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Abstract—In this paper, we investigate the problem of the
empirical coordination in a triangular multiterminal network.
A triangular multiterminal network consists of three terminals
where two terminals observe two external i.i.d correlated se-
quences. The third terminal wishes to generate a sequence with
desired empirical joint distribution. For this problem, we derive
inner and outer bounds on the empirical coordination capacity
region. It is shown that the capacity region of the degraded source
network and the inner and outer bounds on the capacity region of
the cascade multiterminal network can be directly obtained from
our inner and outer bounds. For a cipher system, we establish
key distribution over a network with a reliable terminal, using
the results of the empirical coordination. As another example,
the problem of rate distortion in the triangular multiterminal
network is investigated in which a distributed doubly symmetric
binary source is available.

I. INTRODUCTION

Reconstruction of a source by means of limited resources
is one of the primary purposes of communication. In [1],
Shannon discussed the problem of lossless source coding
where a source is intended to be transmitted over a rate limited
noiseless channel and showed that the minimum required
rate for source description is the entropy of the source. The
description rate for distributed sources can be reduced if
there is correlation between the sources. Slepian and Wolf
established the optimal rate region of the lossless distributed
source coding [2]. In the problem of lossless source coding,
the source sequences can be reconstructed at receivers without
any distotion. The problem of realizing sequences with a
specified distance from the source sequences is introduced
by Shannon [3], where the rate distortion function is defined
as a deterministic function of the distance and the source
distribution. The rate distortion problem for two correlated
sources was discussed by Berger and Tung [4] and [5]. In
their model, two separate encoders intend to transmit two
correlated sources over noiseless channels and a receiver tries
to reconstruct the sources subject to corresponding distortions.
The rate distortion problem in a cascade network was first
studied by Yamamato [6]. In such networks, there are three
terminals– a transmitter, a relay terminal and a receiver– which
are connected by two noiseless links in a cascade setting.
Furthermore, the transmitter has access to an i.i.d source.
For this model, the rate distortion capacity is derived where
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the relay terminal and the transmitter intend to reconstruct
two distorted sequences of the source sequence. Permuter and
Weissman established the rate distortion capacity region of
the cascade and triangular networks where side information is
available at the transmitter and the relay terminal [7]. Chia et
al. extended the Permuter’s model to a network in which a
degraded side information is also available at the receiver [8].

In the problem of rate distortion, the reconstructed se-
quences may have different statistics. In some cases, it is
required to realize certain joint statistics between the re-
constructed sequences and the source sequences. Cuff et
al. considered the coordination problem to achieve certain
joint statistics between terminals in a network [9]. Based
on the definition of the statistics, there are two concepts of
coordination referred to as empirical and strong coordination.
In the empirical coordination problems, the terminals upon
observing correlated sources, wish to generate sequences with
desired empirical joint distribution. Generating sequences with
a certain induced distribution in multiple terminal networks,
where some terminals have access to correlated sources, is
classified under the strong coordination problems. Cuff studied
the empirical coordination in a cascade network where the
transmitter and the relay terminal observe two correlated
sources. The receiver utilizes the received message from the
relay terminal to generate a sequence with given empirical
joint distribution [10].

Many applications can be modeled as a coordination prob-
lem. For instance, consider a network in which multiple
description sources try to make a terminal acts as a new source.
This new source may need to act in some joint behavior with
other sources to fit this network into another network through
a certain bottleneck. As another application, assume that we
intend to generate pseudo-random sequences with specific
empirical distribution in a network. In these applications, we
have to satisfy a terminal to generate a sequence with a
desired distribution. One of the interesting applications of the
empirical coordination is key distribution in cipher systems.
Consider a cipher system with an encryptor and n decryptors
which are distributed over a network. In order to establish a
secure connection over the network, the encryptor enciphers a
plain text by means of a random key sequence. The encryptor
intends to distribute the key sequence to the decryptors over
the network using rate-limited secure channels. In addition m
reliable terminals are available in the network. The reliable
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terminals have access to some sequences, correlated with
the key sequence. In the information theory context, we
develop the problem of key distribution using the empirical
coordination. We consider a reliable terminal which helps an
encryptor to distribute a key sequence to a decryptor.

