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Abstract—Consider a waveform channel where the transmitted
signal is corrupted by Wiener phase noise and additive white
Gaussian noise (AWGN). A discrete-time channel model that
takes into account the effect of filtering on the phase noise
is developed. The model is based on a multi-sample receiver
which, at high Signal-to-Noise Ratio (SNR), achieves a ratethat
grows logarithmically with the SNR if the number of samples
per symbol grows with the square-root of the SNR. Moreover,
the pre-log factor is at least 1/2 in this case.

I. I NTRODUCTION

Phase noise is an impairment that often arises in coherent
communication systems. Different models are adopted for the
phase noise process depending on the application. In [1],
Katz and Shamai studied a discrete-time model of a phase
noise channel (partially coherent channel) in which the phase
noise is independent and identically distributed (i.i.d.)with
a Tikhonov distribution. This model is reasonable for the
residual phase error of a phase-tracking scheme, such as a
Phase-Locked Loop (PLL). In [2], the authors investigate
white (Gaussian) phase noise for which they observed a “spec-
tral loss” phenomenon. The white phase noise approximates
the nonlinear effect of cross-phase modulation (XPM) in a
Wavelength-Division Multiplexing (WDM) optical communi-
cation system. Lapidoth studied in [3] adiscrete-timephase
noise channel

Yk = Xke
jΘk +Nk (1)

at high SNR, where{Yk} is the output,{Xk} is the input,
{Θk} is the phase noise process and{Nk} is the additive
noise. He considered both memoryless phase noise and phase
noise with memory. He showed that the capacity grows
logarithmicallywith the SNR with a pre-log factor 1/2, where
the pre-log is due to amplitude modulation only. The phase
modulation contributes a bounded number of bits only.

In this paper, we study a communication system in which
the transmittedwaveformis corrupted by Wiener phase noise
and AWGN. The model is

r(t) = x(t) exp(jθ(t)) + n(t), for t ∈ R (2)

wherex(t) andr(t) are the transmitted and received signals,
respectively, whilen(t) and θ(t) are the additive and phase
noise, respectively. A detailed description of the model is

given in Sec. II. One application for such a channel model
is optical communication under linear propagation, in which
the laser phase noise is a continuous-time Wiener process
(see [4] and references therein). Since the sampling of a
continuous-time Wiener process yields a discrete-time Wiener
process (Gaussian random walk), it is tempting to use the
model (1) with{Θ} as a discrete-time Wiener process, but this
ignores the effect offiltering prior to sampling. It was pointed
out in [4] that “even coherent systems relying on amplitude
modulation (phase noise is obviously a problem in systems
employing phase modulation) will suffer some degradation due
to the presence of phase noise”. This is because the filtering
converts phase fluctuations to amplitude variations. It is worth
mentioning that filtering is necessary before sampling to limit
the variance of the noise samples.

The model (1) thus does not fit the channel (2) and it is not
obvious whether a pre-log 1/2 is achievable. The model that
takes the effect of (matched) filtering into account is

Yk = XkHk +Nk (3)

where{Hk} is a fading process. The model (3) falls in the
class of non-coherent fading channels, i.e., the transmitter
and receiver have knowledge of the distribution of the fading
process{Hk}, but have no knowledge of its realization. For
such channels, Lapidoth and Moser showed in [5] that, at high
SNR, the capacity growsdouble-logarithmicallywith the SNR,
when the process{Hk} is stationary, ergodic, andregular.

Rather than using a matched filter and sampling its output at
the symbol rate, we use a multi-sample receiver, i.e., a filter
whose output is sampled many times per symbol. We show
that this receiver achieves a rate that growslogarithmically
with the SNR if the number of samples per symbol grows
with the square-root of the SNR. Furthermore, we show that
a pre-log of 1/2 is achievable through amplitude modulation.
In this paper, we study only rectangular pulses but we believe
that the results hold qualitatively for other pulses.

