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Abstract—In this paper we introduce two variational equalities
of directed information, which are analogous to those of mutual
information employed in the Blahut-Arimoto Algorithm (BAA ).
Subsequently, we introduce nonanticipative Rate Distortion Func-
tion (RDF) R

na

0,n(D) defined via directed information introduced
in [1], and we establish its equivalence to Gorbunov-Pinsker’s
nonanticipatory ǫ-entropy R

ε

0,n(D). By invoking certain results
we first establish existence of the infimizing reproduction distri-
bution for R

na

0,n(D), and then we give its implicit form for the
stationary case. Finally, we utilize one of the variationalequalities
and the closed form expression of the optimal reproduction
distribution to provide an algorithm for the computation of
R

na

0,n(D).

I. I NTRODUCTION

Directed information from a sequence of Random Variables

(RV’s) Xn △
= {X0, X1, . . . , Xn} ∈ X0,n

△
= ×n

i=0Xi, to

another synchronized sequenceY n △
= {Y0, Y1, . . . , Yn} ∈

Y0,n
△
= ×n

i=0Yi is, in general, a functional of two collec-
tions of nonanticipative or causal conditional distributions
{PXi|Xi−1,Y i−1(·|·, ·), PYi|Y i−1,Xi(·|·, ·) : i = 0, 1, . . . , n},
unlike mutual information which is a function ofPXn and
PY n|Xn . In the past, directed information or its variants were
used to characterize capacity of channels with memory and
feedback [2], [3], lossy data compression of sequential codes
[4], lossy data compression of block codes [5], and capacity
of networks [6].

In this paper, we adopt the mathematical formulation in-
troduced in [7], to define directed information via relative
entropy with respect to two consistent families of conditional
distributions defined on abstract spaces, and we derive two
variational equalities, which are analogous to those of mutual
information utilized in Blahut-Arimoto algorithm (BAA).

Subsequently, we introduce nonanticipative RDF,Rna
0,n(D),

introduced in [1] to derive realizable filters, and we show
its relation to Gorbunov-Pinsker’s nonanticipatoryǫ-entropy,
Rε

0,n(D). We then proceed by giving general conditions for
existence of a minimizing nonanticipative reproduction dis-
tribution for Rna

0,n(D), and we derive its implicit form for
the stationary case. Finally, we invoke one of the variational
equalities and the implicit form of the optimal reproduction
distribution to present an algorithm for computingRna

0,n(D)
similar to the BAA.

Recently, BAA’s are presented in [8] for lossy compression
with feedforward at the decoder, and in [9] for feedback chan-
nel capacity without using the variational equalities derived in

this paper. The fundamental difference betweenRna
0,n(D) and

feedforward information RDF is that the former is nonantici-
pative while the latter need not to be nonanticipative.

Our interest in nonanticipative RDF,Rna
0,n(D), is motivated

by applications in which the processing of information is
done via symbol-by-symbol transmission (zero delay). Some
applications are listed below.
(1) Source-channel matching via symbol-by-symbol trans-
mission. A necessary condition for such matching is realiz-
ability of the optimal reproduction distribution of RDF via
an encoder-channel-decoder which are nonanticipative maps
(operate causally) [1], [10], [11]. Therefore, for sourceswith
memory the nonanticipative RDF is the appropriate informa-
tion measure of lossy compression for source-channel match-
ing via symbol-by-symbol transmission.
(2) Computation of the optimal performance theoretically
attainable (OPTA) by sequential quantizers [4], see also [5]
for video coding applications.
(3) Computation of upper bounds on the OPTA by non-causal
codes. This follows from the equivalence betweenRna

0,n(D)
andRε

0,n(D) established in this paper.
(4) Constructing realizable filters based on nonanticipative
RDF (see [1], [12]).

The paper is structured as follows. In Section II we construct
the two equivalent definitions of nonanticipative channelson
abstract spaces, and we define directed information via the
information divergence. In Section III we derive the variational
equalities of directed information. Finally, in Section IVwe
give the connection betweenRna

0,n(D) andRε
0,n(D), we give

the implicit form of the optimal nonanticipative reproduction
distribution for the stationary case, and we discuss an ap-
plication of the variational equality to nonanticipative RDF.
Lengthy proofs are omitted and references are given where
they can be found.

