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Rate-Distortion Theory for Secrecy Systems
Curt Schieler and Paul Cuff

Abstract—Secrecy in communication systems is measured
herein by the distortion that an adversary incurs. The trans-
mitter and receiver share secret key, which they use to encrypt
communication and ensure distortion at an adversary. A model
is considered in which an adversary not only intercepts the
communication from the transmitter to the receiver, but also
potentially has side information. Specifically, the adversary may
have causal or noncausal access to a signal that is correlated with
the source sequence or the receiver’s reconstruction sequence.
The main contribution is the characterization of the optimal
tradeoff among communication rate, secret key rate, distortion
at the adversary, and distortion at the legitimate receiver. It is
demonstrated that causal side information at the adversary plays
a pivotal role in this tradeoff. It is also shown that measures of
secrecy based on normalized equivocation are a special case of
the framework.

Index Terms—Rate-distortion theory, information-theoretic se-
crecy, shared secret key, causal disclosure, soft covering lemma,
equivocation.

I. INTRODUCTION

In “Communication Theory of Secrecy Systems” [6], Shan-
non regarded a communication system as perfectly secret
if the source and the eavesdropped message are statistically
independent. The secrecy system studied in [6] is referred to
as the “Shannon cipher system” and is depicted in Fig. 1. A
necessary and sufficient condition for perfect secrecy is that
the number of secret key bits per source symbol exceeds the
entropy of the source. When the amount of key is insufficient,
one must relax the requirement of statistical independence and
invite new measures of secrecy.

One common way of measuring sub-perfect secrecy is
with equivocation, the conditional entropy H(X|M) of the
source given the public message. The use of equivocation as
a measure of secrecy was considered in the original work on
the wiretap channel in [7] and [8], and it continues today.
Although a distortion-based approach to secrecy might appear
incomparable at first glance, it turns out that equivocation
(when normalized by blocklength) becomes a special case
of the framework developed here, under the proper choice of
distortion measure.

In this work, we study an information-theoretic measure
of secrecy that is directly inspired by rate-distortion theory.
Whereas the objective in classical rate-distortion theory is to
minimize a receiver’s distortion for a given rate of communi-
cation, our goal is to maximize an eavesdropper’s distortion
for a given rate of secret key. If we relax the requirement of
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Fig. 1: The Shannon cipher system. Nodes A, B, and C are the
transmitter, receiver, and eavesdropper, respectively.

lossless communication in Shannon’s cipher system, then our
goal is to maximize an eavesdropper’s distortion for a given
secret key rate, communication rate, and distortion tolerance
at the receiver. Although there are a variety of secrecy systems
other than Shannon’s cipher system (such as a wiretap channel
[7] or distributed correlated sources [9], [10]), this paper is
concerned exclusively with settings involving shared secret
key, a single discrete memoryless source, and a noiseless
channel. Moreover, we focus on block codes in the regime
of blocklength tending to infinity.

When distortion is used as a measure of secrecy, we are
implicitly viewing an eavesdropper in the same way that one
views a receiver in a standard rate-distortion setting – as an
active participant whose goal is to produce a sequence that
is statistically correlated with the source sequence. Because
he plays an active role, the eavesdropper is thought of as an
adversarial entity. To ensure robustness, we will design the
communication and encryption schemes against the worst-case
adversarial strategy; that is, we wish to maximize the minimum
distortion attainable by an adversary.

The study of information-theoretic secrecy via rate-
distortion theory was initiated by Yamamoto in [11], in which
the rate-distortion region was characterized for the special
setting in which no secret key is available. Later, in “Rate-
Distortion Theory for the Shannon Cipher System” [12],
Yamamoto considered the exact problem we have heretofore
described, but only obtained an inner and outer bound on
the achievable rate-key-distortion region.1 In this paper, we
characterize the region; however, it is not our main focus.
The following example serves to illustrate the care that should
be exercised in a distortion-based approach to secrecy and
motivates our primary investigation, which is centered around

1The inner bound provided in [12] is precisely the region expressed in (49)
of this work. Corollary 4 shows that this performance is achievable even if
additional information is available to the eavesdropper, but it is suboptimal
for the problem at hand. The outer bound in [12] makes use of two auxiliary
variables, but with the appropriate selection can be shown to be equivalent to
the trivial bound in (48), which in fact we show to be achievable. To show
that the outer bound in [12] is trivial, the variables U and V can be selected
as follows. Let U be independent of X and Y and uniformly distributed on
{1, . . . , |X |}. Let V = U + X modulo |X |.
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a salient feature of our model referred to as causal disclosure.

A. One-bit secrecy and causal disclosure

Consider an n-bit i.i.d. source sequence
Xn , (X1, . . . , X

n) with Xi ∼ Bern(1/2). Suppose
common randomness K ∼ Bern(1/2) is available to the
transmitter and receiver; that is, there is one bit of shared
secret key. Now suppose the transmitter uses K to encrypt Xn

by transmitting the n-bit message X̃n, where X̃i = Xi ⊕K.
In other words, he flips all of the bits of Xn if K = 1,
otherwise he simply sends Xn. Upon intercepting the public
message X̃n, the adversary produces a reconstruction Zn and
incurs expected distortion E 1

n

∑n
i=1 d(Xi, Zi), where d(x, z)

is a per-letter distortion measure. If d(x, z) = 1{x 6= z},
then an optimal strategy for the adversary is to simply set
Zn = X̃n, yielding an expected distortion of 1/2. Observe
that 1/2 is also the maximum possible expected distortion
that we could ever force on the adversary, regardless of the
amount of secret key available! It appears as though we have
maximized secrecy by only using one bit of secret key for an
arbitrarily long n-bit source. However, this view is severely
misleading because the adversary actually knows a great
deal about Xn, namely that it is one of only two candidate
sequences.

This example demonstrates the potential fragility of using
distortion to measure secrecy without recognizing the rami-
fications. For, although maximum secrecy (in the distortion
sense) is attained, it vanishes altogether if the adversary views
just one true bit of the source sequence (the bit allows him to
determine whether or not to flip the X̃n sequence). In general,
the consequences of this example apply to the setting that
Yamamoto considered in [12]. An arbitrarily small rate of
secret key is enough to guarantee maximum distortion, but
such secrecy is weak in the sense that even a small amount
of additional knowledge (for example, observation of a few
source symbols) is enough for the adversary to completely
identify the source sequence.

The way that we strengthen a distortion-based approach to
secrecy is through an assumption of causal disclosure, in which
we design codes under the supposition that the adversary has
noisy (or noiseless) access to the past behavior of the system.
For example, in the one-bit secrecy example we might assume
that the adversary produces the ith reconstruction symbol Zi
based not only on the public message M , but also on the
past source symbols Xi−1. Incidentally, such a modification
to the standard rate-distortion theory setting does not change
the theory, though it has a dramatic effect in this secrecy
setting. Regardless of whether or not an adversary actually has
access to such information, designing our encryption under
the assumption that he does leads to a much more robust
notion of secrecy. In particular, it is resistant to disruptions
in secrecy like those exhibited in the example. Despite the
“pessimistic” nature of the causal disclosure assumption, we
find that the optimal tradeoff between secret key and distortion
in this regime is reasonable and not degenerate.

The assumption of causal disclosure is relevant not only for
the sake of robustness, but also for its natural interpretations.

In [13], an alternative view of rate-distortion theory was
introduced in which source and reconstruction sequences are
regarded as sequences of actions in a distributed system. Com-
munication is used to coordinate the receiver’s actions with
the transmitter’s actions (which are given by nature). In this
context, an adversary can be viewed as an active participant
in the system who produces a sequence of actions. With this
interpretation, it is not unrealistic to assume that the adversary
could have causal access to the system behavior. Depending on
where the adversary is intercepting communication, he might
be able to view the past actions of the transmitter or receiver
(or both) and produce his current action accordingly.

We find that optimal communication in this setting is not
only fundamentally different than that of other source coding
problems (often requiring a stochastic decoder), but in fact
lends itself to a simple interpretation of injecting artificial
memoryless noise into the adversary’s received signal.

B. Organization

The content of this paper is as follows. In Section II,
we describe the problem setup. In Section III, we present a
generalized version of the one-bit secrecy example in which
there is no assumption of causal disclosure. In Section IV, we
state our main result, Theorem 1, in which causal disclosure
is a primary assumption. Theorem 1 describes the optimal re-
lationship among the communication rate, secret key rate, and
distortion at the legitimate receiver and adversary. Section IV
also establishes a number of relevant corollaries to Theorem 1
and provides several concrete examples of the correspond-
ing information-theoretic tradeoff regions. In Section V, we
demonstrate how normalized equivocation arises as a special
case of the causal disclosure framework. In Section VI, we
give the achievability proof of Theorem 1. The proof uses a
stochastic “likelihood encoder” that enables tractable analysis
when combined with a “soft covering lemma”. Afterward, we
discuss several important properties and implications of the
optimal communication scheme used in the proof. Section VII
provides the converse proof of Theorem 1. In Section VIII, we
consider some settings with noncausal disclosure that are not
subsumed by Theorem 1, but that can be proved similarly.
Lastly, Section IX gives results for settings involving causal
disclosure with delay greater than one.

II. PRELIMINARIES

The communication system model used throughout is shown
in Fig. 2. The transmitting node, Node A, observes an i.i.d.
source sequence Xn , (X1, . . . , Xn), where Xi is distributed
according to PX . Nodes A and B share a source of common
randomness K ∈ {1, . . . , 2nR0}, referred to as secret key, that
is uniformly distributed and independent of Xn. Based on the
source block Xn and the secret key K, Node A transmits
a message M ∈ {1, . . . , 2nR} that is received without loss
by Nodes B and C. Once M is delivered, all three nodes
sequentially produce actions: in the ith step, Nodes A, B and
C produce Xi, Yi, and Zi, respectively. Note that Node A has
no control over his actions; they are simply given by Xn. At
the other end, Node B produces Yi based on the pair (M,K)
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Xn A B Y n

K ∈ [2nR0 ]

C Zn

(W i−1
x ,W i−1

y )Xi PWx|X Wx,i

Yi PWy|Y Wy,i

M ∈ [2nR]

Fig. 2: Nodes A and B use secret key K and public communication
M to coordinate against an adversarial Node C. At each step i, Node
C can view the past behavior of the system, (W i−1

x ,W i−1
y ), where

Wn
x is the output of a memoryless channel

∏
PWx|X with input Xn,

and Wn
y is the output of a memoryless channel

∏
PWy|Y with input

Y n.

and the adversarial Node C produces Zi based on M and his
observation of the past behavior of the system, (W i−1

x ,W i−1
y ).

At each step, the joint actions of the players incur a value
π(x, y, z), which represents symbol-wise payoff; the block-
average payoff is given by

1

n

n∑
i=1

π(Xi, Yi, Zi). (1)

Nodes A and B want to cooperatively maximize payoff, while
Node C wants to minimize payoff through his actions Zn.
This payoff function can take the role of distortion incurred
by Node C, corresponding to the secrecy metric described in
the introduction. Note that instead of evaluating secrecy and
coordination separately, which could be done with two payoff
functions π1(x, y) and π2(x, y, z), we have unified them in a
single function π(x, y, z). Of course, the use of multiple payoff
functions does have its own merits, and the results extend
readily.

In Fig. 2, we depict noisy causal disclosure by
(W i−1

x ,W i−1
y ), where Wn

x is the output of a memoryless
channel

∏n
i=1 PWx|X with input Xn, and Wn

y is the out-
put of a memoryless channel

∏n
i=1 PWy|Y with input Y n.

Modeling the side information in this way covers a variety
of scenarios. For example, if PWx|X and PWy|Y are identity
channels, resulting in (Wx,Wy) = (X,Y ), then the adversary
has full causal access (Xi−1, Y i−1). This is the strongest
definition of secrecy in the causal disclosure framework and
leads to the design of a thoroughly robust secrecy system. If
(Wx,Wy) = (∅, ∅), then the adversary is completely blind to
the past and only views the public message M ; this is the
setting of [12], which does not include causal disclosure.

We remark that other strong security definitions involving
side information leaks to the adversary can be found in [14],
for example.

Throughout, we assume that the alphabets X , Y , and Z are
finite. We denote the set {1, . . . ,m} by [m] and use ∆A to
denote the probability simplex of distributions with alphabet

A. The notation X ⊥ Y indicates that the random variables
X and Y are independent, and X−Y −Z indicates a markov
chain relationship.

Definition 1: An (n,R,R0) code consists of an encoder
f : Xn×[2nR0 ]→ [2nR] and a decoder g : [2nR]×[2nR0 ]→
Yn. More generally, we allow a stochastic encoder PM |Xn,K

and a stochastic decoder PY n|M,K . An (n,R,R0) code is said
to have blocklength n, communication rate R, and secret key
rate R0.

