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Abstract—The problem of computing sum of sources over a
multiple access channel (MAC) is considered. Building on the
technique of linear computation coding (LCC) proposed by Nazer
and Gastpar [1], we employ the ensemble of nested coset codes
to derive a new set of sufficient conditions for computing sum
of sources over anarbitrary MAC. The optimality of nested
coset codes [2] enables this technique outperform LCC even for
linear MAC with a structural match. Examples of non-additiv e
MAC for which the technique proposed herein outperforms
separation and systematic based computation are also presented.
Finally, this technique is enhanced by incorporating separation
based strategy, leading to a new set of sufficient conditionsfor
computing sum over a MAC.

I. I NTRODUCTION

Consider a scenario wherein a centralized receiver is in-
terested in evaluating a multi-variate function, the arguments
of which are available to spatially distributed transmitters.
Traditionally, the technique of computing functions at a cen-
tralized receiver is based on it’s decoding of the arguments
in it’s entirety. Solutions based on this technique have been
proven optimal for particular instances of distributed source
coding. Moreover, this technique lends itself naturally for
communication based on separation. Buoyed by this partial
success and ease of implementation, the de facto framework
for computing at a centralized receiver is by enabling the
decoder decode the arguments of the function in it’s entirety.

The problem of computing mod-2 sum of distributed binary
sources has proved to be an exception. Studied in the context
of a source coding problem, Körner and Marton [3] propose
an ingenious technique based on linear codes, that circumvent
the need to communicate sources to the decoder, and thereby
perform strictly better for a class of source distributions. In
fact, as proposed in [3], the decoder needs only sum of
message indices put out by the source encoder. This fact has
been further exploited by Nazer and Gastpar [1] in developing
a channel coding technique for alinear MAC, henceforth
referred to as linear computation coding (LCC), that enables
the decoder reconstruct the sum of the message indices input
to the channel encoder. Since the decoder does not need to
disambiguate individual message indices, this technique,when
applicable, outperforms earlier known techniques.

LCC [1] is built around employing the same linear code
as a channel code at both encoders. The message indices
output by the Körner-Marton (KM) source code is linearly

mapped into channel codewords. Since a linear MAC first
computes a sum of the transmitted codewords, it is as if the
codeword corresponding to the sum of messages was input to
the ensuing channel. The first question that comes to mind is
the following. If the MAC is not linear, would it be possible
to decode sum of message indices without having to decode
the individual codewords? In other words, what would be the
generalization of LCC for an arbitrary MAC?1 If there exist
such a generalization, how efficient would it be?

In this article, we answer the above question in the af-
firmative. Firstly, we recognize that in order to decode the
sum of transmitted codewords, it is most efficient to employ
channel codes that are closed under addition, of which a
linear code employed in LCC is the simplest example. Closure
under addition contains the range of the sum of transmitted
codewords and thereby support a larger range for individual
messages. Secondly, typical set decoding circumvents need
for the MAC to be linear. Since nested coset codes have
been proven to achieve capacity of arbitrary point-to-point
channels [2] and are closed under addition, we employ this
ensemble for generalizing the technique of LCC. As illustrated
by examples 1,2 in section III, the generalization we propose
(i) outperforms separation based technique for an arbitrary
MAC and moreover (ii) outperforms LCC even for examples
with a structural match.2 We remark that analysis of typical set
decoding of a function of transmitted codewords with nested
coset codes that contain statistically dependent codewords
contains new elements and are detailed in proof of theorem 1.

Even in the case of a structural match, separation based
schemes might outperform LCC [1, Example 4]. This raises
the following question. What then would be a unified scheme
for computing over an arbitrary MAC? Is there such a scheme
that reduces to (i) separation when the desired function and
MAC are not matched and (ii) LCC when appropriately
matched? We recognize that KM technique is indeed subopti-
mal for a class of source distributions. For such sources, itis
more efficient to communicate sources as is. We therefore take
the approach of Ahlswede and Han [4, Section VI], where in a

1The technique of systematic computation coding (SCC) [1] may not be
considered as a generalization of LCC. Indeed SCC does not reduce to LCC
for a linear MAC.

2This is expected since linear codes achieve only symmetric capacity and
nested coset codes can achieve capacity of arbitrary point-to-point channels.
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two layer source code accomplishes distributed compression.
The first layer generates message indices of those parts that
are best reconstructed as is, and the second employs a KM
technique. In section IV, we propose a two layer channel code
for MAC that is compatible with the above two layer source
code. The first layer of the MAC channel code communicates
the message indices as is, while the second enables the decoder
decode the sum of second layer message indices, and thereby
develop a unifying strategy that subsumes separation and LCC.

We highlight the significance of our contribution. Firstly,
we propose a strategy based on nested coset codes and derive
a set of sufficient conditions for the problem of computing
sum of sources over anarbitrary MAC. The proposed strategy
subsumes all current known strategies and performs strictly
better for certain examples (section III). Secondly, our findings
highlight the utility of nested coset codes [2] as a generic
ensemble of structured codes for communicating over arbitrary
multi-terminal communication problems. Thirdly, and perhaps
more importantly, our findings hint at a general theory of
structured codes. Linear and nested linear codes have been
employed to derive communication strategies for particular
symmetric additive source and channel coding problems that
outperform all classical unstructured-code based techniques.
However the question remains whether these structured code
based techniques can be generalized to arbitrary multi-terminal
communication problems. Our findings indicate that strategies
based on structured codes can be employed to analyze more
intelligent encoding and decoding techniques for an arbitrary
multi-terminal communication problem.

II. PRELIMINARIES AND PROBLEM STATEMENT

Following remarks on notation (II-A) and problem statement
(II-B), we briefly describe LCC for a linear MAC (II-C) and
set the stage for it’s generalization.