II. N ONANCTICIPATIVE CHANNELS AND DIRECTED

INFORMATION

In this section we define directed information using relative
entropy, as a functional of two consistent families of condi-
tional distributions that uniquely define{PXi|Xi−1,Y i−1(·|·, ·) :
i = 0, 1, . . . , n} and {PYi|Y i−1,Xi(·|·, ·) : i = 0, 1, . . . , n},
respectively, and vice versa following [7]. Throughout the
paper we assumeXn, Yn, n = 0, 1, . . ., are Polish spaces.

Notation. Let N
△
= {0, 1, 2, . . .}, andN

n △= {0, 1, 2, . . . , n}.
Introduce two sequence of measurable spaces{(Xn,B(Xn)) :
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n ∈ N} and{(Yn,B(Yn)) : n ∈ N}, whereB(Xn) andB(Yn)
are Borelσ−algebras of subsets ofXn andYn, respectively.

Points inXN
△
= ×n∈NXn, Y

N
△
= ×n∈NYn are denoted by

x
△
= {x0, x1, . . .} ∈ X

N, y
△
= {y0, y1, . . .} ∈ Y

N, and their

restrictions to finite coordinates byxn △= {x0, x1, . . . , xn} ∈

X0,n, yn
△
= {y0, y1, . . . , yn} ∈ Y0,n, for n ∈ N. Let

B(XN)
△
= ⊙i∈NB(Xi), B(YN)

△
= ⊙i∈NB(Yi) denote the

σ−algebras onXN, YN, respectively, generated by cylinder
sets. Hence,B(X0,n) andB(Y0,n) denote theσ−algebras of
cylinder sets inXN and YN, respectively, with bases over
Ai ∈ B(Xi), Bi ∈ B(Yi), i = 0, 1, . . . , n, respectively. The set
of stochastic kernels onY givenX is denoted byQ(Y;X ).
Feedback Channel.Suppose for eachn ∈ N, the distributions

{pn(dxn;x
n−1, yn−1) : n ∈ N} with p0(dx0;x

−1, y−1)
△
=

p0(x0) satisfy the following conditions.
i) For n ∈ N, pn(·;x

n−1, yn−1) is a probability measure on
B(Xn);
ii) For everyAn ∈ B(Xn), n ∈ N, pn(An;x

n−1, yn−1)
is a ⊙n−1

i=0

(

B(Xi) ⊙ B(Yi)
)

-measurable function ofxn−1 ∈
X0,n−1, y

n−1 ∈ Y0,n−1.

Let C ∈ B(X0,n) be a cylinder set of the formC
△
=

{

x ∈
XN : x0 ∈ C0, x1 ∈ C1, . . . , xn ∈ Cn

}

, Ci ∈ B(Xi), i ∈ N
n.

Define a family of measuresP(·|y) on B(XN) by

P(C|y)
△
=

∫

C0

p0(dx0) . . .

∫

Cn

pn(dxn;x
n−1, yn−1) (1)

≡
←−
P 0,n(C0,n|y

n−1), C0,n = ×n
i=0Ci. (2)

The notation
←−
P 0,n(·|y

n−1) denotes the restriction of the
measureP(·|y) on cylinder setsC ∈ B(X0,n), for n ∈ N.
Thus, if conditionsi) and ii) hold then for eachy ∈ YN,

the right hand side of (1) defines a consistent family of
finite-dimensional distribution on(XN,B(XN)), and hence
there exists a unique measure on(XN,B(XN)), from which
pn(dxn;x

n−1, yn−1) is obtained. This is the usual definition
of a feedback channel (its input distribution), as a family of
functionspn(dxn;x

n−1, yn−1) satisfying conditionsi) andii) .
An alternative, equivalent definition of a feedback channel
is established as follows. Consider a family of measures
P(·|y) on (XN,B(XN)) satisfying the following consistency
condition.
C1: If E ∈ B(X0,n), thenP(E|y) is B(Y0,n−1)−measurable
function ofy ∈ YN.
The set of such measures is denoted byQC1(XN;YN). For
Polish spaces, it can be shown that for any family of measures
P(·|y) satisfyingC1 one can construct a collection of condi-
tional distributions{pn(dxn;x

n−1, yn−1) : n ∈ N} satisfying
conditions i) and ii) which are connected withP(·|y) via
relation (1).
Feedforward Channel.The previous methodology can be re-
peated for the collection of distributions{qn(dyn; yn−1, xn) :
n ∈ N} which satisfy similar conditions toi) andii) . Similarly

as before, define a family of measuresQ(·|x) on B(YN) by

Q(D|x)
△
=

∫

D0

q0(dy0;x0) . . .