Permitting stochastic decoders that use local randomization
is crucial (in contrast to Wyner’s wiretap channel, in which a
stochastic encoder is needed). On the other hand, it is likely
that the optimal encoder can be a deterministic function of
the message and key, but this has not been shown. The proof
of our main result uses a stochastic encoder and stochastic
decoder.

Nodes A and B use an (n,R,R0) code to coordinate against
Node C. To ensure robustness, we consider the payoff that can
be assured against the worst-case adversary, i.e., the max-min
payoff. There are several ways to define the payoff criterion
for a block, and we consider three: expected payoff, assured
payoff, and symbol-wise minimum payoff. To distinguish
among the three criteria, we use the monikers AVG, WHP, and
MIN, respectively.

Definition 2: Fix a source distribution PX , a symbol-wise
payoff function π : X × Y × Z → R, and causal disclosure
channels PWx|X and PWy|Y . For simplicity, denote the pair
(Wn

x ,W
n
y ) by Wn. The triple (R,R0,Π) is achievable if there

exists a sequence of (n,R,R0) codes such that
• Under the AVG criterion (expected payoff):

lim inf
n→∞

min
{PZi|M,Wi−1}ni=1

E
1

n

n∑
i=1

π(Xi, Yi, Zi) ≥ Π. (2)

• Under the WHP criterion (assured payoff):

lim
n→∞

min
{PZi|M,Wi−1}ni=1

P
[ 1

n

n∑
i=1

π(Xi, Yi, Zi) ≥ Π
]

= 1.

(3)
• Under the MIN criterion (symbol-wise minimum payoff):

lim inf
n→∞

min
i∈[n]

min
PZ|M,Wi−1

Eπ(Xi, Yi, Z) ≥ Π. (4)

Under the WHP criterion, the range of π(x, y, z) is extended
to include −∞ so that lossless communication settings can be
recovered.
Several remarks concerning the preceding definitions are in
order.

1) Although WHP and MIN are incomparable, they are both
stronger than AVG. However, it will be shown that all
three criteria give rise to the same optimal tradeoff region.

2) In each of the criteria, we allow the adversary to employ
his best set of probabilistic strategies {PZi|M,W i−1}ni=1

that minimize payoff. However, since expectation is linear
in PZi|M,W i−1 for all i, the expectation is minimized by
extreme points of the probability simplex; thus, we can
assume that Node C uses a set of deterministic strategies,
{zi(m,wi−1)}ni=1.
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3) It is assumed (although not explicit in the notation)
that the adversary has full knowledge of the source
distribution and the code that Nodes A and B use.

4) The optimal payoff does not increase if Node B is given
direct causal access to Nodes A and C (i.e., if the decoder
is given by {PYi|M,K,Xi−1,Zi−1}ni=1 instead of simply
PY n|M,K). This is shown in Section VII in the converse
proof of the main result.

Definition 3: The rate-payoff region RAVG is the closure
of achievable triples (R,R0,Π) under payoff criterion AVG.
Regions RWHP and RMIN are defined in the same way.

III. ONE-BIT SECRECY, GENERALIZED

In this section, we expand on the scenario in which lossless
communication is required between Nodes A and B and there
is no causal disclosure of the system behavior to Node C.
This is Yamamoto’s setting in [12]. Although the result of
this section is a special case of the main result in Theorem 1,
it is an illustrative starting point.

For lossless communication, an additional achievability
criterion is required, as stated below. Since Xn must equal
Y n with high probability, the payoff function is of the form
π(x, z). Thus, the achievability criteria for (R,R0,Π) under
the MIN payoff criterion (which is stronger than the AVG
criterion) are that

lim
n→∞

P[Xn 6= Y n] = 0 (5)

and
lim inf
n→∞

min
i∈[n]

min
z(m)

Eπ(Xi, z(M)) ≥ Π. (6)

Proposition 1: Fix PX and π(x, z). If lossless communica-
tion is required and there is no causal disclosure, then RMIN,
the rate-payoff region under payoff criteria AVG and MIN is
equal to 

(R,R0,Π) :

R ≥ H(X)

R0 ≥ 0

Π ≤ min
z

Eπ(X, z)

 . (7)

Thus, any positive rate of secret key2 guarantees maximum
secrecy (in the distortion sense), as Node C can achieve
minz Eπ(X, z) by only knowing the source statistics. In fact,
we now prove that each point in (7) can be achieved with key
size K = [n] instead of K = [2nR0 ]. This shows that even if
the number of secret key bits is sublinear in the blocklength
(in this case, log n), one can still force the eavesdropper to
incur the maximum distortion.3 As in the example of one-bit
secrecy, such guarantees are shattered if even a small amount
of source information is available to the adversary.

The following lemma is useful for the payoff analysis.

2Note that R0 = 0 is only included in Proposition 1 because we defined
the region as the closure of achievable triples. Furthermore, we remark that
R0 = 0 refers to a vanishing rate of secret key and is not the same as the
absence of key.

3In [3], we show that an arbitrarily slow rate of increase is sufficient, even
slower than logn, under the AVG criterion.

Lemma 1: Let PXY Z be a markov chain X − Y − Z, and
f an arbitrary function. Then

min
g(x,y)

E f(g(X,Y ), Z) = min
g(y)

E f(g(Y ), Z). (8)

Proof: We have

min
g(x,y)

E f(g(X,Y ), Z)

= min
g(x,y)

∑
x,y

PX,Y (x, y)E[f(g(X,Y ), Z)|(X,Y ) = (x, y)]

(9)

=
∑
x,y

PX,Y (x, y) min
g

E[f(g, Z)|(X,Y ) = (x, y)] (10)

(a)
=
∑
x,y

PX,Y (x, y) min
g

E[f(g, Z)|Y = y] (11)

= min
g(y)

E f(g(Y ), Z), (12)

where (a) follows from the markovity assumption.
Now we prove Proposition 1.

Proof of Proposition 1: Converse. By the converse to
the lossless source coding theorem, if (5) holds then we must
have R ≥ H(X). To see that the payoff never exceeds
minz Eπ(X, z), observe that the adversary can always let Zn

equal (z∗, . . . , z∗), where

z∗ = argmin
z

Eπ(X, z). (13)

Note that this converse argument holds for all three payoff
criteria.

Achievability. Let ε > 0. Denote the empirical distribution
(also referred to as the type) of a sequence xn by Pxn :

Pxn(x) =
1

n

n∑
i=1

1{xi = x}. (14)

The set of ε-typical sequences is defined as

T nε , {xn : |Pxn(x)− PX(x)| < εPX(x),∀x ∈ X}. (15)

To communicate, Nodes A and B use the set of ε-typical
sequences as their codebook, just as in the standard proof of
the lossless source coding theorem. If the source sequence
Xn is typical, then the index of that codeword is the (pre-
encrypted) message; if the source sequence is not typical,
an arbitrary index is selected. Due to familiar properties
of the size and probability of the typical set, the rate of
communication is (1+ε)H(X) and the probability of error is

P[Xn 6= Y n] < ε (16)

for large enough n.
The message will be encrypted using common random-

ness K ∼ Unif[n]; this implies that the rate of secret key
approaches zero as blocklength tends to infinity. In order to
encrypt, we first partition T nε into bins of size n (in a manner
specified shortly), and use K to apply a one-time pad to the
location of the source sequence Xn within the appropriate bin.
More precisely, the encoder operates as follows: if Xn is ε-
typical and is the Lth sequence in the J th bin, then transmit
the message M = (J, L ⊕ K), where ⊕ indicates addition
modulo n. By encrypting in this manner, the adversary knows
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which bin Xn lies in (bin J), but does not know which of
those n sequences it is, because L is independent of L⊕K.
Using the secret key, Node B can recover both J and L and
produce the corresponding sequence.

The partitioning of T nε is done according to the following
equivalence relation:

xn ∼ yn if xn is a cyclic permutation of yn. (17)

Although the resulting partition can contain bins of size less
than n, the number of such bins is small enough that we can
ignore them without affecting the communication rate or (16).
Thus, we assume that partitioning T nε yields only bins of size
n. Due to (17), it can be readily shown that each bin of size
n has the following property.

Property 1: View the jth bin (denoted by bj) as an n× n
matrix whose columns are formed from the sequences in the
bin. Then every row and column of the matrix has the same
empirical distribution (denoted by Pj) and hence every row
has the same probability (denoted by αj) under the source
distribution

∏n
i=1 PX(xi).

This property is the crux of the proof; we offer the following
intuition for why it implies that the eavesdropper suffers
maximal distortion. The eavesdropper knows which bin Xn

lies in, but does not know where it lies in the bin. Because
of how we partitioned T nε , the eavesdropper’s uncertainty is
spread uniformly over the bin. To estimate Xi, the eaves-
dropper consults the ith row of the bin; however, Property 1
ensures that the empirical distribution of this row matches the
type of the sequences in the bin, which in turn approximates
the source distribution PX (due to typicality). Therefore, the
eavesdropper’s estimate of Xi is based on no more than the
original source statistics, which means that he suffers maximal
distortion.

We now analyze the distortion precisely. For sufficiently
large n, we have for all i ∈ [n] that

min
z(m)

E d(Xi, z(M))

= min
z(j,l)

E d(Xi, z(J, L⊕K)) (18)

(a)
= min

z(j)
E d(Xi, z(J)) (19)

= min
z(j)

∑
j

∑
xn∈bj

p(xn)d(xi, z(j)) (20)

(b)
=
∑
j

αj min
z

∑
xn∈bj

d(xi, z) (21)

(c)
=
∑
j

αj min
z

∑
x∈X

nPj(x)d(x, z) (22)

(d)

≥
∑
j

nαj min
z

∑
x∈X

(1− ε)PX(x)d(x, z) (23)

= P[Xn ∈ T nε ](1− ε) min
z

E d(X, z) (24)

≥ (1− ε)2 min
z

E d(X, z), (25)

where (a) is due to (Xi, J) ⊥ (L⊕K) and Lemma 1, (b) and
(c) are due to Property 1, and (d) follows from the definition
of T nε . Thus, we have (6).

Discussion

Suppose Nodes A and B use the binning scheme just
described in the proof of Proposition 1 to achieve maximum
secrecy. What if, instead of eavesdropping only the public
message, the adversary is also able to view the past behavior of
the system, namely Xi−1? Because of the structure of each bin
(i.e., Property 1), knowledge of just the first symbol, X1 = x1,
is enough for the adversary to narrow down the size of the
list of candidate source sequences from n to approximately
nPX(x1). One can see that the adversary will be able to
determine the true sequence quickly, well before the end of
the block. In this manner, the adversary can take advantage
of the causal disclosure to force the payoff to take on its
minimum value instead of its maximum value. In general,
causal disclosure benefits an adversary and gives rise to a
nontrivial tradeoff between secret key and payoff. We remark
that one of the key elements in the proof of the main result
is that the benefits of causal disclosure can be voided if the
right amount of secret key is available. In fact, it will become
evident in Section VI that using secret key to sterilize the
causal disclosure gives rise to the optimal tradeoff of secret
key and payoff.

IV. MAIN RESULT

Our main result is the following.
Theorem 1: Fix PX , π(x, y, z), and causal disclosure chan-

nels PWx|X and PWy|Y . Then RAVG, the closure of achievable
(R,R0,Π) under payoff criterion AVG, is equal to

⋃
Wx−X−(U,V )−Y−Wy


(R,R0,Π) :

R ≥ I(X;U, V )

R0 ≥ I(WxWy;V |U)

Π ≤ min
z(u)

Eπ(X,Y, z(U))

 , (26)

where |U| ≤ |X | + 2 and |V| ≤ |X ||Y|(|X | + 2) + 1.
Furthermore,

RAVG = RWHP = RMIN. (27)

We remark that the convexity of RAVG and RWHP can be
shown from Definitions 2 and 3 by using a standard time-
sharing argument. By (27), RMIN is also a convex set.

We now elaborate on several corollaries to Theorem 1 that
are obtained through different choices of the causal disclosure
channels PWx|X and PWy|Y . To begin, we consider scenarios
in which lossless communication is required between Nodes
A and B.

A. Lossless communication

In the following, we require Xn to equal Y n with high
probability. That is, we introduce into Definition 2 the addi-
tional constraint

lim
n→∞

P[Xn 6= Y n] = 0. (28)

Conveniently, (28) can be ensured by considering payoff
criterion WHP with a payoff function π(x, y, z) that evaluates
to −∞ when x 6= y.
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Corollary 1: Fix PX , π(x, z), and causal disclosure chan-
nel PWx|X . If lossless communication is required (i.e., (28) is
imposed), then the rate-payoff region RWHP is equal to

⋃
U−X−Wx


(R,R0,Π) :

R ≥ H(X)

R0 ≥ I(Wx;X|U)

Π ≤ min
z(u)

Eπ(X, z(U))

 . (29)

Proof: Define a payoff function

π(x, y, z) ,

{
π(x, z) if x = y

−∞ if x 6= y.
(30)

When Π > −∞, it is easily verified that

lim
n→∞

P
[ 1

n

n∑
i=1

π(Xi, Yi, Zi) ≥ Π− ε
]

= 1 (31)

if and only if both of the following hold:

lim
n→∞

P[Xn = Y n] = 1 (32)

lim
n→∞

P
[ 1

n

n∑
i=1

π(Xi, Zi) ≥ Π− ε
]

= 1. (33)

Thus, RWHP (the region we seek the characterize) is obtained
by invoking Theorem 1 with Wy = ∅. However, we want to
simplify the region further. Denoting the region in (29) by S,
we now show that RWHP = S.