A. Notation

We employ notation that is now widely adopted in the
information theory literature supplemented by the following.
We let Fq denote a finite field of cardinalityq. When the
finite field is clear from context, we let⊕ denote addition in
the same. When ambiguous, or to enhance clarity, we specify
addition inFq using⊕q. In this article, we repeatedly refer to
pairs of objects of similar type. To reduce clutter in notation,
we use an underlineto refer to aggregates of similar type. For
example, (i)S abbreviates(S1, S2), (ii) if X1,X2 are finite
alphabet sets, we letX either denote the Cartesian product
X1 × X2 or abbreviate the pairX1,X2 of sets. More non
trivially, if ej : Sn → Xn

j : j = 1, 2 are a pair of maps,
we let e(sn) abbreviate(e1(sn1 ), e2(s

n
2 )).

B. Problem statement

Consider a pair(S1, S2) of information sources each taking
values over a finite fieldS of cardinality q. We assume out-
come(S1,t, S2,t) of the sources at timet ∈ N, is independent
and identically distributed across time, with distribution WS .
We let (S,WS) denote this pair of sources.Sj is observed

by encoderj that has access to inputj of a two user discrete
memoryless multiple access channel (MAC) that is used with-
out feedback. LetX1, X2 be the finite input alphabet sets andY
the finite output alphabet set of MAC. LetWY |X1X2

(y|x1, x2)
denote MAC transition probabilities. We refer to this as MAC
(X ,Y,WY |X). The objective of the decoder is to compute
S1 ⊕ S2. In this article, we provide a characterization of a
sufficient condition for computingS1⊕S2 with arbitrary small
probability of error. The relevant notions are made precisein
the following definitions.

Definition 1: A computation code(n, e, d) for computing
sum of sources(S,WS) over the MAC(X ,Y,WY |X) consists
of (i) two encoder mapsej : Sn → Xn

j : j = 1, 2 and (ii) a
decoder mapd : Yn → Sn.

Definition 2: The average error probabilitȳξ(e, d) of a
computation code(n, e, d) is

∑

s∈Sn

∑

yn:d(yn) 6=
sn1 ⊕sn2

WY n|Xn(yn|e(sn))WSn(sn).

Definition 3: The sum of sources(S,WS) is computable
over MAC (X ,Y,WY |X) if for all η > 0, there exists an
N(η) ∈ N such that for alln > N(η), there exists an
(n, e(n), d(n)) computation code such that̄ξ(e(n), d(n)) ≤ η.

The main objective in this article is to provide a sufficient
condition for computability of sum of sources over a MAC.

C. Linear Computation Coding

We describe the technique of LCC in a simple setting and
highlight the key aspects. Consider binary sources and a binary
additive MAC, i.e.,S = X1 = X2 = {0, 1} andY = X1 ⊕
X2 ⊕ N , whereN is independent of the inputs andP (N =
1) = q. Furthermore assume sources are symmetric, uniform,
i.e., P (S = (0, 0)) = 1−p

2 = P (S = (1, 1)) and P (S =
(0, 1)) = P (S = (1, 0)) = p

2 such thathb(p) < 1− hb(q).
By employing a KM source code, the two message indices at

ratehb(p) can be employed to decodeS1⊕S2. Let h ∈ Sk×n

denote a parity check matrix for the KM source code, with
k
n arbitrarily close tohb(p). Nazer and Gastpar observe that
the decoder only requires the sumh(Sn

1 ⊕ Sn
2 ) = h(Sn

1 ) ⊕
h(Sn

2 ) of message indices. If the map from message indices
to channel code is linear, then the decoder can inferh(Sn

1 )⊕
h(Sn

2 ) by decoding the codeword corresponding to sum of
transmitted codewords. Since sum of transmitted codewords
passes through a BSC(q), they employ a capacity achieving
linear code of rate arbitrarily close to1−hb(q) with generator
matrix g ∈ X l×n

1 . Each encoder employs the same linear code
and transmitsxn

j : = h(Sn
j )g. The decoder receivesY n and

decodes as if the channel is a BSC(q). It ends up decoding
message corresponding toxn

1 ⊕ xn
2 which was precisely what

it was looking for.
We note that a separation based scheme will require the sum

capacity of the MAC to be greater than2hb(p) and hence LCC
is more efficient. What are key aspects of LCC? Note that (i)
the channel code is designed for theX1 ⊕X2 to Y channel,
i.e., the BSC(q) and (ii) both encoders employ the same



linear channel code, thereby ensuring their codes are closed
under addition. This contains range of the sum of transmitted
codewords to a rate1− hb(q). It is instructive to analyze the
case when the two users are provided two linear codes of rates
R1 andR2 spanning disjoint subspaces. Since the range of sum
of transmitted codewords isR1 +R2, the same decoding rule
will impose the constraintR1+R2 < 1−hb(q) resulting in the
constraint2hb(p) ≤ 1−hb(q) which is strictly suboptimal.We
conclude that the two users’ channel codes being closed under
addition is crucial to the optimality of LCC for this problem.
Furthermore, the coupling of (i) a linear map of KM message
indices to the channel code at the encoder and (ii) decoding
of the sum of transmitted codewords, is central to LCC.

In the following section, we make use of the above observa-
tions to propose a generalization of LCC for computing sum
of sources over an arbitrary MAC.

III. N ESTED COSET CODES FOR COMPUTING SUM OF

SOURCES OVER AMAC

In this section, we propose a technique for computing
S1 ⊕S2 over anarbitrary MAC using the ensemble of nested
coset codes [2], and derive a set of sufficient conditions
under which, sum of sources(S,WS) can be computed over
a MAC (X ,Y,WY |X). Definitions 4 and theorem 1 state
these sufficient conditions. This is followed by examples that
illustrate significance of theorem 1.

Definition 4: Let D(WY |X) be collection of distributions
pV1V2X1X2Y defined over S2 × X × Y such that (i)
pV1X1V2X2 = pV1X1pV2X2 , (ii) pY |XV = pY |X = WY |X . For
pV XY ∈ D(WY |X), let α(pV XY ) be defined as

{R ≥ 0 : R ≤ min{H(V1), H(V2)} −H(V1 ⊕ V2|Y )} , and

α(WY |X) : = sup∪pV XY ∈D(WY |X )α(pV XY ).