∫

Dn

qn(dyn; y
n−1, xn) (3)

≡
−→
Q0,n(D0,n|x

n), D0,n ∈ B(Y0,n). (4)

Then, (4) is a unique measure on(YN,B(YN)) from which
{qn(dyn; y

n−1, xn) : n ∈ N} is obtained.
An equivalent definition of a feedforward channel is a family
of measuresQ(D|x) satisfying the following consistency
condition.
C2: If F ∈ B(Y0,n), then Q(F |x) is B(X0,n)−measurable
function ofx ∈ XN.

The set of such measures is denoted byQC2(YN;XN). Then,
for any family of measuresQ(·|x) on (YN,B(YN)) satisfying
C2 one can construct a collection of conditional distributions
{qn(dyn; y

n−1, xn) : n ∈ N} which are connected with
Q(·|x) via relation (3).

A. Directed Information Functional

Next, we define directed informationI(Xn → Y n) us-
ing P(·|y) and Q(·|x). Given P(·|·) ∈ QC1(XN;YN) and
Q(·|·) ∈ QC2(YN;XN) define:
P1: The joint distribution onXN × YN defined uniquely by

(
←−
P 0,n ⊗

−→
Q0,n)(×

n
i=0Ai×Bi), Ai ∈ B(Xi), Bi ∈ B(Yi).

P2: The marginal distributions onXN defined uniquely for
Ai ∈ B(Xi), i = 0, 1, . . . , n, by

µ0,n(×
n
i=0Ai) = (

←−
P 0,n ⊗

−→
Q0,n)(×

n
i=0(Ai × Yi)).

P3: The marginal distributions onYN defined uniquely for
Bi ∈ B(Yi), i = 0, 1, . . . , n, by

ν0,n(×
n
i=0Bi) = (

←−
P 0,n ⊗

−→
Q0,n)(×

n
i=0(Xi ×Bi)).

P4: The measure
−→
Π 0,n : B(X0,n)⊙ B(Y0,n) 7→ [0, 1] defined

uniquely forAi ∈ B(Xi), Bi ∈ B(Yi), i = 0, 1, . . . , n, by

−→
Π0,n(×

n
i=0(Ai×Bi))

△
= (
←−
P 0,n ⊗ ν0,n)(×

n
i=0(Ai×Bi)).

By invoking the definition of directed information and mea-
suresP1-P4, it can be shown by repeated application of chain
rule of relative entropy [13] that1

I(Xn → Y n) = D(
←−
P 0,n ⊗

−→
Q0,n||

−→
Π 0,n) (5)

=

∫

log
(

−→
Q0,n(dy

n|xn)

ν0,n(dyn)

)

(
←−
P 0,n ⊗

−→
Q0,n)(dx

n, dyn) (6)

≡ IXn→Y n(
←−
P 0,n,

−→
Q0,n). (7)

The notationIXn→Y n(·, ·) indicates the functional dependence
of I(Xn → Y n) on {

←−
P 0,n,

−→
Q0,n}.

1Unless stated otherwise, integrals with respect to measures are over the
spaces on which these are defined.



III. VARIATIONAL EQUALITIES

In this section we derive two variational equalities as-
sociated withI(Xn → Y n). First, we recall one of the
variational equalities of mutual informationI(Xn;Y n) ≡
IXn;Y n(PXn , PY n|Xn) which can be expressed as maximiza-
tion of relative entropy functionals as follows [14].
Max: Given a channelPY n|Xn(dyn|xn), a sourcePXn(dxn),
and any conditional distribution̄PXn|Y n(dxn|yn) then

IXn;Y n(PXn , PY n|Xn) = sup
P̄Xn|Y n

∫

log

(

P̄Xn|Y n(dxn|yn)

PXn(dxn)

)

× PY n|Xn(dyn|xn)⊗ PXn(dxn) (8)

and the supremum is achieved at̄PXn|Y n(dxn|yn) =
PY n|Xn (dyn|xn)⊗PXn (dxn)∫

X0,n
PY n|Xn (dyn|xn)⊗PXn (dxn)

.

