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Abstract—For inference in Gaussian graphical models with
cycles, loopy belief propagation (LBP) performs well for some
graphs, but often diverges or has slow convergence. When
LBP does converge, the variance estimates are incorrect in
general. The feedback message passing (FMP) algorithm has
been proposed to enhance the convergence and accuracy of
inference. In FMP, standard LBP is run twice on the subgraph
excluding the pseudo-FVS (a set of nodes that breaks most
crucial cycles) while nodes in the pseudo-FVS use a different
protocol. In this paper, we propose recursive FMP, a purely
distributed extension of FMP, where all nodes use the same
message-passing protocol. An inference problem on the entire
graph is recursively reduced to those on smaller subgraphs in a
distributed manner. One advantage of this recursive approach
compared with FMP is that there is only one active feedback
node at a time, so centralized communication among feedback
nodes can be turned into message broadcasting from the single
feedback node. We characterize this algorithm using walk-sum
analysis and provide theoretical results for convergence and
accuracy. We also demonstrate the performance using both
simulated models on grids and large-scale sea surface height
anomaly data.

I. INTRODUCTION

An important family of Markov random fields (MRFs) is

the family of Gaussian Markov random fields (GMRFs) or

Gaussian graphical models. Such models are widely used

in medical diagnostics, oceanography, robotic mapping, and

gene regulatory networks. For GMRFs of moderate size, exact

inference can be solved by algorithms such as direct matrix

inversion, Cholesky factorization, and nested dissection, but

these algorithms cannot be used for large-scale problems due

to the computational complexity [1], [2].

For tree-structured graphs, a message-passing algorithm

called belief Propagation (BP) can give exact results in linear

time. When there are cycles in the graphs, loopy belief prop-

agation (LBP) is used, where the message-update protocol is

the same as BP. LBP is distributed in nature: messages from

all nodes are updated in parallel using only local information.

However, LBP is not guaranteed to converge or give accurate

results [3], [4], [5], [6]. When LBP does converge, only

the computed means are exact while the computed variances

are incorrect in general. Some extensions to LBP include

generalized belief propagation [7], tree-reweighted message

passing [8], double-loop belief propagation [9], and relaxed

Gaussian belief propagation [10]. LBP in the context of

quadratic minimization has also been studied in [11], [12].

In [13], the authors have proposed the feedback message

passing (FMP) algorithm. FMP uses a different protocol
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among a special set of vertices called a feedback vertex set or

FVS. When the size of the FVS is large, a pseudo-FVS is used

instead of an FVS. By performing two rounds of standard

LBP among the non-feedback nodes and solving a small

inference problem among the feedback nodes, FMP improves

the convergence and accuracy significantly compared with

running LBP on the entire graph. In addition, choosing the

size of the pseudo-FVS enables us to make the trade-off

between efficiency and accuracy explicit. FMP is partially

distributed, but the algorithm in [13] still requires centralized

communication among the feedback nodes. One can ask some

natural questions: Is it possible to select the feedback nodes

in a purely distributed manner? Can we further eliminate

the centralized computations among the feedback nodes in

FMP without losing the improvements on convergence and

accuracy?

In this paper, we propose recursive FMP, a recursive and

purely distributed extension of FMP, where all nodes use

the same message-passing protocol. In recursive FMP, an

inference problem on the entire graph is recursively reduced

to those on smaller and smaller subgraphs until the final

inference problem can be solved efficiently by an exact or

approximate message-passing algorithm. A purely distributed

algorithm is of great importance because in many scenarios,

such as wireless sensor networks, it is easy to implement the

same protocol on all nodes while centralized computations

are often expensive or impractical. In this recursive approach,

there is only one active feedback node at a time, and thus

centralized communication among feedback nodes in FMP is

reduced to message broadcasting1 from the single feedback

node.

