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Abstract—A subspace-based approach for rate-adaptive dis-
tributed source coding (DSC) based on discrete Fourier transform
(DFT) codes is developed. Punctured DFT codes can be used to
implement rate-adaptive source coding, however they perform
poorly after even moderate puncturing since the performance of
the subspace error localization degrades severely. The proposed
subspace-based error localization extends and improves the
existing one, based on additional syndrome, and is naturally
suitable for rate-adaptive distributed source coding architecture.

I. I NTRODUCTION

The ideas ofcoding theory can be described within the set-
ting of signal processing by using a class of real (or complex)
Bose-Chaudhuri-Hocquenghem (BCH) codes [1] known as the
discrete Fourier transform codes.DFT codes find applications
in different areas including wireless communications [2],joint
source-channel coding [3], and distributed source coding [4].
Looking from aframe theory perspective, these codes are used
to provide robustness toerasure in wireless networks [5]–[7].

Whenerror correction is required [2]–[4],error localization
is a crucial step of the decoding algorithm of DFT codes. Error
localization in BCH-DFT codes can be done by extending that
of binary BCH codes to the real field [1]. Rath and Guillemot
[8] usedsubspace-based error localization and showed that it
outperforms thecoding-theoretic approach; the improvement
is achieved by mitigating the effect of the quantization error by
involving as many syndrome samples as possible. The authors
recently employed DFT codes for lossy DSC [4] and adopted
subspace error localization in this context [9]. This approach to
DSC exploits the correlation between the sources in theanalog
domain and it is promising in delay-sensitive applications. The
performance of the system, like other DSC systems, degrades
when the correlation between the sources is unstable. Although
puncturing can be used forrate-adaption, it severely affects
the error localization and substantially increases the end-to-
end distortion.

The primary contribution of this paper is to developrate-
adaptive distributed source codes based on DFT codes. To do
so, we extend and improve the subspace error localization of
DFT codes and adapt it both to the parity- and syndrome-based
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DSC. The extended subspace error localization is applicable to
other codes based on orthogonal transform matrices such as the
discrete cosine transform (DCT) and discrete sine transform
(DST) codes, as the subspace approach is [10].

Rate-adaptation for the parity approach is developed only
for real DFT codes of rate0.5. However, the syndrome ap-
proach is for any real or complex code; the encoder transmits
a short syndrome based on an(n, k) code and augments it
with additional samples if decoding failure is fed back. The
algorithm is incremental so that there is no need to re-encode
the sources when more syndrome is requested.

The paper is organized as follows. After a brief review of
DFT codes in Section II, we discuss how the subspace error
localization outperforms the coding-theoretic approach and
introduce the extended subspace decoding in Section III. We
explain the rate-adaptive DSC system in Section IV. Numerical
results in Section V confirm the merit of the proposed error
localization. This is followed by conclusion in Section VI.

II. DFT CODES

The generator matrix of an(n, k) DFT code [11], in general,
consists of anyk columns of the inverse DFT (IDFT) matrix
of ordern; the remainingn−k columns of this matrix are used
to build theparity-check matrix H . These codes are a family
of cyclic codes over the complex field. Thus, their codewords
satisfy certain spectral properties in the frequency domain [12].
Within the class of DFT codes, there are BCH codes in the
complex and real fields. Each codeword of an(n, k) BCH-DFT
code hasd , n− k cyclically adjacent zeros in the frequency
domain. They aremaximum distance separable codes with
minimum Hamming distance dmin = d + 1. They are, hence,
capable of correcting up tot = ⌊d

2⌋ errors.
We consider real BCH-DFT codes whose generator matrix,

for an (n, k) code, is defined by [3], [13]

G =

√

n

k
WH

n ΣWk, (1)

whereWn andWk are the DFT matrices of sizen andk, and

Σ =





Iα 0

0 0

0 Iβ



 (2)

is ann× k matrix with α = ⌈n
2 ⌉ − ⌊n−k

2 ⌋ andα+ β = k.
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The generator matrix of a complex BCH-DFT code can be
achieved by removingWk from (1); we can also remove the
constraint onα. Although we focus on the real BCH-DFT
codes, the results we present in this paper are valid for the
complex codes as well. In the rest of this paper, for brevity,
BCH-DFT codes will be referred to as DFT codes.

