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Abstract—A subspace-based approach for rate-adaptive dis- DSC. The extended subspace error localization is appédabl
tributed source coding (DSC) based on discrete Fourier trasform  other codes based on orthogonal transform matrices suble as t

(DFT) codes is developed. Punctured DFT codes can be used t0gjscrete cosine transform (DCT) and discrete sine transfor
implement rate-adaptive source coding, however they perfon DST d th b ~ s 110
poorly after even moderate puncturing since the performane of ( ) codes, as the subspace approacn is [10].

the subspace error localization degrades severely. The prosed ~ Rate-adaptation for the parity approach is developed only
subspace-based error localization extends and improves ¢h for real DFT codes of rat®.5. However, the syndrome ap-
existing one, based on additional syndrome, and is naturall proach is for any real or complex code; the encoder transmits
suitable for rate-adaptive distributed source coding arclitecture. 5 ghort syndrome based on &, k) code and augments it
with additional samples if decoding failure is fed back. The
algorithm is incremental so that there is no need to re-emcod
The ideas oftoding theory can be described within the setthe sources when more syndrome is requested.
ting of signal processing by using a class of real (or complex) The paper is organized as follows. After a brief review of
Bose-Chaudhuri-Hocquenghem (BCH) codeés [1] known as theT codes in Sectioflll, we discuss how the subspace error
discrete Fourier transform codd3FT codes find applications |ocalization outperforms the coding-theoretic approadi a
in different areas including wireless communicatidrs [@t  introduce the extended subspace decoding in SeEfibn I1l. We
source-channel codingl[3], and distributed source coddilg [explain the rate-adaptive DSC system in Sedfion IV. Nunaéric
Looking from aframe theory perspective, these codes are use@sults in SectiofiV confirm the merit of the proposed error
to provide robustness terasure in wireless networks [S}]7]. |ocalization. This is followed by conclusion in Sectibnl V1.
Whenerror correction is required [2]=[4frror localization
is a crucial step of the decoding algorithm of DFT codes. Erro Il. DFT CoDEs
localization in BCH-DFT codes can be done by extending that The generator matrix of am, k) DFT code[[11], in general,
of binary BCH codes to the real fieldl[1]. Rath and Guillematonsists of any: columns of the inverse DFT (IDFT) matrix
[8] usedsubspace-based error localization and showed that itof ordern; the remaining: —k columns of this matrix are used
outperforms thecoding-theoretic approach; the improvementto build the parity-check matrix H. These codes are a family
is achieved by mitigating the effect of the quantizatiomelty of cyclic codes over the complex field. Thus, their codewords
involving as many syndrome samples as possible. The authsastisfy certain spectral properties in the frequency darjid].
recently employed DFT codes for lossy DSC [4] and adopta#slithin the class of DFT codes, there are BCH codes in the
subspace error localization in this context [9]. This ajggioto  complex and real fields. Each codeword of(ank) BCH-DFT
DSC exploits the correlation between the sources iratiaéog  code has! = n — k cyclically adjacent zeros in the frequency
domain and it is promising in delay-sensitive applicatioffse domain. They aremaximum distance separable codes with
performance of the system, like other DSC systems, degradeaimum Hamming distance d..in = d + 1. They are, hence,
when the correlation between the sources is unstable. édtho capable of correcting up to= 4] errors.
puncturing can be used forate-adaption, it severely affects  We consider real BCH-DFT codes whose generator matrix,
the error localization and substantially increases the-tend for an (n, k) code, is defined by [3]/13]
end distortion.
The primary contribution of this paper is to develogie- G = \/wazwk, (1)
adaptive distributed source codes based on DFT codes. To do k
so, we extend and improve the subspace error localizationvaiereV,, and W, are the DFT matrices of size andk, and
DFT codes and adapt it both to the parity- and syndrome-based
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The generator matrix of a complex BCH-DFT code can béext, following the nomenclature of|[8], far + 1 < m <
achieved by removingV,, from (d); we can also remove thed — v + 1, we define the syndrome matrix by
constraint ona. Although we focus on the real BCH-DFT T
codes, the results we present in this paper are valid for the Sm = VmDVi_mi1, (8)
complex codes as well. In the rest of this paper, for brevityhereD is a diagonal matrix of size with nonzero diagonal

BCH-DFT codes will be referred to as DFT codes. elementsd, = %eipX;f‘,p =1,...,v. One can check that
n
I1l. ERRORLOCALIZATION IN DFT CODES 1 S9 Sd—m41
Let » = ¢ + e be a noisy version of codeworglgenerated 52 83 ... Sd—m+2
by a DFT code and suppose that the error veetbasy <t Sm = : : - : : ©)
nonzero elements. Lét, ..., ande;,,...,e; , respectively, ' ' ' '
Sm Sm+1 .- Sd

denote the locations and magnitudes of the nonzero elements _ _ _
The decoding algorithm in DFT codes is composed of thrédso, we define the covariance matrix as
main stepsl[[1]error detection (to determinev), error local-