II. PRELIMINARIES

A. Gaussian Graphical Models

The conditional independencies among a set of random

variables in an MRF can be modeled by an undirected graph

G = (V, E), where V denotes the set of vertices (nodes)

and E the set of edges [14]. Each random variable xs is

represented by a node s ∈ V in the graph. The random vector

xV = {xs|s ∈ V} is Markov with respect to the graph: for

any sets A, B, S ⊂ V where S separates A and B, xA and

xB are conditionally independent given the value of xS .

The model is a Gaussian graphical model or GMRF when

the random vector xV is jointly Gaussian. The probability

density function is given by p(x) ∝ exp{− 1
2x

TJx + hTx},

where J is the information matrix or precision matrix and h
is the potential vector. The parameters J and h are related

1Message passing is also called message broadcasting if messages are
passed without being modified.
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among the non-feedback nodes
gives the final results

Fig. 1: Illustration for the FMP algorithm. Shaded nodes (4, 6, and 15) are selected feedback nodes.

to the mean μ and covariance matrix P by μ = J−1h and

P = J−1. The structure of the underlying graph is constructed

such that there is an edge between i and j if and only if

Jij �= 0. It can be shown that xi and xj are conditionally

independent given all the other variables if and only if Jij =
0. The inference problem in Gaussian graphical models refers

to computing (exactly or approximately) the means μi and

variances Σii for all i ∈ V given J and h.

B. Loopy Belief Propagation

LBP is a distributed inference algorithm for loopy graphs.

Without loss of generality, we refer to both BP and LBP as

LBP throughout the paper, as the protocols are the same.

In LBP, each outgoing message from a node is updated

using only incoming messages and local parameters. For tree-

structured GMRFs, LBP runs in linear time (with respect to

the number of nodes) and is exact. However, convergence and

correctness are not guaranteed for LBP when the graphs have

cycles. The equations for message update can be found in

[15], [13].

C. Walk-sum Analysis

Walk-sum analysis is a framework in which the means

and variances are interpreted as the sum of “walks” [15].

Walk-sum analysis allows us to characterize the errors of

various algorithms in terms of missed walks and understand

the algorithms better. As shown in [15], for loopy graphs, LBP

collects all of the required walks for the computation of the

means, but only some of the walks required for computing

the variances.

We call R = I − J the edge-weight matrix, where I is the

identity matrix and J is normalized to have unit diagonal. Due

to the page limit, we omit the precise definition of walk-sums

here and only summarize some useful conclusions. Readers

interested in walk-sum analysis can refer to [15] for details.

1) A GMRF is walk-summable if ρ(R̄) < 1, where R̄ is

the matrix whose elements are the absolute values of

the corresponding elements in R.

2) For a walk-summable Gaussian graphical model, LBP

converges and gives the correct means.

3) In walk-summable models, the variance computed by

LBP for each node is the sum of all backtracking

walks2, which is a subset of all self-return walks needed

for computing the correct variance.

D. Feedback Message Passing

A feedback vertex set (FVS) is defined as a set of vertices

whose removal (with the removal of the incident edges) results

in an cycle-free graph [16]. A pseudo-FVS is a subset of an

FVS that breaks not all but most crucial cycles.

The FMP algorithm described in [17] works as follows.

Before running FMP, an FVS or a pseudo-FVS is selected

by a greedy algorithm to break the most crucial cycles.3 The

selected nodes are called feedback nodes. In the first stage

of FMP, LBP is employed in the subgraph excluding the

feedback nodes to compute the initial inference results and

“feedback gains” (Figure 1a). After convergence, the feedback

nodes collect the feedback gains from their neighbors and

solve a small inference problem involving only the feedback

nodes (Figure 1b). In the third stage, the feedback nodes

send feedback messages to their neighbors to modify local

parameters (Figure 1c). Finally, another round of LBP among

the non-feedback nodes gives the final results (Figure 1d).

After convergence, FMP gives the exact means for all nodes as

well as exact variances for the feedback nodes. The variance

estimate for a non-feedback node i equals the sum of all

backtracking walks plus all self-return walks that visit the

feedback nodes. The message update equations of FMP and

more theoretical results can be found in [13].