Theorem 1:The sum of sources(S,WS)is computable over
a MAC (X ,Y,WY |X) if H(S1 ⊕ S2) ≤ α(WY |X).
Before we provide a proof, we briefly state the coding strategy
and indicate how we attain the rates promised above.

We begin with a description of the encoding rule. Encoder
j employs a KM source code to compress the observed
source. LetM l

j : = hSn
j denote corresponding message

index, whereh ∈ Sl×n is a KM parity check matrix of
rate l

n ≈ H(S1 ⊕ S2). Each encoder is provided with a
common nested linear code taking values overS. The nested
linear code is described through a pair of generator matrices

gI ∈ Sk×n andgO/I ∈ Sl×n, wheregI and
[

gTI gTO/I

]T

are
the generator matrices of the inner (sparser) code and complete
(finer) codes respectively, where

k

n

(a)

≥ 1−
min

{

H(V1),
H(V2)

}

log |S|
,

k + l

n

(b)

≤ 1−
H(V1 ⊕ V2)

log |S|
. (1)

Encoder j picks a codeword in coset
(

akgI ⊕M l
jgO/I : ak ∈ Sk

)

indexed byM l
j that is typical

with respect topVj . Based on this chosen codewordXn is
generated according topXj |Vj

and transmitted.

The decoder is provided with the same nested linear
code. Having receivedY n it lists all codewords that are
jointly typical with Y n with respect to distributionpV1⊕V2,Y .
If it finds all such codewords in a unique coset, say
(

akgI ⊕mlgO/I : ak ∈ Sk
)

, then it declaresml to be the sum
of KM message indices and employs KM decoder to decode
the sum of sources. Otherwise, it declares an error.

We derive an upper bound on probability of error by aver-
aging the error probability over the ensemble of nested linear
codes. For the purpose of proof, we consider user codebooks to
be cosets of nested linear codes.3 We average uniformly over
the entire ensemble of nestedcosetcodes. Lower bound (1(a))
ensures the encoders find a typical codeword in the particular
coset. Upper bound (1(b)) enables us derive an upper bound on
the probability of decoding error. From (1), it can be verified
that if H(S1 ⊕ S2) ≈ l

n ≤ min{H(V1), H(V2)} − H(V1 ⊕
V2|Y ) then the decoder can reconstruct the sum of sources
with arbitrarily small probability of error.

How does nesting of linear codes enable attain non-uniform
distributions?4 As against to a linear code, nesting of lin-
ear codes provides the encoder with a coset to choose the
codeword from. The vectors in the coset being uniformly
distributed, it contains at least one vector typical with respect
to pVj with high probability, if the coset is of rate at least
1−

H(Vj)
log |S| . By choosing such a vector, the encoder induces a

non-uniform distribution on the input space. Therefore, con-
straint (1(a)) enables achieve non-uniform input distributions.

Since the codebooks employed by the encoders are uni-
formly and independently distributed cosets of a common
random linear code, the sum of transmitted codewords also
lies in a codebook that is a uniformly distributed coset of
the same linear code. Any vector in this codebook is uni-
formly distributed over it’s entire range. Therefore, a vector
in this codebook other than the legitimate sum of transmitted
codewords is jointly typical with the received vector with
probability at most|S|n(H(V1⊕V2|Y )−1).5 Employing a union
bound, it can be argued that the probability of decoding error
decays exponentially if (1(b)) holds.

Since the ensemble of codebooks contain statistically de-
pendent codewords and moreover user codebooks are closely
related, deriving an upper bound on the probability of error
involves new elements. The informed reader will recognize
that in particular, deriving an upper bound on the probability
of decoding error will involve proving statistical independence
of the pair of cosets indexed by KM indices(M l

1,M
l
2) and

any codeword in a coset corresponding tom̂l 6= M l
1 ⊕ M l

2.
The statistical dependence of the codebooks results in new
elements to the proof. The reader is encouraged to peruse the
same in the following.

Proof: Givenη > 0, our goal is to identify a computation
code (n, e, d) such thatP (d(Y n) 6= Sn

1 ⊕ Sn
2 ) ≤ η for all

3This is analogous to the use of cosets of a linear code to proveachievability
of symmetric capacity over point-to-point channels.

4Note that linear codes only achieve mutual information withrespect to
uniform input distributions.

5Here, the logarithm is taken with respect to base|S|.



sufficiently largen ∈ N. The source sequences are mapped
to channel input codewords in two stages. In the first stage,
a distributed source code proposed by Körner and Marton [3]
is employed to mapn-length source sequences to message
indices that takes values overSl. The second stage maps these
indices to channel input codewords. We begin by stating the
main findings of [3] on which our first stage relies.

Lemma 1:Given a pair of(S,WS) of information sources
and η > 0, there exists anN(η) ∈ N such that for every
n ∈ N, there exists a parity check matrixh ∈ Sl(n)×n and a
map r : Sl(n) → Sn such that (i) l(n)n ≤ H(S1 ⊕ S2) +

η
2 ,

and (ii) P (r(hSn
1 ⊕ hSn

2 ) 6= Sn
1 ⊕ Sn

2 ) ≤
η
2 .

Given η > 0, let h ∈ Sl×n be a parity check matrix that
satisfies (i) and (ii) in lemma 1. LetM l

j : = hSn
j : j = 1, 2

be the message indices output by the source encoder. In the
second stage, we identify mapsµj : Sl → Xn

j : j = 1, 2 that
maps these message indices to channel input codewords. The
encoderej : Sn → Xn

j of the computation code is therefore
defined asej(Sn

j ) : = µj(hS
n
j ). The second stage of the

encoding is based on nested coset codes. We begin with a
brief review of nested coset codes.

An (n, k) coset is a collection of vectors inFn
q obtained by

adding a constant bias vector to ak−dimensional subspace of
Fn

q . If λO ⊆ Fn
q andλI ⊆ λO are(n, k+ l) and(n, k) coset

codes respectively, thenql cosetsλO/λI that partitionλO is
a nested coset code.

