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Abstract—Numerical upper and lower bounds to the informa-
tion rate transferred through the additive white Gaussian noise
channel affected by discrete-time multiplicative autoregressive
moving-average (ARMA) phase noise are proposed in the paper.
The state space of the ARMA model being multidimensional,
the problem cannot be approached by the conventional trellis-
based methods that assume a first-order model for phase noise
and quantization of the phase space, because the number of
state of the trellis would be enormous. The proposed lower and
upper bounds are based on particle filtering and Kalman filtering.
Simulation results show that the upper and lower bounds are
so close to each other that we can claim of having numerically
computed the actual information rate of the multiplicative ARMA
phase noise channel, at least in the cases studied in the paper.
Moreover, the lower bound, which is virtually capacity-achieving,
is obtained by demodulation of the incoming signal based on a
Kalman filter aided by past data. Thus we can claim of having
found the virtually optimal demodulator for the multiplica tive
phase noise channel, at least for the cases considered in thepaper.

I. I NTRODUCTION

Multiplicative phase noise is a major source of impairment
in radio and optical channels. The presence of phase noise in
radio channels is well known and studied from a long time,
being phase noise introduced by the local oscillators used
in up conversion and down conversion, while multiplicative
phase noise is recently becoming a hot topic in the context of
coherent optical transmission. Recent studies about the phase
noise that arises in optical channels and about its effects in
coherent optics can be found in [1], [2]. Several methods
have been proposed in the literature to combat the detrimental
effects of phase noise. Among these methods we cite iterative
demodulation and decoding techniques of [3]–[5] and the
insertion of pilot symbols [6], and staged demodulation and
decoding [7].

The capacity of the additive white Gaussian noise (AWGN)
channel affected by multiplicative phase noise with white
power spectral density is studied in [1], [8], [9], while Wiener’s
phase noise is considered in [10]–[13]. Analytical bounds
on capacity of phase noise channels at high signal-to-noise
ratio are given in [14]. Despite the quantity and quality of
the literature available, we find room for new results by
considering the channel impaired by autoregressive moving-
average (ARMA) multiplicative phase noise, a phase noise
model that is much more realistic than Wiener’s phase noise
and/or white phase noise in many cases of practical interest.

The ARMA model makes it possible to shape the power
spectral density of phase noise by acting on the order and
on the parameters of the model. Working out the capacity of
a channel affected by a general multiplicative ARMA phase
noise process is a challenging problem, because

• the state space is not finite and it is multidimensional,
therefore it cannot be approached by techniques like those
used for white and Wiener phase noise,

• the observation is a nonlinear function of the state.

The only paper studying the capacity of the channel affected
by ARMA phase noise we are aware of is [10], where the
method of particle filtering (see [15] for a tutorial on particle
filtering) is adopted to work out an approximation to the
constrained channel capacity, the constrained capacity being
the information rate transferred through the channel with a
fixed source. The new results presented in this paper are tight
numerical upper and lower bounds to the constrained capacity
of the AWGN ARMA phase noise channel.

II. F IRST-ORDER MARKOV CHANNELS WITH

CONTINUOUS STATE

Let uk
i indicate the column vector(uk, uk−1, . . . , ui)

T ,
i ≤ k, where uk

i is empty for i > k, the superscriptT

denotes transposition, anduk
i ∈ Uk

i . Also, let U indicate a
possibly non-stationary process,U = (U0, U1, · · · ), whose
generic realization is the sequence(u0, u1, · · · ). WhenUk

i is
a continuous set,p(uk

i ) is used to indicate the multivariate
probability density function, while whenUk

i is a discrete
setp(uk

i ) indicates the multivariate mass probability and|Ui|
denotes the number of elements inUi.

