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Abstract—Belief Propagation (BP) is a popular, distributed
heuristic for performing MAP computations in Graphical Mod-
els. BP can be interpreted, from a variational perspective, as
minimizing the Bethe Free Energy (BFE). BP can also be used to
solve a special class of Linear Programming (LP) problems. For
this class of problems, MAP inference can be stated as an integer
LP with an LP relaxation that coincides with minimization
of the BFE at “zero temperature”. We generalize these prior
results and establish a tight characterization of the LP problems
that can be formulated as an equivalent LP relaxation of MAP
inference. Moreover, we suggest an efficient, iterative annealing
BP algorithm for solving this broader class of LP problems. We
demonstrate the algorithm’s performance on a set of weighted
matching problems by using it as a cutting plane method to solve
a sequence of LPs tightened by adding “blossom” inequalities.

I. INTRODUCTION

Graphical Models (GMs) provide a useful representation for
reasoning in a range of scientific fields [1], [2], [3], [4]. Such
models use a graph structure to encode a joint probability
distribution, where vertices correspond to random variables
and edges (or lack thereof) specify conditional independencies.

An important inference task in many applications involving
GMs is finding the most likely assignment to the variables
in a GM - the Maximum-A-Posteriori (MAP) configuration.
Belief Propagation (BP) is a much celebrated algorithm for
approximately solving the MAP inference problem. BP is
an iterative, message passing algorithm that is exact on tree
structured GMs, but has empirically been shown to give good
results even on GMs with loops. Its main appeal is that it is
naturally suited for a distributed implementation.

It was recently shown that BP is exact for a certain class of
GMs with loops. This inspiring result was shown for GMs
in which well known optimization problems - namely, the
matching problem [5], [6] and min-cost network flow problem
[7] - were posed as MAP inference tasks. In the weighted
matching case, the original combinatorial optimization prob-
lem can can be expressed as a binary Integer Linear Program
(ILP). In certain cases (e.g. in bi-partite graphs), solving the
LP relaxation to the matching ILP yields an integral solution.

The MAP inference task can also be formulated as an
ILP in GMs with discrete variables. The LP relaxation to
the MAP ILP, which we refer to herein as BPLP, arises by
relaxing the integrality constraint on the discrete variables.
When the weighted matching problem is formulated as a MAP

inference task, BPLP is equivalent to the relaxed matching ILP
- explaining the success of BP in these GMs [5], [6], [8]! The
connection between LP relaxations and BPLP (also called LP-
decoding) has also been discussed in the coding literature [9],
[10], [11], [12], [13].

This line of work established a solid theoretical link between
message passing algorithms and optimization theory. It pro-
vides a practical certificate of exactness/integrality for MAP
inference when using BP and has also suggested strategies for
improving upon BP’s results, by adding constraints that reduce
the BPLP integrality gap [14], [15], [16].

Motivated by this prior work, our manuscript characterizes
the class of binary ILPs for which LP=BPLP, i.e. where the LP
relaxation of an ILP is equivalent to BPLP, the LP relaxation
of the MAP formulation of the problem. While standard BP is
an approximation algorithm that is not guaranteed to converge
to a correct answer for the LP, we provide an annealing
version of BP that converges to the correct answer as long as
LP=BPLP. Establishing this relationship allows us to use BP
(or its variants) to efficiently approximate MAP inference in
the special class of binary ILPs. We extend the work in [5], [6]
by empirically demonstrating that annealing BP can be used
to solve LP-relaxations to the weighted matching problems
requiring Edmonds’ blossom inequalities. In particular, we use
annealing BP to solve a sequence of successively tightened LP
relaxations. If coupled with the method for finding a tight LP
relaxation of ‘polynomial’ size in [17], annealing BP could be
used in a novel, distributed approximation algorithm for the
weighted matching problem.

The material in the manuscript is organized as follows.
Section II introduces GMs, BP and the class of LPs of interest.
Section III provides our main result. Sections IV and V
describe our annealed BP algorithm and demonstrate its utility
as an LP-solver.

