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Abstract—Numerical upper and lower bounds to the informa- The ARMA model makes it possible to shape the power
tion rate transferred through the additive white Gaussian roise spectral density of phase noise by acting on the order and
channel affected by discrete-time multiplicative autoregessive on the parameters of the model. Working out the capacity of

moving-average (ARMA) phase noise are proposed in the paper LS
The state space of the ARMA model being multidimensional, a channel affected by a general multiplicative ARMA phase

the problem cannot be approached by the conventional treli- NOise process is a challenging problem, because
based methods that assume a first-order model for phase noise , the state space is not finite and it is multidimensional,

and quantization of the phase space, because the number of  arafore it cannot be approached by techniques like those
state of the trellis would be enormous. The proposed lower ah . - .
used for white and Wiener phase noise,

upper bounds are based on patrticle filtering and Kalman filteiing. e - )
Simulation results show that the upper and lower bounds are ¢ the observation is a nonlinear function of the state.

so close to each other that we can claim of having numerically The On'y paper Studying the Capacity of the channel affected
computed the actual information rate of the multiplicative ARMA by ARMA phase noise we are aware of [S][10], where the

phase noise channel, at least in the cases studied in the pape - e . .
Moreover, the lower bound, which is virtually capacity-acheving, method of particle filtering (se€ [15] for a tutorial on pelei

is obtained by demodulation of the incoming signal based on a filtering) is adopted to work out an approximation to the
Kalman filter aided by past data. Thus we can claim of having constrained channel capacity, the constrained capacihgbe

found the virtually optimal demodulator for the multiplica tive the information rate transferred through the channel with a
phase noise channel, at least for the cases considered in {haper. fixed source. The new results presented in this paper are tigh
numerical upper and lower bounds to the constrained capacit

|. INTRODUCTION of the AWGN ARMA phase noise channel.
Multiplicative phase noise is a major source of impairment Il. FIRST-ORDER MARKOV CHANNELS WITH
in radio and optical channels. The presence of phase noise in CONTINUOUS STATE

radio channels is well known and studied from a long time, | ot ,* indicate the column vectotuy, w1 ui)T
7 ? —ly*y ’

being phase noise introduced by the local oscillators usgdg k, where u¥ is empty fori > k, the superscripf’
in up conversion and down conversion, while multiplicativgenotes transposition, and® € U/*. Also, let U indicate a
phase noise is recently becoming a hot topic in the context&gssimy non-stationary procest, = (U, Us,- ), whose
coherent optical transmission. Recent studies about teephgeneric realization is the sequen@e, u;, - - - ). Wheni(* is
noise that arises in optical channels and about its effectsy continuous setp(u”) is used to indicate the multivariate
coherent optics can be found il [1].1[2]. Several methoggobability density function, while whed/* is a discrete
have been proposed in the literature to combat the detriihergetp(ul_c) indicates the multivariate mass probability ajp|

K2

effects of phase noise. Among these methods we cite iteratjyanotes the number of elementsin

demodulation and decoding techniques [BI-[5] and the consider a first-order Markov channel. The Markovian state

insertion of pilot symbols[[6], and staged demodulation antocesss is characterized by the joint probability
decoding|[7].

The capacity of the additive white Gaussian noise (AWGN) p(s2) = p(so) ﬁ p(sk|Sk_1) 1)
channel affected by multiplicative phase noise with white 0 0 Pt 7

ower spectral density is studied 9], while Wix's ) . .
Ehase rﬁ)oise is congidered m?di[]gﬁl[% [A]nalytical bouncéchannel without feedback that is memoryless given the stat

on capacity of phase noise channels at high signal-to-no|§e‘3h‘5‘r"leterIZEd _b_y the s_tat_e trgnsmon probabyityy|sx—1)
ratio are given in[[14]. Despite the quantity and quality o?nd by the conditional distribution

the literature available, we find room for new results by "

