code
trivially, if e; : S* — X' : j = 1,2 are a pair of maps, and transmitse}} : = h(S}')g. The decoder receives™ and
we lete(s™) abbreviate(eq (sT), e2(s%)). decodes as if the channel is a BL(It ends up decoding
message corresponding 4§ & z% which was precisely what
it was looking for.

Consider a paif.Sy, S2) of information sources each taking We note that a separation based scheme will require the sum
values over a finite field& of cardinality . We assume out- capacity of the MAC to be greater thah,(p) and hence LCC
come(Sy 4, S2,¢) of the sources at timee N, is independent is more efficient. What are key aspects of LCC? Note that (i)
and identically distributed across time, with distributi’s. the channel code is designed for the & X, to Y channel,

We let (S, Wgs) denote this pair of sources); is observed i.e., the BSC{) and (ii) both encoders employ the same

B. Problem statement



linear channel code, thereby ensuring their codes are d¢loseThe decoder is provided with the same nested linear
under addition. This contains range of the sum of transthitteode. Having received’” it lists all codewords that are
codewords to a raté — h;(g). It is instructive to analyze the jointly typical with Y™ with respect to distributiopy; v, v
case when the two users are provided two linear codes of ralfest finds all such codewords in a unique coset, say
Ry and R, spanning disjoint subspaces. Since the range of suif'g; ® m'go,; : a* € S¥), then it declares' to be the sum
of transmitted codewords iB; + Rs, the same decoding ruleof KM message indices and employs KM decoder to decode
will impose the constrainR; + R2 < 1—hy(g) resulting in the the sum of sources. Otherwise, it declares an error.
constrain2hy,(p) < 1—hy(g) which is strictly suboptimalWe We derive an upper bound on probability of error by aver-
conclude that the two users’ channel codes being closedrundging the error probability over the ensemble of nestechtine
addition is crucial to the optimality of LCC for this problem codes. For the purpose of proof, we consider user codebooks t
Furthermore, the coupling of (i) a linear map of KM messadee cosets of nested linear cofledle average uniformly over
indices to the channel code at the encoder and (ii) decodithg entire ensemble of nestedsetcodes. Lower bound{1(a))
of the sum of transmitted codewords, is central to LCC. ensures the encoders find a typical codeword in the particula
In the following section, we make use of the above observesset. Upper bound(1(b)) enables us derive an upper bound on
tions to propose a generalization of LCC for computing suthe probability of decoding error. Frorl (1), it can be vedfie
of sources over an arbitrary MAC. that if H(S; ® S3) ~ L < min{H(V}),H(V2)} — H(V; &
152|Y") then the decoder can reconstruct the sum of sources
[1l. NESTED COSET CODES FOR COMPUTING SUM OF  \ith arbitrarily small probability of error.
SOURCES OVER AMAC How does nesting of linear codes enable attain non-uniform

In this section, we propose a technique for Computir@'stributionsﬂ As against to a linear code, nesting of lin-
Sy @ S, over anarbitrary MAC using the ensemble of nestedear codes provides the encoder with a coset to choose the
coset codes[]2], and derive a set of sufficient conditiof®deword from. The vectors in the coset being uniformly
under which, sum of sourcdsS, Ws) can be computed over distributed, it contains at least one vector typical withprect
a MAC (X,¥,Wy,x). Definitions[3 and theorerfll 1 stateto py; with high probability, if the coset is of rate at least

these sufficient conditions. This is followed by exampleatthl — fjé‘(g)‘ By choosing such a vector, the encoder induces a
illustrate significance of theoreni 1. non-uniform distribution on the input space. Thereforen-co

Definition 4: Let D(Wy |x) be collection of distributions straint [A(a)) enables achieve non-uniform input distiins.
Pvivex, X,y defined overS? x X x Y such that (i)  Since the codebooks employed by the encoders are uni-
PVIX Ve Xy = PViXiPVaxas (1) Py|xv = py|x = Wy x. For formly and independently distributed cosets of a common
pyxy € D(Wy|x), let a(pyxy) be defined as random linear code, the sum of transmitted codewords also

lies in a codebook that is a uniformly distributed coset of

{R>0:R<min{H(W),H(V2)} - HVi ®V2[Y)}, and  he same linear code. Any vector in this codebook is uni-
a(Wy|x) 1 = supUpy vy en(wy x)®(Pvxy).  formly distributed over it's entire range. Therefore, a tegc

