
Reconstructing a Graph from Path Traces

Vincent Gripon

Electronics Department

Télécom Bretagne

Brest, France

Email: vincent.gripon@ens-cachan.org

Michael Rabbat

Dep. of Electrical & Computer Eng.

McGill University

Montréal, Canada

Email: michael.rabbat@mcgill.ca

Abstract—This paper considers the problem of inferring the
structure of a network from indirect observations. Each observa-
tion (a “trace”) is the unordered set of nodes which are activated
along a path through the network. Since a trace does not convey
information about the order of nodes within the path, there
are many feasible orders for each trace observed, and thus the
problem of inferring the network from traces is, in general, ill-
posed. We propose and analyze an algorithm which inserts edges
by ordering each trace into a path according to which pairs of
nodes in the path co-occur most frequently in the observations.
When all traces involve exactly 3 nodes, we derive necessary and
sufficient conditions for the reconstruction algorithm to exactly
recover the graph. Finally, for a family of random graphs, we
present expressions for reconstruction error probabilities (false
discoveries and missed detections).

I. INTRODUCTION

Topology inference problems arise in a number of settings

including systems biology [1], wireless communications [2],

and more generally, for finding the structure of probabilistic

graphical models [3]. We consider the problem of reconstruct-

ing the topology of a network from observations of subsets of

nodes which form a path in the network. Specifically, for every

elementary path we observe the set of nodes in the path but

not their order within the path. Given such observations, the

goal is to reconstruct the network topology. Since the nodes

of the network are known in advance, network reconstruction

boils down to inferring which pairs of nodes are and are

not connected by links. Each observation (which we refer to

as a “trace” below) corresponds to a subset of nodes which

can be connected by a path through the network. Such a

network reconstruction problem may arise in the context of

biological networks [1], telecommunication networks [4], [5],

brain networks [6], social media [7], or social networks [8].

When is it possible to reconstruct a graph from such incom-

plete data? And when it is possible, how can one reconstruct

the network? We propose an algorithm for reconstructing

networks from a collection of traces. The algorithm greedily

inserts edges based on which pairs of nodes co-occur in

observations most frequently. When only traces containing

three nodes are observed (i.e., corresponding to paths of three

nodes), we provide necessary and sufficient conditions for

when our algorithm is guaranteed to accurately recover the

edge structure of the network. The conditions are related to the

notion of “triadic closure” in the social network literature [9],

[10]. Then, for a class of random graphs, we derive the

probabilities that our algorithm will omit true edges and

include false edges.

Our previous work [5] described an algorithm for inferring

graph structure from traces. The previous algorithm assumes

that the path underlying each trace is generated by taking a

random walk on the graph. The previous algorithm is iterative

and is guaranteed to converge to a fixed point. Although the

experimental results are promising, no theoretical guarantees

are available for the accuracy of the network estimates it

produces. In contrast, the algorithm presented in this paper

is not based on any generative model, is not iterative, and

conditions are provided under which it is guaranteed to exactly

reconstruct the original graph.

The paper is organized as follows. Section II introduces no-

tation, formally states the problem, and presents two examples

illustrating that the problem is non-trivial. Section III describes

the proposed reconstruction algorithm. Section IV focuses

on the case when only traces of length 3 are observed and

provides necessary and sufficient conditions under which the

algorithm of Section III is guaranteed to perfectly reconstruct

the graph. Section V considers the classical Erdös–Rényi

random graph model and provides expressions for error rates

as a function of edge density. We conclude in Section VI.

II. NETWORK RECONSTRUCTION FROM PATH TRACES

We consider a graph G = (V,E) with vertex set V and

edge set E ⊂ V × V . Throughout this paper, all graphs are

simple and undirected1, and the vertex set is enumerated by

the integers V = {1, 2, . . . , |V |}. We say that two nodes u
and v are neighbors in G if (u, v) ∈ E. A path P of length

m in G is a sequence of vertices v1 ↔ v2 ↔ . . . ↔ vm such

that (vi, vi+1) ∈ E for all i = 1, . . . ,m − 1. An elementary

path is one where no vertex appears twice. The trace T of an

elementary path P is the (unordered) set of vertices appearing

in P ; the trace T thus does not contain any information about

the order of these vertices in P . The size of a trace T is the

number of vertices in the path.