Note that when Π > −∞, we have

−∞ < Π ≤ min
z(u)

Eπ(X,Y, z(U)), (34)

which implies X = Y . When combined with the markov chain
X−(U, V )−Y , this gives H(X|UV ) = 0. Therefore,RWHP ⊆
S follows from writing

R ≥ I(X;U, V ) = H(X)

R0 ≥ I(Wx;V |U) = I(Wx;X,V |U) ≥ I(Wx;X|U).

To see S ⊆ RWHP, let V = Y = X .
Corollary 1, in turn, spawns two important results. By

invoking Corollary 1 with Wx = ∅, we recover Proposition 1
under WHP.

Corollary 2: Fix PX and π(x, z). If lossless communica-
tion is required and there is no causal disclosure, then the
rate-payoff region RWHP is equal to

(R,R0,Π) :

R ≥ H(X)

R0 ≥ 0

Π ≤ min
z

Eπ(X, z)

 . (35)

If we instead consider the disclosure channel Wx = X , we
have the following.

Corollary 3: Fix PX and π(x, z). If lossless communica-
tion is required and Xi−1 is disclosed, then the rate-payoff

region RWHP is equal to

⋃
PU|X


(R,R0,Π) :

R ≥ H(X)

R0 ≥ H(X|U)

Π ≤ min
z(u)

Eπ(X, z(U))

 . (36)

B. Lossless communication example

In this section, we present a concrete example of the region
in Corollary 3 (causal disclosure of Node A) and compare it
to the region in Corollary 2 (no causal disclosure).

We first show that (36) can be written as a linear program.
Since the constraint on R is fixed by the source distribution,
we focus our attention on the boundary of the (R0,Π) tradeoff,
namely

Π(R0) , max
PU|X :

H(X|U)≥R0

min
z(u)

Eπ(X, z(U)). (37)

Notice that this can be rewritten as

Π(R0) = max
PU ,PX|U :∑

u PUPX|U=PX

H(X|U)≥R0

∑
u

PU (u) min
z

E[π(X, z)|U = u].

(38)
If we are able to restrict the set {PX|U=u}u∈U in the maxi-
mization to a finite set P ⊆ ∆X , then Π(R0) can be expressed
as a linear program. Indeed, viewing the distribution PU as a
vector p ∈ R|P|, (38) becomes

maximize d>p

subject to p ≥ 0

1>p = 1

Tp = PX

h>p ≤ R0 (39)

where
• T ∈ R|X |×|P| is the transition matrix whose columns are

the elements of P .
• The vector d ∈ R|P| has entries

du = min
z

E[π(X, z)|U = u], u ∈ U . (40)

• The vector h ∈ R|P| has entries

hu = H(X|U = u), u ∈ U . (41)

To see why there is always a choice of finite P such that
the rate-payoff boundary is unaffected, consider the function
d : ∆X → R defined by

d(p) = min
z

E[π(X, z)],where X ∼ p. (42)

Observe that d(·) is the boundary of a convex polytope because
it is the minimum of |Z| linear functions (and Z is finite).
Define the set

P = {p ∈ ∆X : d(p) is an extreme point of d} (43)

Given a set of distributions {PX|U=u}u∈U that optimize
(38), we can write each element PX|U=u as a convex combi-
nation of the distributions in P while maintaining the value of
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the objective. Furthermore, due to the concavity of the entropy
function, the constraint on R0 is still satisfied. Thus, P is
sufficient for the optimization.

In the particular case that the payoff function is hamming
distance (i.e., π(x, z) = 1{x 6= z}), the set P has a particularly
convenient form:

P = {p ∈ ∆X : p = Unif(A) for some A ⊆ X}. (44)

This allows us to give the following simple analytical expres-
sion for Π(R0). The proof is given in Appendix A.

Theorem 2: Fix PX and let π(x, z) = 1{x 6= z}. Define
the function φ(·) as the linear interpolation of the points
(log n, n−1

n ), n ∈ N.4 Also, define

πmax = 1−max
x

PX(x). (45)

Then, the boundary of the rate-payoff region when lossless
communication is required and Xi−1 is disclosed can be
written as

Π(R0) = min{φ(R0), πmax}. (46)

In Fig. 3, we illustrate Theorem 2 for an arbitrary source
distribution. Note that when there is no causal disclosure and
π(x, z) is hamming distance, the payoff is given by Corollary 2
as

min
z

Eπ(X, z) = 1−max
x

PX(x) = πmax, (47)

regardless of the rate of secret key. Comparing (47) with
min{φ(R0), πmax} demonstrates the effect of causal disclo-
sure (see Fig. 3). In particular, we see that the assumption that
the adversary does not view any of the true source bits can lead
to a rather fragile guarantee of maximum secrecy. Indeed, at
low rates of secret key, the gap that results from revealing the
source causally is the difference between maximum secrecy
and zero secrecy. This reduction in payoff is the price that
is paid for increased robustness against an adversary (e.g.,
preventing pitfalls like those that we saw in the example of
one-bit secrecy).

From Theorem 2, we also readily see that the payoff can
saturate when R0 < H(X), which shows that maximum
payoff is not the same as Shannon’s perfect secrecy. For
example, if PX = {1/4, 1/4, 1/2}, then the maximum payoff
of 1/2 occurs at R0 = 1, but H(X) = 1.5.

C. Lossy communication

In the previous section, the communication rate lay above
H(X) and did not affect the (R0,Π) tradeoff. However, when
the requirement of lossless communication is relaxed, all three
quantities interact. There are four natural special cases that are
obtained by setting Wx equal to ∅ or X and setting Wy equal
to ∅ or Y . We denote the corresponding rate-payoff regions as
R∅, RA, RB , and RAB to distinguish which nodes’ actions
are causally revealed.

Corollary 4: Fix PX and π(x, y, z). In each of the follow-
ing, the region holds under all three payoff criteria.

4Here n does not refer to blocklength.

Π

R0

πmax

(log 3, 2
3 )
(log 4, 3

4 )
(log 5, 4

5 )

(log 2, 1
2 )

Fig. 3: Illustration of Theorem 2 for a generic source PX

with 1 − maxx PX(x) = πmax. The solid curve, Π(R0) =
min{φ(R0), πmax}, is the tradeoff between rate of secret key and
payoff under the assumption of causal disclosure (Corollary 3). The
loosely dashed line is πmax, which also corresponds to the payoff
when there is no causal disclosure (Corollary 2). The densely dashed
curve is φ(R0).

If there is no causal disclosure, then the rate-payoff region,
R∅, is equal to

⋃
PY |X


(R,R0,Π) :

R ≥ I(X;Y )

R0 ≥ 0

Π ≤ min
z

Eπ(X,Y, z)

 . (48)

If Xi−1 is disclosed, then the rate-payoff region, RA, is equal
to

⋃
PY,U|X


(R,R0,Π) :

R ≥ I(X;Y,U)

R0 ≥ I(X;Y |U)

Π ≤ min
z(u)

Eπ(X,Y, z(u))

 . (49)

If Y i−1 is disclosed, then RB is given by directly substituting
Wx = ∅ and Wy = Y in (26). Similarly, if (Xi−1, Y i−1) is
disclosed, then RAB is given by directly substituting Wx = X
and Wy = Y in (26).

Proof: Setting (Wx,Wy) = (∅, ∅) in Theorem 1 gives
R∅. Denote the region in (48) by S . If (R,R0,Π) ∈ R∅, then

R ≥ I(X;U, V ) = I(X;U, V, Y ) ≥ I(X;Y ) (50)
Π ≤ min

z(u)
Eπ(X,Y, z(U)) ≤ min

z
Eπ(X,Y, z), (51)

which gives R∅ ⊆ S. To see S ⊆ R∅, let U = ∅ and V = Y .
Setting (Wx,Wy) = (X, ∅) in Theorem 1 givesRA. Denote

the region in (49) by T . If (R,R0,Π) ∈ RA, then

R ≥ I(X;U, V ) = I(I;U, V, Y ) ≥ I(X;U, Y ) (52)
R0 ≥ I(X;V |U) = I(X;V, Y |U) ≥ I(X;Y |U), (53)

which gives RA ⊆ T . To see T ⊆ RA, let V = Y .



8

D. Lossy communication examples

In this section, we investigate concrete examples of Corol-
lary 4 by considering the payoff function

π(x, y, z) = 1{x = y, x 6= z}. (54)

For this choice, the block-average payoff is the fraction of
symbols in a block that Nodes A and B are able to agree on
and keep hidden from Node C.

We now present achievable regions for the cases of Corol-
lary 4 when PX ∼ Bern(1/2) and π(x, y, z) is given by (54).
The region that we give for R∅ is optimal, and numerical
computation suggests that the other regions are optimal as
well. Setting PY |X = BSC(α), we have

R∅ =
⋃

α∈[0, 12 ]


(R,R0,Π) :

R ≥ 1− h(α)

R0 ≥ 0

Π ≤ 1
2 (1− α)

 . (55)

If we let U = ∅ and PY |X = BSC(α), then we have

RA ⊇
⋃

α∈[0, 12 ]


(R,R0,Π) :

R ≥ 1− h(α)

R0 ≥ 1− h(α)

Π ≤ 1
2 (1− α)

 . (56)

Letting U = ∅, PY |X = BSC(α), and PV |Y = BSC(β) gives

RB ⊇
⋃

α,β∈[0, 12 ]


(R,R0,Π) :

R ≥ 1− h(α)

R0 ≥ 1− h(β)

Π ≤ 1
2 (1− α ? β)

 (57)

and also

RAB ⊇ conv


⋃

α,β∈[0, 12 ]



(R,R0,Π) :

R ≥ 1− h(α)

R0 ≥ 1 + h(α ? β)

− h(α)− h(β)

Π ≤ 1
2 (1− α ? β)



 . (58)

where α ? β = α(1− β) + β(1− α) and conv(·) denotes the
convex hull operation. Regions (56) and (57) are convex as
given.

Several observations concerning the regions in Fig. 4 are in
order. First, the minimum payoff is 1/4, which occurs when
there is no communication or secret key. This is achieved if
Node B generates an i.i.d. sequence according to Bern(1/2)
and Node C produces an arbitrary sequence. The maximum
payoff that can be guaranteed is 1/2, because Node C can
correctly guess X with probability one-half without any in-
formation. Second, note the strict containment from top to
bottom: causal access to Node A (Fig. 4b) is better for the
adversary than access to Node B (Fig. 4c), and the combination
(Fig. 4d) is strictly better for him than Node A alone. Finally,
observe the effect of having a higher secret key rate than
communication rate, and vice versa. When Node A is causally
revealed, the payoff is a function of min(R,R0) and there is

(a) No causal disclosure.

(b) Node A causally disclosed.

(c) Node B causally disclosed.

(d) Nodes A and B causally disclosed.

Fig. 4: Achievable regions of Corollary 4 for PX ∼ Bern(1/2) and
π(x, y, z) = 1{x = y, x 6= z}. Numerical computation suggests that
these regions are optimal.
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no advantage in having excess of either rate. However, when
Node B is revealed, both R0 > R and R > R0 result in
higher payoff than R = R0. When both nodes are revealed, an
excess of secret key rate increases payoff.5 This phenomenon
is particularly surprising because it means that secret key is
useful even beyond the application of a one-time-pad to the
communication.

V. EQUIVOCATION

In this section, we show that (normalized) equivocation-
based measures of secrecy become a special case of the causal
disclosure framework if we choose the payoff function to be
a log-loss function. Relating distortion to conditional entropy
via a log-loss function was done recently in the context of
certain multiterminal source coding problems [15].