The paper is organized as follows. The continuous-time
model is described in Sec. II and the discretization is described
in Sec. III. We derive a lower bound on the capacity in Sec.
IV and discuss our result in Sec. V. Finally, we conclude the
paper with Sec. VI.
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II. CONTINUOUS-TIME MODEL

We use the following notation:j =
√
−1 , ∗ denotes the

complex conjugate,δD is the Dirac delta function,⌈·⌉ is the
ceiling operator,ℜ[·] is the real part of a complex number,
log(·) is the natural logarithm and we useXk

1 to denote the
k-tuple (X1, X2, . . . , Xk). Suppose the transmit-waveform is
x(t) and the receiver observes

r(t) = x(t) exp(jθ(t)) + n(t) (4)

where n(t) is a realization of a white circularly-symmetric
complex Gaussian processN(t) with

E [N(t)] = 0

E [N(t1)N
∗(t2)] = σ2

N δD(t2 − t1). (5)

The phaseθ(t) is a realization of a Wiener processΘ(t):

Θ(t) = Θ(0) +

∫ t

0

W (τ)dτ (6)

whereΘ(0) is uniform on[−π, π) andW (t) is a real Gaussian
process with

E [W (t)] = 0 (7)

E [W (t1)W (t2)] = 2πβ δD(t2 − t1). (8)

The processesN(t) andΘ(t) are independent of each other
and independent of the input as well.N0 = 2σ2

N is the
single-sided power spectral density of the additive noise.
The parameterβ is called the full-width at half-maximum
(FWHM), because the power spectral density ofejΘ(t) has
a Lorentzian shape, for whichβ is the full-width at half the
maximum. The transmitted waveforms must satisfy the power
constraint

E

[

1

T

∫ T

0

|X(t)|2dt
]

≤ P (9)

whereT is the transmission interval.

III. D ISCRETE-TIME MODEL

Let (x1, x2, . . . , xn) be the codeword sent by the trans-
mitter. Suppose the transmitter uses a unit-energy rectangular
pulse, i.e., the waveform sent by the transmitter is

x(t) =

n
∑

m=1

xm g(t− (m− 1)Tsymbol) (10)

whereTsymbol is the symbol interval and

g(t) ≡
{ √

1/Tsymbol, 0 ≤ t < Tsymbol,
0, otherwise.

(11)

Let L be the number of samples per symbol (L ≥ 1) and
define the sample interval∆ as

∆ =
Tsymbol

L
. (12)

The received waveformr(t) is filtered using an integrator
over a sample interval to give the output signal

y(t) =

∫ t

t−∆

r(τ) dτ. (13)

wherey(t) is a realization ofY (t). The outputY (t) is sampled
every∆ seconds which yields the discrete-time model:

Yk = X⌈k/L⌉∆ ejΘk Fk +Nk (14)

for k = 1, . . . , nL, whereYk ≡ Y (k∆), Θk ≡ Θ((k − 1)∆),

Fk ≡ 1

∆

∫ k∆

(k−1)∆

ej(Θ(τ)−Θk) dτ (15)

and

Nk ≡
∫ k∆

(k−1)∆

N(τ) dτ. (16)

The process{Nk} is an i.i.d. circularly-symmetric complex
Gaussian process with mean0 and E[|Nk|2] = σ2

N∆ while
the process{Θk} is the discrete-time Wiener process:

Θk = Θk−1 +Wk (17)

whereΘ1 is uniform on [−π, π) and {Wk} is an i.i.d. real
Gaussian process with mean0 and E[|Wk|2] = 2πβ∆. The
process{Fk} is an i.i.d. process. Moreover,{Fk} and{Wk}
are independent of{Nk} but not independent of each other.

Equations (9) – (11) imply the power constraint

1

n

n
∑

m=1

E[|Xm|2] ≤ P = PTsymbol. (18)

IV. L OWER BOUND

For thekth input symbolXk we haveL outputs, so it is
convenient to group theL samples per symbol in one vector
and defineYk ≡ (Y(k−1)L+1, Y(k−1)L+2, . . . , Y(k−1)L+L). We
further defineXA ≡ |X | andXΦ ≡ ∠X . We decompose the
mutual information using the chain rule into two parts:

I(Xn
1 ;Y

n
1 ) = I(Xn

A,1;Y
n
1 ) + I(Xn

Φ,1;Y
n
1 |Xn

A,1). (19)

The first term represents the contribution of the amplitude
modulation while the second term represents the contribution
of the phase modulation. We focus on the amplitude contri-
bution and useI(Xn

Φ,1;Y
n
1 |Xn

A,1) ≥ 0 to obtain the lower
bound

I(Xn
1 ;Y

n
1 ) ≥ I(Xn

A,1;Y
n
1 ). (20)

Suppose thatXn
A,1 is i.i.d. Hence, we have

I(Xn
A,1;Y

n
1 )