. in this codebook other than the legitimate sum of transihitte

Theorem 1:The sum of sourcesS, Ws)is computable over .,qewords is jointly typical with the received vector with
a MAC (X, Y, Wy x) if H(S1®52) <a(Wy|x). probability at mostS|™(#(Vi®V2lY)-1)§ Employing a union
Before we provide a proof, we briefly state t_he coding stiategy,ng it can be argued that the probability of decodingrerro
and indicate how we attain the rates promised above. decays exponentially if{1(b)) holds.

We begin with a description of the encoding rule. Encoder gince the ensemble of codebooks contain statistically de-
J employs a KM source code to compress the observgdndent codewords and moreover user codebooks are closely
source. LetMj : = hSi denote corresponding messaggg|ated, deriving an upper bound on the probability of error
index, whereh € S is a KM parity check matrix of jnyolves new elements. The informed reader will recognize
rate ;- ~ H(S © S3). Each encoder is provided with ainat in particular, deriving an upper bound on the probgbili
common nested linear code taking values oSefThe nested of gecoding error will involve proving statistical indepEnce
linear code is described through a pair of generato; MaEtricsF the pair of cosets indexed by KM indicéds!, ML) and
gr € S¥™ andgp,; € 8", whereg; and | g7 gg/l are any codeword in a coset correspondingritd # M! @ M.
the generator matrices of the inner (sparser) code and mpﬂ'he statistical dependence of the codebooks results in new

(finer) codes respectively, where elements to the proof. The reader is encouraged to peruse the
same in the following.

i (@  min {1;11((\‘//12))7} k410 H(V, V) Proof: Givenn > 0, our goal is to identify a computation

— _ — 1 n n n

= oz S| , —— < Tog S| (1) code (n,e,d) such thatP(d(Y") # SI @ S3) < n for all

Encoder J picks a codeword in coset SThisis analogous to the use of cosets of a linear code to Eavievability

k l .k kY i l : ; of symmetric capacity over point-to-point channels.
(a 91 ® Mjgo/l a* €S ) indexed byMJ that is typical “Note that linear codes only achieve mutual information witspect to

with respect tOpV]._. Based on this chos_en codewoM!" IS yniform input distributions.
generated according oy, |y, and transmitted. 5Here, the logarithm is taken with respect to b&Sg



sufficiently largen € N. The source sequences are mapped \o /), respectively. Decoder receiv&s’ and declares error
to channel input codewords in two stages. In the first stageY ™ ¢ T (py ). Else, it lists all codewords™ (a*, m!) € Ao
a distributed source code proposed by Korner and Mafton [&jch thatfvn(ahml),yn) € T} (pvievs.y). If it finds all
is employed to map-length source sequences to messageich codewords in a unique coset séy!) of A\o/)\;, then
indices that takes values ouf. The second stage maps thesg declaresr(1n!) to be the decoded sum of sources, where
indices to channel input codewords. We begin by stating the S' — S is as specified in lemnig 1. Otherwise, it declares
main findings of [8] on which our first stage relies. an error.
Lemma 1:Given a pair of(S, Wg) of information sources  As is typical in information theory, we derive an upper
andn > 0, there exists anV(n) € N such that for every bound on probability of error by averaging the error probgbi
n € N, there exists a parity check matrixe S'*" and a over the ensemble of nested coset codes. We average over
mapr : S — S" such that (i)@ < H(S1 @ S2) + %, the ensemble of nested coset codes by letting the bias sector
and (i) P(r(hST © hS3) # ST © S3) < 2. B} : j = 1,2 and generator matricés;, Go,; mutually inde-
Givenn > 0, let h € S"*™ be a parity check matrix that pendent and uniformly distributed over their respectivegea
satisfies (i) and (ii) in lemmAl 1. LeMjl. :=hS} :j=1,2 spaces. Leto;/A;:j=1,2andAo/A; denote the random
be the message indices output by the source encoder. In tlested coset code(sz,k,l,Gl,Go/I,By) 7 = 1,2 and
second stage, we identify maps : S' — X g =1,2that (n,k,1,Gr,Go,r1, B") respectively, where" = B © By,
maps these message indices to channel input codewords. Fbea* € %, m! € S, let V;*(a*,mk) : j = 1,2, V"' (a*, m!)