considering the channel impaired by autoregressive meving prlat, st) = ] p(ukla i), (2)
average (ARMA) multiplicative phase noise, a phase noise k=1

model that is much more realistic than Wiener’'s phase noigdereY is the channel output process aidis the channel
and/or white phase noise in many cases of practical intereaput process, that we assume to be discrete. Equafiony&) sa
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that the channel output process is memoryless given thesous(y,|s;) appearing in the produdtl(5). In the data-aided case
and the state. Drawing from the parlance of carrier recothe measurement noise is only the channel noise and the input
ery, the channel transition probabilip(y|zk, si), which is process is embedded in the known non-linear and time-varyin
conditioned on channel’s input, is hereafter caltiatia-aided K (). In this case the measurement probability(igx |, sk)-
channel transition probability. We assume that the sousce i A powerful tool in the analysis of dynamical system is

memoryless and independent of the state, that is the so-calledBayesian tracking. Let the Markovian state be
n continuous. One can track the hidden state by a two-step
p(z|s]) = Hp(mk)_ (3) recursion that, fok =1,2,--- ,n, reads
k=1

k—1y\ __ k—1
Putting togethe[2) andi(3) one finds that the joint sourak an  P(5k[¥1 ) = [Sp(sklsk_l)p(sk_1|y1 Jdse—1,  (10)
channel model is memoryless given the state:

n p(selyr ™ )p(yelsk)
p(ut, =t lst) = [ ] plurs wrlsk). 4) plyrlyi ™)
=1

) ) ) i _ wherep(s;|yr~!) is thepredictive distribution,p(sy|y¥) is the
Using [4) one finds that channel’s output is memoryless giV&fgerior distribution, and the denominator df {11) is a nor-
the state: malization factor such that the left-hand side is a prolitgbil

- N onin L The normalization factor can be computed by the Chapman-
plyrlst) = Z Pyt aflsy) = Z Hp(yk’xk|5k) Kolmogoroff equation

aTEXT aPEX] k=1
n n k—1 k—1
= s Sk )dsg. 12
k=1xz,€X}) k=1

) ) ) The state transition probability(s|sx—1) appears in[{10)

Drawing again from the parlance of carrier recovery, thg place of p(sy|sk_1,4""") thanks to [(B). Thanks td¥5),

channel transition probability(y|sx), which is not aware 5, 15y can be used in place ofyy|sy, y* ") in (@I).

of channel’s input, is hereafter callétind channel transition = \ynen the dynamic system is a linear system with Gaussian

probability. From eq.[{1) and5), after straightforwardspa ngises, Bayesian tracking is performed by the Kalman filter.

sages one gets When the model is not tractable, one can resort to particle

6 filtering techniques to work out an approximation to the
wanted distribution.

Also, by (4) and[(b) one finds that the source is memorylessThe probabilities worked out by Bayesian tracking can be

P(sklsi—1, 98 7") = p(sklsi-1), k=1,2,--,n.

given the state and channel's output: used to evaluate entropy rates by Monte Carlo integratipn as
n for instance, in[[10],[[13]. When the result of Bayesian krac
p(x |yt st) = H p(xk|yk, Sk)- (7) ingis an approximation(u}) to the wanted probability(u}),
k=1 then, by the Kullback-Leibler inequality, the approxinaati
I1l. BAYESIAN TRACKING can be used to get an upper bound on the wanted entropy rate
Any measurement proceds that is memoryless given the - . .1 k
state can be cast in the general framework of state-space M) = _klggo EEP {10g2 q(ul)} = MU, (13)

approach for modelling dynamic systems, which is defingghere operatof, denotes expectation with respect to proba-

by the state transition equation bility p(-).
sk = Jrlsk-1,v), B=1,2,000m, (8) IV. THE ARMA PHASE NOISE CHANNEL
and by the measurement equation The k-th output of the channel is
yk:hk(skank)v k=1,2,---,n, (9) yk:xkej¢k+wk, k=1,2,---,n (14)