First, we remark that Theorem 1 can be readily extended
to include multiple distortion functions. For example, if we
wanted to separately evaluate coordination and secrecy, we
could use two payoff functions π1(x, y) and π2(x, y, z). In
this setting, it might be more natural to refer to distortion
functions than payoff functions, with the goal of minimizing
the distortion between Nodes A and B while maximizing the
distortion between Nodes (A,B) and Node C. Then, the rate-
distortion region becomes

⋃
Wx−X−(U,V )−Y−Wy



(R,R0, D1, D2) :

R ≥ I(X;U, V )

R0 ≥ I(WxWy;V |U)

D1 ≥ E d1(X,Y )

D2 ≤ min
z(u)

E d2(X,Y, z(U))


. (59)

Now consider (Wx,Wy) = (X, ∅) and a distortion function
d2 : X × Y ×∆X → R defined by

d2(x, y, z) = log
1

z(x)
(60)

where z is a probability distribution on X , and z(x) denotes
the probability of x ∈ X according to z ∈ ∆X . With this
choice, the distortion in criterion AVG can be written as

min
{PZi|M,Xi−1}ni=1

E
1

n

n∑
i=1

d2(Xi, Yi, Zi)

=
1

n

n∑
i=1

min
PZ|M,Xi−1

E d2(Xi, Yi, Z) (61)

=
1

n

n∑
i=1

min
PZ|M,Xi−1

E log
1

Z(Xi)
(62)

(a)
=

1

n

n∑
i=1

H(Xi|M,Xi−1) (63)

=
1

n
H(Xn|M), (64)

where (a) is due to the Lemma 2 (given below). Thus, for
the log-loss distortion function in (60), expected adversarial
distortion under an assumption of causal disclosure simply
becomes normalized equivocation.

5These relationships are not known to be true in general.

Lemma 2: Fix a pair of random variables (X,Y ) and let
Z = ∆X . Then

H(X|Y ) = min
Z:X−Y−Z

E log
1

Z(X)
(65)

where z(x) is the probability of x according to z.
Proof: If X − Y − Z, then

E log
1

Z(X)
(66)

= E log
1

PX|Y (X|Y )
+ E log

PX|Y (X|Y )

Z(X)
(67)

= H(X|Y ) +
∑
y,z

PY Z(y, z)D(PX|Y=y||z) (68)

≥ H(X|Y ), (69)

with equality if z = PX|Y=y for all (y, z).
So far, we have focused on the equivocation of Xn;

however, one might be interested in 1
nH(Y n|M) or

1
nH(Xn, Y n|M), instead. In these cases, the rate-distortion-
equivocation regions can again be recovered from Theorem 1
(via the form in (59)) by considering (Wx,Wy) = (∅, Y ),
Z = ∆Y and

d2(x, y, z) = log
1

z(y)
(70)

or (Wx,Wy) = (X,Y ), Z = ∆X×Y and

d2(x, y, z) = log
1

z(x, y)
. (71)

In all three cases, the regions can be simplified (in particular,
the auxiliary random variable V can be eliminated). The
results are given in the following theorem, part 1 of which
was given by Yamamoto in [12].

Corollary 5: Fix PX and d(x, y). Let R denote the closure
of achievable pairs (R,R0, D,E).
1) If the equivocation criterion is

lim inf
n→∞

1

n
H(Xn|M) ≥ E, (72)

then

R =
⋃
PY |X


(R,R0, D,E) :

R ≥ I(X;Y )

D ≥ E d(X,Y )

E ≤ H(X)− [I(X;Y )−R0]+

 , (73)

where [x]+ = max{0, x}.
2) If the equivocation criterion is

lim inf
n→∞

1

n
H(Y n|M) ≥ E, (74)

then

R =
⋃

X−U−Y


(R,R0, D,E) :

R ≥ I(X;U)

D ≥ E d(X,Y )

E ≤ H(Y )− [I(Y ;U)−R0]+

 . (75)

3) If the equivocation criterion is

lim inf
n→∞

1

n
H(Xn, Y n|M) ≥ E, (76)
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then

R =
⋃

X−U−Y


(R,R0, D,E) :

R ≥ I(X;U)

D ≥ E d(X,Y )

E ≤ H(X,Y )− [I(X,Y ;U)−R0]+

 .

(77)
Proof: We only prove part 2, as parts 1 and 3 follow

similar arguments. First, fix d2(x, y, z) according to (70).
Then, by Lemma 2,

min
z(u)

E d2(X,Y, z(U)) = H(Y |U). (78)

From the discussion above, it is clear that R is characterized
by setting (Wx,Wy) = (∅, Y ) in (59), yielding

R =
⋃

X−(U,V )−Y



(R,R0, D,E) :

R ≥ I(X;U, V )

R0 ≥ I(Y ;V |U)

D ≥ E d(X,Y )

E ≤ H(Y |U)


. (79)

Denote the region in (75) by S. To see R ⊆ S, first consider
(R,R0, D,E) ∈ R. Defining U ′ , (U, V ), we have

R ≥ I(X;U, V ) = I(X;U ′) (80)
E ≤ H(Y |U) = H(Y |U, V ) + I(Y ;V |U) (81)
≤ H(Y |U ′) +R0 (82)

E ≤ H(Y ), (83)

which implies (R,R0, D,E) ∈ S. To see S ⊆ R, let
(R,R0, D,E) ∈ S. Define V ′ , U and find a random variable
U ′ such that U ′ − U − (X,Y ) form a markov chain and

H(Y |U ′) = H(Y )− [I(Y ;U)−R0]+ (84)

This is always possible because the right-hand side of (84)
lies in the interval [H(Y |U), H(Y )]. Then, we can write

R ≥ I(X;U) = I(X;U ′, V ′) (85)
R0 ≥ H(Y |U ′)−H(Y |U) = I(Y ;V ′|U ′) (86)
E ≤ H(Y |U ′), (87)

which implies (R,R0, D,E) ∈ R. Thus, R = S.

VI. ACHIEVABILITY PROOF

A. Soft covering lemma

The primary tool used in the achievability proof of Theo-
rem 1 is a so-called “soft covering lemma”, a known result
concerning the approximation of the output distribution of a
channel.6 Various forms of the lemma have appeared in [17]
and [18] and related notions from the perspective of random
binning can be found in [19]. Several generalizations of the
lemma (including a one-shot version) can be found in [16].

In brief, the most basic version of the soft covering lemma
is as follows. Fix a joint distribution PX,U . First, generate
a random codebook of 2nR independent codewords, each

6The name “soft covering lemma” was given in [16]. The same lemma has
also been referred to as the “resolvability lemma” and “cloud-mixing lemma”.

drawn according to
∏n
i=1 PU (ui). Select a codeword, uni-

formly at random, as the input to a memoryless channel∏n
i=1 PX|U (xi|ui). The lemma states that if R > I(X;U),

then the distribution of the channel output Xn converges to∏n
i=1 PX(xi) in expected total variation distance, where the

expectation is with respect to the random codebook.
A generalization of the soft covering lemma, presented

shortly, will prove essential to the payoff analysis. Once we
define a code by pairing a random codebook with a particular
stochastic encoder and decoder, the soft covering lemma can
be used to approximate the joint statistics of the system (i.e.,
the joint distribution on (Xn,M,K, Y n,Wn) that is induced
by the code) by an “idealized” distribution that has desirable
properties. Having a tractable approximation of the joint
distribution of the system is important because an adversary’s
optimal strategy is dictated by a posterior distribution. For
example, if an adversary tries to estimate the ith source symbol
Xi based on his observations of causal disclosure Xi−1 and
the public message M , his optimal strategy is entirely deter-
mined by the posterior distribution of Xi given (Xi−1,M).
The approximating distribution that the soft covering lemma
guarantees will provide a clear understanding of that posterior
distribution and lead to a manageable payoff analysis.

Although the distribution approximation in the soft covering
lemma holds for normalized and unnormalized divergence, we
use the total variation version found in [16] and [18] because
of the following properties that total variation enjoys.

Given two probability measures P and Q with common
alphabet X , the total variation distance between P and Q is
defined by

‖P −Q‖ = sup
A∈F
|P (A)−Q(A)|, (88)

where F is the sigma algebra of the common alphabet.
Property 2: Total variation distance satisfies the following.

(a) If the support of P and Q is a countable set X , then

‖P −Q‖ =
1

2

∑
x∈X

∣∣∣P ({x})−Q({x})
∣∣∣. (89)

(b) Let ε > 0 and let f(x) be a function with bounded range
of width b > 0. Then

‖P −Q‖ < ε =⇒
∣∣EP f(X)− EQf(X)

∣∣ < εb, (90)

where EP indicates that the expectation is taken with
respect to the distribution P .

(c) For any P , Q, and Φ,

‖P −Q‖ ≤ ‖P − Φ‖+ ‖Φ−Q‖. (91)

(d) Let PXPY |X and QXPY |X be two joint distributions with
common channel PY |X . Then

‖PXPY |X −QXPY |X‖ = ‖PX −QX‖. (92)

(e) Let PX and QX be marginal distributions of PXY and
QXY . Then

‖PX −QX‖ ≤ ‖PXY −QXY ‖. (93)

We require the following generalization of the soft covering
lemma.
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Definition 4: Let {PXn,Y n}∞n=1 be a sequence of joint
distributions. The sup-information rate of this sequence is
defined as

I(X;Y ) , lim sup
n→∞

1

n
iPXn,Y n (Xn;Y n), (94)

where

lim sup
n→∞

Wn , inf{τ : P[Wn > τ ]→ 0} (95)

and

iPX,Y
(a; b) , log

PX,Y (a, b)

PX(a)PY (b)
. (96)

The function iPX,Y
(a; b) is called the information density.

Lemma 3 ([16, Corollary VII.4],[18]): Let {PXn,Y n}∞n=1

be a sequence of joint distributions. Let C(n) be a random
codebook of 2nR sequences in Xn, each drawn independently
according to PXn and indexed by m ∈ [2nR]. Let QY n denote
the output distribution of the channel when the input is selected
from C(n) uniformly at random; that is,

QY n(yn) = 2−nR
∑

m∈[2nR]

PY n|Xn(yn|Xn(m)). (97)

If R > I(X;Y ), then

lim
n→∞

EC(n)‖QY n − PY n‖ = 0, (98)

where EC(n) indicates that the expectation is with respect to
the random codebook.7 Furthermore, the convergence in (98)
occurs exponentially quickly with n if the distribution PXnY n

is memoryless.
We now begin the achievability proof of Theorem 1 by spec-

ifying the random codebook, stochastic encoder, and stochastic
decoder.

B. Design of codebook, encoder, and decoder

In the statement of Theorem 1, we are given disclosure
channels PWx|X and PWy|Y . For simplicity, we treat the
channels as a single channel8 defined by

PW |XY , PWx|XPWy|Y . (99)

Thus, we denote (Wn
x ,W

n
y ) by Wn and the causal disclosure

by W i−1. The memoryless channel from (Xn, Y n) to Wn is
denoted by

PWn|XnY n ,
n∏
i=1

PW |XY . (100)

Given a source distribution PX and a disclosure channel
PW |XY , fix a distribution

PXUV YW = PXPUV |XPY |UV PW |XY . (101)

7Because the codebook is random, the output distribution QY n is a random
variable taking values on ∆Yn . One way to notate this is through the use of
conditional distributions (i.e., write QY n|C(n) ), but we choose to suppress
such notation in order to simplify the presentation.

8The decomposition of the channel PW |XY into two channels does not
play a role in the achievability proof. The reason Theorem 1 does not feature
a generic channel PW |XY is that a matching converse proof has not been
supplied.

Note that this distribution satisfies the markov chain X −
(U, V )−Y . Fix a communication rate R > I(X;U, V ) and a
secret key rate R0 > I(W ;V |U).
Random codebook: Generate a random superposition code-
book in the following manner. First, generate a codebook C(n)

U

of 2nR codewords from Un i.i.d. according to
∏n
i=1 PU . These

codewords are indexed by m ∈ [2nR]. Then, for each code-
word Un(m) ∈ C(n)

U , generate a codebook C(n)
V (m) of 2nR0

codewords from Vn i.i.d. according to
∏n
i=1 PV |U=Ui(m).

These codewords are indexed by (m, k), k ∈ [2nR0 ]. Thus,
we have

C(n)
U = (Un(1), . . . , Un(m), . . . , Un(2nR)) (102)

and

C(n)
V (m) = (V n(m, 1), . . . , V n(m, k), . . . , V n(m, 2nR0)).

(103)
We refer to the entire superposition codebook as C(n).
Likelihood encoder: For a fixed superposition codebook, the
encoder is a stochastic likelihood encoder defined by

PM |XnK(m|xn, k) ∝
n∏
i=1

PX|U,V (xi|ui(m), vi(m, k)),

(104)
where ∝ indicates that an appropriate normalization factor
is required to make PM |XnK a valid conditional probability
distribution. Eqn. (104) says that the probability of (xn, k)
being mapped to the index m is proportional to the probability
that xn is the output of the memoryless “test channel” PX|UV
with input (un(m), vn(m, k)). The reason for this choice of
encoder will become clear shortly.
Decoder: The decoder is stochastic and is defined by

PY n|MK(yn|m, k) ,
n∏
i=1

PY |UV (yi|ui(m), vi(m, k)). (105)

The random codebook, likelihood encoder, and decoder
comprise the code and induce a joint distribution on the system
that is given by

PXnMKY nWn = PXnPKPM |XnKPY n|MKPWn|XnY n ,
(106)

where PXn is i.i.d. according to PX , and PK is uniform over
[2nR0 ].