J
encodere; : S™ — A7 of the computation code is thereforedenote corresponding random codeword& gy /A : j = 1,2

defined ase;(S') : = p;(hS}). The second stage of theandAo/A; respectively. LeC;(m)) : = (V;*(a*,mk) : a* €
encoding is based on nested coset codes. We begin wit"g and C(m!) : = (V"*(a*,m!) : a* € S*) denote random
brief review of nested coset codes. cosets inAp;/A; : j = 1,2 and Ap/A; corresponding to

An (n, k) coset is a collection of vectors iR;' obtained by messagené- :j = 1,2 andm! respectively. We now analyze
adding a constant bias vector td-a-dimensional subspace oferror events and upper bound probability of error.
Frolf Ao € F andA;r C Ao are(n,k+1) and(n, k) coset ~ We begin by characterizing error events at encoder. If

codes respectively, theyt cosets\o/A; that partition\o is  ¢(mh) = = ke Livrtak mt))ern v,y 2N €51
J ) 2

a nested coset code. = {¢(hS}) = 0}, thene;; is the error event at encodgr

A couple of remarks are in order. Am, k) coset code is An upper bound onP(e;;) can be derived by following the
specified by a bias vectdi” € F;' and generator matricesarguments in [Proof of Theorem(][2]. Findings {0 [2] imply
geFym If Ao C Frand); C Ao are(n, k+1) and(n,k) existence ofN;, € N such thatvn > Nj3, P(ej1) < 2 if
coset codes respectively, then there exists a bias vétter £ - H(V;)

n ~ log|S[*
Fr and generator matricgg € ]:;cxn andgo = { g1 c The error event at the decodekigJes, wherees : = {Y™ ¢
(k+1)xn , Jo/1 1% (py)} and
Fq , such thad™, g; specify \; andb™, go specify \o. 2
Therefore, a nested coset code is specm_ed by a bias vigctor €3:= U U (V™ (@*m), Y™ )eTr (pvyvav) }
and any two of the three generator matrigesgo,r andgo. mikt  akesh
We refer to this as nested coset cdadek, [, gr, go/r,0"). hST&hSY

We now specify the encoding rule. Encoders provided
a nested coset codén, k,l,g1,90/1,b}) denoted\o;/Ar

i NI i n(,k l
tiiklng values over the finite fieldS. Let v7(a", m;) : _Note that (i) independence ¢V, X;) : j — 1,2 implies the

k l n H
= a"gr © mjgosr @ b} denote a generic codeword iNyan oy chainX, — Vi — Vs — X5, and (ii) the chosen codeword

In order to upper boundP(e;) by conditional frequency
typicality, it suffices to upper bouné((e(S5")) ¢ T (px)).

Aoj/Ar and ¢j(my) : = (U;I(ak’g‘é‘) : a" € S*) denote V(a*, M!) and the transmitted vectar;(ST) = yu;(M})
COZSEI corresponding to message;. The message indexgre jointly typical with high probability as a consequende o
M; = hSj put out by the source encoder is used tgongitional generation of the latter. By the Markov lemma

index cosetcj(Mj). Encoder;j looks for a codeword in [5], it suffices to prove‘/}n(ak7MJZ_) . j = 1,2 are jointly
cosetc(Mj) that is typical according tgy;. If it finds at typical. If the codewords were chosen independently atoand
least one such codeword, one of them, WGk,M}) IS according to[[;_, pv,, this would fall out as a consequence
chosen uniformly at randonpj(MJl») is generated accordingof uniformly sampling from the typical set][5, ]. However,
pxnjve (o (a®, M) = TI—, px, v, (1(v] (a*, M}));) and the generation of nested coset code is different, and thef pro
uj(M]l.) is transmitted. Otherwise, an error is declared. of this involves an alternate route. An analogous proof ef th
We now specify the decoding rule. The decoder is prddarkov lemma is provided in[[6] and omitted here in the
vided with the nested coset code,k,[,gr,g0,1,0") de- interest of brevity.
noted Ao /A7, where b = b7 @ by. We employ notation It remains to upper boun®((e11 U €21 U €2)° Ne€3). In
similar to that specified for the encoder. In particular, letippendixX’A, we prove that if%l <1-H((V; @ V|Y), there
v™(a®, mt) : = aFgr@mlgo,rdb™ denote a generic codewordexists Ny(n) € N such thatvn > Ny, P(es) < £. Combining
andc(m!) : = (v"(a*,m') : a* € S*) denote a generic cosetthe boundst > 1 — H(V;) and £t < 1 — H(V; & V4]Y),