(a)
=

n
∑

k=1

I(XA,k;Yn
1 |Xk−1

A,1 )

(b)
=

n
∑

k=1

H(XA,k)−H(XA,k|Yn
1 Xk−1

A,1 )

(c)

≥
n
∑

k=1

I(XA,k;Yk)

(d)

≥
n
∑

k=1

I(XA,k;Vk) (21)



where

Vk =

L
∑

ℓ=1

|Y(k−1)L+ℓ|2. (22)

Step (a) follows from the chain rule of mutual information,
(b) follows from the independence ofXA,1, XA,2, . . . , XA,n,
(c) holds because conditioning does not increase entropy, and
(d) follows from the data processing inequality. SinceXn

A,1 is
identically distributed, thenV n

1 is also identically distributed
and we have, fork ≥ 2,

I(XA,k;Vk) = I(XA,1;V1). (23)

In the rest of this section, we consider only one symbol
(k = 1) and drop the time index. Moreover, we assume that
Tsymbol = 1 for simplicity. By combining (22) and (14), we
have

V =
L
∑

ℓ=1

(

X2
A∆

2|Fℓ|2 + 2XA∆ℜ[ejΦX ejΘℓFℓN
∗
ℓ ] + |Nℓ|2

)

= X2
A∆G+ 2XA∆Z1 + Z0 (24)

whereG, Z1 andZ0 are defined as

G ≡ 1

L

L
∑

ℓ=1

|Fℓ|2 (25)

Z1 ≡
L
∑

ℓ=1

ℜ[ejΦX ejΘℓFℓN
∗
ℓ ] (26)

Z0 ≡
L
∑

ℓ=1

|Nℓ|2. (27)

The second-order statistics ofZ1 andZ0 are

E[Z1] = 0 Var[Z1] = E[G]σ2
N/2

E[Z0] = σ2
N Var [Z0] = σ4

N∆
E [Z1(Z0 − E[Z0])] = 0.

(28)

By using the Auxiliary-Channel Lower Bound Theorem in
[6, Sec. VI], we have

I(XA;V ) ≥ E[− logQV (V )] + E[logQV |XA
(V |XA)] (29)

whereQV |XA
(v|xA) is an arbitrary auxiliary channel and

QV (v) =

∫

PXA
(xA)QV |XA

(v|xA)dxA (30)

where PXA
(·) is the true input distribution, i.e.,QV (·) is

the output distribution obtained by connecting the true input
source to the auxiliary channel.E[·] is the expectation accord-
ing to thetrue distribution. We choose the auxiliary channel

QV |XA
(v|xA) =

1
√

4πx2
A∆

2σ2
N

exp

(

− (v − x2
A∆− σ2

N )2

4x2
A∆

2σ2
N

)

.

(31)

It follows that

E[− log(QV |XA
(V |XA))] = E

[

(V −X2
A∆− σ2

N )2

4X2
A∆

2σ2
N

]

+ log∆ +
1

2
log(4πσ2

N ) +
1

2
E[log(X2

A)]. (32)

By using (24), we have
(

V −X2
A∆− σ2

N

)2

=
(

X2
A∆(G− 1) + 2XA∆Z1 + (Z0 − σ2

N )
)2

= X4
A∆

2(G− 1)2 + 4X2
A∆

2Z2
1 + (Z0 − σ2

N )2

+ 4X3
A∆

2(G− 1)Z1 + 2X2
A∆(G − 1)(Z0 − σ2

N )

+ 4XA∆Z1(Z0 − σ2
N ) (33)

and hence, using the second-order statistics (28), we have

E

[

(V −X2
A∆− σ2

N )2

4X2
A∆

2σ2
N

]

=
1

4σ2
N

P E
[

(G− 1)2
]

+
1

2
E[G] +

σ2
N

4∆
E

[

1

X2
A

]

(34)

where we also used

E [(G− 1)Z1] = 0. (35)

Substituting (34) into (32) and usingE[G] ≤ 1 yield

E[− log(QV |XA
(V |XA))]

≤ log∆ +
1

2
log(4πσ2

N ) +
1

2
E[log(X2

A)]

+
P

4σ2
N

E
[

(G− 1)2
]

+
1

2
+

σ2
N

4∆
E

[

1

X2
A

]

. (36)

It is convenient to defineXP ≡ X2
A. We choose the input

distribution

PXP
(xP ) =

{

1
λ exp

(

−xP−Pmin

λ

)