In this paper, we investigate a noiseless triangular network
where two terminals, which have access to correlated sources,
stimulate the third terminal to construct a sequence with
desired empirical distribution as illustrated in Fig. 1. In some
cases our model reduces to the cascade multiterminal and
degraded source networks introduced in [9]. The cascade
multiterminal network can be deduced by eliminating the
direct link C3. Considering Y as a deterministic function
of X yields the degraded source model. For the Triangular
Multiterminal Network (TMN), inner and outer bounds on the
empirical coordination capacity region are derived. The inner
bound is established using two coding schemes. In each coding
scheme, the Wyner-Ziv [11] and superposition coding [12] are
utilized. The results are used to implement key distribution in
a cipher system where a reliable terminal observes a sequence
correlated with the key sequence. As another example, we
discuss the problem of rate distortion in the TMN in which a
doubly symmetric binary source is available.

The rest of the paper is organized as follows: In Section II,
the problem definition is given. In Section III, we provide our
main results and the intuitions behind them. In Section IV, we
present the examples. Finally, proof of theorems are illustrated
in Section V.

II. PROBLEM DEFINITION

Throughout the paper, we denote a discrete random variable
with an upper case letter (e.g., X) and its realization by the
lower case letter (e.g., x). We denote the probability density
function of X over X with p(x) and the conditional probability
density function of Y given X by p(y|x). We also use Xn to
indicate vector (X1, X2, . . . , Xn).

A TMN consists of three terminals which are connected by
three rate-limited noiseless channels, as Fig. 1 illustrates. TX
and TY have access to i.i.d sources Xn and Y n, respectively.
The sources Xn and Y n are correlated according to probability
distribution p(x, y). TX can communicate over two noiseless
channels C1 and C3 which are limited by rates R1 and
R3. In addition, a noiseless channel C2 provides one way
communication from TY to TZ with limited rate R2. TX
upon observing xn transmits the messages m1 = m1(x

n) and
m3 = m3(x

n) over C1 and C3 to TY and TZ , respectively.
TY after receiving m1 and observing yn transmits m2 =
m2(y

n,m1(x
n)) to TZ over C2. By this scheme, TY acts as

a relay with side information. TZ generates a sequence zn as
a deterministic function of received messages m2 and m3, i.
e., zn = zn(m2(y

n,m1(x
n)),m3(x

n)).
Definition 1 (Empirical Distribution): Consider three de-

terministic sequences xn, yn and zn. The empirical distri-
bution of xn, yn and zn is defined as

p̂xn,yn,zn(x, y, z) =

∑n
i=1 I{(xi, yi, zi) = (x, y, z)}

n
, (1)

T X

T Y

T Z

C 1 C 2

C 3
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Fig. 1. The triangular multiterminal network

where I{.} is the indicator function.
Definition 2 (Total Variation): Consider two probability

distributions p(x) and q(x). The total variation distance is
specified by

‖ p(x)− q(x) ‖1 =

|X |∑
i=1

| p(xi)− q(xi) | . (2)

Definition 3 (Coordination Code): A coordination code
(n, 2nR1 , 2nR2 , 2nR3 , f, r, g) for the TMN consists of an enc-
oder f : Xn → {1, 2, . . . , 2nR1} × {1, 2, . . . , 2nR3}, a recoding
function r : {1, 2, . . . , 2nR1} × Yn → {1, 2, . . . , 2nR2} and a
decoding function g : {1, 2, . . . , 2nR2}×{1, 2, . . . , 2nR3} → Zn.

Definition 4 (Empirical Coordination Achievability):
A joint probability distribution p(x, y)p(z|x, y)
is said to be achievable empirically with the rate
triple (R1, R2, R3), if there exists a sequence of
coordination code (n, 2nR1 , 2nR2 , 2nR3 , f, r, g), such
that ‖ p̂Xn,Y n,Zn(x, y, z)− p(x, y)p(z|x, y) ‖1 → 0 in
probability. The rate triple (R1, R2, R3) is called achievable
rate triple.