we note thatt < min {H(V1), H(V2)} — H(V1 @ V»|Y), then nested coset codes. It maybe verified that pmf
the sum of message indicé$ST & S3) can be reconstructed if
he decoder. This concludes proof of achievability T ange e
att : . : _ /a . pvxy (U, z, 11 B x2) = an v1,02€{0,2} 2)
The informed reader will recognize that deriving an upper 0 otherwise.

bound onP will involve proving statistical independence . . NP _—

of the pair((CG‘jth’-’) = 1p2) of ?:osets and any Eodeworddefmed onFs x F5 satisfies (i), (i) of definitioil and moreover
J : ’ — .

Vv (ak,m!) corresponding to a competing sum of messagg‘épﬂy) ={R>0:R<1}.Thus nested co?et codes enable

m! # h(S} @ S). This is considerably simple for a cod-Teconstructings; &; 5 at the decoder i < = -43067.

: logy 5 | .
ing technique based on classical unstructured codes vrrher-gi]e above example illustrates the need for nesting codes in
codebooks and codewords in every codebook are independ8

qur to achieve nonuniform distributions. However, foe th
The coding technique proposed herein involves correlat®

ove example, a suitable modification of LCC is optimal.
codebooks and codewords resulting in new elements to iﬁgtead ((ij bl]f'ldm tc);oltljes ‘J’T"eﬁh let each us;r érm:iloly 2the
proof. The reader is encouraged to peruse details of tHjaSar code of ratd builton 7. emaps; — & j =1,
element presented in appenfX A. efined a$ — 0 and1 — 2 induces a code oveF; and it can

It can be verified that the rate region presented in thebe verified that LCC achieves the rate achievable using dieste

Ooset codes. However, the following example precludes such
rem[d subsumes that presented [ih [1, Theoreml, Coroll ' g ple p

Ymodification of LCC.
2]. This follows by substituting a uniform distribution for Example 2: The source is assumed to be the same as in
V1, V. Therefore examples presented I [1] carry over §<ample[ll. The two user MAC input and output alphabets
examples of rates achievable using nested coset codes.

) ) . o . also assumed the same, i%;, = X = F5 and output
might visualize a generalization of LCC for arbitrary M'A.‘Calphabet)i — {0,2,4}. The outputy” is obtained by passing

through the modulo-lattice transformation (MLT) [7, Secti W = X, @ X, through an asymmetric channel whose tran-
IV]. Since the map for KM source code message indices to tgﬁion probabilities are given byy 1w (y[1) = 1

: . . yiw (Y pyiw (Y3) = 3
channel code has to be linear, the virtual input alphabetiseof for eachy € ¥ andpy 1w (0[0) = py 1w (212) = py (- (4]4) =
transformed channel are restricted to be source alphabéts 90, p (200) = p | (4]0) = p ! (0f2) = p ! (4]2) =
definition[4. It can now be verified that any virtual channep' ’ (a%/: » (2Y|Z|1V)V: 0.05 Yiw Yiw
specified through maps from (i) virtual to actual inputs) (ii Y"I'Vr:e techniqyu‘gv of LCC builds a linear code 0. It
output to the estimate of the linear combination, identiﬂesCan be verified that the symmetric capacity for thig '@
corresponding test channeli Wy x ). Hence, the techniqueX (= W) — Y channel i0.6096 and therefore LCC enat?les
proposed herein subsumes MLT. Moreover, while MLT iaegcoder reconstruct the éum ¥ o< 0609 _ 9625 A

restricted to employing uniform distributions over the diaxy . - logy 5 -
: . . ... 7. separation based scheme necessitates communicating feach o
inputs, nested coset codes can induce arbitrary distoibsiti

the sources to the decoder and this can be done only if

We now present a sample of examples to illustrate signi/{—S %}%g — 0.3413. The achievable rate region of the test
icance of theorerh]1. As was noted id [1, Example 4] a un&hannéﬁn @) isa(pyxy) = {R>0:R < 091168} and

form ?lstrlbutlon _mdt;ced _by a linear code ma_y:e S“bom'maz'{erefore nested coset codes enable decoder reconstauct th
even for computing functions over a MAC with a structur um if A < ol.ggns;a — 0.3926.