Consider a first-order Markov channel. The Markovian state
processS is characterized by the joint probability

p(sn0 ) = p(s0)

n
∏

k=1

p(sk|sk−1). (1)

A channel without feedback that is memoryless given the state
is characterized by the state transition probabilityp(sk|sk−1)
and by the conditional distribution

p(yn1 |x
n
1 , s

n
1 ) =

n
∏

k=1

p(yk|xk, sk), (2)

whereY is the channel output process andX is the channel
input process, that we assume to be discrete. Equation (2) says
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that the channel output process is memoryless given the source
and the state. Drawing from the parlance of carrier recov-
ery, the channel transition probabilityp(yk|xk, sk), which is
conditioned on channel’s input, is hereafter calleddata-aided
channel transition probability. We assume that the source is
memoryless and independent of the state, that is

p(xn
1 |s

n
1 ) =

n
∏

k=1

p(xk). (3)

Putting together (2) and (3) one finds that the joint source and
channel model is memoryless given the state:

p(yn1 , x
n
1 |s

n
1 ) =

n
∏

k=1

p(yk, xk|sk). (4)

Using (4) one finds that channel’s output is memoryless given
the state:

p(yn1 |s
n
1 ) =

∑

xn

1
∈Xn

1

p(yn1 , x
n
1 |s

n
1 ) =

∑

xn

1
∈Xn

1

n
∏

k=1

p(yk, xk|sk)

=
n
∏

k=1

∑

xk∈Xk

p(yk, xk|sk) =
n
∏

k=1

p(yk|sk). (5)

Drawing again from the parlance of carrier recovery, the
channel transition probabilityp(yk|sk), which is not aware
of channel’s input, is hereafter calledblind channel transition
probability. From eq. (1) and (5), after straightforward pas-
sages one gets

p(sk|sk−1, y
k−1
1 ) = p(sk|sk−1), k = 1, 2, · · · , n. (6)

Also, by (4) and (5) one finds that the source is memoryless
given the state and channel’s output:

p(xn
1 |y

n
1 , s

n
1 ) =

n
∏

k=1

p(xk|yk, sk). (7)

III. B AYESIAN TRACKING

Any measurement processY that is memoryless given the
state can be cast in the general framework of state-space
approach for modelling dynamic systems, which is defined
by the state transition equation

sk = fk(sk−1, vk−1), k = 1, 2, · · · , n, (8)

and by the measurement equation

yk = hk(sk, nk), k = 1, 2, · · · , n, (9)

wherefk(·) andhk(·) are possibly non-linear and time-varying
known functions of their arguments,vk is the process noise
vector, andnk is the measurement noise vector, which is
assumed to be independent ofvk. The state-space approach
fits the Markov channel, taking the output channel process
Y as the measurement process both in the blind and in the
data aided case. In the blind case, the measurement equation
is a time-invariant function of the state, and the measurement
noise is the joint effect of channel noise and input process.
The blind case is described by the memoryless probability

p(yk|sk) appearing in the product (5). In the data-aided case
the measurement noise is only the channel noise and the input
process is embedded in the known non-linear and time-varying
hk(·). In this case the measurement probability isp(yk|xk, sk).

A powerful tool in the analysis of dynamical system is
the so-calledBayesian tracking. Let the Markovian state be
continuous. One can track the hidden state by a two-step
recursion that, fork = 1, 2, · · · , n, reads

p(sk|y
k−1
1 ) =

∫

S

p(sk|sk−1)p(sk−1|y
k−1
1 )dsk−1, (10)

p(sk|y
k
1 ) =

p(sk|y
k−1
1 )p(yk|sk)

p(yk|y
k−1
1 )

, (11)

wherep(sk|y
k−1
1 ) is thepredictive distribution,p(sk|yk1 ) is the

posterior distribution, and the denominator of (11) is a nor-
malization factor such that the left-hand side is a probability.
The normalization factor can be computed by the Chapman-
Kolmogoroff equation

p(yk|y
k−1
1 ) =

∫

Sk

p(sk|y
k−1
1 )p(yk|sk)dsk. (12)

The state transition probabilityp(sk|sk−1) appears in (10)
in place of p(sk|sk−1, y

k−1
1 ) thanks to (6). Thanks to (5),

p(yk|sk) can be used in place ofp(yk|sk, y
k−1
1 ) in (11).

When the dynamic system is a linear system with Gaussian
noises, Bayesian tracking is performed by the Kalman filter.
When the model is not tractable, one can resort to particle
filtering techniques to work out an approximation to the
wanted distribution.

The probabilities worked out by Bayesian tracking can be
used to evaluate entropy rates by Monte Carlo integration as,
for instance, in [10], [13]. When the result of Bayesian track-
ing is an approximationq(uk

1) to the wanted probabilityp(uk
1),

then, by the Kullback-Leibler inequality, the approximation
can be used to get an upper bound on the wanted entropy rate

h(U) = − lim
k→∞

1

k
Ep

{

log2 q(u
k
1)
}

≥ h(U), (13)

where operatorEp denotes expectation with respect to proba-
bility p(·).