Definition 5 (Empirical Coordination Capacity Region): The
set of all achievable rate triples (R1, R2, R3) is defined as
empirical coordination capacity region.

III. MAIN RESULTS

In this section, we give the inner and outer bounds on
the empirical coordination capacity region of the TMN in
Theorem 1 and Theorem 2, respectively.

Theorem 1 (Inner Bound): For the desired joint distribution
p(x, y)p(z|x, y), the rate triple (R1, R2, R3) is achievable
empirically in the TMN if (R1, R2, R3) ∈ R where

R = ConvexHull(R1 ∪R2) (3)

and R1 and R2 are defined as follows:

R1 = {(R1, R2, R3) 3 R1 ≥ I(X;U, V |Y ),

R2 ≥ I(X;U) + I(V, Y ;Z|U)− I(W ;Z|U),

R3 ≥ I(X;W |U)} (4)



for some input distributions p(x, y, z, u, v, w) = p(x, y)p(u|x)
p(v|u, x)p(w|u, x)p(z|y, u, v, w), and

R2 = {(R1, R2, R3) 3 R1 ≥ I(X;U, V |Y ),

R2 ≥ I(X;U) + I(V, Y ;W |U),

R3 ≥ I(X;Z|U)− I(W ;Z|U)} (5)

for some input distributions p(x, y, z, u, v, w) = p(x, y)p(u|x)
p(v|u, x)p(w|u, y)p(z|x, u, w).

Outline of the proof: For the achievability, we utilize two
encoding and decoding schemes. In each scheme, the Wyner-
Ziv and superposition coding are used. In order to achieve
R1, TX generates i.i.d sequences Un and V n, then randomly
partitions them. TX upon observing Xn finds jointly typical
(Un, V n) with Xn and transmits bin indices of Un and V n

over C1. Similarly, TX generates sequences Wn jointly typical
with Un and sends index of a sequence, which is jointly typical
with Xn, over C3. TY , after receiving the indices, first relays
the index of Un to TZ . Then, TY generates sequences Zn

jointly typical with Un and partitions them using random
binning. TY chooses a sequence Zn typical with V n and
transmits the bin index of Zn over C2. TZ finds sequence
Zn in the bin by means of received Wn. In this scheme, Wn

roles as side information. R2 can be obtained when, instead
of TX , TY provides the side information. In this scheme, TX
utilizes C1 like the first scheme and TY relays the index of
Un, however, the bin index of Zn which is typical with Xn

and Un is sent over C3. In addition, TY finds Wn typical with
(Y n, V n, Un) and transmits its index over C2. Similar to the
first scheme, TZ chooses Zn. The inner bound is deduced by
convexity of empirical coordination capacity region. Detailed
proof is provided in Section V-A.

Remark 1: As X and Y are correlated sources, variable V
is used by TY for compressing. The variables W and U are
used by TZ for reconstruction.

Remark 2: In Theorem 1, by setting W = ∅ in R1 and
W = X in R2, the inner bound reduces to the inner bound
on the empirical coordination capacity region of the cascade
multiterminal network studied by Cuff et al. [9].

Theorem 2 (Outer Bound): In order to achieve joint distri-
bution p(x, y)p(z|x, y) empirically in the TMN, the rate triple
(R1, R2, R3) must satisfy

R1 ≥ I(X;U, V |Y )

R2 ≥ I(X,Y ;U)

R3 ≥ I(X;W |U) (6)

for some input distributions p(x, y, z, u, v, w).
Proof : See Section V-B.
Remark 3: By setting U = Z, W = ∅ and considering

the input distribution as p(x, y, z, v) = p(x, y)p(v|x)p(z|y, v)
in Theorem 2, the outer bound reduces to the outer bound
on the empirical coordination capacity region of the cascade
multiterminal network investigated by Cuff et al. [9].

Remark 4: By assuming Y = f(X), i.e., Y is a determin-
istic function of X , and setting V = W = ∅ in Theorem 1
and V = ∅, W = Z in Theorem 2, the region reduces to the

empirical coordination capacity region of the degraded source
model discussed by Cuff et al. [9].

IV. EXAMPLES

Different problems can be modeled as the problem of
empirical coordination. In the following, we discuss some
examples of such problems in the TMN.