match. The following example, closely related to the former Example 3 Let S, and S, be independent sources dis-

demonstrates the ability of nested coset codes to aChieV?riguted uniformly over{0, 1,2}. The input alphabetst; —

nonuniform distribution and thus exploit the structuraltoia X, — F is the ternary fiela r;md the output alphabet: 7 is

better. ) ) the binary field. LetV = 1;x, . x,, and outpuf” is obtained
Example 1:Let 5, and .S, be a pair of independent andpy passingi¥” through a BSC with crossover probabilityl.

uniformly distributed sources taking values over the fielglhe decoder is interested in reconstructiig As noted in

Fs of five elements. The decoder wishes to reconstrygi  Example 8], W is 0 if an only if S; @3 25, = 0.

S1 @5 S. The two user MAC channel input alphabe¥s =  Therefore, it suffices for the decoder to reconsti§ictys 25o.

Xy = F;5 and output alphabey = {0,2,4}. The output Fojlowing the arguments in proof of theore 1 it can be

Y is obtained by passingV = X, ®s Xa through an proved thatS; @5 25» can be reconstructed using nested coset

asymmetric channel whose transition probabilities ar@wiv.qdes if there exists a pmivxy € D(Wy x) such that

by pyw (Y1) = pyiw(yl3) = 5 for eachy € Y and (s, @, 28,) < min{H(Vy), H(Va)} — H(Vi ©3 2Va|Y). It

Py w(0[0) = py|w(2[2) = py|w(4/4) = 1. Letthe number of an pe verified that for pmfy xy whereinV;, Vs are indepen-

source digits output per channel use)b&\Ve wish to compute dently and uniformly distributed oveFs, X; = Vi, Xo = V5,

the range of values of for which the decoder can reconstrucihe achievable rate region is(py xy) = {R : R < 0.4790}.

the sum of sources. This is termed as computation rale in [¥he computation rate achievable using SCC and separation
It can be verified that the decoder can reconstfjebs Sa  technique are).194 and0.168 respectively. The computation

using the technique of LCC i < %lfogg#(? = 0.4096. A rate achievable using nested coset codeg,%é@gﬂ = 0.3022.

separation based scheme enables the decoder reconstuct th &

. log, (3
sum if A < %1252253 = 0.3413. We now explore the use of 6This would be the set of all binang—length vectors




Example 4:Let S; and S> be independent and uniformly We now characterize achievable rate region for commumigati
distributed binary sources and the decoder is interestedtlirese indices over a MAC. We begin with a definition of test

reconstructing the binary sum. The MAC is binary, i¥.
Xy = Y = F» with transition probabilitiesP(Y = 0]X;
I’l,Xg = wg) = 0.1 if T 75 T2, P(Y = 0|X1 = Xg =

0) =08 andP(Y = 0|X; = X, = 1) = 0.9. It can be easily such
verified that the channel is not linear, i.&,— X1 © Xo—Y'is  py|xuv

channels and the corresponding rate region.
Definition 6: Let Dg
PULU VI Vo X1 XY defined oAy XUs X EX S X Xy X Xy x )Y

be collection of distributions

that

(i) puvx DUV X, PUs Ve Xo, (i)
Pyix = Wy|l For PUVXY € Dg, let

NOT a Markov chain. This restricts current known technique®- (pyv xy) be defined as

to either separation based coding or SCC [1, Section V]. SCC
yields a computation rate 6£3291. The achievable rate region
for the test channely xy where inl; andV; are independent
and uniformly distributed binary sourceX; = Vi, Xs = V5

is given by{R : R < 0.4648}.