IV. T HE ARMA PHASE NOISE CHANNEL

The k-th output of the channel is

yk = xke
jφk + wk, k = 1, 2, · · · , n (14)

where j is the imaginary unit,Y is the complex channel
output process,X is the channel complex input modulation
process made by i.i.d. random variables with zero mean and
unit variance,W is the complex AWGN process with zero
mean and variance SNR−1, andΦ is the phase noise process
which is assumed to be independent ofX andW . Specifically,
processΦ is modelled as the 1-causal accumulation modulo
2π of frequency noise, that is

φk = [λk−1 + φk−1] mod 2π, (15)



where the frequency noise processΛ is given by thez-
transform

∞
∑

k=−∞

λkz
−k = H(z) ·

(

∞
∑

k=−∞

vkz
−k

)

whereV is a white Gaussian noise process with zero mean
and varianceγ2, and

H(z) =

∏N

k=1(1− βkz
−1)

∏N

k=1(1− αkz−1)
=

1 +
∑N

k=1 bkz
−k

1−
∑N

k=1 akz
−k

, (16)

where|αk| < 1, |βk| ≤ 1, N ≥ 0, and it is understood that
H(z) = 1 for N = 0, leading to the special case of random
phase walk, whereλk = vk. H(z) is the transfer function of
a filter made by a shift register with feedback tapsaN1 and
forward tapsbN1 . Let ωk−1

k−N be the content of the shift register
at thek-th channel use, that is

∞
∑

k=−∞

ωkz
−k =

∑∞

k=−∞
vkz

−k

1−
∑N

k=1 akz
−k

.

The state at timek is the(N + 1) column vector

sk = (φk, (ω
k−1
k−N )T )T . (17)

Let us introduce the state transition matrix

F =









1 (aN1 + bN1 )T

0 (aN1 )T

0N−1 IN−1 0N−1









,

whereIN is the identity matrix of sizeN × N and 0N is a
column vector ofN zeros. The state transition equation is

sk+1 = Fsk + (vk, vk, 0
T
N−1)

T + (2mπ, 0TN)T ,

wherem is such thatφk+1 lies in the interval[0, 2π), thus
making the state transition equation non-linear.

Given sk, for N = 0 the state transition tosk+1 is
ambiguous of2nπ, while for N ≥ 1, due to the presence of
ωk in sk+1, the state transition is not ambiguous. Although not
necessary, in the following we will assumeN ≥ 1, referring
the reader to [13] for the state transition probability with
N = 0. ForN ≥ 1 the state transition probability is a(N+1)-
dimensional Gaussian distribution. Note that, givensk, N of
the (N + 1) entries ofsk+1 are known, the only free random
variable beingvk, hence the covariance matrix of the state
transition probability has unit rank. Specifically,

p(sk+1|sk) = gN+1(Fsk + (2mπ, 0TN)T ,Σv; sk+1), (18)

wheregN (µ,Σ;x) is a N -dimensional Gaussian distribution
over the space spanned byx with mean vectorµ and covari-
ance matrixΣ,

Σv =









γ2 γ2 0TN−1

γ2 γ2 0TN−1

0N−1 0N−1 0(N−1)×(N−1)









, (19)

where0N×M is an all-zeroN ×M matrix, and

2mπ = φk+1 − φk − ωk −

N
∑

i=1

biωk−i. (20)

The measurement at timek is the yk given by (14). The
data-aided channel transition probability is

p(yk|xk, sk) = gc(xke
jφk ,SNR−1; yk), (21)

where gc(µ, σ
2; t) indicates a circular symmetric Gaussian

probability density function over the complex plane spanned
by t with meanµ and two-dimensional varianceσ2. The joint
source and channel probability is

p(yk, xk|sk) = p(xk)gc(xke
jφk ,SNR−1; yk). (22)

From the above probability one can compute the blind channel
transition probability by (5).