C. The approximating distribution Q and its property

We now use the soft covering lemma (Lemma 3) to
yield an approximation to the system-induced distribution
PXnMKY nWn . The idealized distribution that we are con-
cerned with is described by Fig. 5 and defined explicitly as

QXnMKY nWn , QXnMKPY n|MKPWn|XnY n , (107)

where QXnMK is given by

Q(xn,m, k) , 2n(R+R0)
n∏
i=1

PX|UV (xi|Ui(m), Vi(m, k)).

(108)
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M ∼ Unif[2nR]

K ∼ Unif[2nR0 ]

C(n)
U

C(n)
V

PXY |UV PW |XY Wn

Un(M)

V n(M,K)

(Xn, Y n)

Fig. 5: Process that defines QXnMKY nWn . The pair (M,K) indexes a pair of codewords (Un(M), V n(M,K)) in the superposition
random codebook. The codeword pair is passed through a memoryless channel PXY |UV = PX|UV PY |UV to get (Xn, Y n). Then (Xn, Y n)
is passed through a memoryless channel PW |XY to get Wn.

Observe that the definitions of PY n|MK and PWn|XnY n ,
combined with the factorization of PXUV YW in (101), allow
us to write Q as

Q(xn,m, k, yn, wn)

= 2−n(R+R0)
n∏
i=1

PXYW |UV (xi, yi, wi|Ui(m), Vi(m, k)),

(109)

which corresponds to the process depicted in Fig. 5.
The stochastic likelihood encoder was defined intentionally

so that QM |XnK = PM |XnK . In fact, the only difference
between P and Q lies in the marginal distribution of (Xn,K).
Indeed, notice that we can write

QXnMKY nWn

, QXnMKPY n|MKPWn|XnY n (110)
= QXnKPM |XnKPY n|MKPWn|XnY n (111)
= QXnKPMY nWn|XnK . (112)

Therefore, we can show that PXnMKY nWn ≈ QXnMKY nWn

by demonstrating that PXnK ≈ QXnK . This is accomplished
using the soft covering lemma.

Lemma 4: If R > I(X;U, V ), then

lim
n→∞

EC(n)

∥∥PXnMKY nWn −QXnMKY nWn

∥∥ = 0. (113)

Proof of Lemma 4:

EC(n)

∥∥PXnMKY nWn −QXnMKY nWn

∥∥
(a)
= EC(n)

∥∥PXnK −QXnK

∥∥ (114)
= EC(n)

∥∥PXnPK −QXn|KPK
∥∥ (115)

(b)
= 2−nR0

2nR0∑
k=1

EC(n)

∥∥PXn −QXn|K=k

∥∥ (116)

= EC(n)

∥∥PXn −QXn|K=1

∥∥ (117)
(c)
= o(1). (118)

The justification for the steps is as follows:
(a) Eqn. (112) and Property 2d of total variation.
(b) Property 2a of total variation.
(c) R > I(X;U, V ) and the soft covering lemma (Lemma 3).

Notice that PXn is i.i.d. according to PX and QXn|K=1 is
the output distribution of the memoryless channel PX|UV
acting on a (sub)codebook of size 2nR.

Approximating P by Q will allow us to analyze the payoff as
if Q governs the joint statistics of the system. If the rate of
secret key is large enough, the structure of Q will allow us to

argue that the causal disclosure W i−1 is actually useless to the
eavesdropper and that his best strategy for estimating (Xi, Yi)
is based solely on Un(M). The crucial property of Q that
enables this argument is given in the following lemma. The
proof, which relies on the soft covering lemma, is relegated
to Appendix B.

Lemma 5: If R0 > I(W ;V |U), there exists α ∈ (0, 1] such
that

lim
n→∞

EC(n)

∥∥∥QMWnXBYB − Q̂MWnXBYB

∥∥∥ = 0, (119)

where

Q̂MWnXBYB

, QM ·
( n∏
i=1

PW |U=Ui(M)

)
·
(∏
i∈B

PXY |W,U=Ui(M)

)
(120)

and B is any subset of [n] of size |B| ≤ bαnc.
To see the significance of Q̂, first consider B = ∅ and W =
(X,Y ), so that

Q̂MXnY n(m,xn, yn) = 2−nR
n∏
i=1

PXY |U (xi, yi|Ui(m)).

(121)
Recall that W = (X,Y ) implies direct causal disclosure
of Nodes A and B; that is, the adversary has access to
(M,Xi−1, Y i−1) at step i. From (121), we see that Q̂XnY n|M
is a memoryless channel from the codeword Un(M) to the
pair (Xn, Y n). In particular, this implies

(Xi, Yi)− Ui(M)− (M,Xi−1, Y i−1), ∀i ∈ [n]. (122)

Therefore, the adversary’s best estimate of (Xi, Yi) only de-
pends on Ui(M) and is not improved by the causal disclosure.
We have essentially created an artificial noisy channel from
the intercepted codeword Un(M) to the pair (Xn, Y n), a
property which not only greatly simplifies the payoff analysis,
but is interesting independent of the causal disclosure problem.
We discuss this effect and some of its implications after
completing the achievability proof.

For general W , consider B = {i}. In this case, Lemma 5
demonstrates that Q approximately satisfies the markov chain

(Xi, Yi)− Ui(M)− (M,W i−1), (123)

and again we see that adversary’s estimate of (Xi, Yi) only
depends on Ui(M) and is not improved by the causal dis-
closure. However, it turns out that the property in (123) is
not quite strong enough for the analysis of the WHP payoff
criterion, which is why Lemma 5 is concerned with sub-blocks
(XB, YB) of size linearly increasing with n.
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D. Analysis of the MIN payoff criterion

We first combine Lemmas 4 and 5 to demonstrate the
existence of a codebook that ensures certain distribution ap-
proximations hold simultaneously for all i ∈ [n].

Lemma 6: There exists a sequence of codebooks such that

lim
n→∞

max
i∈[n]
‖PMWnXiYi − Q̂MWnXiYi‖ = 0 (124)

and

lim
n→∞

max
i∈[n]
‖Q̂ui(M) − PU‖ = 0. (125)

Proof of Lemma 6: First, for all i ∈ [n] we have

EC(n) ‖PMWnXiYi
− Q̂MWnXiYi

‖
(a)

≤ EC(n) ‖PMWnXiYi −QMWnXiYi‖
+ EC(n) ‖QMWnXiYi − Q̂MWnXiYi‖ (126)

(b)

≤ EC(n) ‖PXnMKY nWn −QXnMKY nWn‖
+ EC(n) ‖QMWnXiYi

− Q̂MWnXiYi
‖ (127)

(c)
= O(e−γn) (128)

for some γ > 0. Steps (a) and (b) use Properties 2c and 2e
of total variation distance, respectively. Step (c) follows from
Lemmas 4 and 5, and the fact that the convergence in the soft
covering lemma occurs exponentially quickly with n.

Next, we invoke Lemma 3 to show that, for all i ∈ [n],

EC(n)‖Q̂Ui(M) − PU‖ = O(e−βn), (129)

for some β > 0. The soft covering lemma applies because:

• Q̂Ui(M) is the output distribution of the identity channel
acting on a “codebook” of 2nR “codewords” generated
i.i.d. according to PU – the “codebook” consists of
(Ui(1), . . . , Ui(2

nR)). Furthermore PU is the output dis-
tribution when the input distribution is PU , because the
channel is the identity channel.

• The rate requirement is trivially satisfied because R > 0
and

lim sup
n→∞

1

n
iPU

(Ui;Ui) ≤ lim
n→∞

1

n
log |U| = 0. (130)

Combining (128) and (129), we can write

lim
n→∞

EC(n)

[ n∑
i=1

‖PXnYiM − Q̂XnYiM‖

+

n∑
i=1

‖Q̂Ui(M) − PU‖
]

= 0. (131)

It is straightforward to verify that this fact implies the state-
ment of the lemma.

With Lemma 6 in hand, we proceed with the analysis of the
MIN payoff criterion. Let Π ≤ minz(u) Eπ(X,Y, z(U)). For

all i ∈ [n], we have

min
z(m,wi−1)

EP π(Xi, Yi, z(M,W i−1))

(a)
= min

z(m,wi−1)
EQ̂ π(Xi, Yi, z(M,W i−1))− o(1) (132)

(b)
= min

z(u)
EQ̂ π(Xi, Yi, z(ui(M)))− o(1) (133)

(c)
= min

z(u)
Eπ(X,Y, z(U))− o(1) (134)

≥ Π− o(1). (135)

Step (a) uses the first part of Lemma 6 along with Property
2b of total variation. Step (b) follows from Lemma 1 because
under Q̂MWnXiYi

, the following markov chain holds:

(Xi, Yi)− ui(M)− (M,W i−1). (136)

Step (c) is due to the second part of Lemma 6 and Property
2b of total variation. This completes the analysis of the MIN
payoff criterion.

E. Analysis of the WHP payoff criterion

Without loss of generality, we restrict attention to those
distributions PUVXYW that satisfy

PXY (x, y) > 0 =⇒ π(x, y, z) > −∞ ,∀x, y, z. (137)

Otherwise, minz Eπ(X,Y, z) = −∞ and the region in Theo-
rem 1 is trivial.

The analysis will take place over sub-blocks of length k =
bαnc rather than over the full block. For ease of presentation,
we assume that bαnc = αn and that k divides n evenly; the
analysis is readily adjusted when this is not the case. We first
fix some notation for handling sub-blocks. Denote the indices
of the jth sub-block by the set B(j):

B(j) = {jk, jk + 1, . . . , (j + 1)k − 1}, j ∈ [1/α]. (138)

Furthermore, denote the first t indices of sub-block B(j)

by Bt(j); for example, B1
(j) = j and Bk(j) = B(j). Some

more notation: denote the adversary’s optimal reconstruction
sequence by {Z∗i }ni=1 and, for brevity, define

ρ , min
z(u)

Eπ(X,Y, z(U)). (139)

Let Π < ρ and ε = ρ−Π. To prove achievability under the
WHP criterion, we claim that it is enough to show that, for all
j ∈ [1/α],

lim
k→∞

EC(n) PQ̂
[1

k

∑
i∈B(j)

π(Xi, Yi, Z
∗
i ) < ρ− ε

]
= 0, (140)

where Q̂MWnXB(j)YB(j) is given in Lemma 5. Indeed, if this
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is true, then we can write

EC(n) P
[ 1

n

n∑
i=1

π(Xi, Yi, Z
∗
i ) ≥ Π− ε

]
≥ EC(n) P

[ 1

n

n∑
i=1

π(Xi, Yi, Z
∗
i ) ≥ ρ− ε

]
(141)

≥ EC(n) P
[⋂
j

{1

k

∑
i∈B(j)

π(Xi, Yi, Z
∗
i ) ≥ ρ− ε

}]
(142)

= 1− EC(n) P
[⋃
j

{1

k

∑
i∈B(j)

π(Xi, Yi, Z
∗
i ) < ρ− ε

}]
(143)

(a)

≥ 1−
1/α∑
j=1

EC(n) P
[1

k

∑
i∈B(j)

π(Xi, Yi, Z
∗
i ) < ρ− ε

]
(144)

(b)
= 1−

1/α∑
j=1

EC(n) PQ̂
[1

k

∑
i∈B(j)

π(Xi, Yi, Z
∗
i ) < ρ− ε

]
− o(1)

(145)

(c)
= 1− o(1). (146)

Step (a) uses a union bound. Step (b) is due to Lemma 5
and the definition of total variation. Step (c) follows from the
hypothesis in (140) and the fact that 1/α is a constant that
does not grow with n.

We now show that (140) holds for all j ∈ [1/α]. Since our
analysis is the same for all sub-blocks, we drop the subscript
on B(j) and simply consider an arbitrary sub-block B of size
k.

We cannot use the standard law of large numbers to show
(140) because the dependence of Z∗i on (M,W i−1) implies
that the random variables {π(Xi, Yi, Z

∗
i )}i∈B are not mutually

independent. Instead, we condition on Un(M) and use a
martingale argument.