III. E RROR LOCALIZATION IN DFT CODES

Let r = c+ e be a noisy version of codewordc generated
by a DFT code and suppose that the error vectore hasν ≤ t
nonzero elements. Leti1, . . . , iν andei1 , . . . , eiν , respectively,
denote the locations and magnitudes of the nonzero elements.
The decoding algorithm in DFT codes is composed of three
main steps [1]:error detection (to determineν), error local-
ization (to find i1, . . . , iν), anderror calculation (to calculate
ei1 , . . . , eiν ). This section is focused on the error localization.
Thus, we assume that the number of errorsν is known at the
decoder.

The syndrome ofe, a key for the decoding algorithm, is
computed as

s = Hr = H(c+ e) = He, (3)

wheres = [s1, s2, . . . , sd]
T is a complex vector with

sm =
1√
n

ν
∑

p=1

eipX
α−1+m
p , m = 1, . . . , d, (4)

in which α is defined in (2) andXp = e
j2πip

n , p = 1, . . . , ν.

A. Coding-Theoretic and Subspace Approaches

The classical approach to the error localization is to identify
an error locator polynomial whose roots correspond to error
locations. The error locator polynomial is defined as

Λ(x) =

ν
∏

i=1

(1− xXi) = 1 + Λ1x+ · · ·+ Λνx
ν , (5)

and its rootsX−1
1 , . . . , X−1

ν correspond to the error locations
ip, p ∈ [1, . . . , ν], as X−1

p = ωip whereω = e−j 2π
n . The

coefficientsΛ1, . . . ,Λν can be found by solving the following
set ofconsistent equations [1]

sjΛν + sj+1Λν−1 + · · ·+ sj+ν−1Λ1 = −sj+ν , (6)

for j = 1, . . . , d − ν. To put it differently, as the IDFT of
Λn = [1,Λ1, . . . ,Λν ,01×(n−ν−1)]

T becomes zero at the error
locations, the circular convolution ofΛn with the DFT of the
error vector is a zero vector [1], [8].

An alternative approach is to use thesubspace methods for
error localization [8]. Theerror-locator matrix of order m,
whose columns are theerror-locator vectors of orderm, is a
Vandermonde matrix defined as

Vm =











1 1 . . . 1
X1 X2 . . . Xν

...
...

. . .
...

Xm−1
1 Xm−1

2 . . . Xm−1
ν











. (7)

Next, following the nomenclature of [8], forν + 1 ≤ m ≤
d− ν + 1, we define the syndrome matrix by

Sm = VmDV T
d−m+1, (8)

whereD is a diagonal matrix of sizeν with nonzero diagonal
elementsdp = 1√

n
eipX

α
p , p = 1, . . . , ν. One can check that

Sm =











s1 s2 . . . sd−m+1

s2 s3 . . . sd−m+2

...
...

. . .
...

sm sm+1 . . . sd











. (9)

Also, we define the covariance matrix as

Rm = SmSH
m . (10)

From (8), it is obvious that the rank ofRm is ν; thus, it can
be eigendecomposed as

Rm = [Ue Un]

[

∆e 0

0 ∆n

]

[Ue Un]
H , (11)

where the square matrices∆e and∆n contain theν largest
andm − ν smallest eigenvalues, andUe andUn contain the
eigenvectors corresponding to∆e and∆n, respectively.1 The
sizes ofUe andUn arem× ν andm× (m− ν). The columns
in Ue span thechannel-error subspace spanned byVm [8].
Thus, the columns inUn span thenoise subspace. Then, from
the fact thatUH

e Un = 0, we conclude that

V H
m Un = 0. (12)

Now, let v = [1, x, x2, . . . , xm−1]T where x is a complex
variable and define the function

F (x) ,

m−ν
∑

j=1

v
HUn =

m−ν
∑

j=1

m−1
∑

i=0

fjix
i. (13)

F (x) can be considered as sum ofm−ν polynomials{fj}m−ν
j=1

of orderm− 1; each polynomial corresponds to one column
of Un. Let F denote this set of polynomials. In light of (12),
each one of these polynomials vanishes forx = X1, . . . , Xν ,
i.e., F (x) = 0 for X1, . . . , Xν . These are the only common
roots of{fj} over thenth roots of unity [8]; thus, the errors
location can be determined by finding the zeros ofF (x) over
the set ofnth roots of unity. Equivalently, one may use the
signal subspace to find the error location [14].