A couple of remarks are in order. An(n, k) coset code is
specified by a bias vectorbn ∈ Fn

q and generator matrices
g ∈ Fk×n

q . If λO ⊆ Fn
q andλI ⊆ λO are(n, k+ l) and(n, k)

coset codes respectively, then there exists a bias vectorbn ∈

Fn
q and generator matricesgI ∈ Fk×n

q andgO =

[

gI
gO/I

]

∈

F
(k+l)×n
q , such thatbn, gI specifyλI andbn, gO specifyλO.

Therefore, a nested coset code is specified by a bias vectorbn

and any two of the three generator matricesgI , gO/I andgO.
We refer to this as nested coset code(n, k, l, gI , gO/I , b

n).
We now specify the encoding rule. Encoderj is provided

a nested coset code(n, k, l, gI, gO/I , b
n
j ) denotedλOj/λI

taking values over the finite fieldS. Let vnj (a
k,ml

j) :

= akgI ⊕ ml
jgO/I ⊕ bnj denote a generic codeword in

λOj/λI and cj(m
l
j) : = (vnj (a

k,ml
j) : ak ∈ Sk) denote

coset corresponding to messageml
j . The message index

M l
j = hSn

j put out by the source encoder is used to
index cosetcj(M l

j). Encoder j looks for a codeword in
coset c(M l

j) that is typical according topVj . If it finds at
least one such codeword, one of them, sayvnj (a

k,M l
j) is

chosen uniformly at random.µj(M
l
j) is generated according

pXn|V n(·|vnj (a
k,M l

j)) =
∏n

t=1 pXj |Vj
(·|(vnj (a

k,M l
j))t) and

µj(M
l
j) is transmitted. Otherwise, an error is declared.

We now specify the decoding rule. The decoder is pro-
vided with the nested coset code(n, k, l, gI , gO/I , b

n) de-
noted λO/λI , where bn = bn1 ⊕ bn2 . We employ notation
similar to that specified for the encoder. In particular, let
vn(ak,ml) : = akgI⊕mlgO/I⊕bn denote a generic codeword
andc(ml) : = (vn(ak,ml) : ak ∈ Sk) denote a generic coset

in λO/λI respectively. Decoder receivesY n and declares error
if Y n /∈ T η1

2
(pY ). Else, it lists all codewordsvn(ak,ml) ∈ λO

such that(vn(ak,ml), Y n) ∈ T n
η1
(pV1⊕V2,Y ). If it finds all

such codewords in a unique coset sayc(ml) of λO/λI , then
it declaresr(m̂l) to be the decoded sum of sources, where
r : Sl → Sn is as specified in lemma 1. Otherwise, it declares
an error.

As is typical in information theory, we derive an upper
bound on probability of error by averaging the error probability
over the ensemble of nested coset codes. We average over
the ensemble of nested coset codes by letting the bias vectors
Bn

j : j = 1, 2 and generator matricesGI , GO/I mutually inde-
pendent and uniformly distributed over their respective range
spaces. LetΛOj/ΛI : j = 1, 2 andΛO/ΛI denote the random
nested coset codes(n, k, l, GI , GO/I , B

n
j ) : j = 1, 2 and

(n, k, l, GI , GO/I , B
n) respectively, whereBn = Bn

1 ⊕ Bn
2 .

For ak ∈ Sk, ml ∈ Sl, let V n
j (ak,ml

j) : j = 1, 2, V n(ak,ml)
denote corresponding random codewords inΛOj/ΛI : j = 1, 2
andΛO/ΛI respectively. LetCj(m

l
j) : = (V n

j (ak,ml
j) : a

k ∈
Sk) andC(ml) : = (V n(ak,ml) : ak ∈ Sk) denote random
cosets inΛOj/ΛI : j = 1, 2 and ΛO/ΛI corresponding to
messageml

j : j = 1, 2 andml respectively. We now analyze
error events and upper bound probability of error.

We begin by characterizing error events at encoder. If
φ(ml

j) : =
∑

ak∈Sk 1{(V n
j (ak,ml

j))∈Tn
η2

(pVj
)} and ǫj1 :

= {φ(hSn
j ) = 0}, then ǫj1 is the error event at encoderj.

An upper bound onP (ǫj1) can be derived by following the
arguments in [Proof of Theorem1][2]. Findings in [2] imply
existence ofNj2 ∈ N such that∀n ≥ Nj2, P (ǫj1) ≤ η

8 if
k
n > 1−

H(Vj)
log |S| .

The error event at the decoder isǫ2∪ǫ3, whereǫ2 : = {Y n /∈
T n

η1
2

(pY )} and

ǫ3 : =
⋃

ml 6=
hSn

1 ⊕hSn
2

⋃

ak∈Sk

{(V n(ak,ml),Y n)∈Tn
η1

(pV1⊕V2,Y )} .

In order to upper boundP (ǫ2) by conditional frequency
typicality, it suffices to upper boundP ((e(Sn)) /∈ T η1

4
(pX)).

Note that (i) independence of(Vj , Xj) : j = 1, 2 implies the
Markov chainX1−V1−V2−X2, and (ii) the chosen codeword
V n
j (ak,M l

j) and the transmitted vectorej(Sn
j ) = µj(M

l
j)

are jointly typical with high probability as a consequence of
conditional generation of the latter. By the Markov lemma
[5], it suffices to proveV n

j (ak,M l
j) : j = 1, 2 are jointly

typical. If the codewords were chosen independently at random
according to

∏n
t=1 pVj , this would fall out as a consequence

of uniformly sampling from the typical set [5, ]. However,
the generation of nested coset code is different, and the proof
of this involves an alternate route. An analogous proof of the
Markov lemma is provided in [6] and omitted here in the
interest of brevity.