For simplicity, denote Un(M) by U
n

. Let {St}t∈B be
defined by

St ,
∑
i∈Bt

(π(Xi, Yi, Z
∗
i )− ρi(U

n
)), (147)

where
ρi(U

n
) , min

z(un)
EQ̂[π(Xi, Yi, z) | U

n
]. (148)

We claim that, conditioned on U
n

, St is a submartingale,
i.e.,

EQ̂[St | St−1, U
n
] ≥ St−1, ∀t ∈ B. (149)

To verify the claim, first observe that the definition of St gives

EQ̂[St | St−1, U
n
] = St−1 + EQ̂[π(Xt, Yt, Z

∗
t ) | St−1, U

n
]

− ρt(U
n
). (150)

Moreover, for each t ∈ B, we have

EQ̂[π(Xt, Yt, Z
∗
t ) | St−1, U

n
]

≥ min
z(m,wt−1,un,st−1)

EQ̂[π(Xt, Yt, z(M,W t−1)) | St−1, U
n
]

(151)

(a)
= min

z(un,st−1)
EQ̂[π(Xt, Yt, z) | St−1, U

n
] (152)

(b)
= min

z(un)
EQ̂[π(Xt, Yt, z) | U

n
] (153)

= ρt(U
n
). (154)

Step (a) follows by invoking Lemma 1 after noting that under
Q̂ we have the markov chain

(Xt, Yt)− (U
n
, St−1)− (M,W t−1). (155)

Step (b) follows from the markov chain

(Xt, Yt)− U
n − St−1. (156)

Thus, conditioned on U
n

, we see that St is a submartingale.
By Doob’s decomposition theorem, we can write St = Mt +
At, where Mt is a martingale (conditioned on U

n
) and At is

an increasing process with A1 = 0. Therefore, conditioning
on U

n
, we have

PQ̂
[1

k

∑
i∈B

π(Xi, Yi, Z
∗
i ) <

1

k

∑
i∈B

ρi(U
n
)− ε

∣∣∣ Un]
= PQ̂[Sk < −kε | U

n
] (157)

≤ PQ̂[Mk < −kε | U
n
] (158)

= PQ̂
[
Mk − EQ̂[Mk] < −kε− EQ̂[Mk]

∣∣ Un] (159)

(a)

≤
VarQ̂(Mk | U

n
)

(kε+ EQ̂[S1])2
, (160)

where (a) follows from Chebyshev’s inequality. Now we
recursively bound the variance of Mk (conditioned on U

n
)

by writing

Var(Mk | U
n
)

(a)
= Var(E[Mk |Mk−1, U

n
]) (161)

+ E[Var(Mk |Mk−1, U
n
)] (162)

≤ Var(E[Mk |Mk−1, U
n
]) +O(1) (163)

= Var(Mk−1 | U
n
) +O(1). (164)

Step (a) uses the law of total variance. The recursion implies
VarQ̂(Mk | U

n
) ∈ O(k), which, together with (160), shows

lim
k→∞

PQ̂
[1

k

∑
i∈B

π(Xi, Yi, Z
∗
i ) <

1

k

∑
i∈B

ρi(U
n
)− ε

∣∣∣Un] = 0.

(165)
Since this convergence is uniform for all U

n
, we can take the

expectation over random codebooks to get

lim
k→∞

EC(n) PQ̂
[1

k

∑
i∈B

π(Xi, Yi, Z
∗
i ) <

1

k

∑
i∈B

ρi(U
n
)−ε

]
= 0.

(166)
Continuing, notice that ρi(U

n
) can be written as

ρi(U
n
) = min

z
EQ̂[π(Xi, Yi, z) | U

n
] (167)

= min
z

EQ̂[π(Xi, Yi, z) | U i] (168)

, ρ(U i) (169)
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because of the markov chain (Xi, Yi) − U i − U
n

that holds
under Q̂. Furthermore, the expected value of ρ(U i) is

EC(n) ρ(U i) = EC(n) EQ̂[π(Xi, Yi, z) | U i] (170)

= min
z(u)

EC(n) π(Xi, Yi, z(U i)) (171)

(a)
= min

z(u)
EC(n) π(X,Y, z(U)) (172)

= ρ (173)

where step (a) is due to the fact (readily verified) that
EC(n) QXiYiUi(M) = PXY U . Therefore, because U

n
is i.i.d.

according to PU (in expectation over the random codebooks),
we can invoke the law of large numbers to get

lim
k→∞

EC(n) PQ̂
[1

k

∑
i∈B

ρ(U i) > ρ− ε
]

= 1. (174)

This, together with (166), yields

lim
k→∞

EC(n) PQ̂
[1

k

∑
i∈B

π(Xi, Yi, Z
∗
i ) < ρ− 2ε

]
= 0, (175)

completing the proof of (140). Finally, we invoke Shannon’s
random coding argument to ensure the existence of a codebook
that satisfies the payoff criterion. This concludes the achiev-
ability proof of the WHP payoff criterion.

F. Discussion: Optimal encoding produces artificial noise

The optimal encoding and decoding scheme designed in this
section produces an effect that is worth investigating outside
of this particular context of rate-distortion theory for secrecy
systems. In particular, consider the most pessimistic disclosure
assumption, that W = (X,Y ). In this case, the communication
system effectively corrupts the i.i.d. information signal Xn

with noise by synthesizing a memoryless broadcast channel,
with the information source Xn as input, actions at the
intended receiver Y n as one output, and a sequence Un as
the other output observed by the adversary. The synthesis is
accurate in a particular sense relevant to secrecy. That is, the
communication system, which uses public message M and
secret key K to facilitate coordination, synthesizes memoryless
noise characterized by PY U |X by producing a distribution
on (Xn, Y n,M) such that PXnY n|M closely approximates∏n
i=1 PXY |U (xi, yi|ui(M)) for a set of statistically typical

un(M) sequences. This behavior is revealed by Q̂MXnY n in
(121), which the proof shows to converge to the induced joint
distribution of the system in the limit of large n.

Let us now consider why this might be an operationally
meaningful criterion for synthesizing noise in a secrecy setting.
Consider an adversary who actually does observe a noise-
corrupted version of the information signal, such as one of
the outputs of a broadcast channel. As in any probabilistic
situation, rational behavior is based on the posterior distribu-
tion of the state of the universe given what is known to the
individual. In this situation that means PXn,Y n|Un will dictate
the adversary’s optimal behavior, regardless of the objective
that the adversary is trying to accomplish. Therefore, a com-
munication system that mimics PXn,Y n|Un will elicit the same
behavior by an adversary for the same observed Un sequence

as would occur if the noisy channel was genuine. Furthermore,
if the observed Un sequence is statistically representative9

of true noisy observations, then the communication system
performance in the presence of an adversary will be equivalent
to the memoryless broadcast channel that it mimics.

For comparison, consider the work of Winter in [20].
Although the communication setting and results in [20] are
quite different from ours in that the setting does not have an
information source provided by nature, our proof and methods
for achievability bear resemblance. There, he considers a
distribution on a triple of variables (X,Y, U) and a com-
munication system that generates correlated random variables
Xn and Y n at two different nodes using communication and
secret key in the presence of an adversary. For the sake
of comparison, imagine Y n as a noisy version of Xn. The
secrecy criterion in that work is very strong, requiring that
the public message reveal no more about the sequences Xn

and Y n than the correlated sequence Un would, in the sense
that M is stochastically degraded from Un with respect to
(Xn, Y n). This is stronger than the secrecy criterion we gave
in the previous paragraphs, requiring more communication
resources as a consequence. However, the noise synthesis
achieved by the communication system of this section, even
with the weaker secrecy performance implied by (121), has
the same compelling operational significance—an adversary
can gain no more advantage from the eavesdropped message
than they could by observing the correlated Un sequence.

VII. CONVERSE PROOF

It is enough to prove the converse to Theorem 1 for just the
AVG payoff criterion, since it is the weakest of the criteria.
We further weaken the conditions by allowing Node B causal
access to Nodes A and C (i.e., we permit decoders of the form
{PYi|MKXi−1Zi−1}ni=1). We will see that this allowance does
not increase the payoff.

Fix a source distribution PX , a payoff function π(x, y, z),
and causal disclosure channels PWx|X and PWy|Y . For ease
of presentation, denote the pair (Wn

x ,W
n
y ) by Wn. Next, let

J be an auxiliary random variable drawn uniformly from [n],
independently of (Xn, Y n,Wn,M,K). Define the following
random variables:

X = XJ (176)
Y = YJ (177)
Z = ZJ (178)

(Wx,Wy) = WJ (179)
U = (M,W J−1, J) (180)
V = K. (181)

With these choices, it can be verified that

Wx −X − (U, V )− Y −Wy (182)
X ∼ PX (183)
Wx|X ∼ PWx|X (184)
Wy|Y ∼ PWy|Y (185)

9Exact characterization of this depends on the specific objectives of the
communication system.
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The following properties of PMKXnY nWn can also be veri-
fied:

Xn ⊥ K (186)
XJ − (M,K,XJ−1, J)−W J−1 (187)
XJ ⊥ J. (188)

Let (R,R0,Π) be an achievable triple. We first have

nR ≥ H(M) (189)
≥ H(M |K) (190)
≥ I(Xn;M |K) (191)
(a)
= I(Xn;M,K) (192)

=

n∑
j=1

I(Xj ;M,K|Xj−1) (193)

=

n∑
j=1

I(Xj ;M,K,Xj−1) (194)

(b)
=

n∑
j=1

I(Xj ;M,K,Xj−1,W j−1) (195)

≥
n∑
i=1

I(Xj ;M,K,W j−1) (196)

(c)
= nI(XJ ;M,K,W J−1, J) (197)
= nI(X;U, V ), (198)

where (a), (b), and (c) follow from (186), (187), and (188).
Next, we have

nR0 ≥ H(K) (199)
≥ H(K|M) (200)
≥ I(Wn;K|M) (201)

≥
n∑
j=1

I(Wj ;K|M,W j−1) (202)

(a)
= nI(WJ ;K|M,W J−1, J) (203)
= nI(W ;V |U), (204)

where (a) follows from (188). Finally, we have

Π ≤ min
z(m,wj−1,j)

E
1

n

n∑
j=1

π(Xj , Yj , z(M,W j−1, j)) (205)

= min
z(m,wj−1,j)

E
[
E[π(XJ , YJ , z(M,W J−1, J))|J ]

]
(206)

= min
z(m,wj−1,j)

Eπ(XJ , YJ , z(M,W J−1, J)) (207)

= min
z(u)

Eπ(X,Y, z(U)). (208)

It remains to bound the cardinality of U and V , which is
straightforward from the standard support lemma (e.g., [21]).
Note that the set of markov distributions forms a compact,
connected set. To bound U , it suffices to have |X |−1 elements
to preserve PX and 3 more elements to preserve H(X|U, V ),
I(W ;V |U), and minz(u) Eπ(X,Y, z(U)). To bound V , it
suffices to have |X ||Y||U|−1 elements to preserve PXY U and
2 more elements to preserve H(X|U, V ) and H(W |U, V ).

VIII. OTHER FORMS OF DISCLOSURE

In this section, we consider several relevant scenarios that
are not directly subsumed by Theorem 1, but that can be
solved by modifying the proof slightly. Throughout, we denote
(Wn

x ,W
n
y ) by Wn. Whereas previously we assumed that the

eavesdropper has access to causal disclosure W i−1, now we
consider three other types of disclosure: Wi, W i, and Wn. It
turns out that the regions corresponding to W i and Wn are
the same.

Theorem 3: Fix PX , π(x, y, z) and disclosure channels
PWx|X and PWy|Y . If Wi is disclosed instead of W i−1, then
the rate-payoff region for all three payoff criteria is equal to

⋃
PY |X


(R,R0,Π) :

R ≥ I(X;Y )

R0 ≥ 0

Π ≤ min
z(wx,wy)

Eπ(X,Y, z(Wx,Wy))

 . (209)

Proof: The proof of achievability is very similar to that
of Section VI. Define the random codebook, encoder, decoder,
and QXnMKY nWn in the same way, but set U = ∅ and
V = Y throughout. Lemma 4 ensures that the system-induced
distribution is approximated by Q since R > I(X;Y ). Instead
of the property in Lemma 5, the desired property of Q is now

QMXBYBWB ≈ QM ·
(∏
i∈B

PXYW

)
. (210)

The soft covering lemma can be invoked to show that this
property holds if the rate of secret key satisfies

R0 > lim sup
n→∞

1

n
iQ(XBYBWB;Y n) = 0. (211)

Thus, under Q, the message M is approximately indepen-
dent of (Xi, Yi,Wi) and the eavesdropper’s best estimate of
(Xi, Yi) only depends on his observation of the disclosure Wi.
The payoff analysis of Section VI is straightforward to modify
accordingly.

To prove the converse, it is first straightforward to bound
R and R0. To bound Π, define (Wx,Wy) = WJ , where J ∼
Unif(n), and write

Π ≤ min
z(m,wj ,j)

E
1

n

n∑
j=1

π(Xj , Yj , z(M,Wj , j)) (212)

≤ min
z(wj)

E
1

n

n∑
j=1

π(Xj , Yj , z(Wj)) (213)

= min
z(w)

Eπ(XJ , YJ , z(WJ)) (214)

= min
z(wx,wy)

Eπ(X,Y, z(Wx,Wy)). (215)

Theorem 4: Fix PX , π(x, y, z) and disclosure channels
PWx|X and PWy|Y . If Wn or W i is disclosed instead of W i−1,
then the rate-payoff region for all three payoff criteria is equal



17

to

⋃


(R,R0,Π) :

R ≥ I(X;U, V )

R0 ≥ I(Wx,Wy;V |U)

Π ≤ min
z(u,wx,wy)

Eπ(X, z(U,Wx,Wy))

 , (216)

where the union is taken over all markov chains

Wx −X − (U, V )− Y −Wy. (217)

Proof: For the proof of achievability, suppose Wn is dis-
closed. The proof is almost exactly the same as in Section VI.
The code and the rates are identical, as is the definition of the
approximating distribution Q. Notice that under Q̂ (defined in
Lemma 5), the following markov chain holds for all i ∈ [n]:

(Xi, Yi)− (Ui(M),Wi)− (M,Wn). (218)

Thus, the eavesdropper’s best strategy only depends on
(Ui(M),Wi); the rest of the disclosure of Wn is rendered
useless. To adjust the analysis of the payoff criteria, simply
use markov relations similar to the one in (218).