A. Problem Statement

Given a graph G and an integer k ≥ 1, let Pk(G) denote

the set of all elementary paths in G of length k, and let Tk(G)

1A simple graph is one with no self-loops (v, v) or multiple edges, and an
undirected or symmetric graph is one where (u, v) = (v, u).

denote the corresponding set of all traces of paths in Pk(G).
We are interested in the following problem:

Problem: Given Tk(G), recover the graph G.

Since one can only hope to recover the subgraph of G on

vertices which appear in Tk(G), the problem boils down to

recovering the edge set E from Tk(G). Since the vertex set will

always be clear from the context, we will write (v1, v2) ∈ G,

slightly abusing notation, to mean that the edge (v1, v2) is in

the graph G.

Of course, when k = 2, the problem is trivial since T2(G)
is exactly the edge set, E. However, in general, the problem

is not solvable since there exist some graphs with exactly the

same set of traces. Consider for example the complete graph

K5 with five nodes and K5 with any edge removed.

On the other hand, there are examples of graphs which can

be retrieved from their traces. The path graph on n vertices

is the graph Pn with edge set {(u, u + 1) : 1 ≤ u ≤ n − 1}.

It provides one example of a graph uniquely defined by its

traces of length 3 when n ≥ 6. Proving this result is trivial and

omitted due to space constraints. It makes use of the following

lemma, that is also useful in the sequel.

Lemma 1. If {v1, v2, v3} is in the set of traces T3(G), then

at least one of the edges (v1, v2) and (v1, v3) is in G.

III. NETWORK RECONSTRUCTION ALGORITHM

The previous section illustrated that, under the right condi-

tions, a graph may be recovered from its traces. In this section

we describe a simple algorithm for reconstructing a graph Ĝ
from a set of traces T . The reconstructed graph is feasible

with respect to the trace set T in the sense that to each trace

T ∈ T , there exists a path P in Ĝ such that T is the trace of

P . The algorithm employs the notion of the weight wM (P) of

a path P = v1 ↔ v2 ↔ . . . ↔ vm with respect to a |V | × |V |
matrix M , which is defined as wM (P) =

∑n−1
i=1 M(vi, vi+1).

The reconstruction algorithm involves two passes over the

set of traces.

Stage 1: For each entry of the |V | × |V | matrix M , set

M(u, v) = |{{u, v, x} ∈ T : x ∈ V }|, (1)

where |A| denotes the cardinality of the set A. Of course, since

traces are unordered, M(u, v) = M(v, u).
Stage 2: Initialize Ĝ to be the empty graph on |V | nodes;

i.e., the graph with no edges. Then, for each trace T ∈ T , find

the elementary path P ∗(T) which has the maximum weight

wM (P) of all paths P through the vertices in T , and add each

edge in P ∗(T) to Ĝ; if there is a tie, then add the edges from

all maximal weight paths to Ĝ.

Once edges corresponding to all traces in T have been

added, then the algorithm returns Ĝ.

A. Computational Complexity

The algorithm described above has complexity which is

exponential in the size of the traces. Each of the stages

involves making one pass over all traces T ∈ T . Let |T |
denote the number of traces in T . If all traces are of size

|T | = k vertices, then the first stage has complexity O(k2|T |),
since for each trace T ∈ T we need to increment the

counts of each pair of vertices in T . Also, the second stage

has complexity O(k! k |T |), since there are k! orderings for

each trace, computing the weight for one ordering requires k
operations, and there are |T | traces in total. Note, if all traces

are of size k then there are at most |T | = O(
(
|V |
k

)
) traces.

IV. NECESSARY AND SUFFICIENT CONDITIONS FOR

GRAPH RECONSTRUCTION WHEN k = 3

In this section we focus on the case where the goal is to

reconstruct a graph G = (V,E) given only the set of length-3

traces T3(G). We assume that n = |V | > 3 and that |E| > 2
so the problem is non-trivial. We are interested in knowing

when the algorithm described in the previous section can be

guaranteed to provide an accurate reconstruction. To this end,

we derive necessary and sufficient conditions for when the

algorithm is guaranteed to correctly identify the presence or

absence of an edge between two vertices. Since traces of length

3 only provide information about the graph structure a few

hops away from each edge, it is natural that these conditions

only depend on the local structure of the graph. Throughout

this section, we assume the graph G is fixed. Let Ĝ denote

the output of the reconstruction algorithm given input T3(G),
and let M denote the matrix of co-occurrence counts used by

the algorithm. To simplify the notation, we will suppress the

dependence on G and simply write T3 to denote the set of

traces of all length-3 elementary paths in G.