H
ization (to find iy, ...,4,), anderror calculation (to calculate Bon = Sy (10)
e, ---,ei,). This section is focused on the error localizatiorFrom [8), it is obvious that the rank dt,, is v; thus, it can
Thus, we assume that the number of ermiis known at the be eigendecomposed as
decoder. A 0
The syndrome ok, a key for the decoding algorithm, is R, = [U. U,) { 06 A ] [U. U.)®, (11)

computed as
where the square matrices, and A,, contain thev largest
s=Hr =H(c+e)=He, ) andm — v smallest eigenvalues, arid. and U,, contain the
wheres = [sy, sa, ..., s4)T is a complex vector with e.igenvectors corresponding to, and A,,, respectivelﬂ The
sizes ofU, andU,, arem x v andm x (m —v). The columns
in U, span thechannel-error subspace spanned by, [8].
Thus, the columns i/,, span thenoise subspace. Then, from
. the fact thatU’U,, = 0, we conclude that
j2mip

in which « is defined in[(R) andX, =e = ,p=1,...,r. VAU, = 0. (12)

1 v
Sm = —ZeipX;‘*Hm, m=1,...,d, (4)
Vi~

A. Coding-Theoretic and Subspace Approaches Now, letv = [1,z,22,...,2™ T wherez is a complex

The classical approach to the error localization is to ifignt variable and define the function

an error locator polynomial whose roots correspond to error m—v m—vm—1
locations. The error locator polynomial is defined as F(z) 2 Z 07U, = Z Z fiiat. (13)
v j=1 j=1 i=0

A)=J]A-2X) =1+ M+ + A2, (5

F(z) can be considered as sumvof-v polynomials{ f;}7,"
i=1

of orderm — 1; each polynomial corresponds to one column

and its rootsX; ', ..., X, ! correspond to the error locationsof U,,. Let F denote this set of polynomials. In light df{12),
ip,p € [1,...,v], as X' = w'» wherew = e~J%. The each one of these polynomials vanishesfoe X1, ..., X,,
coefficientsAy, ..., A, can be found by solving the following i.e., F(x) = 0 for X;,..., X,. These are the only common
set of consistent equations|[f1] roots of { f;} over thenth roots of unity [[8]; thus, the errors
location can be determined by finding the zeros¢f:) over
iy +sj01 -1+ sjpu-1h1 = =840, () the set ofnth roots of unity. Equivalently, one may use the
for j = 1,...,d — v. To put it differently, as the IDFT of Signal subspace to find the error location [14]. _
Ay =[1,A1,..., Ay, 015 (n—1)]T becomes zero at the error The subspace method outperforms the coding theoretic error
locations, the circular convolution af,, with the DFT of the localization. To prove this, we can see thdtr) is the smallest
error vector is a zero vectar][1],1[8]. degree polynomial that has rootsiy, ..., X, and lies in the

An alternative approach is to use thghspace methods for _noise subspace; it is achieved f@f =v+1in @3)_- Asm
error localization [8]. Theerror-locator matrix of orderm, increases the degree of polynomigl§} goes up which gives

whose columns are therror-locator vectors of orderm, is a More degrees of freedom and helps improve the estimation of
Vandermonde matrix defined as roots, and the error locations consequently. Another febtat

affects location estimation is the number of polynomigfs}

; ; T ; with linearly independent coefficients. The more there achs
Vo — ! 2 v @) polynomials, the better the estimation is as the variatoiuns
X".%l X".%l ' X”.l_l 1Clearly, since there is no noise (or quantization errdt), = 0 and A,
1 2 T v contains ther nonzero eigenvalues @k, .



to noise (quantization) are reduced by adding such independ 1
polynomials inF'(x).

Although the number of polynomials increases withtheir
coefficients may not be independent. The latter dependseon th
number of nonzero eigenvalues in the noise subspace which
is, in turn, related to the rank of,,, and is limited by
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rank(Sy,) < maxmin(m,d —m+1) = [g—‘ . (14)

o
o

Relative frequency of correct localization of errors

This suggests that the optimum value foris [%1. Then, from
(13), one can check that the subspace approach will result in e

a better error localization than the coding-theoretic apph, sty P
except whens = ¢ andd is even; in this latter case = v+ 1

and there is just one polynomial and its degree,ithe same Fig. 1. Probability of correct localization of errors usitige subspace and
as [3) in the coding-theoretic approach extended subspace approaches, at different channelterqoiantization-noise

. S . . ratio (CEQNR), for &10, 5) DFT code where all [ itions.