Let P(·|·) ∈ QC1(XN;YN) andQ(·|·) ∈ QC2(YN;XN), and
let P0,n(dx

n, dyn) =
←−
P 0,n(dx

n|yn−1)⊗
−→
Q0,n(dy

n|xn).
Next we derive the analogous version for directed information.
Let S(·|x) be any measure on(YN,B(YN)) satisfying the
consistency condition
C3: If F ∈ B(Y0,n), then S(F |x) is a
B(X0,n−1)−measurable.
Denote this family of measures byS(·|x) ∈ QC3(YN;XN).
By Section II, for any family of measuresS(·|x) satisfying
consistency condition C3, there exists a collection
{sn(·; ·, ·) ∈ Q(Yn;Y0,n−1 × X0,n−1) : n ∈ N} connected to
S(·|x) by

S(D|x) =

∫

D0

s0(dy0) . . .

∫

Dn

sn(dyn; y
n−1, xn−1)

≡
←−
S 0,n(D0,n|x

n−1), D0,n
△
= ×n

i=0Di ∈ B(Y0,n). (9)

Unlike
−→
Q0,n(·|x

n) which is conditioned onxn ∈ X0,n, the
measure

←−
S 0,n(·|x

n−1) is conditioned onxn−1 ∈ X0,n−1.
Let R(·|y) be any family of measures on(XN,B(XN))
satisfying the consistency condition
C4: If E ∈ B(X0,n), thenR(E|y) is aB(Y0,n)−measurable.
Denote this family of measures byR(·|y) ∈ QC4(XN;YN).
Similarly as before, for any family of measuresR(·|y) sat-
isfying consistency conditionC4, there exists{rn(·; ·, ·) ∈
Q(Xn;X0,n−1 × Y0,n) : n ∈ N} connected toR(·|y) by

R(G|y) =

∫

G0

r0(dx0; y0) . . .

∫

Gn

rn(dxn;x
n−1, yn)

≡
−→
R 0,n(G0,n|y

n), G0,n
△
= ×n

i=0Gi ∈ B(X0,n). (10)

Unlike
←−
P 0,n(·|y

n−1) which is conditioned onyn−1 ∈ Y0,n,
the measure

−→
R 0,n(·|y

n) is conditioned onyn ∈ Y0,n.
Define another joint distribution on

(

XN×YN,⊙n∈NB(Xn)⊙

B(Yn)
)

by (
←−
S 0,n ⊗

−→
R 0,n)(dx

n, dyn).
The next theorem gives the two variational equalities.

Theorem 1. (Variational Equalities)

Part A. For any arbitrary measurēν0,n ∈ M1(Y0,n)

IXn→Y n(
←−
P 0,n,

−→
Q0,n)

△
= D(P0,n||

−→
Π 0,n)

= inf
ν̄0,n∈M1(Y0,n)

D(
←−
P 0,n ⊗

−→
Q0,n||

←−
P 0,n ⊗ ν̄0,n) (11)

= inf
ν̄0,n∈M1(Y0,n)

∫

log
(

−→
Q0,n(dy

n|xn)

ν̄0,n(dyn)

)

× (
←−
P 0,n ⊗

−→
Q0,n)(dx

n, dyn) (12)

and the infimum in (11) is achieved at̄ν∗0,n(dy
n) =

∫

X0,n
(
←−
P 0,n ⊗

−→
Q0,n)(dx

n, dyn) ≡ ν0,n(dy
n).

Part B. For any S(·|x) ∈ QC3(YN;XN) and R(·|y) ∈
QC4(XN;YN) then

IXn→Y n(
←−
P 0,n,

−→
Q0,n) = D(P0,n||

−→
Π 0,n)

= sup
←−
S 0,n⊗

−→
R0,n

∫

log
(d(
←−
S 0,n ⊗

−→
R 0,n)

d(
−→
Π 0,n)

)

d(
←−
P 0,n ⊗

−→
Q0,n)

(13)

and the supremum in (13) is achieved when the RND satisfies

Λ0,n(x
n, yn)

△
=

d(
←−
P 0,n ⊗

−→
Q0,n)

d(
←−
S 0,n ⊗

−→
R 0,n)

= 1− a.s., n ∈ N. (14)

Equivalently, fori = 0, 1, . . . , n,

λi(x
i, yi)

△
=

pi(dxi;x
i−1, yi−1)⊗ qi(dyi; y

i−1, xi)

si(dyi; yi−1, xi−1)⊗ ri(dxi;xi−1, yi)
= 1− a.s.