A. Preliminaries

The reconstruction algorithm uses the values in M to

determine which is the maximum-weight path for each trace,

and thus M governs which edges do and do not appear in

Ĝ. To begin, we introduce two lemmas which characterize

relationships between the co-occurrence count matrix M , the

edge set of G, and the estimated edge set of Ĝ.

Lemma 2. The edge (v1, v2) is in Ĝ if and only if there

exists a vertex u with {v1, v2, u} ∈ T3 and at least one of the

following conditions holds:

i) M(v1, v2) ≥ M(v1, u),
ii) M(v1, v2) ≥ M(v2, u).

Lemma 3. If (v1, v2) is in G and there exists another vertex

u �= v1, v2 such that (v1, u) ∈ G and (v2, u) /∈ G, then the

edge (v1, v2) is in Ĝ.

Detailed proofs of Lemmas 2 and 3 are omitted due to space

constraints and will be provided in an extended version of the

paper. Fig. 1 illustrates the idea in the proof of Lemma 3, and

the proof of Lemma 2 follows from similar arguments.

B. Main Results

Lemma 3 says that for each edge (v1, v2) in G, if at least one

of v1, v2 has a unique neighbor, then the traces arising from

the unique neighbor will be sufficient to ensure the correct

edge appears in the network. We formalize this property in

the definition below.

xu

v1 v2

Fig. 1. Illustrating the concept in the proof of Lemma 3. By assumption,
there is an edge between v1 and v2, and u is a neighbor of v1 but not v2. For
any trace {u, v2, x} containing both u and v2, it follows that x is a neighbor
of both u and v2 (since u and v2 are not neighbors). Thus, there must also
be a trace {v1, v2, u}, and so M(v1, v2) ≥ M(v2, u). Consequently, the

edge (v1, v2) appears in the reconstructed graph, Ĝ.

Definition 1. An edge (v1, v2) ∈ G has the unique neighbor

property if there exists a node u such that either (v1, u) ∈ G
and (v2, u) /∈ G, or (v2, u) ∈ G and (v1, u) /∈ G.

While this condition is sufficient, it is not necessary to

guarantee that (v1, v2) is in the reconstructed graph Ĝ. To

obtain a necessary set of conditions we need to introduce one

additional property.

Definition 2. An edge (v1, v2) ∈ G has the strong triadic

closure property if there exists a vertex z which is neighbors

of both v1 and v2, and any neighbor of z is also a neighbor

of at least one of v1, and v2; i.e., there exists z ∈ V such that

(v1, z) ∈ G, (v2, z) ∈ G, and for all y ∈ V with (y, z) ∈ G,

it also holds that either (i) (v1, y) ∈ G, (ii) (v2, y) ∈ G, or

(iii) both (v1, y) ∈ G and (v2, y) ∈ G.

Triadic closure arises in the study of social networks [9],

[10], expressing the notion that “one’s friends tend to also be

friends”. We refer to Definition 2 as the “strong” triadic closure

property since it says that if v1 and v2 have a neighbor z in

common, then all other neighbors of z should also be neigh-

bors of either v1 or v2. In this sense, no node ends up being

a hub; they are clustered together into a community of nodes

which all have roughly the same number of neighbors. Taken

together, the unique neighbor property and the strong triadic

closure property form necessary and sufficient conditions for

an edge to correctly appear in the reconstructed graph Ĝ.

Theorem 1. Suppose that (v1, v2) ∈ G. Then (v1, v2) ∈ Ĝ if

and only if at least one of the following holds:

i) (v1, v2) satisfies the unique neighbor property;

ii) (v1, v2) satisfies the strong triadic closure property.