To show the converse proof, suppose that only W i is
disclosed. The proof follows arguments similar to those in
Section VII, with exactly the same identification of random
variables.

IX. CAUSAL DISCLOSURE WITH DELAY

In this section, we consider the effects of assuming that the
adversary has delayed causal access to the system behavior. In
other words, we replace causal disclosure W i−1 with W i−d,
d > 1. Surprisingly, this has a major effect on relaxing
the amount of secret key required to maintain secrecy. We
establish an inner and outer bound on the corresponding rate-
payoff region and give an example in which the bounds
meet.10 Using the bounds, we further show that if lossless
communication is required, the minimum rate of secret key
needed to ensure a given level of payoff is on the order of
1/d.

A. Inner and outer bound

Theorem 5 (Inner bound, causal disclosure with delay d):
Fix PX , π(x, y, z), and causal disclosure channels PWx|X and
PWy|Y . Let Rd denote the closure of achievable (R,R0,Π)
when the causal disclosure has delay d ≥ 1. Then

Rd ⊇
⋃


(R,R0,Π) :

R ≥ 1
dI(Xd;U, V )

R0 ≥ 1
dI(W d

xW
d
y ;V |U)

Π ≤ min
z(u)

E
[

1
d

d∑
j=1

π(Xj , Yj , z(U))
]


, (219)

where the union is taken over all markov chains

W d
x −Xd − (U, V )− Y d −W d

y (220)

10Numerical investigation reveals that the bounds are not tight in general.

in which

PXdWd
x

=

d∏
j=1

PXPWx|X (221)

and

PWd
y |Y d =

d∏
j=1

PWy|Y . (222)

Proof: For simplicity, we present the proof for d = 2.
Denote (Wn

x ,W
n
y ) by Wn. The idea is to transform the

problem into one involving delay d = 1 so that we can apply
Theorem 1. To that end, we first treat the source Xn as an
i.i.d. sequence X̃

n
2 of super-symbols of length 2 by defining

X̃i = (X2i−1, X2i), i = 1, 2, . . . , n/2. (223)

Similarly, treat Y n and Wn as sequences of super-symbols
by appropriately defining Ỹ

n
2 and W̃

n
2 . Under this definition,

observe that at steps i = 2, 4, . . . , n the adversary has access
to W̃ i−1 = W i−2. Suppose that at steps i = 1, 3, . . . , n we
disclose additional information Wi−1 to the adversary. Now
the causal disclosure to the adversary is exactly W̃ i−1 for all
i ∈ [n]. Note that supplying extra information to the adversary
can only reduce the achievable region.

To complete the transformation, define a payoff function
π̃ : X 2 × Y2 ×Z2 → R by

π̃(x2, y2, z2) =

2∑
j=1

π(xj , yj , zj). (224)

If (R̃, R̃0, Π̃) is an achievable triple for this transformed
problem, then (R̃/2, R̃0/2, Π̃/2) is an achievable triple for the
delayed causal disclosure problem with d = 2. By applying
Theorem 1, we obtain the region in (219) for d = 2.

Theorem 6 (Outer bound, causal disclosure with delay d):
Fix PX , π(x, y, z), and causal disclosure channels PWx|X and
PWy|Y . Let Rd denote the closure of achievable (R,R0,Π)
when the causal disclosure has delay d ≥ 1. Then

Rd ⊆
⋃


(R,R0,Π) :

R ≥ I(X;U, V )

R0 ≥ 1
dI(WxWy;V |U)

Π ≤ min
z(u)

Eπ(X,Y, z(U))

 , (225)

where the union is taken over all markov chains

Wx −X − (U, V )− Y −Wy. (226)

Proof: The key to the proof is the following lemma.
Lemma 7: For arbitrary random variables (Xn, Y ), it holds

that

d · I(Xn;Y ) ≥
n∑
i=1

I(Xi;Y |Xi−d). (227)
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Proof of Lemma 7:

d · I(Xn;Y )

=

d∑
j=1

I(Xn;Y ) (228)

≥
d∑
j=1

I(X
n−((n−j) mod d)
j ;Y ) (229)

(a)
=

d∑
j=1

∑
i∈[n],i≥j,i≡j mod d

I(Xi
i−d+1;Y |Xi−d) (230)

=

n∑
i=1

I(Xi
i−d+1;Y |Xi−d) (231)

≥
n∑
i=1

I(Xi;Y |Xi−d). (232)

Step (a) uses the chain rule for mutual information on each of
the d terms.
The converse steps of Section VII can now be modified by
defining U = (M,W J−d, J).

First, bound R by writing

nR ≥ H(M) (233)
...
≥ nI(XJ ;M,K,W J−1, J) (234)
≥ nI(XJ ;M,K,W J−d, J) (235)
= nI(X;U, V ). (236)

Next, bound R0 by writing

d · nR ≥ d ·H(M) (237)
...
≥ d · I(Wn;K|M) (238)
(a)

≥
n∑
j=1

I(Wj ;K|M,W j−d) (239)

= nI(WJ ;K|M,W J−d, J) (240)
= nI(W ;V |U), (241)

where (a) uses Lemma 7. Finally, Π can be bounded in the
manner of Section VII.

B. Lossless communication

We now specialize the inner and outer bound to the setting
in which lossless communication is required and Xi−d is
disclosed. In this regime, we are able to show explicitly how
delay affects the tradeoff between rate of secret key and payoff.

Theorem 7: Fix PX and π(x, z). Let Rd denote the closure
of achievable (R,R0,Π) for the case of lossless communica-
tion and causal disclosure Xi−d, d ≥ 1. Let Rd(Π) denote

the key-payoff boundary of Rd. First, we have

Rd ⊇
⋃

P
XdU

:

Xd∼
∏d

j=1 PX



(R,R0,Π) :

R ≥ H(X)

R0 ≥ 1
dH(Xd|U)

Π ≤ min
z(u)

E
[

1
d

d∑
j=1

π(Xj , z(U))
]


(242)

and

Rd ⊆
⋃
PXU :
X∼PX


(R,R0,Π) :

R ≥ H(X)

R0 ≥ 1
dH(X|U)

Π ≤ min
z(u)

Eπ(X, z(U))

 . (243)

Furthermore, for all Π,

Rd(Π) = Θ
(1

d

)
. (244)

Proof: To establish the inner bound on Rd, first recall the
characterization of R1 given in Corollary 3. Using the same
arguments as the proof of Theorem 5, we can transform the
problem with delay d > 1 into one involving delay d = 1
and invoke Corollary 3 on the new problem. Upon noting that
1
dH(Xd) = H(X) when Xd ∼

∏
PX , this technique gives

the achievable region in (242).
To establish the outer bound, let (R,R0,Π) be an achievable

triple. The bound R ≥ H(X) is due to the lossless source
coding theorem. To bound R0 and Π, let J be uniformly dis-
tributed on [n] and define U = (M,XJ−d, J) and X = XJ .
Then, we have

nR0 ≥ nH(K) (245)
≥ nI(Xn;K|M) (246)
= nH(Xn|M)− nH(Xn|K,M) (247)
(a)
= nH(Xn|M)− n · o(1) (248)
(b)

≥ n · 1
d

n∑
j=1

H(Xj |Xj−d,M)− n · o(1) (249)

= n · 1
dH(XJ |XJ−1,M, J)− n · o(1) (250)

= n · 1
dH(X|U)− n · o(1). (251)

Step (a) uses Fano’s inequality, and step (b) follows from
Lemma 7 (by setting Y = Xn and conditioning on M ). It
is straightforward to bound Π in the manner of Section VII.

From the outer bound in (243), we see that Rd(Π) ≥
1
dR1(Π). It remains to show that Rd(Π) ≤ c · 1

d for some
constant c; we do this via (242). First, let Xd ∼

∏d
j=1 PX .

Let K ∼ Unif(X ) be independent of Xd and define

U , (X1 ⊕K,X2 ⊕K, . . . ,Xd ⊕K), (252)

where ⊕ indicates addition modulo X . With this choice of U ,
we have

H(Xi|Xj , U) = 0, ∀i, j ∈ [d] (253)

and
Xj ⊥ U, ∀j ∈ [d]. (254)
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Therefore, we can write

1
dH(Xd|U) = 1

d

d∑
i=1

H(Xj |Xj−1, U) (255)

(a)
= 1

dH(X1|U) (256)
(b)
= 1

dH(X), (257)

where (a) and (b) follow from (253) and (254), respectively.
Moreover, we have

min
z(u)

E
[

1
d

d∑
j=1

π(Xj , z(U))
]

(258)

= 1
d

d∑
j=1

min
z(u)

Eπ(Xj , z(U)) (259)

(a)
= min

z
Eπ(X, z) (260)

, πmax, (261)

where (a) follows from Lemma 1 and (254).
By selecting U according to (252), we have shown that

the inner bound in (242) contains the point (R0,Π) =
( 1
dH(X), πmax); therefore, ( 1

dH(X), πmax) ∈ Rd. Since
πmax is the maximum possible payoff, this implies Rd(Π) ≤
1
dH(X), completing the proof of (244).

C. Example in which the bounds meet

In the preceding proof, we demonstrated that the point
(R0,Π) = ( 1

dH(X), πmax) is in the region (242) and is
therefore achievable. If we choose the source distribution to
be PX ∼ Bern(1/2), then from Theorem 2 (which gives us
R1(Π)) and the convexity of the rate-payoff region, it is clear
that Rd(Π) ≤ 1

dR1(Π). Conversely, the outer bound in (243)
directly gives Rd ≥ 1

dR1(Π).

X. CONCLUSION

This work has established a theory of secure source coding
which characterizes the optimal use of communication and
secret key to allow good reconstruction of the source by the
intended receiver (who has access to the key) and force a
poor reconstruction on any eavesdropper (without the secret
key). The central contribution, presented in Theorem 1, gives
a general information theoretic characterization of the achiev-
able performance. The expression in the theorem makes use of
two auxiliary variables which can be interpreted as information
that is kept secure and information that is released publicly. In
the case of lossless compression in Corollary 3, the optimal
communication system can explicitly follow these implied
steps, constructing two separate messages and focusing all of
the security resource (i.e., the key) on only one.

An important component of the main result is the causal
disclosure assumption depicted in Fig. 2, which was absent
from Yamamotos formulation of the problem in [11] and
[12]. The causal disclosure empowers the eavesdropper with
additional information and forces the communication system
to resort to a more robust design for secure encoding, which

results in an innovative encoding and decoding scheme that
sterilizes the causal disclosure.

The theorems in this work allow for an arbitrary but known
disclosure channel to the eavesdropper. However, one could
always take the most pessimistic approach and assume that
the source X and the reconstruction Y are both fully disclosed
(causally) to the eavesdropper. This leads to the strongest defi-
nition of secrecy in our model, and the optimal communication
system for this setting has a simple and natural interpretation
as producing synthetic noise, discussed in Section VI-F.

This work also identifies the rate-distortion tradeoffs without
the causal disclosure assumption. The case of no disclosure
(as in Yamamoto’s model) is a special case of the main result
and is addressed in Section III, along with a discussion of its
fragility. Non-causal disclosure is the topic of Section VIII,
which turns out to only be as empowering to the eavesdropper
as causal disclosure.

The causal disclosure framework boasts some important
unique properties aside from its operational interpretation as
real-time reconstruction by the eavesdropper. In Section V we
show that the traditional approach of measuring secrecy by
normalized equivocation (rather than distortion) is in fact a
special case of this framework by applying a particular log-
loss distortion function. This connection only exists because of
the causal disclosure assumption. Another property that arises
is the need for a stochastic decoder, which suggests a duality
with Wyner’s wiretap channel [7] where a stochastic encoder
is needed. Furthermore, this framework induces a rich tradeoff
between the rate of secret key used and the distortion the
system imposes upon an eavesdropper, while such a tradeoff
does not occur in the absence of causal disclosure. These
features suggest that causal disclosure is an appropriate base
assumption for understanding rate-distortion theory for secrecy
systems.

APPENDIX A
PROOF OF THEOREM 2

A. Supporting lemma

For each x ∈ X , define Fn(x) ⊆ ∆X by

Fn(x) ,
{
p ∈ ∆X : p = Unif(A) for some A ⊆ X ,

|A| = n, and p(x) = max
x′

p(x′)
}
, (262)

and define An(x) ⊆ ∆X by

An(x) ,
{
p ∈ ∆X : p(x) = max

x′
p(x′)

and p(x) ∈
[

1
n+1 ,

1
n

]}
. (263)

In words, Fn(x) is the set of probability mass functions on X
that are uniformly distributed on a subset of size n and whose
largest mass occurs at x. Fig. 6 illustrates the definitions of
Fn(x) and An(x) when X = {1, 2, 3}.