In practice, where quantization comes into play, the resgbiv (CEQNR), for 10, 5) code where af errors are In even posttions
vector is distorted both by the error vectiand quantization
noiseq. Thereforer = c + e + g, and its syndrome is only a

o
~

perturbed version o because Now, with
Hr=Hlc+q+e)=s,+5=35 (15) s:n‘{im’ éiﬁffﬁ? (20)
wheres, = Hq andq = [q1, g2, - - -, qn]" is the quantization med

error. The distorted syndrome samples can be written as S Will be decomposable a§ {[L7) provided that the second
term in the right-hand side df (IL9) is vanished, or equiviiyen

Gy = — Z eing—Hm 4+ — Z ¢ ,X;‘f”m, (16) He is removed from[(18). Observe that considering quantiza-
Vn \/ﬁ tion ci, will be replaced b)Cl i ;i.e., 5, contains a term

wherei,, shows the index for quantization error. The distorte@lateg t(l) quant|zat|or(; erro'g similar R’”h 'nléﬁa) I;:kemseh
syndrome matrixS,,, and its corresponding covariance matm?m Is built upons,, ands,. Again we should emphasize that

= S,,58H are defined similar to{9) and{1L0) but for the'S'"9 R, = 8,5, (and R;,) may not necessarily improve
dlstorted syndrome samples the error Iocallzat|0n to expect gain by virtue of the exted

subspace method, we need to compensate for the kagrin
B. Extended Subspace Approach (@3). This is done for the syndrome-based DSC in the next
The main idea behind the extended subspace approach isdotion.
enlarge the dimension of the noise subspace such that.)in (13Before moving on to the next section, we look at extended
the number of polynomials with linearly independent coeffsubspace method for a special, yet important, class of DFT
cients and/or their degree grow. This can be accomplished dydes where: = 2k. For such a code] = k£ and Xg is +1
constructlng an extended syndrome ma#fjx, in the form of (—1) for errors in the even (odd) positions in the codeword.
'm in @) but ford’ > d, which is decomposable as Then, if all errors are in the even (odd) positidnse can
S\ =V, DV 17) simply replaces with s (—s). Thus, using[(20) we can form
&' —m+1) S’ (S!)) and the corresponding;,, (R.). Subsequently, the
forv+1<m<d —v+1, andV,, andD defined in[(8). eigendecomposition of?/, for m = [d'/2] increases the
Following the same argument that led fol(14), it is easy to sagmber of polynomials iF and their degree. FiguFé 1 shows
that the optimatn is [4]. Then, as explained in Sectibill}A, the merit of extended error localization to the existing,doe
this will improve the error localization. d' = n, ina(10,5) code. Such a big gain in error localization
To form 57, we first define the extended syndromelet s achieved by using the sariesyndrome samples but forming

deld+1 "] show the new number of syndrome sampleg|arger syndrome matrix which allows a larger noise subespac

where there ard — d additional samples as compared b (4)Remark 1. Similar to the subspace approachl|[10], the extended
Similar to the syndrome vectog, we define the extended

q ‘ subspace approach can be applied to the DCT and DST codes;
syndrome vectos as further, it can be used even for the non-BCH DCT and DST

5=Hr =Hc+ He, (18) codes|[10].
where H consists of thosé columns of the IDFT matrix of Remark 2. Knowing thatR,, can also be used to determine the
ordern used to buildZ. More precisely, form = 1,...,d—d, number of errors/ [9], where the extended error localization

L& L& is applicable, R/, can be used for this purpose and it improves
5, = —— - xdta=l+m 4 - . xdta—l4+m the results reasonably.
Sm = N Zlelep + NG ,Zlclp,Xp, . y
r= 19 2Although this condition might seem unrealistic at first glanin the next
( ) section we show that it is realized, for instance, in a pardged DSC.



IV. RATE-ADAPTIVE DISTRIBUTED LOSSY SOURCE
CoDING USING DFT CobDEs

Distributedlossless compression of two correlated source§€coder, we have access to the side informagjor x + e
can be as efficient as their joint compressionl [15]. This &"d can compute its syndrome so as to find= s, — sa.
also valid forlossy source coding with side information at theFOr rate adaptation, if needed, the encoder transsits Hx
decoder for jointly Gaussian sources and the mean-squaf@dPle by sample; the receiver also can compyte: Hy =
error (MSE) distortion measure [16]. Tipically, DSC is iigatl 5=+ 3 and evaluata. = s, —s,. After that, we can form the
by quantizing the sources and applying Slepian-Wolf coifing €xtended syndrome matr,, by replacings = s. ands = 5.
the binary domain. Slepian-Wolf coding can be implementd@l the right-hand side of (20). Clearly, when quantizatien i
in the analog domain as welll[4] which outperforms its binar§onsidered this equation needs to be updated as
counterpart for certain scenarios, e.g., an impulsiveatation . G, 1<m<d,
model. The proposed DSC schemes based on DFT codes, both Sm = { (21)
parity and syndrome approaches, are also appropriatevier lo _ N _
delay coding as they perform sufficiently well even when shdp Which § = s. + 54, s = 5. + 54, ands, = Hgq.
source blocks are encoded. The newR!, = S’ S then is used for error localization