It remains to upper boundP ((ǫ11 ∪ ǫ21 ∪ ǫ2)
c ∩ ǫ3). In

appendix A, we prove that ifk+l
n < 1−H(V1 ⊕ V2|Y ), there

existsN4(η) ∈ N such that∀n ≥ N4, P (ǫ3) ≤
η
8 . Combining

the boundskn > 1 − H(Vj) and k+l
n < 1 − H(V1 ⊕ V2|Y ),



we note thatln < min {H(V1), H(V2)}−H(V1⊕V2|Y ), then
the sum of message indicesh(Sn

1 ⊕ Sn
2 ) can be reconstructed

at the decoder. This concludes proof of achievability.

The informed reader will recognize that deriving an upper
bound onP (ǫ3) will involve proving statistical independence
of the pair(Cj(hS

n
j ) : j = 1, 2) of cosets and any codeword

V n(âk, m̂l) corresponding to a competing sum of messages
m̂l 6= h(Sn

1 ⊕ Sn
2 ). This is considerably simple for a cod-

ing technique based on classical unstructured codes wherein
codebooks and codewords in every codebook are independent.
The coding technique proposed herein involves correlated
codebooks and codewords resulting in new elements to the
proof. The reader is encouraged to peruse details of this
element presented in appendix A.

It can be verified that the rate region presented in theo-
rem 1 subsumes that presented in [1, Theorem1, Corollary
2]. This follows by substituting a uniform distribution for
V1, V2. Therefore examples presented in [1] carry over as
examples of rates achievable using nested coset codes. One
might visualize a generalization of LCC for arbitrary MAC
through the modulo-lattice transformation (MLT) [7, Section
IV]. Since the map for KM source code message indices to the
channel code has to be linear, the virtual input alphabets ofthe
transformed channel are restricted to be source alphabets as in
definition 4. It can now be verified that any virtual channel,
specified through maps from (i) virtual to actual inputs, (ii)
output to the estimate of the linear combination, identifiesa
corresponding test channel inD(WY |X). Hence, the technique
proposed herein subsumes MLT. Moreover, while MLT is
restricted to employing uniform distributions over the auxiliary
inputs, nested coset codes can induce arbitrary distributions.

We now present a sample of examples to illustrate signif-
icance of theorem 1. As was noted in [1, Example 4] a uni-
form distribution induced by a linear code maybe suboptimal
even for computing functions over a MAC with a structural
match. The following example, closely related to the former,
demonstrates the ability of nested coset codes to achieve a
nonuniform distribution and thus exploit the structural match
better.

Example 1:Let S1 and S2 be a pair of independent and
uniformly distributed sources taking values over the field
F5 of five elements. The decoder wishes to reconstruct
S1 ⊕5 S2. The two user MAC channel input alphabetsX1 =
X2 = F5 and output alphabetY = {0, 2, 4}. The output
Y is obtained by passingW = X1 ⊕5 X2 through an
asymmetric channel whose transition probabilities are given
by pY |W (y|1) = pY |W (y|3) = 1

3 for each y ∈ Y and
pY |W (0|0) = pY |W (2|2) = pY |W (4|4) = 1. Let the number of
source digits output per channel use beλ. We wish to compute
the range of values ofλ for which the decoder can reconstruct
the sum of sources. This is termed as computation rate in [1].

It can be verified that the decoder can reconstructS1⊕5 S2

using the technique of LCC ifλ ≤ 3
5
log2(3)
log2 5 = 0.4096. A

separation based scheme enables the decoder reconstruct the
sum if λ ≤ 1

2
log2(3)
log2(5)

= 0.3413. We now explore the use of

nested coset codes. It maybe verified that pmf

pVXY (v, x, x1 ⊕5 x2) =

{

1
4

if v1=x1,v2=x2

andv1,v2∈{0,2}

0 otherwise.
(2)

defined onF5×F5 satisfies (i),(ii) of definition 4 and moreover
α(pV XY ) = {R ≥ 0 : R ≤ 1}.Thus nested coset codes enable
reconstructingS1⊕5S2 at the decoder ifλ ≤ 1

log2 5 = .43067.
The above example illustrates the need for nesting codes in
order to achieve nonuniform distributions. However, for the
above example, a suitable modification of LCC is optimal.
Instead of building codes overF5, let each user employ the
linear code of rate16 built onF2. The mapF2 → Xj : j = 1, 2
defined as0 → 0 and1 → 2 induces a code overF5 and it can
be verified that LCC achieves the rate achievable using nested
coset codes. However, the following example precludes such
a modification of LCC.

Example 2:The source is assumed to be the same as in
example 1. The two user MAC input and output alphabets
are also assumed the same, i.e.,X1 = X2 = F5 and output
alphabetY = {0, 2, 4}. The outputY is obtained by passing
W = X1 ⊕5 X2 through an asymmetric channel whose tran-
sition probabilities are given bypY |W (y|1) = pY |W (y|3) = 1

3
for eachy ∈ Y andpY |W (0|0) = pY |W (2|2) = pY |W (4|4) =
0.90, pY |W (2|0) = pY |W (4|0) = pY |W (0|2) = pY |W (4|2) =
pY |W (0|4) = pY |W (2|4) = 0.05.

The technique of LCC builds a linear code overF5. It
can be verified that the symmetric capacity for theX1 ⊕5

X2(= W )− Y channel is0.6096 and therefore LCC enables
decoder reconstruct the sum ifλ ≤ 0.6096

log2 5 = 0.2625. A
separation based scheme necessitates communicating each of
the sources to the decoder and this can be done only if
λ ≤ 1

2
log2 3
log2 5 = 0.3413. The achievable rate region of the test

channel in (2) isα(pV XY ) = {R ≥ 0 : R ≤ 0.91168} and
therefore nested coset codes enable decoder reconstruct the
sum if λ ≤ 0.91168

log2 5 = 0.3926.
Example 3:Let S1 and S2 be independent sources dis-

tributed uniformly over{0, 1, 2}. The input alphabetsX1 =
X2 = F3 is the ternary field and the output alphabetY = F2 is
the binary field. LetW = 1{X1 6=X2} and outputY is obtained
by passingW through a BSC with crossover probability0.1.
The decoder is interested in reconstructingW . As noted in
[1, Example 8],W is 0 if an only if S1 ⊕3 2S2 = 0.
Therefore, it suffices for the decoder to reconstructS1⊕3 2S2.
Following the arguments in proof of theorem 1 it can be
proved thatS1⊕3 2S2 can be reconstructed using nested coset
codes if there exists a pmfpVXY ∈ D(WY |X) such that
H(S1 ⊕3 2S2) ≤ min{H(V1), H(V2)} −H(V1 ⊕3 2V2|Y ). It
can be verified that for pmfpV XY whereinV1, V2 are indepen-
dently and uniformly distributed overF3, X1 = V1, X2 = V2,
the achievable rate region isα(pV XY ) = {R : R ≤ 0.4790}.
The computation rate achievable using SCC and separation
technique are0.194 and0.168 respectively. The computation
rate achievable using nested coset codes is0.4790

log2 3 = 0.3022.