Proof: Suppose that (v1, v2) ∈ G. If (v1, v2) satisfies the

unique neighbor property, then Lemma 3 already ensures that

(v1, v2) ∈ Ĝ.

Suppose, next, that (v1, v2) ∈ G and (v1, v2) satisfies

the strong triadic closure property in G. Recall from (1)

that M(v1, v2) is equal to the number of traces of the form

{v1, v2, u} for some u ∈ V \ {v1, v2}. By the strong triadic

closure property, there exists a vertex z ∈ V which is

neighbors of both v1 and v2, and hence the trace {z, v1, v2}
is in T3. By Lemma 1, for every other trace of the form

{z, v1, u} ∈ T3 with u �= v2, either (u, v1) ∈ G or (u, z) ∈ G.

If (u, v1) ∈ G then the path u ↔ v1 ↔ v2 is in G, and so

the trace {u, v1, v2} ∈ T3. If (u, z) ∈ G and (u, v1) /∈ G,

then by the strong triadic closure property, we must have

that (u, v2) ∈ G. In this case, the path u ↔ v2 ↔ v1
is in G, and so the trace {u, v1, v2} is in T3. It follows

that M(v1, v2) ≥ M(v1, z), and by Lemma 2 we have that

(v1, v2) ∈ Ĝ.

Now, for the converse, suppose that (v1, v2) ∈ Ĝ, and

assume, for the sake of a contradiction, that (v1, v2) satisfies

neither the unique neighbor property nor the strong triadic

closure property. Since the unique neighbor property does

not hold, if (u, v1) ∈ G then (u, v2) ∈ G also. Since

the strong triadic closure property does not hold, for all

common neighbors u of v1 and v2, there exists another vertex

xu �= v1, v2 which is a neighbor of neither v1 nor v2; i.e.,

(xu, v1) /∈ G and (xu, v2) /∈ G. The reconstruction algorithm

only inserts an edge (v1, v2) into Ĝ if there is at least one

trace of the form {v1, v2, u} ∈ T3. For each vertex u such

that {v1, v2, u} ∈ T3, since the unique neighbor property does

not hold, it must be true that (v1, u) ∈ G and (v2, u) ∈ G.

Moreover, since the strong triadic closure property does not

hold, there must be another vertex xu with (u, xu) ∈ G and

for which (v1, xu) /∈ G and (v2, xu) /∈ G. It follows that the

paths v1 ↔ u ↔ xu and v2 ↔ u ↔ xu are in G, and so traces

{v1, u, xu} and {v2, u, xu} are in T3. Thus, for every trace

{v1, v2, u} ∈ T3, there are also traces {v1, u, xu} ∈ T3 and

{v2, u, xu} ∈ T3. Consequently, M(v1, v2) < M(v1, u) and

M(v1, v2) < M(v2, u). Then, by Lemma 2, we conclude that

(v1, v2) /∈ Ĝ, which is a contradiction. Thus, if (v1, v2) ∈ Ĝ,

then (v1, v2) must satisfy the unique neighbor property or the

strong triadic closure property.

Theorem 1 provides necessary and sufficient conditions

under which the reconstruction algorithm will return a network

Ĝ that contains all edges which are in G (i.e., no missed

detections). At the same time, we would like to ensure that

Ĝ contains no edges which are not in G (i.e., no false posi-

tives). To this end we introduce the following two properties

regarding the graph structure around pairs of nodes that are

not neighbors.

Definition 3. A pair of vertices v1 and v2 for which (v1, v2) /∈
G has the distinct neighbors property if there exist a vertex

v′1 which is a neighbor of v1 and not a neighbor of v2, and

there exists a vertex v′2 which is a neighbor of v2 and not a

neighbor of v1.

Definition 4. A pair of vertices v1 and v2 for which (v1, v2) /∈
G has the weak triadic closure property if for every vertex u
which is a neighbor of both v1 and v2, there exists another

vertex xu which is neighbors with u and is not neighbors with

both v1 and v2; i.e., for every u ∈ V with (u, v1) ∈ G and

(u, v2) ∈ G, there exists xu ∈ V such that (u, xu) ∈ G and

either:

i) (v1, xu) ∈ G and (v2, xu) /∈ G, or

ii) (v2, xu) ∈ G and (v1, xu) /∈ G, or

iii) (v1, xu) /∈ G and (v2, xu) /∈ G.