Consider a TMN where TX and TY observe i.i.d correlated
sequences Xn and Y n, respectively. Let (X,Y ) be a Doubly
Symmetric Binary Source (DSBS(a)), i.e., Pr(X = 0, Y =
0) = Pr(X = 1, Y = 1) = 1

2a and Pr(X = 0, Y =
1) = Pr(X = 1, Y = 0) = 1

2 (1 − a), a ∈ [0, 12 ]. For this
network, we investigate two examples– key distribution in a
cipher system and the problem of rate distortion in the TMN.

A. Key Distribution in a Cipher System

Suppose a cipher system where there are an encryptor, a
reliable terminal and a decryptor. In this system, the encryptor
enciphers a plain text with the key sequence Xn. The reliable
terminal, which observes the sequence Y n, has the ability
to communicate over a secure noiseless channel C2 with the
decryptor. The encryptor intends to share the key sequence
with the decryptor by sending the required information over a
noiseless channel C3. Also, the encryptor has access to a noise-
less channel C1 to communicate with the reliable terminal. The
encryptor has some limits on secure communication, therefore,
desires to save its output sum-rate as much as possible. We
model this system by the TMN and obtain an inner bound on
(R1, R2, R3), where Ri is the transmission rate that is sent
over Ci, for i = 1, 2, 3.

Let p(u|x) be a Binary Symmetric Channel (BSC(α)) and
consider V = W = ∅ in Theorem 1, the set R2 is deduced
as,

R1 ≥ I(X;U, V |Y ) = I(X;U |Y ) = H(U |Y )−H(U |X,Y )

= Hb(a ∗ α)−Hb(α)

R2 ≥ I(X;U) + I(V, Y ;W |U) = I(X;U) = 1−Hb(α)

R3 ≥ I(X;Z|U)− I(W ;Z|U) = H(X|U) = Hb(α)

and we obtain:

R1 ≥ Hb(a ∗ α)−Hb(α)

R2 ≥ 1−Hb(α)

R3 ≥ Hb(α),

for some α ∈ [0, 1
2
], where Hb(x) = −x log x−(1−x) log(1−x)

and x ∗ y = x(1− y) + y(1− x).
The above expressions state that if we set a = 1

2 , the reliable
terminal acts as a relay. In fact, in this condition X and Y
are independent variables and the reliable terminal can not
help the encryptor to save its output sum-rate. On the other
hand if we choose a = 0, R1 can be equal to 0. In This
condition Y = X ⊕ 1 and the reliable terminal can generate
the key sequence by complementing Y n. Fig. 2 illustrates the
variation of the encryptor’s output sum-rate with respect to a.
From the Fig. 2, it is clear that the output sum-rate increases
by increasing the value of a.
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Fig. 2. The output sum-rate variation respect to a. For a = 0 sum-rate can
be equal to 0, in this condition the reliable terminal can individually generate
key sequence by complementing Y n. For a = 1

2
the reliable terminal has no

information about the key sequence and dose not help.

B. The Problem of Rate Distortion in The TMN

For the proposed TMN, we investigate the problem of rate
distortion where TZ intends to reconstruct Xn with maximum
distortion D according to the distortion function d(x, x̂) =
x⊕ x̂. In this network, Y n roles as side information.

Using Theorem 1, let p(u|x) be a BSC(α) and p(x̂|u, y) =
p(x̂|y) be a BSC(d) in R1. By setting V =W = ∅, we obtain

R1 ≥ I(X;U, V |Y ) = I(X;U |Y ) = Hb(a ∗ α)−Hb(α),

R2 ≥ I(X;U) + I(Y, V ;Z|U)− I(W ;Z|U) = I(X;U)

+ I(Y ; X̂|U) = 2−Hb(α)−Hb(d),

R3 ≥ I(X;W |U) = 0,

subject to the constraint a ∗ d ≤ D.
For R2, let p(u|x) be a BSC(α) and p(x̂|u, x) = p(x̂|x) be

a BSC(d). By setting V =W = ∅, we obtain

R1 ≥ I(X;U, V |Y ) = I(X;U |Y ) = Hb(a ∗ α)−Hb(α),

R2 ≥ I(X;U) + I(Y, V ;W |U) = 1−Hb(α),

R3 ≥ I(X;Z|U)− I(W ;Z|U) = I(X; X̂|U)