where f(-) a_ndhk(-) are.possibly non-lihear and time-varyingNherej is the imaginary unitY is the complex channel
known funcﬂon; of their arguments;, |s.the process np'se,output processX is the channel complex input modulation
vector, andn, IS the measurement noise vector, which 'ﬁrocess made by i.i.d. random variables with zero mean and
gssumed to be mdependent@‘. The state-space approach, variance,W is the complex AWGN process with zero
fits the Markov channel, taking the output channel proce§g.an and variance SNR, and® is the phase noise process
Y as the measurement process both in the blind and in Wﬁich is assumed to be independentbaindiV. Specifically,

data aided case. In the blind case, the measurement equ%’ﬂﬂ:ess@ is modelled as the 1-causal accumulation modulo
is a time-invariant function of the state, and the measureme, ¢ frequency noise, that is

noise is the joint effect of channel noise and input process.
The blind case is described by the memoryless probability Ok = [Me—1 + Pk—1] mod 21, (15)



where the frequency noise procedasis given by thez- whereOyxys is an all-zeroN x M matrix, and

transform N
i 0 2Mmm = Qp41 — Pk — Wi — biwr—_;. (20)
Z ez 8= H(z)- < Z vkzk> ;

k=—o0 k=—o0

The measurement at time is the y;, given by [14). The
where V' is a white Gaussian noise process with zero meaata-aided channel transition probability is
and variancey?, and

N N p(yrler, s6) = ge(wre’ ™, SNR 5 yp), (21)
_ -1 —k
H(z) = vazl(l Bra"") = 1 +Z§:1bkz . (16) where ge(p,0%;t) indicates a circular symmetric Gaussian
[ (I —arzmt)  1-300 e probability density function over the complex plane spahne

where|ay| < 1, || <1, N >0, and it is understood that by ¢ with meany and two-dirp.entc,ional varianeg€. The joint
H(z) =1 for N = 0, leading to the special case of randonfource and channel probability is

phase walk, where\, = v;. H(z) is the transfer function of Py, Trlsk) = p(r)ge(zee?®  SNR L), (22)

a filter made by a shift register with feedback tagé and N )

forward tapsh. Let W;z:zlv be the content of the shift registerFrom the above probability one can compute the blind channel

at thek-th channel use, that is transition probability by[(E).
= D DA U V. UPPERBOUND
D, wni = 1SN apk Let 2(U) denote the entropy rate of proce&s Extract
S et h(Y|X) from

The state at timé: is the (V + 1) column vector h(Y|X) — h(Y|X, S) = h(S|X) — h(S|X,Y),

sk = (¢, (wp_ )T A7) to write
Let us introduce the state transition matrix I(X;Y)=h(Y) - h(Y|X,S) — h(S) +h(S|X,Y), (23)

1 (af +b1")" where, by independence betwe&nhand the state process
F= 0 (aM)T , h(S) has been substituted in place bfS|X). The upper
bound that we propose is

MY) = h(Y]X,S) — h(S) + h(S|X,Y) > I(X;Y), (24)

On—1 In—1 On-—1

where Iy is the identity matrix of sizeV' x N andOy is a .
column vector of N zeros. The state transition equation is where A indicates an upper bound oA. The two relative
- i entropy ratesh(Y|X,S) and h(S) are those of the white
sw1 = s+ (vk, v, Oy —1)" + (2mm, Oy)”, Gaussian processég andV/, respectively. The upper bound
wherem is such thatp,, lies in the intervall0, 2r), thus 7(Y) = h(Y) can be obtained by approximating the condi-
making the state transition equation non-linear. tional probability p(yx|y; ") to the normalization factor of
Given si,, for N = 0 the state transition tos,.1 is blind Bayesian tracking performed by a particle filter as in
ambiguous of2n, while for N > 1, due to the presence of - o )
wy, i s31, the state transition is not ambiguous. Although not 1h€_néw contribution of the present paper is the upper
necessary, in the following we will assumé > 1, referring boundh_(S|X, Y’), which is _worked out as follows. Invoking
the reader to[[I3] for the state transition probability witfi?® chain rule, the Markovian properyl (6), and the Shannon-
N = 0. ForN > 1 the state transition probability is(&V + 1)- McMillan-Breiman theorem, one can evaluate the entropy rat
dimensional Gaussian distribution. Note that, givgn N of ~DPY computer simulation as