6This would be the set of all binaryn−length vectors



Example 4:Let S1 andS2 be independent and uniformly
distributed binary sources and the decoder is interested in
reconstructing the binary sum. The MAC is binary, i.e.X1 =
X2 = Y = F2 with transition probabilitiesP (Y = 0|X1 =
x1, X2 = x2) = 0.1 if x1 6= x2, P (Y = 0|X1 = X2 =
0) = 0.8 andP (Y = 0|X1 = X2 = 1) = 0.9. It can be easily
verified that the channel is not linear, i.e.,X−X1⊕X2−Y is
NOT a Markov chain. This restricts current known techniques
to either separation based coding or SCC [1, Section V]. SCC
yields a computation rate of0.3291. The achievable rate region
for the test channelpV XY where inV1 andV2 are independent
and uniformly distributed binary sources,X1 = V1, X2 = V2

is given by{R : R ≤ 0.4648}.
We conclude by recognizing that example 4 is indeed a family
of examples. As long as the MAC is close to additive we can
expect nested coset codes to outperform separation and SCC.

IV. GENERAL TECHNIQUE FOR COMPUTING SUM OF

SOURCES OVER AMAC

In this section, we propose a general technique for comput-
ing sum of sources over a MAC that subsumes separation and
computation. The architecture of the code we propose is built
on the principle that techniques based on structured coding
are not in lieu of their counterparts based on unstructured
coding. Indeed, the KM technique is outperformed by the
Berger-Tung [8] strategy for a class of source distributions.
A general strategy must therefore incorporate both.

We take the approach of Ahlswede and Han [4, Section VI],
where in a two layer source code is proposed. Each source
encoderj generates two message indicesMj1,Mj2. Mj1 is
an index to a Berger-Tung source code andMj2 is an index
to a KM source code. The source decoder therefore needs
M11,M21 and M12 ⊕ M22 to reconstruct the quantizations
and thus the sum of sources. We propose a two layer MAC
channel code that is compatible with the above source code.
The first layer of this code is a standard MAC channel code
based on unstructured codes. The messages input to this
layer are communicated as is to the decoder. The second
layer employs nested coset codes and is identical to the one
proposed in theorem 1. A function of the codewords selected
from each layer is input to the channel. The decoder decodes
a triple - the pair of codewords selected from the first layer
and a sum of codewords selected from the second layer -
and thus reconstructs the required messages. The following
characterization specifies rates of layers 1 and 2 separately
and therefore differs slightly from [4, Theorem 10].

Definition 5: Let DAH(WS) be collection of distributions
pT1T2S1S2 defined overT1 × T2 × S2 such that (a)T1, T2 are
finite sets, (b)pS1S2 = WS , (c) T1−S1−S2−T2 is a Markov
chain. ForpTS ∈ DAH(WS), let

βS(pTS) : =







(R11, R12, R2) ∈ R
3 : R11 ≥ I(T1;S1|T2),

R12 ≥ I(T2;S2|T1), R2 ≥ H(S1 ⊕ S2|T ),
R11 +R12 ≥ I(T ;S)







.

Let βS(WS) denote convex closure of the unionβS(pTS) over
pTS ∈ DAH(WS)

We now characterize achievable rate region for communicating
these indices over a MAC. We begin with a definition of test
channels and the corresponding rate region.

Definition 6: Let DG be collection of distributions
pU1U2V1V2X1X2Y defined onU1 ×U2 ×S ×S ×X1 ×X2 ×Y
such that (i) pUVX = pU1V1X1pU2V2X2 , (ii)
pY |XUV = pY |X = WY |X . For pUVXY ∈ DG, let
βC(pUV XY ) be defined as






























(R11,R12,R2)∈R
3:0≤R11≤I(U1;Y,U2,V1⊕V2),

0≤R12≤I(U2;Y,U1,V1⊕V2),R11+R12≤I(U ;Y,V1⊕V2)

R2≤Hmin(V |U)−H(V1⊕V2|Y,U)

R11+R2≤Hmin(V |U)+H(U1)−H(V1⊕V2,U1|Y,U2)

R12+R2≤Hmin(V |U)+H(U2)−H(V1⊕V2,U2|Y,U1)

R11+R12+R2≤Hmin(V |U)+H(U1)+H(U2)−H(V1⊕V2,U|Y )































.

where Hmin(V |U) : = min{H(V1|U1), H(V2|U2)} and
define βC(WY |X) as the convex closure of the union
βC(pUV XY ) over pUVXY ∈ DG(WY |X).

Theorem 2:The sum of sources(S,WS) is computable
over MAC (X ,Y,WY |X) if βS(WS) ∩ βC(WY |X) 6= φ.

Remark 1: It is immediate that the general strategy sub-
sumes separation and computation based techniques. Indeed,
substitutingT , U to be degenerate yields the conditions pro-
vided in theorem 1. SubstitutingV to be degenerate yields
separation based technique.