= H(X̂|U)−H(X̂|X,U) = Hb(α ∗ d)−Hb(d),

subject to the constraint d ≤ D.
By defining D1 and D2 as

D1 = {(R1, R2, R3) 3 R1 ≥ Hb(a ∗ α)−Hb(α),

R2 ≥ 2−Hb(α)−Hb(d), R3 ≥ 0 ∀d : a ∗ d ≤ D},
D2 = {(R1, R2, R3) 3 R1 ≥ Hb(a ∗ α)−Hb(α),

R2 ≥ 1−Hb(α), R3 ≥ Hb(α ∗ d)−Hb(d) ∀d : d ≤ D},

for some α ∈ [0, 12 ], we have

D1 ∪ D2 ⊆ R(D). (7)

For this problem, consider a case that the variables X and
Y are independent, i.e., a = 1

2 . In this case D1 = ∅ if D 6= 1
2

and D1 ∪ D2 = D2. In fact when X and Y are independent,
TY roles as a relay. At the other side, if Xn can be generated
completely from Y n, i.e., a = 0, C1 is not needed. In this
case, by setting α = 1

2 in D1, the source can be described with
R2 ≥ 1−Hb(D) and R1 = R3 = 0. Also, by setting α = 1

2
in D2, the source can be described with R3 ≥ 1−Hb(D) and
R1 = R2 = 0. In fact in this case both TX and TY have the
source sequence.

V. PROOFS

In this section, we present the achievability and converse
proofs for the described model. We employ the Wyner-Ziv
and the superposition coding for the achievability proof. In
order to achieve the inner bound, two different coding schemes
are established. The time mixing trick is used in the proof of
the outer bound [9]. Before we state the proofs, we illustrate
lemma 1 [13, p. 37]. This lemma lets us define the typical set
by means of the total variation distance.

Lemma 1 ([13]) Define the set T (n)
ε (X) for distribution

p(x) as T (n)
ε (X) = {xn 3 ‖ p̂xn(x)− p(x) ‖1 ≤ ε}. The set

T (n)
ε (X) is bounded as A(n)

ε ⊆ T (n)
ε (X) ⊆ A(n)

ε|X|, where A(n)
ε

denotes the strongly typical set for distribution p(x).
The proof can be directly deduced from the definitions of

T (n)
ε (X) and strongly typical set A(n)

ε .
This lemma indicates that for the finite set X , the total

variation between the distribution p(x) and the empirical
distribution of a typical sequence is small enough.

A. Proof of Theorem 1

Fix a joint distribution p(u, v, w, z) = p(u)p(v|u)p(w|u)
p(z|u).

Codebook Generation: Generate 2nR̃U sequences Un(mu),
mu ∈ [1 : 2nR̃U ) each according to

∏n
i=1 p(ui) and partition

them into 2nRU bins. In each bin there are 2n(R̃U−RU )

sequences Un in average. For each sequence Un(mu)

randomly and conditionally independently generate 2nR̃V ,
2nR̃W and 2nR̃Z sequences V n(mv), mv ∈ [1 : 2nR̃V ),
Wn(mw), mw ∈ [1 : 2nR̃W ) and Zn(mz),mz ∈ [1 : 2nR̃Z )
according to distributions

∏n
i=1 p(vi|ui),

∏n
i=1 p(wi|ui) and∏n

i=1 p(zi|ui), respectively. Then, randomly partition the se-
quences V n and Zn into 2nRV and 2nRZ bins, therefore,
in each bin there are 2n(R̃V −RV ) and 2n(R̃Z−RZ) sequences,
respectively.

The codebook containing all sequences Un is shown by CU
and the corresponding bins with BU (bu), bu ∈ [1 : 2nRU ).
For each Un(mu) we show the corresponding sub-codebooks
consisting all sequences V n, Wn and Zn with CV (mu),
CW (mu) and CZ(mu), respectively. Each bin of CV (mu) is
represented by BV (bv), bv ∈ [1 : 2nRV ). Also, we present
each bin of CZ(mu) by BZ(bz), bz ∈ [1 : 2nRZ ).