The distinct neighbors and weak triadic closure properties

form a set of necessary and sufficient conditions to guarantee

that an edge is not falsely inserted between a pair of nodes in

the reconstructed graph.

Theorem 2. Suppose that (v1, v2) /∈ G. Then (v1, v2) /∈ Ĝ if

and only if at least one of the following holds:

i) v1 and v2 has the distinct neighbors property;

ii) (v1, v2) has the weak triadic closure property.

Proof: Suppose that (v1, v2) /∈ G. Let U = {u ∈ V :
{v1, v2, u} ∈ T3} denote the set of vertices which co-occur in

some trace with v1 and v2. By definition, M(v1, v2) = |U |,
and (v1, v2) /∈ Ĝ if M(v1, v2) = 0, since the reconstruction

algorithm only inserts edges between pairs of nodes which

co-occur in at least one trace. Thus, for the remainder of the

proof we suppose that M(v1, v2) > 0. Then for each u ∈ U ,

by Lemma 1, it must be true that (v1, u) ∈ G and (v2, u) ∈ G.

If M(v1, v2) > 1, then there exist u1, u2 ∈ U , u1 �= u2, and

both of the paths u1 ↔ v1 ↔ u2 and u1 ↔ v2 ↔ u2 are in

G. Consequently, the traces {u1, u2, v1} and {u1, u2, v2} are

both in T3.

Suppose that v1 and v2 have the distinct neighbors property,

and let v′1 denote the distinct neighbor of v1 and v′2 denote the

distinct neighbor of v2. Fix a u′ ∈ U , and for i = 1, 2 define

Si =
{
{u′, vi, u} ∈ T3 : u ∈ U, u �= u′

}
(2)

∪{u′, v1, v2} ∪ {u′, vi, v
′

i}.

Thus, S1 (resp. S2) contains a subset of the traces that involve

both v1 and u′ (resp. v2 and u′). Moreover, |S1| > |U | and

|S2| > |U | since S1 (resp. S2) contains one trace for each

u ∈ U , as well as the trace {u′, v1, v
′

1} (resp. {u′, v2, v
′

2}). It

follows that,

M(v1, u
′) ≥ |S1| > |U | = M(v1, v2), and (3)

M(v2, u
′) ≥ |S2| > |U | = M(v1, v2), (4)

and therefore, by Lemma 2, (v1, v2) /∈ Ĝ.

Suppose, instead, that v1 and v2 have the weak triadic

closure property. Let ũ ∈ U be a neighbor of both v1 and

v2, and let xũ denote a neighbor of ũ which is not neighbors

with both v1 and v2. Similar to above, for i = 1, 2 define

S̃i =
{
{ũ, vi, u} ∈ T3 : u ∈ U, u �= ũ

}
(5)

∪{ũ, v1, v2} ∪ {ũ, vi, xũ}.

Since xũ is not neighbors with both v1 and v2, and since v1
and v2 are not neighbors, we have xũ /∈ U . Consequently,

|S̃i| > |U |, for i = 1, 2, and so, similar to above,

M(v1, ũ) ≥ |S̃1| > |U | = M(v1, v2), and (6)

M(v2, ũ) ≥ |S̃2| > |U | = M(v1, v2), (7)

and so (v1, v2) /∈ Ĝ by Lemma 2.

Now, for the converse, suppose that (v1, v2) /∈ G and

(v1, v2) /∈ Ĝ. We would like to show that v1 and v2 must have

either the distinct neighbors property or the star property (or

both). Suppose, for the sake of a contradiction, that vertices v1
and v2 have neither the distinct neighbors property nor the star

property. Since v1 and v2 do not have the distinct neighbors

property, either every neighbor of v1 is also a neighbor of

v2, or every neighbor of v2 is also a neighbor of v2. Without

loss of generality, suppose that all neighbors of v1 are also

neighbors of v2 (i.e., (u, v1) ∈ G ⇒ (u, v2) ∈ G). Since v1
and v2 do not have the weak triadic closure property, there

exists a vertex u ∈ V which is a neighbor of both v1 and v2,

and all neighbors of u are also neighbors of both v1 and v2.