APPENDIX A
AN UPPER BOUND ONP (ǫ3)

In this appendix, we derive an upper bound onP (ǫ3). As is
typical in proofs of channel coding theorems, this step involves
establishing statistical independence ofCj(hS

n
j ) : j = 1, 2

and any codewordV n(ak, m̂l) in a competing coset̂ml 6=
hSn

1 ⊕ hSn
2 . We establish this in lemma 3. We begin with the

necessary spadework. The following lemmas holds for anyFq

and we state it in this generality.
Lemma 2:LetFq be a finite field. LetGI ∈ Fk×n

q , GO/I ∈
F l×n

q , Bn
j ∈ Fn

q : j = 1, 2 be mutually independent and
uniformly distributed on their respective range spaces. Then
the following hold.

(a) P (V n(ak,ml) = vn) = 1
qn for any ak ∈ Fk

q , ml ∈ F l
q

andvn ∈ Fn
q ,

(b) P (V n
j (akj ,m

l
j) = vnj : j = 1, 2) = 1

q2n for any akj ∈

Fk
q , ml

j ∈ F l
q andvnj ∈ Fn

q : j = 1, 2, and

(c) P

(

V n
j (0k,ml

j)=vn

j,0k
:j=1,2,

V n(0k,m̂l)=vn

)

= 1
q3n for any m̂l 6= ml

1 ⊕

ml
2 andvnj,0k : j = 1, 2, andvn.

Proof: The proof follows from a counting argument
similar to that employed in [2, Remarks 1,2].
(a) For anygI ∈ Fk×n

q , gO/I ∈ F l×n
q , vn ∈ Fn

q , there exists
a uniquebn ∈ Fn

q such thatakgI ⊕mlgO/I ⊕ bn = vn. Since
GI , GO/I and Bn are mutually independent and uniformly

distributedP (V n(ak,ml) = vn) = qknqln

qknqlnqn = 1
qn .

(b) We first noteP (V n
j (akj ,m

l
j) = vnj : j = 1, 2) =

P (akjGI ⊕ ml
jGO/I ⊕ Bn

j = vnj : j = 1, 2). For any choice
of gI and gO/I , there exists uniquebnj : j = 1, 2 such that



akj gI ⊕ ml
jgO/I ⊕ bnj = vnj : j = 1, 2. SinceGI , GO/I and

Bn are mutually independent and uniformly distributed, the
probability in question is thereforeqknqln

qknqlnq2n
= 1

q2n .
(c) Note that

P

(

V n
j (0k,ml

j)=vn

j,0k
:j=1,2,

V n(0k,m̂l)=vn

)

= P

(

ml
jGO/I⊕Bn

j =vn

j,0k
:

j=1,2,m̂lGO/I⊕Bn=vn

)

= P

(

ml
jGO/I⊕Bn

j =vn

j,0k
:j=1,2,

(m̂l⊖(ml
1⊕ml

2))GO/I=vn

)

Since m̂l 6= ml
1 ⊕ ml

2, there exists an indext such
that m̂t 6= m1t ⊕ m2t. Therefore, given any set of
rows g

O/I,1
· · · , g

O/I,t−1
, g

O/I,t+1
, · · · , g

O/I,l
, there exists

a unique selection for rowg
O/I,t

such that(m̂l ⊖ (ml
1 ⊕

ml
2))gO/I = vn. Having chosen this, choosebnj = vnj,0k ⊖

ml
jgO/I . SinceGI , GO/I andBn

j : j = 1, 2 are mutually inde-
pendent and uniformly distributed, the probability in question
is thereforeq(l−1)n

qlnq2n = 1
q3n .

Lemma 3: If generator matricesGI ∈ Fk×n
q , GO/I ∈

F l×n
q and Bn

j ∈ Fn
q : j = 1, 2 are mutually independent

and uniformly distributed over their respective range spaces,
then the pair of cosetsCj(m

l
j) : j = 1, 2 is independent of

V n(âk, m̂l) wheneverm̂l 6= (ml
1 ⊕ml

2).
Proof: Let vnj,ak ∈ Fn

q for eachak ∈ Fk
q , j = 1, 2 and

v̂n ∈ Fn
q . We need to prove

P (Cn
j (m

l
j) = (vnj,ak : ak ∈ Fk

q ) : j = 1, 2,

V n(âk, m̂l) = v̂n)

= P (Cn
j (m

l
j) = (vj,ak : ak ∈ Fk

q ) : j = 1, 2)

P (V n(âk, m̂l) = v̂n) (3)

for every choice ofvj,ak ∈ Fn
q : ak ∈ Fk

q , j = 1, 2 and
v̂n ∈ Fn

q .
If (i) for somej = 1 or j = 2, (vnj,ak⊕ãk−vnj,0k) 6= (vnj,ak −

vnj,0k) ⊕ (vnj,ãk − vnj,0k) for any pair ak, ãk ∈ Fk
q , or (ii)

vn1,ak − vn1,0k 6= vn2,ak − vn2,0k for someak ∈ Fk
q , then LHS

and first term of RHS are zero and equality holds.
Otherwise, LHS of (3) is

P (Cn
j (ml

j)=(vn

j,ak :a
k∈Fk

q ):j=1,2,V n(âk,m̂l)=v̂n)

= P

(

akGI=vn

1,ak−vn

1,0k
:ak∈Fk

q ,V
n
j (0k,ml

j)=vn

j,0k
:j=1,2,

V n(0k,m̂l)=v̂n−(vn

1,âk−vn

1,0k
)

)

= P

(

akGI=vn

1,ak−

vn

1,0k
:ak∈Fk

q

)

P

(

V n
j (0k,ml

j)=vn

j,0k
:j=1,2,

V n(0k,m̂l)=v̂n−(vn

1,âk−vn

1,0k
)

)

,(4)

where we have used independence ofGI and(GO/I , B
n
1 , B

n
2 )

in arriving at (4). Similarly RHS of (3) is

P (Cn
j (ml

j)=(vn

j,ak :a
k∈Fk

q ):j=1,2)P (V n(âk,m̂l)=v̂n)

= P

(

akGI=vn

1,ak−vn

1,0k
:ak∈Fk

q ,

V n
j (0k,ml

j)=vn

j,0k
:j=1,2

)

P
(

akGI⊕m̂lGO/I⊕Bn=

v̂n

)

= P

(

akGI=vn

1,ak−

vn

1,0k
:ak∈Fk

q

)

P
(

V n
j (0k,ml

j)=

vn

j,0k
:j=1,2

)

·
1

qn
(5)

= P

(

akGI=vn

1,ak−

vn

1,0k
:ak∈Fk

q

)

P
(

ml
jGO/I⊕Bn

j =

vn

j,0k
:j=1,2

)

·
1

qn

= P
(

akGI = vn1,ak − vn1,0k : ak ∈ Fk
q

)

·
1

q3n
, (6)

where (5), (6) follows from lemma 2(a) and (b) respectively.
Comparing simplified forms of LHS in (4) and RHS in (6), it
suffices to prove

P

(

V n
j (0k,ml

j)=vn

j,0k
:j=1,2,

V n(0k,m̂l)=v̂n−(vn

1,âk−vn

1,0k
)

)

=
1

q3n
.