We conclude by recognizing that exampple 4 is indeed a family
of examples. As long as the MAC is close to additive we can

expect nested coset codes to outperform separation and S@here J#,;,(V|U)
define Bc(Wy|x) as the convex closure of the union

Be(puvxy) overpyvxy € Do(Wy | x).
Theorem 2:The sum of source$S, Wyg) is computable

IV. GENERAL TECHNIQUE FOR COMPUTING SUM OF
SOURCES OVER AMAC

(R11,R12,R2)ER®:0< R, <I(U1;Y,Us,Vi®Va),
0<R12<I(U2;Y,U1,V1®V2),R11+R12<I(U;Y, V1B Va2)
Ro<Fnin(VIU)—H(V1®V2|Y,U)
R114+R2<Hnin(V|U)+H((U,)—H (V1 ®V2,U1|Y,U2)
Rio+Ro<Hnin (VIU)+H(Us)— H(VL®Va,Us |Y,Uy)
Ri1+Ri2+Re<Hnin(V|U)+H(Ur)+H(Uz2)—H (V1@ V2,U|Y)

= min{H(Vi|U}), H(Va|Us)} and

In this section, we propose a general technique for compélrer MAC (X, ), Wy x) if Bs(Ws) N Bo(Wy|x) # 6.
ing sum of sources over a MAC that subsumes separation angkemark 1:1t is immediate that the general strategy sub-
computation. The architecture of the code we propose i$ builimes separation and computation based techniques. Indeed
on the principle that techniques based on structured codig@bstitutingZ’, U to be degenerate yields the conditions pro-

are not in lieu of their counterparts based on unstructurgiied in theorenill. Substituting to be degenerate yields
coding. Indeed, the KM technique is outperformed by th&paration based technique.

Berger-Tung[[8] strategy for a class of source distribugion
A general strategy must therefore incorporate both.
We take the approach of Ahlswede and Hahn [4, Section VI],

APPENDIXA
AN UPPER BOUND ONP(e3)

where in a two layer source code is proposed. Each sourcen this appendix, we derive an upper boundB(s). As is

encoderj generates two message indickS, M;s. Mj; is

typical in proofs of channel coding theorems, this step lve®

an index to a Berger-Tung source code avg, is an index establishing statistical independence@f(h.S}) : j = 1,2

to a KM source code. The source decoder therefore neegi any codeword’™(a*,7n!) in a competing coseti! #
My, May and Myp & Mo to reconstruct the quantizationsy ST & hS%. We establish this in lemnid 3. We begin with the
and thus the sum of sources. We propose a two layer MAfecessary spadework. The following lemmas holds for &py
channel code that is compatible with the above source cod@d we state it in this generality.

The first layer of this code is a standard MAC channel codeLemma 2:Let F, be a finite field. LeG; € ]-‘(;‘JX", Goyr €
based on unstructured codes. The messages input to ngsn, BP € FI' : j = 1,2 be mutually independent and
layer are communicated as is to the decoder. The secaiifformly distributed on their respective range spacesriTh
layer employs nested coset codes and is identical to the qre following hold.

proposed in theorei 1. A function of the codewords selecte a) P(V*(a",m!) = v") = an for any a* € FF, m! € ]:é

from each layer is input to the channel. The decoder decodes
a triple - the pair of codewords selected from the first Iayer(b
and a sum of codewords selected from the second layer -
and thus reconstructs the required messages. The following
characterization specifies rates of layers 1 and 2 sepgarate(c) P

and therefore differs slightly froni_[4, Theorem 10].
Definition 5: Let D,,(Wg) be collection of distributions
Py Ty5, 5, defined overT; x Tz x 82 such that (a)f;, Tz are
finite sets, (bps, s,
chain. Forprs € D (Ws), let

(Ri1, Ri2, R2) € R® : Ry > I(Th; S1|T%),
Ry > I(T2; S3|Th), Ry > H(S, @ S2|T),
Ri1 + Ri2 > I(T;5)

Bs(prs): =

Let 5s(Wg) denote convex closure of the unigg(prg) over
prs € Du(Ws)

andv™ € F¢,

n( k Iy — ,mn . 5 _ _
) P(V(aj,m;) = v} +j =1,2) = -
FF,mb e Flandv} € F7:j=1,2, and