III. RECURSIVE FMP

In many practical networks, each node has limited local

memory and communication bandwidth. In addition, indi-

vidual nodes often do not know the diameter of the whole

networks. In recursive FMP, each node i has a local list of

feedback nodes, denoted by Li. The set Li is initially empty

and has a maximum size of Ki. As will be explained later,

the number of messages node i sends out is proportional to

the current size of Li. Another parameter d, called the effec-
tive diameter, indicates the default estimate of the network

diameter. There are three stages in recursive FMP: In the first

2A backtracking walk of a node is a self-return walk that can be reduced
consecutively to a single node. Each reduction is to replace a subwalk of the
form {i, j, i} by the single node {i}. For example, a self-return walk of the
form 12321 is backtracking, but a walk of the form 1231 is not.

3In [13], the algorithm is called approximate FMP when a pseudo-FVS
is used. In this paper, we refer to both exact and approximate as FMP for
conciseness.



stage, feedback nodes are elected using a distributed algorithm

similar to the “leader election” algorithm [18]. The current

feedback nodes are also called inactive nodes since they do

not pass any messages; the non-feedback nodes are referred to

as active nodes. The inactive nodes later “wake up” to become

active nodes again. We denote the set of feedback nodes by F
and the set of active nodes by A. The subgraph induced by all

active nodes is called the active subgraph (the active subgraph

before any feedback node wakes up is called the initial active
subgraph). In the second stage, LBP is run on the initial active

subgraph while the feedback nodes remain inactive. In the

third stage, each of the feedback nodes wakes up to become

an active node when some local conditions are satisfied and

broadcasts correction messages. In practice, the three stages

are integrated together and have no clear separation; however,

for clarity, we present the protocols in three separate stages.

A. First Stage: Election of Feedback Nodes

The election algorithm favors nodes that have high priority

scores and break many cycles. The priority score for node

i is denoted by s(i), and the definition is motivated by the

criterion in [13] to enhance convergence. At the beginning,

all nodes have status U (undecided), i.e., Si = U for all

i ∈ V . The status of a node will change to either A

(active) or F (feedback) under different conditions. Each

node stores the largest score (denoted by MaxScore(i)) it

has seen and the corresponding node index (denoted by

MaxIndex(i)). These values are passed to its undecided

neighbors (neighbors with status U) as messages. Throughout

this paper, we use NU(i) to denote the set of i’s neigh-

bors with status U, NF(i) the set of i’s neighbors with

status F, and NA(i) those with status A. The distributed

algorithm for electing the feedback nodes is as follows.

For each node i with status U,

1) Repeat for Ki times

a) Compute s(i) =
∑

j∈NU(i) |Jij |/
√

JiiJjj . Set

MaxScore(i) ← s(i) and MaxIndex(i) ← i.
b) Repeat for d iterations

i) If |NU(i)| ≤ 1, then Si ← A.

ii) Send [MaxIndex(i) MaxScore(i)] to all

neighbors with status U.

iii) if MaxScore(i) is less than the maximum re-

ceived score, then replace MaxScore(i) with

the maximal received score and MaxIndex(i)
with the corresponding node index.

c) If MaxIndex(i) = i, then Si ← F.

2) If Si = U, then Si ← A.

B. Second Stage: Initial Estimation

In the second stage, initial estimates of the means and

variances are computed for the initial active subgraph by

passing messages only among the active nodes. Each active

node i stores the following values: Pi, the current estimate of

the variance; μi, the current estimate of the mean; Li, the set

of feedback nodes stored at node i; and the current feedback

gains gki for all k ∈ Li. The messages from node i to node j
include ΔJi→j , Δhi→j , and Δgki→j for all k ∈ Li.

At the beginning, each feedback node k constructs an extra

potential vector hk with (hk)i = Jik for all i ∈ NA(k). Note
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(a) Nodes 4, 6, and 15 have been
elected as feedback nodes. Messages
are passed among other nodes.
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(b) Node 4 has become active again.
Correction messages from node 4
are being broadcast to other active
nodes.
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(c) Node 15 has become active
again. Correction messages from
node 15 are being broadcast to other
active nodes.
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(d) All nodes are active nodes now.
Final correction messages from node
6 are being broadcast.