This follows from lemma 2(c)
We emphasize consequence of lemma 3 in the following.

Remark 2: If m̂l 6= hsn1 ⊕ hsn2 , then conditioned on the
event

{

Sn
j = snj : j = 1, 2

}

, received vectorY n is statistically
independent ofV n(âk, m̂l) for any âk ∈ Sk. We establish
truth of this statement in the sequel. LetC denote the set of
all ordered|S|k-tuples of vectors inSn. Observe that,

P
(

sn=sn,Y n=yn,

V n(âk,m̂l)=v̂n

)

=
∑

C1∈C

∑

C2∈C

P
(

sn=sn,Cj(hs
n
j )=Cj :j=1,2,

V n(âk,m̂l)=v̂n,Y n=yn

)

=
∑

C1∈C1

∑

C2∈C2

P (sn=sn)P
(

C1(hs
n
1 )=C1

C2(hs
n
2 )=C2

)

P (V n(âk,m̂l)=v̂n)

· P
(

Y n = yn|
Cj(hs

n
j )=Cj:j=1,2

sn=sn

)

(7)

=
∑

C1∈C1

∑

C2∈C2

P
(

sn=sn,Y n=yn,
Cj(hs

n
j )=Cj :j=1,2

)

P (V n(âk,m̂l)=v̂n)

= P (sn = sn, Y n = yn)P
(

V n(âk, m̂l) = v̂n
)

We have used (a) independence ofsn and random objects that
characterize the codebook, (b) independence ofV n(âk, m̂l)
and (Cj(hs

n
j ) : j = 1, 2) (lemma 3), (c)(µ1(hs

n
1 ), µ2(hs

n
2 ))

being a function of(C1(hs
n
1 ), C2(hs

n
2 )), is conditionally inde-

pendent ofV n(âk, m̂l) given (C1(hs
n
1 ), C2(hs

n
2 )) in arriving

at (7). Moreover, sinceP (V n(âk, m̂l) = v̂n) = 1
|S|n , we have

P
(

sn = sn, Y n = yn, V n(âk, m̂l) = v̂n
)

= 1
|S|nP (sn =

sn, Y n = yn).
We are now equipped to derive an upper bound onP (ǫ3).
Observe that

P (ǫ3) ≤ P









⋃

âk∈Sk

⋃

sn=sn

⋃

m̂l 6=
h(sn1 ⊕sn2 )

{

(V n(âk,m̂l),Y n)∈
Tη1(pV1⊕V2,Y ),sn=sn

}









≤
∑

âk∈Sk,
sn=sn

∑

m̂l 6=
h(sn1 ⊕sn2 )

∑

yn∈Tη1(Y ),vn∈

Tη1 (V1⊕V2|y
n)

P
(

V n(ak,m̂l)=vn

sn=sn,Y n=yn

)

≤
∑

âk∈Sk,
sn=sn

∑

m̂l 6=
h(sn1 ⊕sn2 )

∑

yn∈Tη1(Y ),vn∈

Tη1 (V1⊕V2|y
n)

P
(

V n(ak,m̂l)
=vn

)

P
(

sn=sn,
Y n=yn

)

≤
∑

âk∈Sk

∑

m̂l 6=
h(sn1 ⊕sn2 )

∑

yn

∈Tη1(Y )

∑

vn∈
Tη1 (V1⊕V2|y

n)

P (Y n = yn)

|S|
n

≤
∑

yn

∈Tη1(Y )

|S|
k+l

|Tη1(V1 ⊕ V2|y
n)|

|S|
n

≤ exp
{

−n log |S|
(

1− H(V1⊕V2|Y )+3η1+k+l
log|S|

)}

. (8)

where (8) follows from the uniform bound of
exp {n (H(V1 ⊕ V2|Y ) + 3η1)} on |Tη1(V1 ⊕ V2|y

n)|



for any yn ∈ Tη1(Y ), n ≥ N6(η) (Conditional frequency
typicality) for n ≥ N6(η).

APPENDIX B
CONCLUDING REMARKS

Having decoded the sum of sources, we ask whether it
would be possible to decode an arbitrary function of the
sources using the above techniques? The answer is yes and
the technique involves ‘embedding’. Example 3 illustratesem-
bedding and a framework is proposed in a subsequent version
of this article. This leads us to the following fundamental
question. The central element of the technique presented above
was to decode thesumof transmitted codewords and use that
to decode sum of KM message indices. If the MAC is ‘far from
additive’, is it possible to decode a different bivariate function
of transmitted codewords and use that to decode the desired
function of the sources? The answer to the first question
is yes. Indeed, the elegance of joint typical encoding and
decoding enables us reconstruct other ‘well behaved’ functions
of transmitted codewords. We recognize that if codebooks take
values over a finite field and were closed under addition, it was
natural and more efficient to decode the sum. On the other
hand, if the codebooks were taking values over an algebraic
object, for example a group, and were closed with respect
to group multiplication, it would be natural and efficient to
decode the product of transmitted codewords. Since, we did
not require the MAC to be linear in order to compute the sum
of transmitted codewords, we will not require it to multiplyin
order for us to decode the product of transmitted codewords.
We elaborate on this in a subsequent version of this article.
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