, xP ≥ Pmin

0, otherwise
(37)

where0 < Pmin < P andλ = P − Pmin, so that

E[XP ] = E[X2
A] = P. (38)

It follows from (30) and (37) that

QV (v) =

∫ ∞

Pmin

1

λ
exp

(

−xP − Pmin

λ

)

QV |XP
(v|xP ) dxP

≤ exp(Pmin/λ) FV (v) (39)

where

QV |XP
(v|xP ) = QV |XA

(v|√xP ) (40)

and

FV (v) ≡
∫ ∞

0

1

λ
exp

(

−xP

λ

)

QV |XP
(v|xP )dxP . (41)

The inequality(39) follows from the non-negativity of the
integrand. By combining (31), (40), (41) and making the
change of variablesx = xP∆, we have

FV (v)

=

∫ ∞

0

e−x/(λ∆)

λ∆

1
√

4πx∆σ2
N

exp

(

− (v − x− σ2
N )2

4x∆σ2
N

)

dx

=
1

√

λ∆(λ∆+ 4∆σ2
N )

×

exp

(

2

4∆σ2
N

[

v − σ2
N − |v − σ2

N |
√

1 +
4∆σ2

N

λ∆

])

(42)



where we used equation (140) in Appendix A of [7]:
∫ ∞

0

1

a
exp

(

−x

a

) 1√
πbx

exp

(

− (u− x)2

bx

)

dx

=
1

√

a(a+ b)
exp

(

2

b

[

u− |u|
√

1 +
b

a

])

. (43)

Therefore, we have

E[− log(FV (V ))]

=
1

2
log(∆2(λ2 + 4λσ2

N ))

− 1

2∆σ2
N

[

E[V − σ2
N ]− E[|V − σ2

N |]
√

1 +
4σ2

N

λ

]

(a)

≥ log(∆λ) +
1

2σ2
N∆

E[V − σ2
N ]

[
√

1 +
4σ2

N

λ
− 1

]

(b)

≥ log(∆λ) (44)

where(a) holds because the logarithmic function is monotonic
andE[| · |] ≥ E[·], and(b) holds because

E[V − σ2
N ]

= E[X2
A]∆E[G] + 2E[XA]∆E[Z1] + E[Z0]− σ2

N

= P∆E[G] ≥ 0. (45)

The monotonicity of the logarithmic function and (39) yield

E[− log(QV (V ))] ≥ E

[

− log
(

ePmin/λFV (V )
)]

≥ log∆ + logλ− Pmin

λ
(46)

where the last inequality follows from (44). It follows from
(29), (36) and (46) that

I(XA;V ) ≥ logλ− Pmin

λ
− 1

2
log(4πσ2

N )− 1

2
E[log(X2

A)]

− P

4σ2
N

E
[

(G− 1)2
]

− 1

2
− σ2

N

4∆
E

[

1

X2
A

]

. (47)

If Pmin = P/2, thenλ = P − Pmin = P/2 and we have

E

[

1

XP

]

≤ 1

Pmin
=

2

P
(48)

and

E [log (XP )] =

∫ ∞

λ

1

λ
e−(x−λ)/λ log(x)dx

(a)
= log λ+

∫ ∞

1

e−(u−1) log(u)du

(b)

≤ logλ+ 1 (49)

where(a) follows by the change of variablesu = x/λ, and
(b) holds becauselog(u) ≤ u − 1 for all u > 0. Substituting
into (47), we obtain

I(XA;V )− 1

2
logSNR ≥ −2− 1

2
log(8π)− 1

2SNR∆

− 1

4
SNR E

[

(G− 1)2
]

(50)

whereSNR = P/σ2
N . SupposeL grows withSNR such that

L =
⌈

β
√

SNR
⌉

. (51)

Since∆ = 1/L, then we have

lim
SNR→∞

SNR∆ = ∞ and lim
SNR→∞

SNR∆2 =
1

β2
(52)

which implies

lim
SNR→∞

I(XA;V )− 1

2
logSNR ≥ −2− 1

2
log(8π)− π2

36
(53)

because (see Appendix)

lim
∆→0

E[(G− 1)2]

∆2
=

(πβ)2

9
. (54)

By combining (20), (21), (23) and (53), we have

lim
SNR→∞

1

n
I(Xn

1 ;Y
n
1 )−

1

2
logSNR ≥ −2− 1

2
log(8π)− π2

36
.