(15)

Proof: The derivation is shown in detail in [15].
Discussion.Clearly, (8) is also equivalent to (i.e.,PY n is fixed)

sup
P̄Xn|Y n⊗PY n

∫

log

(

P̄Xn|Y n(dxn|yn)⊗ PY n(dyn)

PXn(dxn)× PY n(dyn)

)

× PY n|Xn(dyn|xn)⊗ PXn(dxn) (16)

since the RND in (16) is another version of the one in
(8). Thus, (13) is the analogue of (16), in which the di-
rected information function is utilized together with the de-
composition

←−
S 0,n ⊗

−→
R 0,n of the joint distribution. Suppose

qi(·; y
i−1, xi)≪ si(·; y

i−1, xi−1), ∀i and
←−
S 0,n is fixed, gener-

ated byP(·|·) ∈ QC1(XN;YN) andQ(·|·) ∈ QC2(YN;XN).
Then from (15):

ri(dxi;x
i−1, yi) =

qi(dyi; y
i−1, xi)⊗ pi(dxi;x

i−1, yi−1)
∫

Xi
qi(dyi; yi−1, xi)⊗ pi(dxi;xi−1, yi−1)

−→
R 0,n(·|y

n) = ⊗n
i=0

qi(dyi; y
i−1, xi)⊗ pi(dxi;x

i−1, yi−1)
∫

Xi
qi(dyi; yi−1, xi)⊗ pi(dxi;xi−1, yi−1)

.

The previous expression is the analogue ofP̄Xn|Y n in (8).

IV. A PPLICATIONS TONONANTICIPATIVE RDF

Our interest is now focused on nonanticipative RDF, which
is motivated by source-channel matching via symbol-by-
symbol transmission, for sources with memory. Unlike clas-
sical RDF, the solution of nonanticipative RDF is causal
and hence, it can be realized by an encoder-channel-decoder



which process information causally [1], [11]. Moreover, asit
is shortly shown, nonanticipative RDF is relatively easy to
compute when compared to the classical RDF (which is only
computed for a small class of sources, i.e., memoryless and
Gaussian).

First, we recall Gorbunov-Pinsker’s definition of nonantic-
ipatory ǫ-entropy [16] since we will establish its equivalence
to the nonanticipative RDF. Introduce the measurable dis-
tortion function by d0,n(xn, yn) : X0,n × Y0,n 7→ [0,∞),

d0,n(x
n, yn)

△
=

∑n
i=0 ρ0,i(x

i, yi), and let d0,n(xn, yn)
△
=

∑n

i=0 ρ(xi, yi) for single letter. Introduce the fidelity set by

Q0,n(D)
△
=

{

PY n|Xn(dyn|xn) :

1

n+ 1

∫

d0,n(x
n, yn)PY n|Xn(dyn|xn)⊗ PXn(dxn) ≤ D

}

.

Gorbunov and Pinsker restricted the setQ0,n(D) to those
reproduction distributions which satisfy the Markov chain
(MC) X∞n+1 ↔ Xn ↔ Y n ⇔ PY n|X∞(dyn|x∞) =
PY n|Xn(dyn|xn) − a.s., ∀n ≥ 0. Then they introduced the
nonanticipatoryǫ-entropy defined by

Rε
0,n(D)

△
= inf
Q0,n(D): Xn

i+1↔Xi↔Y i

i=0,1,...,n−1

I(Xn;Y n). (17)

Thus, the difference between the classical RDF and nonantici-
patoryǫ-entropy (17) is the presence of the MC which implies
that for eachi, Yi is a function of the past and present source
symbols {X0, X1, . . . , Xi}, and independent of the future
source symbols{Xi+1, . . . , X

n}. It can be shown that the
MC Xn

i+1 ↔ X i ↔ Y i, i = 0, 1, . . . , n− 1, is equivalent to
PY i|Xi(dyi|xi) =

−→
P Y i|Xi(dyi|xi)− a.s., i = 0, 1, . . . , n− 1.