The First Scheme

Encoding at TX : Upon observing the source sequence xn,
TX chooses a sequence un(mu) ∈ CU such that (xn, un(mu))



are jointly typical. TX chooses a sequence vn(mv) ∈ CV (mu)
such that (xn, un(mu), v

n(mv)) are jointly typical. In ad-
dition, a sequence wn(mw) ∈ CW (mu) is chosen such
that (xn, un(mu), w

n(mw)) are jointly typical. Then, the bin
indices bu and bv are transmitted over the channel C1 where
un(mu) ∈ BU (bu) and vn(mv) ∈ BV (bv), respectively. TX
transmits mw over the channel C3. By the covering lemma
[14], this can be done with an arbitrarily small probability of
error as n → ∞ if R̃U ≥ I(U ;X), R̃V ≥ I(V ;X|U) and
R̃W ≥ I(W ;X|U).

Decoding at TY : TY reconstructs un(m̂u) ∈ BU (bu) by
using the observed sequence yn and the received bin index
bu such that (un(m̂u), y

n) are jointly typical. TY estimates
vn(m̂v) ∈ BV (bv) by using yn and the received bin index
bu such that (un(m̂u), v

n(m̂v), y
n) are jointly typical. By the

packing and mutual packing lemma [14], the probability of
error tends to zero as n → ∞ if R̃U − RU ≤ I(U ;Y ),
R̃V − RV ≤ I(V ;Y |U) and (R̃U − RU ) + (R̃V − RV ) ≤
I(U, V ;Y ).

Encoding at TY : After decoding un(m̂u) and vn(m̂v), TY
chooses zn(mz) ∈ CZ(m̂u) by using yn and the decoded se-
quences such that (zn(mz), u

n(m̂u), v
n(m̂v), y

n) are jointly
typical. TY transmits m̂u and the bin index bz over the channel
C2 where zn(mz) ∈ BZ(bz). By the covering lemma, this
can be done with an arbitrarily small probability of error as
n→∞ if R̃Z ≥ I(Z;V, Y |U).

Decoding at TZ : After receiving mw, m̂u and bz , TZ
reconstructs wn(mw) ∈ CW (m̂u) and zn(m̂z) ∈ BZ(bz)
such that (zn(m̂z), w

n(mw), u
n(m̂u)) are jointly typical. By

the packing lemma, the probability of error tends to zero as
n→∞ if R̃Z −RZ ≤ I(Z;W |U).

Consequently, the rate triple (R1, R2, R3) can be written as
(R1, R2, R3) = (RU+RV , R̃U+RZ , R̃W ). Using the Fourier-
Motzkin elimination and considering the above equations, we
get the expressions in (4).

The Second Scheme

Encoding at TX : TX chooses un(mu) and vn(mv), similar
to the first scheme. A sequence zn(mz) ∈ CZ(mu) is
chosen such that (zn(mz), u

n(mu), x
n) are jointly typical. TX

transmits the bin indices bu and bv over C1 and the bin index
bz over C3 such that un(mu) ∈ BU (bu), vn(mv) ∈ BV (bv)
and zn(mz) ∈ BZ(bz). By the covering lemma, this can be
done with an arbitrarily small probability of error as n→∞
if R̃U ≥ I(U ;X), R̃V ≥ I(V ;X|U) and R̃Z ≥ I(Z;X|U).

Decoding at TY : TY reconstructs un(m̂u) and vn(m̂v)
similar to the first scheme.

Encoding at TY : After decoding un(m̂u) and vn(m̂v),
TY chooses wn(mw) ∈ CW (m̂u) using the observed
sequence yn and the decoded sequences such that
(wn(mw), u

n(m̂u), v
n(m̂v), y

n) are jointly typical. TY
transmits m̂u and mw over C2. By the covering lemma, this
can be done with an arbitrarily small probability of error as
n→∞ if R̃W ≥ I(W ;V, Y |U).