II. PRELIMINARIES

A. Graphical Model

Let Z = [Zi] be a collection of n random variables, each of
which takes values in a finite alphabet Zi = zi ∈ Ω. Let the
joint probability distribution of Z ∈ Ωn factor into a product
of real-valued, positive functions {ψα : α ∈ F} each defined
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Fig. 1. Example of a Factor Graph corresponding to a Linear
Program. Factor nodes are depicted by squares and variable nodes
by circles. Each factor node corresponds to one of the 4 inequalities.

over a subset of the variables:

Pr[Z = z] ∝
∏
α∈F

ψα(zα),

where zα = [zi : i ∈ α] are the arguments of factor α. z
is called a valid assignment if Pr[Z = z] > 0. The MAP
assignment z∗ is defined as:

z∗ = arg max
z∈Ωn

Pr[Z = z]. (1)

A Graphical Model (GM) represents the above factorization
using a bi-partite graph, known as a Factor Graph [18], where
each factor α ∈ F is connected to the variables in its argument.
(See Figure 1 for an example).

B. Integer Linear Programming as MAP

Consider the following ILP (Integer Linear Program):

ILP : max c · x
s.t. Ax ≤ d, xi ∈ {0, 1} (2)

where i = 1, · · · , n, j = 1, · · · , k, c = [ci], d = [dj ] are
integer (column) vectors and A = [Aji] is an integer matrix.

The ILP in (2) can be formulated as a MAP inference task
by constructing a suitable binary GM. Let X = [Xi] ∈ {0, 1}n
be a set of binary random variables associated with each
variable in (2) and consider the probability distribution:

Pr[X = x] ∝
∏
i

ecixi
∏
j

ψj(xj ), (3)

ψj(xSj ) =

{
1, if (Ax)j ≤ dj
0, otherwise

, (4)

where every row of matrix A is associated with a factor
ψj defined over a subset of the variables xSj , where Sj =
{i : Aji 6= 0}. It is clear that Pr[X = x] ∝

∏
i e
cixi for

any ‘feasible’ assignment satisfying the linear constraints in
(2) and Pr[X = x] = 0 otherwise. An illustration of this
transformation is shown in Figure 1.

The LP relaxation of (2) replaces the integrality constraints
with inequalities:

LP : max c · x
s.t. Ax ≤ d, 0 ≤ xi ≤ 1. (5)

The LP relaxation of the ILP optimizes over a larger
polytope. We will use the notation A ≤ B to indicate that

every feasible point of polytope A is a feasible point of
polytope B and A ≥ B to indicate the converse. Note that
while ILP ≤ LP is true, ILP ≥ LP is not true in general.

C. Bethe Free Energy and BPLP

Belief Propagation (BP) is an algorithm for approximately
computing marginals that works by sending messages along
the edges of the factor graph. We describe the algorithm for
the GM in (3). Messages from factor node j to variable node
i are denoted mji and messages in the opposite direction are
denoted mij . The messages are updated as follows: for each
xi ∈ {0, 1},

mji(xi) ←
∑
xSj \xi

ψj(xSj )
1/T

∏
k∈Sj\i

mkj(xk)

mij(xi) ← exp
(ci
T
xi

) ∏
k∈Ei\j

mki(xi)

where we have introduced a parameter T > 0 (called temper-
ature) and Ei = {j : Aji 6= 0}.

Each factor or variable node in the factor graph is associated
with a belief bj(xSj ) and bi(xi), respectively. The beliefs are
calculated from the messages as:

bj(xSj ) ∝ ψj(xSj )
1/T

∏
k∈Sj

mkj(xk)

bi(xi) ∝ exp
(ci
T
xi

) ∏
k∈Ei

mki(xi),

where
∑
xi
bi(xi) = 1 and

∑
xSj

bj(xSj ) = 1.