Utilizing this MC, then

I(Xn;Y n) =

∫

log
(

−→
P Y n|Xn(dyn|xn)

PY n(dyn)

)

×
−→
P Y n|Xn(dyn|xn)⊗ PXn(dxn) ≡ IXn→Y n(PXn ,

−→
P Y n|Xn)

where the notationIXn→Y n(PXn ,
−→
P Y n|Xn) is used to point

out the functional dependence on{PXn ,
−→
P Y n|Xn}. Moreover,

utilizing the previous expression it is easy to show that
nonanticipatoryǫ-entropy (17) is equivalent to the following
definition of nonanticipative RDF.

Definition 1. (Nonanticipative RDF) Let
−→
Q0,n(D) (assuming

is non-empty) denotes the fidelity set

−→
Q0,n(D)

△
=

{−→
P Y n|Xn(yn|xn) : ℓd0,n

(
−→
P Y n|Xn)

△
=

1

n+ 1

∫

d0,n(x
n, yn)

−→
P Y n|Xn(dyn|xn)⊗ PXn(dxn) ≤ D

}

.

The nonanticipative information RDF is defined by

Rna
0,n(D) = inf

−→
P Y n|Xn∈

−→
Q0,n(D)

IXn→Y n(PXn ,
−→
P Y n|Xn). (18)

Next, we introduce some assumptions and we establish
existence of the infimum in (18) and hence also of (17).

Assumption 1. (Main asumptions)
(A1) Y0,n is a compact Polish space,X0,n is a Polish space;
(A2) for all h(·)∈BC(Y0,n), (xn, yn−1) ∈ X0,n × Y0,n−1 7→
∫

Yn
h(y)PY |Y n−1,Xn(dy|yn−1, xn) ∈ R is continuous jointly

in (xn, yn−1) ∈ X0,n × Y0,n−1;
(A3) d0,n(xn, ·) is continuous onY0,n;
(A4) There exist (xn, yn) ∈ X0,n × Y0,n such that
d0,n(x

n, yn) < D.

Note that sinceY0,n is assumed to be a compact Polish
space, then by [13], probability measures onY0,n are weakly
compact. Moreover, the following result can be obtained,
which we will use to show existence of the infimum in (18).

Lemma 1. [12] Suppose Assumption 1,(A1), (A2) hold. Then
(1) The setQC2(Y0,n;X0,n) is weakly compact.
(2) IXn→Y n(PXn ,

−→
P Y n|Xn) is lower semicontinuous on

QC2(Y0,n;X0,n) for a fixedM1(X0,n).
(3) Under the additional Assumption 1,(A3), (A4) the set
−→
Q0,n(D) is a closed subset ofQC2(Y0,n;X0,n).

The next theorem establishes existence of the minimizing
reproduction distribution for (18).

Theorem 2. [12](Existence) Suppose Assumption 1 hold.
Then the infimum in (18) is achieved andRna

0,n(D) is finite.

Remark 1. (Summary) Utilizing Theorem 2 and [16, The-
orems 3, 4], for a stationary source and single letter dis-
tortion, limn→∞Rna

0,n(D) exists, it is finite, and the op-
timal reproduction distribution is realizable by stationary
source-reproduction pairs{(Xi, Yi) : i = 0, 1, . . . , n}.
Hence, the(n + 1)-fold convolution conditional distribution
−→
P Y n|Xn(dyn|xn) = ⊗n

i=0PYi|Y i−1,Xi (dyi|y
i−1, xi) − a.s.,

is a convolution of stationary conditional distributions.

A. Optimal Stationary Reproduction Distribution of Nonantic-
ipative RDF

Next, we give the solution ofRna
0,n(D) assuming the repro-

duction is stationary. By utilizing the Lagrange duality theorem
we obtain the unconstrained problem.

Rna
0,n(D) = sup

s≤0
inf

−→
P Y n|Xn

∈QC2(Y0,n;X0,n)

{

IXn→Y n(PXn ,
−→
P Y n|Xn)

− s(ℓd0,n
(
−→
P Y n|Xn)−D)

}

. (19)

Note that
−→
P Y n|Xn ∈ QC2(Y0,n;X0,n) are probability mea-

sures therefore, one should introduce another set of La-
grange multipliers to obtain an unconstrained problem free
of such a constraint. For the rest of the paper, we consider

d0,n(x
n, yn)

△
=

∑n

i=0 ρ(T
ixn, T iyn), whereT ixn is the shift

operator onxn (similarly for T iyn). Then by computing the
Gateaux differential of (19) (for the stationary case) we obtain
the following (see [12]).