Decoding at TZ : After receiving mw, m̂u and bz , TZ recon-
structs wn(mw) ∈ CW (m̂u) and zn(m̂z) ∈ BZ(bz), similar

to the first scheme. By the packing lemma, the probability of
error tends to zero as n→∞ if R̃Z −RZ ≤ I(Z;W |U).

Consequently, the rate triple (R1, R2, R3) can be written as
(R1, R2, R3) = (RU+RV , R̃U+R̃W , RZ). Using the Fourier-
Motzkin elimination and considering the above equations, we
get the expressions in (5). The convexity of the empirical
coordination capacity region [13] deduces (3).

B. Proof of Theorem 2
In order to prove the outer bound, we utilize the time mixing

trick. The random time variable Q is uniformly distributed over
[1 : n]. First, consider R1:

nR1 ≥ H(M1) ≥ H(M1|Y n)
(a)
= H(M1|Y n)

+H(M2|M1, Y
n)

(b)
= H(M1,M2|Y n)−H(M1,M2|Y n, Xn)

= I(M1,M2;X
n|Y n) = H(Xn|Y n)−H(Xn|Y n,M1,M2)

(c)
=

n∑
i=1

H(Xi|Yi)−H(Xi|Y n, Xi−1,M1,M2)

≥
n∑
i=1

H(Xi|Yi)−H(Xi|Y i, Xi−1,M1,M2)

=

n∑
i=1

I(Xi;M1,M2, X
i−1, Y i−1|Yi)

(d)
=

n∑
i=1

I(Xi;Ui, Vi|Yi) = nI(XQ;UQ, VQ|YQ, Q)

(e)
= nI(XQ;UQ, VQ, Q|YQ) ≥ nI(XQ;UQ, VQ|YQ)

where (a) follows from the fact that M2 is a deterministic
function of M1 and Y n. (b) is due to the fact that M1 and
M2 are deterministic functions of Xn and Y n. (c) is directly
obtained from i.i.d distribution of (Xn, Y n). By defining Ui =
(M2, X

i−1, Y i−1) and Vi = (M1, X
i−1, Y i−1), (d) can be

deduced. Finally, (e) comes from the time mixing properties.
Now, consider R2:

nR2 ≥ H(M2)
(a)
= H(M2)−H(M2|Xn, Y n)

= I(M2;X
n, Y n) +

n∑
i=1

I(Xi, Yi;M2|Xi−1, Y i−1)

=

n∑
i=1

I(Xi, Yi;M2|Xi−1, Y i−1) + I(Xi, Yi;X
i−1, Y i−1)

=

n∑
i=1

I(Xi, Yi;M2, X
i−1, Y i−1) =

n∑
i=1

I(Xi, Yi;Ui)

= nI(XQ, YQ;UQ|Q) = nI(XQ, YQ;UQ, Q)

≥ nI(XQ, YQ;UQ)

where (a) follows from the fact that M2 is a deterministic
functions of Xn and Y n. Finally, for R3 we have:

nR3 ≥ H(M3) ≥ H(M3|M2)
(a)
= H(M3|M2)

−H(M3|M2, X
n, Y n) = I(M3;X

n, Y n|M2)



=

n∑
i=1

H(Xi, Yi|Xi−1, Y i−1,M2)

−
n∑
i=1

H(Xi, Yi|Xi−1, Y i−1,M2,M3)
(b)
=

n∑
i=1

H(Xi, Yi|Ui)

−
n∑
i=1

H(Xi, Yi|Ui,Wi) =

n∑
i=1

I(Xi, Yi;Wi|Ui)

≥
n∑
i=1

I(Xi;Wi|Ui) = nI(XQ;WQ|UQ, Q)

≥ nI(XQ;WQ|UQ)

where (a) follows from the fact that M3 is a deterministic
functions of Xn. By defining Wi = (M3, X

i−1), (b) can be
deduced.

VI. CONCLUSION

We investigated the empirical coordination problem in a
triangular network where the transmitter and the relay terminal
observe two correlated sources. For this problem, inner and
outer bounds on the empirical coordination capacity region
were derived. In the achievability proof, two different coding
schemes were used to provide two regions. The convex hull
of these regions achieved the inner bound of capacity region.
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