(Vj"(ok,mé)—v;ﬁok =12,

== for anya €

1 A
= o foranyim' # mj @

V”(Ok,’rﬁl):’un
mb andv?ok :j=1,2, andv™.
Proof: The proof follows from a counting argument

— Ws, (€) Ti — S — So— T is a Markov similar to that employed in_[2, Remarks 1,2].
(a) For anyg; € F¥*", go/; € FiX", o™ € Fp', there exists
a uniqueb™ € 7' such thata*g; & m'go,; & b™ = v". Since
G1, Goyr and B are mutually independent and uniformly

* distributed P(V" (a*, m!) = v™)
(b) We first note P(V/"(a%,m})
P(afGr @ miGo,r ® B} = v} : j = 1,2). For any choice
of gr and go,;, there exists uniqué} : j = 1,2 such that

kn_In
q

— _q —
qknqlnqn qn”

= j o= 1,2) =

L
n




a ‘g1 ® mk 5901 VY =} 1 j =1,2. SinceGy, Go,r and  where ), [(6) follows from lemmbl 2(a) and (b) respectively.
B” are mutually mdependent and unlformly dlstnbuted th€omparing simplified forms of LHS if{4) and RHS id (6), it

probability in question is therefore,% ) suffices to prove
(c) Note that P V(OFml) = =12, _ 1
P (\G"(Ok,mé)_vzok:j_l,2,) B P( miGo/ @By =v" ) VR (OF it)=0" (o7 ol ) ) T gBn
ok 5l - G = .
VIR )= I=L2m Go @B =" This follows from lemmaR2(c) [ |
—p <m3?0/r?3yﬁl—”§fok J=12, We emphasize consequence of lenitha 3 in the following.
(M e(m;®my))Go,r=v" Remark 2:1f /! # hs? @ hs%, then conditioned on the

Since ! # ml @ ml, there exists an index such event{S} =s7:j=1 2} received vectol’ ™ is statistically
that e # mi ® mo. Therefore, given any set ofindependent of/™(a*, m!) for any a* € S*. We establish
(OWS g, 11 90101 90/10s1 S0y there exists truth of this statement in the sequel. Letdenote the set of

a unique selection for rowy, such that(i! © (m} @ all ordered|S|"-tuples of vectors inS™. Observe that,
/I n__ ’Vl n
mlz))go/l = v". Having chosen this, chood§ = o7, & P (5 =s", V7= ) S % (“’ =570 (hs)=C;ij= 1’2’)

) V"( k l : Vn ~k l Yn,
mt ;90,1 SinceGr, Go randB} @ j = 1,2 are mutually inde- " Ciec CzeC @ mo=or Y

endent and unlforml distributed, the robability in Ci1(hs?)=C1 mk A lsm
p n y p y qllms = Z Z é =s" (CQEhsn;:CQ) P (V ’(ak’ml):v )
is thereforel—r = L. . c ’
qq q ) 1€C1 C2€C2
Lemma 3:If generator matrices¥; € Fy*", Go,; € P (yn = | Cohs})=Cri=12 7
Fm and Bf € Fy :j = 1,2 are mutually independent ' ( =y ) Y
and uniformly distributed over their respective range sgac _ s"=s"Y"=y", N D (nak mly—pn
then the pair of coset€’;(m}) : j = 1,2 is independent of clzecl c;cz (C (hsi)=Cy:= 12) (v @tmy=or)
Vn(A T ) Wheneverﬁll 7& (ml 69Tn2) n __ n n __,n nisk Al N
Proof Let v} ke]—‘"foreacha e]:kj_12and P(s"=s"Y" =y") P (V"(@",m') = ")
"eF;. We need to prove We have used (a) independencestfand random objects that
n n . haracterize the codebook, (b) independencé/tfa*, m!)
Ci(my) = (v a E}'k: =1,2, c ) ’
PG ) = (¢ . )¢ and (C; (hs?) < j = 1,2) (lemmal®), (©)(u: (hst), ua(hsh))
4 ( ) =1") being a function of Cy (hs?), C2(hsh)), is conditionally inde-
= P(C}’(mj) = (vjr 1 a" €FF) 1 j=1,2) pendent of’” (a*,m!) given (Cy(hst), C. (hsz)) in arriving
P(V™(@a", i) = ™) 3 & (@). Moreover, sincé’(V"(d’“lmZ) = o) = |S‘n, we have
P(s"=s"Y" =y, V*(a*,m') =) = \$|"P( =
YT =y,