BP for the GM in (3) can be interpreted as a variational
optimization procedure in which the messages and beliefs
minimize the Bethe Free Energy (BFE) functional [1]

F(b) = −
∑
i

cibi(xi = 1)− TS(b), (6)

−S(b) =
∑
j

∑
xSj

bj(xSj ) log(bj(xSj ))

+
∑
i

(1− qi)
∑
xi

bi(xi) log(bi(xi)), (7)

where qi =
∑
j:Aji6=0

1, subject to the following normalization
and local consistency constraints:∑

xSj :xi

bj
(
xSj
)

= bi(xi), ∀i ∈ Sj (8)

bj(xSj ) ≥ 0,
∑
xSj

bj(xSj ) = 1, (9)

bj(xSj ) = 0, if
∑
i∈Sj

Ajixi > dj , ∀j. (10)

Note that we use bi(xi = 1) to mean bi(1).

It is known [1] that if BP converges, it finds a minimum
(possibly local) of the BFE. Finding the global minimum of the



BFE is desirable (as an approximation). This task is reduced
at T = 0 to the following LP:

BPLP : min−
∑
i

cibi(xi = 1), s.t. (8), (9), (10). (11)

D. Illustrative Example: ILP and LP for Matching

We illustrate the ILP formulation and transformation to
a GM described in Section II-B on the weighted matching
problem. Given an (undirected) graph G = (V,E) with non-
negative edge weights {we : e ∈ E}, we seek to find the
matching of largest weight, where a matching is a subset of
edges such that each vertex is incident to at most one edge.
The problem is described by the following ILP:

m-ILP: max
∑
e∈E

wexe (12)

s.t.
∑
e∈δ(i)

xe ≤ 1, ∀i ∈ V ; xe ∈ {0, 1}.

where δ(i) = {e = (i, j) ∈ E} is the set of edges adjacent to
vertex i.

The straightforward LP relaxation of m-ILP is formed by
replacing xe ∈ {0, 1} by xe ∈ [0, 1]. However, this LP is not
tight in general - i.e. m-LP ≥ m-ILP. The LP can be made
tight, as famously shown by Edmonds [19], by adding a set
of blossom inequalities:

m-bl-LP : max
∑
e∈E wexe (13)

s.t.
∑
e∈δ(i) xe ≤ 1, ∀i ∈ V∑

e∈E(S) xe ≤
|S|−1

2 , ∀S ∈ S
xe ∈ [0, 1].

where E(S) = {(i, j) ∈ E : i, j ∈ S} is the set of edges with
both ends in S and S ⊂ 2V is the set of all odd-sized sets
of vertices in G. The blossom inequalities imply that an odd
cycle of length 2l + 1 can have l edges in a matching.

The weighted matching problem can be formulated as a
MAP inference problem by associating a random variable
with each edge X = [Xe] ∈ {0, 1}|E| and constructing the
following distribution:

Pr[X = x] ∝
∏
e∈E

ewexe
∏
i∈V

ψi(xi)
∏
S∈S

ψS(xS), (14)

ψi(xi) =

{
1, if

∑
e∈δ(i) xe ≤ 1

0, otherwise
(15)

ψS(xS) =

{
1, if

∑
e∈E(S) xe ≤

|S|−1
2

0, otherwise
. (16)

where ψi are functions defined over variables xi = {xe : e ∈
δ(i)} and ψS are functions defined over xS = {xe : e ∈
E(s)}. It is easy to see that (14) is equivalent to

Pr[X = x] ∝

{
exp (w(x)) if x induces a matching in G
0 otherwise

,

(17)
where w(x) :=

∑
e∈E wexe.

III. EQUIVALENCE BETWEEN LP AND BPLP

Now we state the main result of the paper.

Theorem III.1. For any (fixed) j, consider the polytope

Pj :
∑
i∈Sj

Ajixi ≤ dj , 0 ≤ xi ≤ 1 ∀i ∈ Sj . (18)

Then, the following properties hold:

• If Pj has only 0-1 integral vertices (i.e., extreme points)
for all j, then LP ≤ BPLP.