The key to the proof of Theorem 2 is the following technical
lemma.

Lemma 8: For a random variable X with distribution PX ,
let x and N be such that PX ∈ AN (x).
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A1(3)

A2(3)

Fig. 6: The probability simplex ∆X for X = {1, 2, 3}. The centroid
is the distribution ( 1

3
, 1
3
, 1
3
). Note that F1(1) = { }, F2(1) = { },

and F3(1) = { }.

1) There exists a random variable V , correlated with X ,
such that for all v ∈ V ,

PX|V=v ∈ FN (x) ∪ FN+1(x). (264)

In other words, PX can be written as a convex combina-
tion of distributions in FN (x) ∪ FN+1(x).

2) Let n ∈ [N ]. There exists a random variable V such that
for all v ∈ V ,

PX|V=v ∈
⋃
x∈X
Fn(x). (265)

In other words, for any n ∈ [N ], PX can be written as a
convex combination of distributions in ∪xFn(x).
Proof: Fix x ∈ X and n ∈ N, and define

F , Fn(x) ∪ Fn+1(x). (266)

First, one can verify that An(x) is a convex set. Furthermore,
it is well-known that every compact convex set is the convex
hull of its extreme points. Thus, to prove part 1, it is enough
to show that the set of extreme points of An(x) is equal to F .
Then any p ∈ An(x) can be written as a convex combination
of the elements of F .

The set of extreme points of a convex set C is defined by

extr(C) , {p ∈ C : if p = θq + (1− θ)r, q, r ∈ C,
θ ∈ (0, 1) then p = q = r}. (267)

We first show that F ⊆ extr(An(x)). Let p ∈ F , and let
q, r ∈ An(x), θ ∈ (0, 1) be such that q 6= p, r 6= p, and

p = θq + (1− θ)r (268)

If p ∈ Fn(x), then p = q = r is clear because q(x) ∈ [0, 1
n ]

and r(x) ∈ [0, 1
n ] for all x ∈ X . On the other hand, suppose

p ∈ Fn+1(x). Because q, r ∈ An(x) and p(x) = 1
n+1 , we

have q(x) = r(x) = 1
n+1 . Thus, q(x) ∈ [0, 1

n+1 ] and r(x) ∈
[0, 1

n+1 ] for all x ∈ X , and again p = q = r.
To show extr(An(x)) ⊆ F , we proceed by way of con-

tradiction and suppose that p ∈ extr(An(x)) and p /∈ F .
From p /∈ F , it holds that p(x′) ∈ (0, 1

n+1 ) ∪ ( 1
n+1 ,

1
n )

for some x′ ∈ X . There are now three separate cases to
consider depending on whether p(x) = 1

n+1 , p(x) ∈ ( 1
n+1 ,

1
n ),

or p(x) = 1
n . For ease of exposition, we only consider

p(x) = 1
n+1 ; the other two cases use a similar argument. Since

p(x′) ≤ p(x), we have p(x′) ∈ (0, 1
n+1 ). It follows that there

must exist x′′ 6= x′ such that p(x′′) ∈ (0, 1
n+1 ); otherwise, we

would have ∑
x∈X

p(x) = n
n+1 + p(x′) < 1 (269)

Now we can write p = 1
2q + 1

2r, where

q(x) =


p(x), x 6= x′, x 6= x′′

p(x) + ε, x = x′

p(x)− ε, x = x′′
(270)

r(x) =


p(x), x 6= x′, x 6= x′′

p(x)− ε, x = x′

p(x) + ε, x = x′′
(271)

and

ε = 1
2 min

{
p(x′), p(x′′), 1

n+1 − p(x
′), 1

n+1 − p(x
′′)
}
. (272)

Thus, p /∈ extr(An(x)), giving the contradiction. We have
shown F = extr(An(x)) and part 1 of the lemma.

To prove part 2 of the lemma, first define

Bn ,
⋃
x∈X
Fn(x). (273)

For any n, it holds that

Bn+1 ⊆ conv(Bn). (274)

This follows from writing p ∈ Bn+1 as

p =
∑

q∈Bn:supp(q)⊆supp(p)

1
n+1 q. (275)

One can establish part 2 by using part 1 and (274).

B. Proof of Theorem 2
With Lemma 8 in hand, we are equipped to prove Theo-

rem 2. Fix R0 and let U∗ be the maximizer of Π(R0). When
the payoff function is π(x, z) = 1{x 6= z}, we can rewrite
Π(R0) as

Π(R0) = min
z(u)

Eπ(X, z(U∗)) (276)

= min
z(u)

∑
u

PU∗(u)
∑
x

PX|U∗(x|u)1{x 6= z(u)}
(277)

=
∑
u

PU∗(u) min
z

∑
x

PX|U∗(x|u)1{x 6= z} (278)

=
∑
u

PU∗(u) min
z

(1− PX|U∗(z|u)) (279)

=
∑
u

PU∗(u)(1−max
x

PX|U∗(x|u)). (280)
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We now show that the set {PX|U∗=u}u in (38) can be
restricted the finite set Punif , where

Punif , {p ∈ ∆X : p = Unif(A) for some A ⊆ X}. (281)

By applying part 2 of Lemma 8 to each distribution in
{PX|U∗=u}u, we have that there exists a random variable V
such that

∀u, v, PX|U∗=u,V=v ∈ Punif (282)
∀u, v, v′, arg max

x
PX|U∗V (x|u, v)

= arg max
x

PX|U∗V (x|u, v′). (283)

We now write

Π(R0)
(a)
=
∑
u

PU∗(u)(1−max
x

PX|U∗(x|u)) (284)

=
∑
u

PU∗(u)(1−max
x

∑
v

PX|U∗V (x|u, v)PV |U∗(v|u))
(285)

(b)
=
∑
u,v

PU∗V (u, v)(1−max
x

PX|U∗V (x|u, v)) (286)

= min
z(u,v)

Eπ(X, z(U∗, V )), (287)

where (a) is due to (280) and (b) follows from (283). By
noting that R0 ≥ H(X|U∗) ≥ H(X|U∗, V ) and letting U =
(U∗, V ), we have

Π(R0) ≤ max
U : PX|U=u∈Punif

R0≥H(X|U)

min
z(u)

Eπ(X, z(U)). (288)

This shows that we can restrict attention to Punif without
hurting the payoff. Now, observe that p ∈ Punif satisfies(

H(p), 1−max
x

p(x)
)

=
(

log n, n−1
n

)
(289)

for some n ∈ N. Referring to (280) and noting that H(X|U) =∑
u PU (u)H(X|U = u), we see that Π(R0) cannot lie outside

of the convex hull of the pairs (log n, n−1
n ), n ∈ N. That is,

Π(R0) ≤ φ(R0). (290)

To see Π(R0) ≤ πmax, simply write

Π(R0) =
∑
u

PU∗(u)(1−max
x

PX|U∗(x|u)) (291)

≤ 1−max
x

∑
u

PU∗(u)PX|U∗(x|u) (292)

= πmax. (293)

It remains to show that min{φ(R0), πmax} can be achieved
through the proper choice of U . To that end, let x and N
be such that PX ∈ AN (x). By the convexity of R, we will
be done once we show that we can achieve not only the
points (log n, n−1

n ), n ∈ [N ], but also the intersection of φ
with πmax. To achieve the point (log n, n−1

n ), invoke part 2
of Lemma 8 produce U . Denote the corresponding rate-payoff
pair by (R′0,Π

′)n. Since the {PX|U=u}u all satisfy(
H(X|U = u), 1−max

x
PX|U=u(x|u)

)
=
(

log n, n−1
n

)
(294)

so must (R′0,Π
′)n as well. To achieve the intersection of φ

with πmax, first invoke part 1 of Lemma 8 to produce U .
Denote the corresponding rate-payoff pair by (R′′0 ,Π

′′). The
{PX|U=u}u correspond to either (log n, n−1

n ) or (log(n +
1), n

n+1 ). Thus, (R′′0 ,Π
′′) lies on f because it is a convex

combination of those two points. We also have that (R′′0 ,Π
′′)

satisfies Π′′ = πmax because

arg max
x

PX|U=u(x|u) = x, ∀u ∈ U . (295)

This completes the proof of Theorem 2.

APPENDIX B
PROOF OF LEMMA 5

Let R0 > I(W ;V |U). Define the typical set

T nε , {un : |Tun(u)− PU (u)| < εPU (u),∀u ∈ U}. (296)

where Tun denotes the type of un.
First, write∥∥QMWnXBYB − Q̂MWnXBYB

∥∥
=

∑
m:Un(m)∈T n

ε

QM (m)
∥∥QWnXBYB|M=m − Q̂WnXBYB|M=m

∥∥
+

∑
m:Un(m)/∈T n

ε

QM (m)
∥∥QWnXBYB|M=m − Q̂WnXBYB|M=m

∥∥.
(297)

The expected value of the second term in (297) can be bounded
easily. For sufficiently large n, we have

E
∑

m:Un(m)/∈T n
ε

QM (m)
∥∥∥PXnY k|M=m − Q̂XnY k|M=m

∥∥∥
≤ E

∑
m:Un(m)/∈T n

ε

QM (m) (298)

= P[Un(M) /∈ T nε ] (299)
= P[Un(1) /∈ T nε ] (300)
(a)

≤ ε, (301)

where (a) is due to the law of large numbers.
The expected value of the first term in (297) can first

be rewritten by moving the expectation with respect to the
subcodebook C(n)

V (m) inside the sum.

E
∑

m:Un(m)∈T n
ε

QM (m)
∥∥∥QWnXBYB|M=m − Q̂WnXBYB|M=m

∥∥∥
= EC(n)

U

∑
m:Un(m)∈T n

ε

QM (m)EC(n)
V (m)

∥∥∥QWnXBYB|M=m

− Q̂WnXBYB|M=m

∥∥∥. (302)

It remains to show that the inner expectation vanishes for each
m. 11

To do this, first observe that QWnXBYB|M=m is the out-
put of the memoryless (but nonstationary) channel Φ ,
QWnXBYB|K,M=m acting on a codebook of size 2nR0 that

11Due to the symmetry of codebook construction, the behavior of the inner
expectation is uniform for all m. Thus, the rate of convergence does not play
a role in claiming that (302) vanishes.
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is generated i.i.d. according to Ψ ,
∏
i PV |U=ui(m). Fur-

thermore, it can verified that Q̂WnXBYB|M=m is the output
distribution of the channel Φ when the input distribution is
Ψ. Thus, we can invoke the soft covering lemma (Lemma 3)
as long as R0 exceeds the sup-information rate of the process
that results from Φ acting on Ψ. To be explicit, that process
is given by

Γ(vn, wn, xB, yB)

,
n∏
i=1

PVW |U (wi, vi|ui(m))
∏
i∈B

PV XY |U (xi, yi, vi|ui(m)).

(303)

Since Γ is a memoryless process and the second moments of
{iΓ(Wi, Xi, Yi;Vi)} are uniformly bounded, the law of large
numbers gives

lim sup
n→∞

1

n
iΓ(Wn, XB, YB;V n) ≤ E

1

n
iΓ(Wn, XB, YB;V n).

(304)
Furthermore, we can upper bound the expected information
density by writing

E
1

n
iΓ(Wn, XB, YB;V n)

= E
1

n
iΓ(Wn;V n) + E

1

n
iΓ(XB, YB;V n|Wn) (305)

= E
1

n
iΓ(Wn;V n) +

1

n
IΓ(XB, YB;V n|Wn) (306)

≤ E
1

n
iΓ(Wn;V n) + α log |X ||Y| (307)

= E
1

n

n∑
i=1

iPWV |U=ui(m)
(W ;V |U = ui(m))

+ α log |X ||Y| (308)

=
1

n

n∑
i=1

I(W ;V |U = ui(m)) + α log |X ||Y| (309)

=
∑
u∈U

Tun(m)I(W ;V |U = u) + α log |X ||Y| (310)

(a)

≤
∑
u∈U

(1 + ε)PU (u)I(W ;V |U = u) + α log |X ||Y|
(311)

= (1 + ε)I(W ;V |U) + α log |X ||Y|. (312)

Step (a) follows from un(m) ∈ T nε .
The expression in (312) is strictly less than R0 for the proper

choice of ε > 0 and α > 0. Thus, when un(m) ∈ T nε ,

R0 > lim sup
n→∞

1

n
iΓ(Wn, XB, YB;V n). (313)

Invoking Lemma 3, we have

lim
n→∞

EC(n)
V (m)

∥∥∥QWnXBYB|M=m − Q̂WnXBYB|M=m

∥∥∥ = 0.

(314)
This completes the proof of Lemma 5.
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