The subspace method outperforms the coding theoretic error
localization. To prove this, we can see thatΛ(x) is the smallest
degree polynomial that has roots inX1, . . . , Xν and lies in the
noise subspace; it is achieved form = ν + 1 in (13). As m
increases the degree of polynomials{fj} goes up which gives
more degrees of freedom and helps improve the estimation of
roots, and the error locations consequently. Another factor that
affects location estimation is the number of polynomials{fj}
with linearly independent coefficients. The more there are such
polynomials, the better the estimation is as the variationsdue

1Clearly, since there is no noise (or quantization error),∆n = 0 and∆e

contains theν nonzero eigenvalues ofRm.



to noise (quantization) are reduced by adding such independent
polynomials inF (x).

Although the number of polynomials increases withm, their
coefficients may not be independent. The latter depends on the
number of nonzero eigenvalues in the noise subspace which
is, in turn, related to the rank ofSm and is limited by

rank(Sm) ≤ max
m

min(m, d−m+ 1) =

⌈

d

2

⌉

. (14)

This suggests that the optimum value form is ⌈d
2⌉. Then, from

(13), one can check that the subspace approach will result in
a better error localization than the coding-theoretic approach,
except whenν = t andd is even; in this latter casem = ν+1
and there is just one polynomial and its degree isν, the same
as (5) in the coding-theoretic approach.

In practice, where quantization comes into play, the received
vector is distorted both by the error vectore and quantization
noiseq. Thereforer = c+ e+ q, and its syndrome is only a
perturbed version ofs because

Hr = H(c+ q + e) = sq + s = s̃, (15)

wheresq ≡ Hq andq = [q1, q2, . . . , qn]
T is the quantization

error. The distorted syndrome samples can be written as

s̃m =
1√
n

ν
∑

p=1

eipX
α−1+m
p +

1√
n

n
∑

p′=1

qip′X
α−1+m
p′ , (16)

whereip′ shows the index for quantization error. The distorted
syndrome matrixS̃m and its corresponding covariance matrix
R̃ = S̃mS̃H

m are defined similar to (9) and (10) but for the
distorted syndrome samples.

B. Extended Subspace Approach

The main idea behind the extended subspace approach is to
enlarge the dimension of the noise subspace such that, in (13),
the number of polynomials with linearly independent coeffi-
cients and/or their degree grow. This can be accomplished by
constructing an extended syndrome matrixS′

m, in the form of
Sm in (9) but for d′ > d, which is decomposable as

S′
m = VmDV T

d′−m+1, (17)

for ν + 1 ≤ m ≤ d′ − ν + 1, andVm andD defined in (8).
Following the same argument that led to (14), it is easy to see
that the optimalm is ⌈d′

2 ⌉. Then, as explained in Section III-A,
this will improve the error localization.

To form S′
m, we first define the extended syndromes̄. Let

d̄ ∈ [d + 1, n] show the new number of syndrome samples
where there arēd− d additional samples as compared to (4).
Similar to the syndrome vectors, we define the extended
syndrome vector̄s as

s̄ = H̄r = H̄c+ H̄e, (18)

whereH̄ consists of thosek columns of the IDFT matrix of
ordern used to buildG. More precisely, form = 1, . . . , d̄−d,

s̄m =
1√
n

ν
∑

p=1

eipX
d+α−1+m
p +

1√
n

n
∑

p′=1

cip′X
d+α−1+m
p′ .

(19)
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Fig. 1. Probability of correct localization of errors usingthe subspace and
extended subspace approaches, at different channel-error-to-quantization-noise
ratio (CEQNR), for a(10, 5) DFT code where all errors are in even positions.