When the statistical dependency between the sources vaaégletailed in Sectidn 1il. Note that the code is incremestal
or is not known at the encoder, rate-adaptive system with the encoder does not need to re-encode the sources when more
feedback is an appealing solution [17]. Rate-adaptive psgndrome is requested. It buffers and transmits syndrome to
based on binary codes, e.g., puncturing the parity or syndrothe decoder sample by sample. Moreover, we can/t{seto
bits of turbo and LDPC codes, have been proposed_in [17]1d the number of errors as explained iin [9).
[18]. In the sequel, we extend DSC based on DFT codes [4]

to perform DSC in a rate-adaptive fashion. We consider two ) .
continuous-valued correlated souraeandy wherez; andy; To evaluate the performance of the algorithm we do simu-
are statistically dependent gy = z; +¢;, ande; is continuous, lation using a Gauss-Markov source with mean zero, variance

§m—d7 d<m< n,

V. SIMULATION RESULTS

i.i.d., and independent af;. one, and correlation coefficient 0.9 for two DFT codes, ngmel
(10,5) and(17,9). For each code, we generate the syndrome
A. Parity-Based Approach and extended syndrome, quantize them with a 3-bit uniform

Puncturing is a well-known technique used to achieve high@yantizer with step siz&\ = 0.25, and transmit them over a
rate codes for the same decoder; it is inherently well-duit&oiseless communication media. We plot the relative fragye
for parity-based DSC schemes as one can remove some of@hgorrect localization of different numbers of errors. Tosb,
parity samples to puncture a code. However, with subspat@ define channel-error-to-quantization-noise ratio (GER)
error localizations, the performance of punctured DFT sod@s the ratio of channel error power to the quantization noise
deteriorates largely. As explained in the previous segtioPower ¢2/o;) and, similar to([8], we assume that the channel
extended subspace decoding significantly improves thétses@ror components are fixed. The number of errors in each block
provided that the errors are restricted to even (odd) mositi iS limited to¢, the error correction capacity of the code. The
This can be achieved by usirigk, k) DFT codes. GeneratedSimulation results are for0* input blocks for each CEQNR.
by @), a(2k, k) DFT code is systematic with parity samples In Fig.[2, we compare the frequency of correct localization
in even positions. We can modify this code and form a cod errors for the subspace and extended subspace approaches
whose parity samples are in the even positions [13]. Then, @iven a(10,5) code for different errors. The gain due to the
extended syndrome matrix i (17) can be used both for er@¥ftended subspace method is remarkable both for one and two
detection and localization. Similar to the subspace methdrors; itis more significant for two errors. In fact, as dissed
the performance of the system drops sharply with puncturirig Section[Ill-A, for v = ¢ the subspace approach loses its
Furthermore, although simple, puncturing may cause the miegrees of freedom (DoF) and its performance drops to that
imum distance to decrease. An alternative, general appro&t the coding-theoretic approach. Providing some extra,DoF

for rate-adaptation is presented next. at the expense of a higher code rate, the extended subspace
approach significantly improves the error localizatiomuUfe 3
B. Syndrome-Based Approach shows how error localization boosts up when the additional

Rate-adaption using puncturing is not natural for syndromgyndrome samples are involved one by one. This allows doing
based DSC systems [18]. Instead, the encoder can tranddfC using DFT codes in a rate-adaptive manner.
a short syndrome based on an aggressive code and augmemhe gain caused by the extended subspace method increases
it with additional syndrome samples, if decoding fails. Shifor codes with higher capacity. For instance, simulaticsults
process loops until the decoder gets sufficient syndrome for a (17,9) DFT code, presented in Figl 4, show a significant
successful decoding. This approach is viable only for faellb gain in any CEQNR betweet) to 40dB; this is achieved by
channels with reasonably short round-trip timel[17]. sending 4 additional syndrome samples.

In the syndrome-based DSC based on DFT codes [4], thdt is also worth mentioning that numerical results proves th
encoder computes, and transmits it to the decoder. At thesuperiority of usingé;n, instead ofR,,, for finding the number
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Fig. 2. Probability of error localization in the subspace artended subspace Fig. 4. Probability of error localization in the subspace artended subspace
methods at different CEQNRs for @0, 5) DFT code. The curves for the methods at different CEQNRs for @7,9) DFT code. The curves for the
extended case are based on 3 additional syndrome sampf@ginignthat the  extended case are based on 4 additional syndrome samples.

code rate is increased from 0.5 to 0.8.
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