Fig. 2: Second stage (a) and third stage (b-d) of recursive

FMP. Shaded nodes represent elected feedback nodes. Solid

lines with arrows denote the edges where messages are being

passed.

that the only non-zero entries of hk correspond to the active

neighbors of k, and thus can be constructed locally. We also

initialize Li as Li = NF (i) for every active node i. We refer

to the message Δgki→j as a BP message for feedback node

k. The priority score s(k) is passed with the BP message

for k to be used in the third stage. The message-update

protocol is described as follows and illustrated by Figure 2a.

At each iteration t, for each active node i :

1) send messages to all j ∈ NA(i),

ΔJ
(t)
i→j = −JjiĴ

(t−1)
i\j Jij and Δh

(t)
i→j =

−JjiĴ
(t−1)
i\j ĥ

(t−1)
i\j , where

Ĵ
(t−1)
i\j = Jii +

∑
l∈NA(i)\{j}

ΔJ
(t−1)
l→i

ĥ
(t−1)
i\j = hi +

∑
l∈NA(i)\{j}

Δh
(t−1)
l→i .

2) When receiving a BP message for feedback node k,

update the local list by Li ← Li ∪ {k}. Only keep the

nodes with the top Ki priority scores if |Li| > Ki.

3) For all k ∈ Li and all j ∈ NA(i), send messages(
Δgki→j

)(t)
= −Jji

(
Ĵ
(t−1)
i\j

)−1 (
ĝki\j

)(t−1)

, where

(
ĝki\j

)(t−1)

= (hk)i +
∑

l∈NA(i)\{j}

(
Δgkl→i

)(t−1)



and
(
Δgkl→i

)(t−1)
= 0 if k /∈ Ll.

4) Update the local values by

Pi ←
⎛
⎝Jii +

∑
j∈NA(i)

ΔJ
(t)
j→i

⎞
⎠−1

μi ← Pi

⎛
⎝hi +

∑
j∈NA(i)

Δh
(t)
j→i

⎞
⎠

gki ← Pi

⎛
⎝(hk)i +

∑
j∈NA(i)

(
Δgkj→i

)(t)
⎞
⎠ for k ∈ Li.

C. Third Stage: Recursive Correction

In this stage, each feedback node k becomes active again

when some local conditions are satisfied and broadcasts

correction messages (which are called correction messages

about feedback node k). The third stage ends when all nodes

are active and all correction messages have been broadcast.

The message protocol is as follows (see Figures 2b–2d for

illustration).

For a feedback node k:
Let Lk ← ∪j∈NA(k)Lj . If the following two conditions are

satisfied: 1) k itself has the lowest priority score in Lk; and

2) BP messages for k have converged at k’s active neighbors

(or d iterations have passed since the last change of Lk), then

1) Sk ← A, Lk ← Lk\{k} .

2) Compute the current estimates of the variance, the

mean, and the feedback gains at k by

Pk ←
⎛
⎝Jkk −

∑
j∈NA(k)

Jkjg
k
j

⎞
⎠−1

μk ← Pk

⎛
⎝hk −

∑
j∈NA(k)

Jkjμj

⎞
⎠

gpk ← Pk

⎛
⎝(hp)k −

∑
j∈NA(k)

Jkjg
p
j

⎞
⎠ , for p ∈ Lk,

where gpj = 0 if p /∈ Lj .

3) Send correction messages including Pk, μk, and

gpk, ∀p ∈ Lk to active neighbors.

For an active node i:
When correction messages about k are received, then

1) Li ← (Li ∪ Lk) \{k}. Only keep the nodes with the

top Ki priority scores if |Li| > Ki.

2) Update the local values by

Pi ← Pi + (gki )
2Pk

μi ← μi − gki μk

gpi ← gpi − gki g
p
k, for p ∈ Li,

where gpi = 0 and gki = 0 if p, k /∈ Li before the update

of Li.