Now, with

s′m =

{

sm, 1 ≤ m ≤ d,
s̄m−d, d < m ≤ d′,

(20)

S′
m will be decomposable as (17) provided that the second

term in the right-hand side of (19) is vanished, or equivalently
H̄c is removed from (18). Observe that considering quantiza-
tion cip′ will be replaced bycip′ +qip′ ; i.e., ˜̄sm contains a term
related to quantization error, similar tõsm in (16). Likewise,
s̃′m is built upons̃m and ˜̄sm. Again we should emphasize that
usingR′

m = S′
mS′H

m (and R̃′
m) may not necessarily improve

the error localization; to expect gain by virtue of the extended
subspace method, we need to compensate for the termH̄c in
(18). This is done for the syndrome-based DSC in the next
section.

Before moving on to the next section, we look at extended
subspace method for a special, yet important, class of DFT
codes wheren = 2k. For such a code,d = k andXd

p is +1
(−1) for errors in the even (odd) positions in the codeword.
Then, if all errors are in the even (odd) positions2, we can
simply replaces̄ with s (−s). Thus, using (20) we can form
S′
m(S̃′

m) and the correspondingR′
m(R̃′

m). Subsequently, the
eigendecomposition of̃R′

m for m = ⌈d′/2⌉ increases the
number of polynomials inF and their degree. Figure 1 shows
the merit of extended error localization to the existing one, for
d′ = n, in a (10, 5) code. Such a big gain in error localization
is achieved by using the samed syndrome samples but forming
a larger syndrome matrix which allows a larger noise subspace.

Remark 1. Similar to the subspace approach [10], the extended
subspace approach can be applied to the DCT and DST codes;
further, it can be used even for the non-BCH DCT and DST
codes [10].

Remark 2. Knowing thatR̃m can also be used to determine the
number of errorsν [9], where the extended error localization
is applicable,R̃′

m can be used for this purpose and it improves
the results reasonably.

2Although this condition might seem unrealistic at first glance, in the next
section we show that it is realized, for instance, in a parity-based DSC.



IV. RATE-ADAPTIVE DISTRIBUTED LOSSYSOURCE

CODING USING DFT CODES

Distributed lossless compression of two correlated sources
can be as efficient as their joint compression [15]. This is
also valid forlossy source coding with side information at the
decoder for jointly Gaussian sources and the mean-squared
error (MSE) distortion measure [16]. Tipically, DSC is realized
by quantizing the sources and applying Slepian-Wolf codingin
the binary domain. Slepian-Wolf coding can be implemented
in the analog domain as well [4] which outperforms its binary
counterpart for certain scenarios, e.g., an impulsive correlation
model. The proposed DSC schemes based on DFT codes, both
parity and syndrome approaches, are also appropriate for low-
delay coding as they perform sufficiently well even when short
source blocks are encoded.

When the statistical dependency between the sources varies
or is not known at the encoder, arate-adaptive system with
feedback is an appealing solution [17]. Rate-adaptive DSC
based on binary codes, e.g., puncturing the parity or syndrome
bits of turbo and LDPC codes, have been proposed in [17],
[18]. In the sequel, we extend DSC based on DFT codes [4]
to perform DSC in a rate-adaptive fashion. We consider two
continuous-valued correlated sourcesx andy wherexi andyi
are statistically dependent byyi = xi+ei, andei is continuous,
i.i.d., and independent ofxi.

A. Parity-Based Approach

Puncturing is a well-known technique used to achieve higher
rate codes for the same decoder; it is inherently well-suited
for parity-based DSC schemes as one can remove some of the
parity samples to puncture a code. However, with subspace
error localizations, the performance of punctured DFT codes
deteriorates largely. As explained in the previous section,
extended subspace decoding significantly improves the results
provided that the errors are restricted to even (odd) positions.
This can be achieved by using(2k, k) DFT codes. Generated
by (1), a(2k, k) DFT code is systematic with parity samples
in even positions. We can modify this code and form a code
whose parity samples are in the even positions [13]. Then, the
extended syndrome matrix in (17) can be used both for error
detection and localization. Similar to the subspace method,
the performance of the system drops sharply with puncturing.
Furthermore, although simple, puncturing may cause the min-
imum distance to decrease. An alternative, general approach
for rate-adaptation is presented next.