Consider all traces of the form {v1, u, x} ∈ T3, for x ∈ V . By

Lemma 1, either (x, v1) ∈ G or (x, u) ∈ G. If (x, v1) ∈ G
then (x, v2) ∈ G also, since the distinct neighbor property does

not hold. On the other hand, if (x, u) ∈ G, then (x, v1) and

(x, v2) must also be in G, since u is neighbors with both v1
and v2 and they do not have the weak triadic closure property.

Since for every trace {v1, u, x}, there is a trace {x, v1, v2},

it follows that M(v1, u) ≤ M(v1, v2), and by Lemma 2

we conclude that (v1, v2) ∈ Ĝ, which is a contradiction.

Therefore, if (v1, v2) /∈ Ĝ the v1 and v2 have the distinct

neighbors property or the weak triadic closure property.

V. RECONSTRUCTION ERRORS IN RANDOM GRAPHS

Next we suppose that the graph G follows the well-known

Erdös–Rényi [11], [12] model for random graphs, and we pro-

vide expressions for the edge false alarm and missed detection

probabilities based on the properties defined in the previous

section. The Erdös–Rényi model, Gn,p, is a random graph on

n = |V | nodes, where each possible edge (u, v) ∈ V × V
is present with probability p, independent of all other edges.

Let P(·) denote the corresponding probability distribution over

graphs; we suppress the dependence on n and p to simply the

notation. As in the previous section, let T3 denote the set of

traces of length-3 elementary paths in G, and let Ĝ denote the

graph obtained by running the reconstruction algorithm on T3.

A. Edge Missed Detection Probability

First, we provide an expression for the probability that

the reconstruction algorithm misses an edge in Ĝ. Condition

on the event that (v1, v2) ∈ G. From Theorem 1 the event

(v1, v2) /∈ Ĝ occurs if the edge has neither the unique neighbor

property nor the strong triadic closure property. Let

U = {u ∈ V : (u, v1) /∈ G and (u, v2) /∈ G}

denote the set of vertices which are not neighbors with either

v1 or v2, and let

Z = {z ∈ V : (z, v1) ∈ G and (z, v2) ∈ G}

denote the set of vertices which are neighbors of both v1 and

v2. If the unique neighbor property does not hold then the sets

U and Z partition the vertices V \ {v1, v2}. Conditional on

the event that (v1, v2) ∈ G, this occurs with probability

n−2∑

k=0

(
n− 2

k

)
(1− p)2kp2(n−2−k). (8)

Next, if (v1, v2) does not have the strong triadic closure

property, then there exists a node z ∈ Z which is neighbors of

both v1 and v2, and z has a neighbor u ∈ U . Then, conditional

on (v1, v2) ∈ G, the unique neighbor property not holding, and

|U | = k, this occurs with probability

(1− (1− p)k)n−2−k. (9)

Putting these together, we have that

P
(
(v1, v2) /∈ Ĝ

∣∣ (v1, v2) ∈ G
)

(10)

=
n−2∑

k=0

(
n− 2

k

)
(1− p)2k(p2(1− (1− p)k))n−2−k.

B. Edge False Alarm Probability

Next, we provide an expression for the probability that

the reconstruction algorithm erroneously adds an edge in Ĝ.

From Theorem 2, we know that (v1, v2) ∈ Ĝ only if neither

the distinct neighbors property nor the weak triadic closure

property hold. Let

U1 = {u ∈ V : (u, v1) ∈ G and (u, v2) /∈ G}

denote the set of nodes which are only neighbors of v1,

and, similarly, let U2 denote the set of node which are only

neighbors of v2. If the distinct neighbors property does not

hold, then at least one of U1 and U2 are empty. Suppose that

(v1, v2) /∈ G and |Z| = k, where U and Z are as above. The

probability that at least one of U1 and U2 is empty, in which

case the distinct neighbors property does not hold, is

A(n, p, k) = 1− (1− (1− p)n−2−k)2.

Next, for the weak triadic neighbors not to hold, for every

vertex z ∈ Z, any neighbors of z must also be in Z. Again,

condition on the events that |Z| = k and that (v1, v2) /∈ G.