(55)

This shows that the information rate grows logarithmicallyat
high SNR with a pre-log factor of 1/2.

V. D ISCUSSION

There is a wide literature on the design of receivers for the
channel model (1) with a discrete-time Wiener phase noise,
e.g., see [8], [9], [10] and references therein. One may wantto
make use of these designs, which raises the following question:
“when is it justified to approximate the non-coherent fading
model (3) with the discrete-time phase noise model (1)?” Our
result suggests that this approximation may be justified when
the phase variation is small over one symbol interval (i.e.,
when the phase noise linewidth is small compared to the
symbol rate)and also the SNR is low to moderate. It must be
noted that the SNR at which the high-SNR asymptotics start
to manifest themselves depends on the application.

We remark that the authors of [11] treated on-off keying
transmission in the presence of Wiener phase noise by using a
double-filtering receiver, which is composed of an intermediate
frequency (IF) filter, followed by an envelope detector (square-
law device) and then a post-detection filter. They showed that
by optimizing the IF receiver bandwidth the double-filtering
receiver outperforms the single-filtering (matched filter)re-
ceiver. Furthermore, they showed via computer simulation that
the optimum IF bandwidth increases with the SNR. This is
similar to our result in the sense that we require the number
of samples per symbol to increase with the SNR in order to
achieve a rate that grows logarithmically with the SNR.

Finally, we remark that we have not computed the contribu-
tion of phase modulation to the information rate. We believe
that using the multi-sample receiver it is possible to achieve an
overall pre-log that is larger than 1/2. This matter is currently
under investigation.



VI. CONCLUSION

We studied a communication system impaired by Wiener
phase noise and AWGN. A discrete-time channel model based
on filtering and oversampling is considered. The model ac-
counts for the filtering effects on the phase noise. It is shown
that at high SNR the multi-sample receiver achieves rates that
grow logarithmically with at least a 1/2 pre-log factor if the
number of samples per symbol grows with the square-root of
the SNR.
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APPENDIX

We discuss the limit in (54). We expressE[(G− 1)
2
] as

E[(G− 1)
2
] = Var(G) + (E[G] − 1)

2

=
1

L
Var(|F1|2) +

(

E[|F1|2]− 1
)2

(56)

where the last equality follows from the definition ofG in
(25) and because{Fk} is i.i.d.

Next, we outline the steps for computingE[|F1|4] and
E[|F1|2]. Let M be a positive integer,c = (c1, . . . , cM )T be
a constant vector,t = (t1, . . . , tM )T be a non-negative real
vector andΘ(t) = (Θ(t1)−Θ(0), . . . ,Θ(tM )−Θ(0))T where
Θ(t) is defined in (6). We have

E

[

1

∆M

∫

· · ·
∫ ∆

0

exp(jcTΘ(t))dt

]

(a)
=

1

∆M

∫

· · ·
∫ ∆

0

E
[

exp(jcTΘ(t))
]

dt

(b)
=

1

∆M

∫

· · ·
∫ ∆

0

exp

(

−1

2
c
TΣ(t)c

)

dt

(c)
=

∫

· · ·
∫ 1

0

exp

(

−∆

2
c
TΣ(t)c

)

du (57)

wheredt = dtM . . . dt1 andΣ(t) is the covariance matrix of
Θ(t) whose entries are given by

Σij(t) = 2πβmin{ti, tj}, for i, j = 1, . . . ,M. (58)

Step(a) follows from the linearity of expectation,(b) follows
by using the characteristic function of a Gaussian random
vector, and(c) follows from the transformation of variables
t = u ∆ . We define

a = e−πβ∆ (59)

and useM = 2 andc = (−1, 1)T in (57) to compute

E[|F1|2] = 2
a− 1− log a

(log a)2
. (60)

We also have, usingM = 4 andc = (−1, 1,−1, 1)T in (57),

E[|F1|4] (61)

=
783− 784a+ a4 + 540 loga+ 240a loga+ 144(log a)2

18(log a)4
.

Computing the integrals is tedious but straightforward. Finally,
it follows from (56), and (59) – (61) that

lim
∆→0

E[(G− 1)
2
]

∆2
= (πβ)2 lim

a→1

E[(G− 1)
2
]

(log a)2
=

(πβ)2

9
.

(62)
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