B. Syndrome-Based Approach

Rate-adaption using puncturing is not natural for syndrome-
based DSC systems [18]. Instead, the encoder can transmit
a short syndrome based on an aggressive code and augment
it with additional syndrome samples, if decoding fails. This
process loops until the decoder gets sufficient syndrome for
successful decoding. This approach is viable only for feedback
channels with reasonably short round-trip time [17].

In the syndrome-based DSC based on DFT codes [4], the
encoder computessx and transmits it to the decoder. At the

decoder, we have access to the side informationy = x + e

and can compute its syndrome so as to findse = sy − sx.
For rate adaptation, if needed, the encoder transmitss̄x = H̄x

sample by sample; the receiver also can computes̄y = H̄y =
s̄x+s̄e and evaluatēse = s̄y−s̄x. After that, we can form the
extended syndrome matrixS′

m by replacings = se ands̄ = s̄e

in the right-hand side of (20). Clearly, when quantization is
considered this equation needs to be updated as

s̃′m =

{

s̃m, 1 ≤ m ≤ d,
˜̄sm−d, d < m ≤ n,

(21)

in which s̃ = se + sq, ˜̄s = s̄e + s̄q, and s̄q = H̄q.
The newR̃′

m = S̃′
mS̃′H

m then is used for error localization
as detailed in Section III. Note that the code is incremental, so
the encoder does not need to re-encode the sources when more
syndrome is requested. It buffers and transmits syndrome to
the decoder sample by sample. Moreover, we can useR̃′

m to
find the number of errors as explained in [9].

V. SIMULATION RESULTS

To evaluate the performance of the algorithm we do simu-
lation using a Gauss-Markov source with mean zero, variance
one, and correlation coefficient 0.9 for two DFT codes, namely,
(10, 5) and(17, 9). For each code, we generate the syndrome
and extended syndrome, quantize them with a 3-bit uniform
quantizer with step size∆ = 0.25, and transmit them over a
noiseless communication media. We plot the relative frequency
of correct localization of different numbers of errors. To do so,
we define channel-error-to-quantization-noise ratio (CEQNR)
as the ratio of channel error power to the quantization noise
power (σ2

e/σ
2
q ) and, similar to [8], we assume that the channel

error components are fixed. The number of errors in each block
is limited to t, the error correction capacity of the code. The
simulation results are for104 input blocks for each CEQNR.

In Fig. 2, we compare the frequency of correct localization
of errors for the subspace and extended subspace approaches
given a(10, 5) code for different errors. The gain due to the
extended subspace method is remarkable both for one and two
errors; it is more significant for two errors. In fact, as discussed
in Section III-A, for ν = t the subspace approach loses its
degrees of freedom (DoF) and its performance drops to that
of the coding-theoretic approach. Providing some extra DoF,
at the expense of a higher code rate, the extended subspace
approach significantly improves the error localization. Figure 3
shows how error localization boosts up when the additional
syndrome samples are involved one by one. This allows doing
DSC using DFT codes in a rate-adaptive manner.

The gain caused by the extended subspace method increases
for codes with higher capacity. For instance, simulation results
for a (17, 9) DFT code, presented in Fig. 4, show a significant
gain in any CEQNR between10 to 40dB; this is achieved by
sending 4 additional syndrome samples.

It is also worth mentioning that numerical results proves the
superiority of usingR̃′

m, instead ofR̃m for finding the number
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Fig. 2. Probability of error localization in the subspace and extended subspace
methods at different CEQNRs for a(10, 5) DFT code. The curves for the
extended case are based on 3 additional syndrome samples, implying that the
code rate is increased from 0.5 to 0.8.
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Extended Subspace (4 samples)

Fig. 3. Probability of correct localization of 2 errors for a(10, 5) DFT code
using the subspace method and the extended subspace method with different
number of additional syndrome samples. The the code rate is increased from
0.5 to 0.9 by a step of 0.1.

of errors. Finally, since a better error localization implies a
lower reconstruction error [9], rate-adapted DFT codes with
extended subspace decoding can be used both to adapt the
channel variations and decrease the MSE in DSC.