• LP ≥ BPLP (without any conditions).

Theorem III.1 implies the following corollary.

Corollary III.2. If Aji ∈ {−1, 0, 1} for all i, j, then LP =
BPLP.

Proof: Corollary III.2 is proved using Theorem III.1 and
the fact that each vertex of a polytope can be expressed as the
unique solution to a system of ‘face’ linear equalities (see e.g.
[20].

Note that the condition of Corollary III.2 holds for m-
bl-LP. One also observes (arguing by contradiction) that the
condition in Theorem III.1 for LP ≤ BPLP is necessary. For
example, suppose the number of rows of matrix A is one,
S1 = {1, . . . , n} and the polytope P1 has a fractional vertex
x = [xi]. Then there exists c = [ci] such that x is the unique
solution of LP (5). However, [bi(1)] = [xi] cannot satisfy (8),
(9) and (10) for any factor bj(·) because x is a fractional vertex
of P1. Hence, LP > BPLP.

A. Proof for LP ≤ BPLP

Here we prove that if x = [xi] satisfies the constraints
of LP (5), then there exists normalized beliefs {bj} such
that [bi(1)] = [xi], [bi(0)] = [1 − xi] and {bi, bj} satisfies
constraints of BPLP. From the condition of Theorem III.1, the
polytope Pj has only 0-1 integral vertices. Then, according to
the Carathéodory’s theorem [21], any point [xi] in the polytope
can be expressed as a convex combination of 0-1 vertices,
where coefficients in the convex combination provide values
of {bj}, and the variables bi(0) and bi(1) in the description
of the BPLP polytope, correspond to the variables 1− xi and
xi in the LP polytope, respectively. This completes the proof
of LP ≤ BPLP.

B. Proof for LP ≥ BPLP

Here we prove that if {bi, bj} satisfies the constraints of
BPLP, then [xi = bi(1)] satisfies the constraints of LP as well.
As mentioned above, bi(0) is redundant as bi(0) = 1− bi(1)
within the BPLP polytope. From this, one derives∑

i∈Sj

Ajixi =
∑
i∈Sj

Aji
∑

xSj :xi=1

bj
(
xSj
)

=
∑
i∈Sj

Aji
∑
xSj

xibj
(
xSj
)

=
∑
xSj

∑
i∈Sj

Ajixi

 bj
(
xSj
)



≤
∑
xSj

djbj
(
xSj
)

= dj
∑
xSj

bj
(
xSj
)

= dj ,

where (10) was used at the inequality stage. This completes
the proof of LP ≥ BPLP.

IV. ANNEALING BP FOR SOLVING LPS

In this section, we propose the following annealing version
of BP as an LP solver:

mt+1
ji (xi)← mt

ji(xi)
1−αt

∑
xSj \xi

ψj(xSj )
αt
Tt

∏
k∈Sj\i

mt
kj(xk)αt

mt+1
ij (xi)← mt

ij(xi)
1−αt exp

(
αtci
Tt

xi

) ∏
k∈Ei\j

mt
ki(xi)

αt

bt+1
j (xSj ) ∝ ψj(xSj )1/Tt

∏
k∈Sj

mt
kj(xk)

bt+1
i (xi) ∝ exp

(
ci
Tt
xi

) ∏
k∈Ei

mt
ki(xi),

where αt ∈ (0, 1], Tt > 0, mt
ij ,m

t
ji and btj , b

t
i are a

‘damping’ parameter, a temperature parameter, messages and
beliefs at the t-th iteration, respectively. We have the following
conjecture.

Conjecture IV.1. If LP = BPLP and m0
ij = m0

ji = 1 for
all i, j, then there exists a scheme with annealing schedule
T0 ≥ T1 ≥ . . . with limt→∞ Tt = 0 and damping schedule
α0, α1, . . . such that [bti(1)] converges to the solution of LP.