Fix a node z ∈ Z. The probability that no z ∈ Z is connected

to any node in V \ (Z ∪ {v1, v2}), in which case the weak

triadic closure property odes not hold, is

B(n, p, k) = 1− (1− (1− p)n−2−k)k.

Putting these together, we have that

P
(
(v1, v2) ∈ Ĝ

∣∣(v1, v2) /∈ G
)

=

n−2∑

k=0

(
n− 2

k

)
p2kA(n, p, k)B(n, p, k) . (11)

C. Edge Error Rate

An expression for the edge error rate is obtained using the

false alarm and missed detection probabilities derived above.

We validate this edge error rate expression via simulation. Fig-

ure 2 shows three curves, corresponding to edge probabilities

p = 0.1, 0.8, and 0.5 (from top to bottom) in the Erdös–

Rényi model, for networks of up to n = 100 nodes. The curve

shows the theoretical error rate, and the symbols indicate the

empirical edge error rates found by Monte Carlo simulation.

It is interesting to note that for any fixed p, this error rate

goes to 0 as n tends to infinity.

 1e�30

 1e�25

 1e�20

 1e�15

 1e�10

 1e�05

 1

 10 20 30 40 50 60 70 80 90 100

E
d
g
e
 e

rr
o
r

p
ro

b
a
b
ili

ty

Number of vertices (n)

d = 0.1, theoretical
d = 0.8, theoretical
d = 0.5, theoretical

d = 0.1, simulations
d = 0.8, simulations
d = 0.5, simulations

Fig. 2. Results of numerical experiments validating the edge error rate
expression.

VI. DISCUSSION

The results presented here focus on recovery of networks

from all traces of length 3. In the future it would be interesting

to extend these results to situations where longer traces are

available, where only a subset of traces is observed, and/or

where the traces are of heterogeneous sizes. It is also of

interest to characterize the smallest number of traces required

to accurately recover network structure. Likely, this depends

on characteristics of the network structure itself.

REFERENCES

[1] L. Acharya, T. Judeh, G. Wang, and D. Zhu, “Optimal structural
inference of signaling pathways from overlapping and unordered gene
sets,” Bioinformatics, vol. 28, no. 4, pp. 546–556, 2012.

[2] J. Yang, S. Draper, and R. Nowak, “Passive learning of the interference
graph of a wireless network,” in Proc. IEEE ISIT, Boston, USA, Jul.
2012.

[3] A. Das, P. Netrapalli, S. Sanghavi, and S. Vishwanath, “Learning Markov
graphs up to edit distance,” in Proc. IEEE ISIT, Boston, USA, Jul. 2012.

[4] M. Rabbat, J. Treichler, S. Wood, and M. Larimore, “Understanding
the topology of a telephone network via internally-sensed network
tomography,” in Proc. IEEE ICASSP, Philadelphia, PA, Mar. 2005.

[5] M. Rabbat, M. Figueiredo, and R. Nowak, “Network inference from co-
occurrences,” IEEE Trans. Info Theory, vol. 54, no. 9, pp. 4053–4068,
Sep. 2008.

[6] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. Honey, V. Weeden,
and O. Sporns, “Mapping the structural core of human cerebral cortex,”
PLoS biology, vol. 6, no. 8, p. e159, Jul. 2008.

[7] M. Gomez-Rodriguez, J. Leskovec, and A. Krause, “Inferring networks
of diffusion and influence,” in Proc. ACM KDD, 2010.

[8] J. Silva and R. Willett, “Hypergraph-based detection of anomalous high-
dimensional co-occurrences,” IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 31, no. 3, pp. 563–569, Mar. 2009.
[9] M. Granovetter, “The strength of weak ties,” American Journal of

Sociology, vol. 78, no. 6, pp. 1360–80, May 1973.
[10] D. Easley and J. Kleinberg, Networks, Crowds, and Markets: Reasoning

About a Highly Connected World. Cambridge University Press, 2010.
[11] P. Erdös and A. Rényi, “On random graphs I.” Publicationes Mathemat-

icae, vol. 6, pp. 290–297, 1959.
[12] B. Bollobás, Random Graphs, 2nd ed. Cambridge University Press,

2001.