the (IV + 1) entries ofs;41 are known, the only free random o1& .
variable beingu;, hence the covariance matrix of the state H(S|X,Y) = lim — > —log, p(sklzt, yt, sk1),  (25)
transition probability has unit rank. Specifically, k=1

where (27, y},s"™") is a realization of the joint process

_ T\T ¥ .
Psitalse) = gy (Fs + (2mm, Oy)", Zos o), (18) (X,Y,S). Unfortunately, the actual(si|z¥, y¥, s 1) of (25)
where gy (11, %; x) is a N-dimensional Gaussian distributionis not tractable. We propose to approximate it as

over the space spanned bywith mean vectoy, and covari- . B P(sis1|sk)a(selzh, y¥)
ance matrixs, q(skl@T, v, sk1) = o (26)
Js p(sklsk)a(selal, y)dsy,
v 0x—1 with
¥z, = o 72 0k, , (19)

a(selof,yf) = > gnar (e S d + 2m,wi "), (27)

On-1 Onv—1 Ov—1)x(v—1) l=—c0



thus, thanks to[{13), getting the upper bound where the second equality comes fromh (7). In what follows

Lo the first factor in[[(31) is approximated fasy|z" ', y¥). We
h(S|X,Y) = lim — Z —1ogy q(sk|a¥, y¥, spi1). point out that the pr_oposed_approximation is Iikely_to t_)dmt,ig
noee N — because the conditiogy, ; gives only a weak contribution of

The denominator of {26) can be treated by moving the surr]ﬁm_dat‘fj‘_'fj"ded type to the wanted probability. The progose

. . . ; roximation |
(Z2) outside the integral, and observing that the integsal pproximatio eads to
the convolution between two Gaussian distributions, legdi 3 3
i i icti (welay™  ut) = | a(selay™ yr)p(zxl sk, yr)ds
to closed form computation as in the predictive step of the ¢\TxIT1 Y1 Sq k1T Y1 )P\ Tk |Sks Yk )OSk

Kalman fiter [16. Sec. 3.3 - [ttty pan )
S

plyelzy ™"y ) p(yklsk)

x / (sl =ty ply, 2i sk ) dsk, (32)
S

Sk
/p(8k+1|8k)fJ(Sk|$]f,yf) dsi =
S

D gn (P, FERF ™+ Sy; dregr + 20w, wf_niq). (28)
l=—o00 which, after normalization, can be used [0](29) to get the
The parameters,, and ¥, appearing in equation§ (27) andlesired bound. The first factor inside the integiall (32) & th
@3) can be worked out by a linearized Kalman filter][16?redictive probability of Bayesian tracking, while the sed
Sec. 13.2]. As it will be shown by simulation results, a tight factor is a memoryless term that comes from the channel
bound can be obtained by taking fas, and £, a sample model [22).
estimate where the sample is the set of posterior partidles o
a particle filter. Note that the integral in the denominatbr o VII. SIMULATION RESULTS
(28) is a normalization factor such that the left side[of (26)

a probability. As a consequence, it cannot be evaluated doy [rt]
predictive particles of the particle filter, because thedjtive it
particles would provide only an approximation to the wanted (1= Brz 1) (1 — Baz~2)
integral, and using an approximation to the denominatoots n H(z) =
sufficient to guarantee that the ratio [0}(26) is a probapilit