V. UPPERBOUND

Let h(U) denote the entropy rate of processU . Extract
h(Y |X) from

h(Y |X)− h(Y |X,S) = h(S|X)− h(S|X,Y ),

to write

I(X ;Y ) = h(Y )− h(Y |X,S)− h(S) + h(S|X,Y ), (23)

where, by independence betweenX and the state processS,
h(S) has been substituted in place ofh(S|X). The upper
bound that we propose is

h(Y )− h(Y |X,S)− h(S) + h(S|X,Y ) ≥ I(X ;Y ), (24)

whereA indicates an upper bound onA. The two relative
entropy ratesh(Y |X,S) and h(S) are those of the white
Gaussian processesW andV , respectively. The upper bound
h(Y ) ≥ h(Y ) can be obtained by approximating the condi-
tional probabilityp(yk|y

k−1
1 ) to the normalization factor of

blind Bayesian tracking performed by a particle filter as in
[10].

The new contribution of the present paper is the upper
boundh(S|X,Y ), which is worked out as follows. Invoking
the chain rule, the Markovian property (6), and the Shannon-
McMillan-Breiman theorem, one can evaluate the entropy rate
by computer simulation as

h(S|X,Y ) = lim
n→∞

1

n

n
∑

k=1

− log2 p(sk|x
k
1 , y

k
1 , sk+1), (25)

where (xn
1 , y

n
1 , s

n+1
1 ) is a realization of the joint process

(X,Y, S). Unfortunately, the actualp(sk|xk
1 , y

k
1 , sk+1) of (25)

is not tractable. We propose to approximate it as

q(sk|x
k
1 , y

k
1 , sk+1) =

p(sk+1|sk)q(sk|x
k
1 , y

k
1 )

∫

S
p(sk+1|sk)q(sk|xk

1 , y
k
1 )dsk

, (26)

with

q(sk|x
k
1 , y

k
1 ) =

∞
∑

l=−∞

gN+1(µk,Σk;φk + 2lπ, ωk−1
k−N ), (27)



thus, thanks to (13), getting the upper bound

h(S|X,Y ) = lim
n→∞

1

n

n
∑

k=1

− log2 q(sk|x
k
1 , y

k
1 , sk+1).

The denominator of (26) can be treated by moving the sum
(27) outside the integral, and observing that the integral is
the convolution between two Gaussian distributions, leading
to closed form computation as in the predictive step of the
Kalman filter [16, Sec. 3.3]:
∫

S

p(sk+1|sk)q(sk|x
k
1 , y

k
1 ) dsk =

∞
∑

l=−∞

gN+1(Fµk, FΣkF
T+Σv;φk+1 + 2lπ, ωk

k−N+1). (28)

The parametersµk andΣk appearing in equations (27) and
(28) can be worked out by a linearized Kalman filter [16,
Sec. 13.2]. As it will be shown by simulation results, a tighter
bound can be obtained by taking forµk and Σk a sample
estimate where the sample is the set of posterior particles of
a particle filter. Note that the integral in the denominator of
(26) is a normalization factor such that the left side of (26)is
a probability. As a consequence, it cannot be evaluated by the
predictive particles of the particle filter, because the predictive
particles would provide only an approximation to the wanted
integral, and using an approximation to the denominator is not
sufficient to guarantee that the ratio in (26) is a probability.
Also, it is worth pointing out that, while in [10] the phase
in the state model is unwrapped, here it is the evaluation
of h(S|X,Y ), that is not made in [10], that forces us to
define the state by the wrapped phase (15). As a matter of
fact, phase ambiguities of2nπ are inherently present in the
measurement, therefore cycle slips of the Bayesian tracking
algorithm would lead to catastrophic errors of2nπ between the
actual unwrapped phase and the distribution of the unwrapped
phase recovered by the tracking algorithm.

VI. L OWER BOUND

Assume a discrete input alphabet. The lower bound that
we propose isH(X) − H(X |Y ) ≤ I(X,Y ), where, by
the same arguments leading to (25) and by the Kullback-
Leibler inequality (13), one evaluates the upper bound on the
conditional entropy rate as

H(X |Y ) = lim
n→∞

1

n

n
∑

k=1

− log2 q(xk|x
k−1
1 , yn1 ). (29)

The upper bound can be based on demodulation, that is on the
probability

p(xk|x
k−1
1 , yn1 ) =

∫

S

p(sk, xk|x
k−1
1 , yn1 )dsk, (30)

where the probability inside the integral can be written as

p(sk, xk|x
k−1
1 , yn1 ) = p(sk|x

k−1
1 , yn1 )p(xk|sk, x

k−1
1 , yn1 )