3) Pass the same correction messages to other active neigh-

bors

D. Discussions on Local Lists of Feedback Nodes

In recursive FMP, it is entirely possible (and very likely)

that different nodes have different lists of feedback nodes. At

the beginning of the second stage, the list stored at an active

node includes only neighboring feedback nodes. The lists are

then exchanged only within distance d, and thus a node may

not know feedback nodes located far away. In addition, if

the total number of feedback nodes exceeds Ki for some i,
then the lists may be different even if d is as large as the

network diameter. Moreover, if the initial active subgraph is

disconnected, then the lists may be different even if d and

all of the Ki’s are sufficiently large, because some message

pathways are broken. However, in this case, as will be stated

in Proposition 2, the inference results are exact.

IV. THEORETICAL RESULTS

In this section, we provide some theoretical results on the

convergence and accuracy of recursive FMP. Due to the page

limit, the proofs are omitted here and provided in the journal

version of the paper in preparation.

Proposition 1. If the effective distance d is equal to or greater
than the diameter of the graph and ∀i, Ki ≥ K for some K,
then the election algorithm in the first stage gives the same
set of feedback nodes as Algorithm 2 in [13] with parameter
K.

Proposition 1 shows that the distributed election algorithm

is consistent with the non-distributed version when the effec-

tive distance is large enough.

Proposition 2. If 1) F , the set of elected feedback nodes, is an
FVS; 2) the effective distance d is at least the diameter of the
initial active subgraph; and 3) |F| ≤ Ki, ∀i, then recursive
FMP gives exact means and variances for all nodes in time
O(|F|N) with a total computational cost of O(|F|2N), where
N is the total number of nodes. The memory cost is O(|F|)
per node, and the communication cost is O(|F|) per edge per
iteration.

Propositions 2 guarantees the correctness of recursive FMP

when d and Ki are sufficiently large and gives the cost of the

algorithm.

Proposition 3. If F is a pseudo-FVS, then recursive FMP
converges when the initial active subgraph is walk-summable.
If |F| ≤ Ki for all i, then after convergence, recursive FMP
gives the exact means for all nodes and exact variances for all
nodes in F . The variance estimate for a non-feedback node
equals the sum of all backtracking walks in the initial active
subgraph plus all walks that visit at least one feedback node.

Proposition 3 shows that under mild conditions recursive

FMP has the same improvements on convergence and accu-

racy compared with FMP while being a purely distributed

algorithm.

Proposition 4. When node i receives correction messages
about k, the correction term added to the Pi equals the sum
of all self-return walks that stay within the current active
subgraph and visit k at least once.
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on grids of various sizes

Proposition 4 provides a precise characterization of the

correction terms using a walk-sum interpretation.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of recursive

FMP using both simulated models on grids and a large-scale

GMRF with about a million variables.

We simulate GMRFs defined on grids of size 4 × 4 to

20× 20. For each size, we generate 50 models with random

parameters. We solve the inference problems using LBP, and

recursive FMP with different parameters of d and Ki. For each

algorithm and each grid size, the average errors of variances

are computed. As shown in Figure 3, LBP has large estimation

errors of the variances while recursive FMP gives significant

improvements. The inference results are more accurate when

Ki and d are larger, showing the trade-off between memory

capacity and accuracy.

We also use sea surface height anomaly (SSHA)

data, which is measured relative to seasonal, space-

variant mean-sea level (the dataset is publicly available at

http://podaac.jpl.nasa.gov/dataset/). The raw data is prepro-

cessed to have measurements at 915×1080 different locations

with latitudes between ±82◦ and a full 360◦ of longitude. We

construct a grid of 988,200 nodes and connect the eastmost

and westmost nodes at the same latitudes (since they are

geographical neighbors). We then remove the nodes that have

invalid measurements (most of which correspond to land

areas) and obtain the final graph structure shown in Figure 4a.

With this underlying structure, we build an GMRF using the

thin-membrane model [19]. The final estimates by recursive

FMP with d = 200 and Ki = 15 for all i are plotted in Figure

4b.
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