VI. CONCLUSION

We developed two algorithms for rate-adaptation in the DSC
system that uses DFT codes for binning. Rate-adaptation is
realized by puncturing the parity samples in the parity-based
DSC, or augmenting the syndrome samples in the syndrome-
based DSC. For decoding, we introduced an extension of sub-
space error localization algorithm that substantially improves
the error detection and localization, for a slight increasein
the code rate. Interestingly, the gain caused by the extended
subspace approach increases when capacity of the code or the
number of errors go up. While the algorithm was successfully
applied to the syndrome-based DSC in general, we have been
able to exploit it only for the codes with rate0.5 in the parity-
based system. The extended decoding algorithm can be applied
to DCT and DST codes, as well.
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Fig. 4. Probability of error localization in the subspace and extended subspace
methods at different CEQNRs for a(17, 9) DFT code. The curves for the
extended case are based on 4 additional syndrome samples.
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[5] V. K. Goyal, J. Kovačević, and J. A. Kelner, “Quantizedframe ex-
pansions with erasures,”Appl. Comput. Harmon. Anal., vol. 10, no. 3,
pp. 203–233, 2001.

[6] G. Rath and C. Guillemot, “Frame-theoretic analysis of DFT codes with
erasures,”IEEE Trans. on Signal Process., vol. 52, pp. 447–460, Feb.
2004.

[7] B. G. Bodmann and P. K. Singh, “Burst erasures and the mean-square
error for cyclic Parseval frames,”IEEE Trans. Inf. Theory, vol. 57,
pp. 4622–4635, July 2011.

[8] G. Rath and C. Guillemot, “Subspace algorithms for errorlocalization
with quantized DFT codes,”IEEE Trans. Commun., vol. 52, pp. 2115–
2124, Dec. 2004.

[9] M. Vaezi and F. Labeau, “Wyner-Ziv Coding in the Real Field Based on
BCH-DFT Codes,” [Online]. Available: http://arxiv.org/abs/1301.0297.

[10] A. Kumar and A. Makur, “Improved coding-theoretic and subspace-
based decoding algorithms for a wider class of DCT and DST codes,”
IEEE Trans. Signal Process., vol. 58, pp. 695–708, Feb. 2010.

[11] T. Marshall Jr., “Coding of real-number sequences for error correction: A
digital signal processing problem,”IEEE J. Sel. Areas Commun., vol. 2,
pp. 381–392, Mar. 1984.

[12] R. E. Blahut, Algebraic Methods for Signal Process. and Commun.
Coding. New York: Springer-Verlag, 1992.

[13] M. Vaezi and F. Labeau, “Systematic DFT frames: Principle and
eigenvalues structure,” inProc. ISIT, pp. 2436–2440, 2012.

[14] S. Kay, Modern Spectral Estimation. Englewood Cliffs, N.J.: Prentice-
Hall, 1988.

[15] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,”IEEE Trans. Inf. Theory, vol. IT-19, pp. 471–480, July 1973.

[16] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,”IEEE Trans. Inf. Theory, vol. 22,
pp. 1–10, Jan. 1976.

[17] D. Varodayan, A. Aaron, and B. Girod, “Rate-adaptive codes for
distributed source coding,”Signal Process., vol. 86, pp. 3123–3130, Nov.
2006.

[18] V. Toto-Zarasoa, A. Roumy, and C. Guillemot, “Rate-adaptive codes
for the entire Slepian-Wolf region and arbitrarily correlated sources,” in
Proc. ICASSP, pp. 2965–2968, 2008.

http://arxiv.org/abs/1301.0297

	I Introduction
	II DFT Codes
	III Error Localization in DFT codes
	III-A Coding-Theoretic and Subspace Approaches
	III-B Extended Subspace Approach

	IV Rate-Adaptive Distributed Lossy Source Coding Using DFT Codes
	IV-A Parity-Based Approach 
	IV-B Syndrome-Based Approach 

	V Simulation Results
	VI Conclusion
	References