= p(sk|x
k−1
1 , yn1 )p(xk|sk, yk), (31)

where the second equality comes from (7). In what follows
the first factor in (31) is approximated top(sk|x

k−1
1 , yk1 ). We

point out that the proposed approximation is likely to be tight,
because the conditionynk+1 gives only a weak contribution of
non-data-aided type to the wanted probability. The proposed
approximation leads to

q(xk|x
k−1
1 , yn1 ) =

∫

S

q(sk|x
k−1
1 , yk1 )p(xk|sk, yk)dsk

=

∫

S

q(sk|x
k−1
1 , yk−1

1 )p(yk|sk)

p(yk|x
k−1
1 , yk−1

1 )

p(yk, xk|sk)

p(yk|sk)
dsk

∝

∫

S

q(sk|x
k−1
1 , yk−1

1 )p(yk, xk|sk)dsk, (32)

which, after normalization, can be used in (29) to get the
desired bound. The first factor inside the integral (32) is the
predictive probability of Bayesian tracking, while the second
factor is a memoryless term that comes from the channel
model (22).

VII. S IMULATION RESULTS

The frequency noise used in the simulations is obtained by
filtering white Gaussian noise through the transfer function

H(z) =
(1− β1z

−1)(1− β2z
−2)

1− α1z−1
. (33)

Special cases of (33) are obtained withβ1 = α1 andβ2 = 1,
leading to white phase noise, andβ1 = 0, β2 = 1, α1 = 1,
that leads to Wiener’s phase noise. Model (33) is proposed
in [17] as an approximation to the phase noise spectrum of
real-world microwave local oscillators and it has been used
with α1 = 0.9999, β1 = 0.9937, β2 = 0.7286 to get
the simulation results that are hereafter presented. The lower
bound is computed by adopting as a Bayesian tracking method
the linearized predictive Kalman filter, as in [18] and [19],
while for the upper bound we use both the Kalman filter
and the particle filter. Figure 1 reports the results for 4-ary
quadrature-amplitude modulation (QAM) while Fig. 2 reports
the results for 16-QAM, in both cases with two values ofγ.
The two Figures show that the particle filter greatly improves
the upper bound over the Kalman filter, especially for largeγ.
In contrast, the lower bound based on the predictive Kalman
filter is so tight that there is no need of using a particle
filter for demodulation, also for large values ofγ. We have
observed that the Kalman filter often produces a covariance
Σk with a determinant that is much lower than the one that
is obtained by the particle filter. What happens is that the
folded Gaussian distribution (27) is sampled in the state visited
by the simulation, and, when this state is far from the mean
vector, the Gaussian is sampled on the tails. In this event,
the poor estimation of the covariance leads to dramatically
large errors in the evaluation of the differential entropy rate
h(S|X,Y ). Conversely, the entropy rateH(X |Y ) that appears
in the lower bound is based on the integral of the mentioned
Gaussian distribution, hence it is less sensitive to errorsin the
estimated covariance.



−5 0 5 10 15 20

0.5

1

1.5

2

2.5

SNR [dB]

I(
X

;Y
) 

[b
it/

2D
]

 

 

Kalman upper bound

Particle upper bound

Lower bound

γ=0.5

γ=0.125
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VIII. C ONCLUSION

We have presented upper and lower bounds to the con-
strained information rate transferred through the multiplicative
phase noise channel with ARMA phase noise. From the results
it appears that the upper and lower bounds are so close to
each other that we can claim of having computed the actual
information rate, at least for the second-order ARMA phase
noise studied in the simulation. An important experimental
result presented in the paper is that demodulation based on
a predictive linearized Kalman filter aided by past data is
virtually capacity achieving, at least in the examples studied in
the paper. This is not surprising in view of the result obtained
in [20] for the intersymbol interference (ISI) channel, that says
that predictive filtering aided by past data (in the case of the ISI
channel, the predictive decision-feedback equalizer) virtually
leads to channel capacity. A practical mean to replace past data
with the decisions coming from a capacity achieving code is
the interleaving scheme originally proposed by Eyuboglu in
[21] for the ISI channel. Extension of this principle to other
channels can be found, for instance, in [22]. Computational
complexity of demodulation via Kalman filter can be lowered
by using a time invariant filter as described in [23].
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