We now explain the rationale for the above conjecture. First,
recall the following facts:

• If BP converges, it finds a (possibly local) minimum of
the BFE function.

• The BFE minimization is equal to BPLP at T = 0.

The main difficulties in establishing the conjecture are (a)
BP may not converge, and (b) BP may converge to a local
(not global) minimum of the BFE functional. To overcome
both issues, one can use a convex modification of the BFE
function [22], and the known convergent variant to BP (pro-
viding sufficient damping), called CCCP, to find its minimum
[23]. We believe that an appropriate annealing scheme can
fix the convergence issue and that the natural initialization
m0
ij = m0

ji = 1 can prevent annealing BP from converging to
an undesirable local minimum of the BFE functional. Support
for natural message initialization comes from [5], [6], [7], [24],
where for certain GMs the natural initial messages are needed
to prevent BP from converging to an undesirable fixed point.
We empirically verify this conjecture for matching GMs in the
following section.
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Fig. 2. Convergence of edge beliefs found by annealing BP to a
fractional LP solution with total weight w(x) = 8.
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Fig. 3. Convergence of edge beliefs found by annealing BP to the
integral LP solution with total weight w(x) = 7.

V. EXPERIMENTS WITH MATCHINGS

In this section, we demonstrate that annealing BP with
sufficient damping can be used to reliably solve sequential LP
relaxations to the weighted matching problem introduced in
section II-D. We note that our approach here differs from prior
work on solving the weighted matching problem using BP
because we consider the sum-product form of BP. The work
in [5], [6] demonstrated that max-product BP will converge to
the MAP solution (and therefore find the maximum weight
matching) if the relaxation to the matching ILP without
blossoms is tight. However, when this LP is not tight, max-
product will fail to converge. The connection between BPLP
and LP made in the previous section, tells us that the MAP
solution will correspond to the solution to the LP involving
blossoms (i.e. m-bl-LP). We demonstrate that annealed sum-
product BP can be used to solve m-bl-LP.

Figures 2 and 3 plot the edge beliefs be(xe = 1) found by
sum-product BP on a particular weighted matching problem
instance with 5 vertices and 7 edges. The edge weights for
this instance are depicted in the inlay of each figure. In both
figures, T is annealed linearly from 1 to 0.01 over 100 steps
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Fig. 4. Left: Relaxation of m-ILP without blossoms that is fractional. Middle: Relaxation of m-ILP with a single blossom (shown in bold)
that is still fractional. Right: Relaxation of m-ILP with two blossoms (both in bold) that is tight (integral).

and BP is run for 20 iterations at each temperature with αt = 1
2

for all t. The results in Figure 2 are for a GM corresponding
to a non-tight relaxation of m-ILP. Notice as the temperature
is annealed that the beliefs converge to a fractional solution
with total weight w(x) = 8. In this plot, we see that vertices
{1, 3, 4} constitute an odd set of vertices violating a blossom
inequality. Adding an inequality for this blossom makes m-
bl-LP tight. The GM used in Figure 3 includes an additional
factor enforcing the blossom inequality. The beliefs in the tight
GM converge to an integral (and exact) solution with total
weight w(x) = 7.

Figure 4 demonstrates how annealing sum-product BP can
be used to solve a much larger weighted matching problem,
with 20 vertices and 80 edges. We use the same annealing
and damping scheme as in the previous experiments. The left-
most figure plots edge beliefs as a function of temperature
for the LP relaxation without blossoms. This relaxation is not
tight, so several edge beliefs converge to b(xe = 1) = 1

2 . In
the center plot we have added a single blossom constraint that
also yields a fractional solution. However, the blossom tightens
the LP relaxation, reducing the total weight from w(x) =
87.5 to w(x) = 86.5. The right-most plot depicts a tight LP
relaxation (i.e. m-bl-LP = m-ILP). Notice that as temperature
is annealed, all edge beliefs converge to either 0 or 1. In the
exact matching w(x) = 86.
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