6_6

for every choice ofv; ,« € FJ' : a* € FF,j = 1,2 and
o e T . .
If () for somej = 1 orj = 2, (" ]a%ak jOk) y (U;l,ak“_ \évte)s:rr\?er][ﬁ\;\{[ equipped to derive an upper boundRfas).
?Ok) @ (05 — vly) for any paira®, a* € Fy, or (i)
07 o — Vg 7 VY — V5 for somea® € FF, thenLHS T
and first term of RHS are zero and equality holds. Ples)<P| U U U {T(‘Epéa TY)’)YSn)fsn}
Otherwise, LHS of[{B) is akesher =t gty 2T LEVe s TR

(C"(ml) (U Wk0 Efk)] 1,2,V (&R mh=o )

(]
M
M

~

V" ak mh)=v )

a fov k kQ E]—"k,V"(Ok,m) o™ =12, s"=s" Y =y"
- P( 1YGV"(OI’;OT?LL)_U (0 =" ) " akest, m'# ny (V)0 e
' 1,8k 71,00 s"=s" h(S?GBSZ’) (Vl@Vz\y )
k _.n n k Iy_.n i
- p a GI*Ul,ak_ p 2N ,mj)fvj ok I=1,2 (4) < Z Z Z P Vv (ak ml) P sM=s"
o iateFy VR (0F, mh)=0"— (v —v] 0k) = =" Y=y

where we have used independencG@fand(GO/I, By, BY) s"=5" h(s7 ®s) Ty, (Vi®Vay™)
in arriving at [4). Similarly RHS of[(3) is

P (C}(m))=(v] j:a"€Fy):j=1.2) P (V" (a* m!)=0")

IN
]
]

@3M
]
s}
=<
[ 3
3| |l
=

akeSk ml75 e .
- P (akGI_U;ak”?,okﬁake-?’:’) P(“’“Gz@mlGo/IEBBn:) h(sT@®s2)ETy, (V) Ty (VidValy™)
v (o* mé-): v k=12 om Z |8|k’+l ITm(V1 69V2|y”)|
N v"(o’“ :)i (5) - - |SI"
- 1ok ‘a GJ-'k Ok g= 12 qn GTgl(Y)
_ a*Gr=v m GO/I@B 1 {_ ( _ H(V1®V2\Y)+3n1+k+l)}
- 7 efk) ) AR (e - ©
_ plac no Tk 1 6 where [8) follows from the uniform bound of
= P(dGr=vlp =il €R) O appu(HG e IY) 430} on [Tu(h © iy



for any y* € T;,(Y), n > Ng(n) (Conditional frequency
typicality) for n > Ng(n).

APPENDIXB
CONCLUDING REMARKS

Having decoded the sum of sources, we ask whether it
would be possible to decode an arbitrary function of the
sources using the above techniques? The answer is yes and
the technique involves ‘embedding’. Example 3 illustraes
bedding and a framework is proposed in a subsequent version
of this article. This leads us to the following fundamental
guestion. The central element of the technique presentacab
was to decode theumof transmitted codewords and use that
to decode sum of KM message indices. If the MAC is ‘far from
additive’, is it possible to decode a different bivariatadtion
of transmitted codewords and use that to decode the desired
function of the sources? The answer to the first question
is yes. Indeed, the elegance of joint typical encoding and
decoding enables us reconstruct other ‘well behaved’ fanst
of transmitted codewords. We recognize that if codebodes ta
values over a finite field and were closed under addition, & wa
natural and more efficient to decode the sum. On the other
hand, if the codebooks were taking values over an algebraic
object, for example a group, and were closed with respect
to group multiplication, it would be natural and efficient to
decode the product of transmitted codewords. Since, we did
not require the MAC to be linear in order to compute the sum
of transmitted codewords, we will not require it to multipty
order for us to decode the product of transmitted codewords.
We elaborate on this in a subsequent version of this article.
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