Also, it is worth pointing out that, while in([10] the phaseSpecial cases o[ (83) are obtained with= «; and 3, =1,

in the state model is unwrapped, here it is the evaluatibgading to white phase noise, apd = 0, f2 = 1, a1 = 1,

of h(S|X,Y), that is not made in[[10], that forces us tdhat leads to Wiener’'s phase noise. Modell (33) is proposed
define the state by the wrapped phdsd (15). As a matteriof[I7] as an approximation to the phase noise spectrum of
fact, phase ambiguities dfn7 are inherently present in thereal-world microwave local oscillators and it has been used
measurement, therefore cycle slips of the Bayesian trgckiwith a; = 0.9999, 51 = 0.9937, B2 = 0.7286 to get
algorithm would lead to catastrophic error2efr between the the simulation results that are hereafter presented. TWwerlo
actual unwrapped phase and the distribution of the unwihpg®und is computed by adopting as a Bayesian tracking method
phase recovered by the tracking algorithm. the linearized predictive Kalman filter, as in_[18] arnd1[19],
while for the upper bound we use both the Kalman filter
and the particle filter. Figurgl 1 reports the results for ¥-ar

Assume a discrete input alphabet. The lower bound th@@adrature-amplitude modulation (QAM) while Fig. 2 regort
we propose isH(X) — H(X|Y) < I(X,Y), where, by the results for 16-QAM, in both cases with two valuesyof
the same arguments leading {0](25) and by the Kullbackhe two Figures show that the particle filter greatly impove
Leibler inequality [IB), one evaluates the upper bound en tthe upper bound over the Kalman filter, especially for layge
conditional entropy rate as In contrast, the lower bound based on the predictive Kalman

" filter is so tight that there is no need of using a particle
F(X|Y) — lim l Z ~log, q($k|zllcfl,y{z>' (29) filter for demodulation, also for large values of We have

n—oo n £~ observed that the Kalman filter often produces a covariance

The frequency noise used in the simulations is obtained by
ering white Gaussian noise through the transfer fumctio

1—ayz7! (33)

VI. LOWERBOUND

Y, with a determinant that is much lower than the one that
U%btained by the particle filter. What happens is that the
folded Gaussian distribution (R7) is sampled in the statied

by the simulation, and, when this state is far from the mean
plaklah ™ yt) = /Sp(sk’xk'mlf Lyl)dsk,  (30) vgctor, the Gaussian is sampled on the tails. In this event,
the poor estimation of the covariance leads to dramatically
large errors in the evaluation of the differential entropyer
p(sk zelz® 1y = p(si|z" 1 yp(a] sk, 257 y7) h(S|X,Y). Conversely, the entropy rafé(X |Y') that appears
in the lower bound is based on the integral of the mentioned
Gaussian distribution, hence it is less sensitive to elirotee
estimated covariance.

The upper bound can be based on demodulation, that is on
probability

where the probability inside the integral can be written as

= p(5k|$]f_1,y?)p($k|5k7 Yk, (31)
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VIIl. CONCLUSION [15]

We have presented upper and lower bounds to the con-
strained information rate transferred through the muttgilve (16}
phase noise channel with ARMA phase noise. From the resuftd
it appears that the upper and lower bounds are so close to
each other that we can claim of having computed the acti!
information rate, at least for the second-order ARMA phase
noise studied in the simulation. An important experimental
result presented in the paper is that demodulation based[tH
a predictive linearized Kalman filter aided by past data is
virtually capacity achieving, at least in the examples igtddh
the paper. This is not surprising in view of the result okedin [20]
in [20] for the intersymbol interference (ISI) channel,ttbays
that predictive filtering aided by past data (in the case ei8i
channel, the predictive decision-feedback equalizetyaity
leads to channel capacity. A practical mean to replace [adat d
with the decisions coming from a capacity achieving code [&]
the interleaving scheme originally proposed by Eyuboglu in
[21] for the ISI channel. Extension of this principle to orthe[23]
channels can be found, for instance, [in][22]. Computational
complexity of demodulation via Kalman filter can be lowered
by using a time invariant filter as described [in][23].

[21]
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