(1) The infimum in (19) is attained at
−→
P ∗Y n|Xn ∈

−→
Q0,n(D):

−→
P ∗Y n|Xn(dyn|xn) = ⊗n

i=0P
∗
Yi|Y i−1,Xi(dyi|y

i−1, xi)

= ⊗n
i=0

esρ(T
ixn,T iyn)P ∗

Yi|Y i−1(dyi|y
i−1)

∫

Yi
esρ(T

ixn,T iyn)P ∗
Yi|Y i−1(dyi|yi−1)

, s ≤ 0. (20)

(2) The nonanticipative RDF is given by

Rna
0,n(D) = sD(n+ 1)−

n
∑

i=0

∫

log
(

∫

Yi

esρ(T
ixn,T iyn)

P ∗Yi|Y i−1(dyi|y
i−1)

)−→
P ∗Y i−1|Xi−1(dyi−1|xi−1)⊗ PXi(dxi).

If Rna
0,n(D) > 0 thens < 0 and

1

n+ 1

n
∑

i=0

∫

ρ(T ixn, T iyn)(PXi ⊗
−→
P ∗Y i|Xi)(dxi, dyi) = D.

By (20) the optimal reproduction distribution is nonantic-
ipative (causal) with respect to the source, and by sta-
tionarity all elements in the product are identical. More-
over, if the distortionρ(T ixn, T iyn) = ρ(xi, T

iyn), ∀i,
thenP ∗

Yi|Y i−1,Xi(dyi|y
i−1, xi) = P ∗

Yi|Y i−1,Xi
(dyi|y

i−1, xi)−
a.s., ∀i, i.e., it depends only on the most recent source symbol.

B. BAA for Stationary Nonanticipative RDF

Now, we invoke variational equality (12), and (20), to
compute BAA for the nonanticipative RDF (stationary case).

Theorem 3. (Double Minimization)
(a) Rna

0,n(D), can be expressed as a double minimization:

Rna
0,n(D) = sD(n+ 1) + min

P̄Y n∈M1(Y0,n)
min

−→
P Y n|Xn∈QC2(Y0,n;X0,n)

{

∫

log
(

−→
P Y n|Xn(dyn|xn)

P̄Y n(dyn)

)

(PXn ⊗
−→
P Y n|Xn)(dxn, dyn)

− s

∫

d0,n(x
n, yn)(PXn ⊗

−→
P Y n|Xn)(dxn, dyn)

}

. (21)

(b) For fixed
−→
P Y n|Xn , the minimization overP̄Y n ∈

M1(Y0,n) is

P̄ ∗Y n(dyn) =

∫

(PXn ⊗
−→
P Y n|Xn)(dxn, dyn).

(c) For fixed P̄Y n , the minimization over
−→
P Y n|Xn ∈

QC2(Y0,n;X0,n) is given by (20).

Proof: A consequence of previous section.
We now have the following algorithm.

Theorem 4. (Convergence of BAA) Let̄P 0
Y n be any probability

measure which is positive. Let̄P r+1
Y n be given in terms of̄P r

Y n

by

P̄ r+1
Y n = P̄ r

Y n

∫
(

⊗n
i=0

Ai
∫

Yi
AiP̄

r
Yi|Y i−1(dyi|yi−1)

)

PXn(dxn)

whereAi = esρ(T
ixn,T iyn). Then

D(
−→
P Y n|Xn(P̄ r

Y n)) −→ Ds, as r →∞

IXn→Y n(PXn ,
−→
P Y n|Xn(P̄ r

Y n)) −→ Rna
0,n(Ds), as r →∞

whereDs =
∫

d0,n(x
n, yn)(PXn ⊗

−→
P Y n|Xn)(dxn, dyn) and

(Ds, R
na
0,n(Ds)) is a point on the curveRna

0,n(D) parametrized
by s.

Proof: The derivation utilizes Theorem 3 and [14].

V. CONCLUSION

In this paper we derive two variational equalities for directed
information. Then we show existence of the reproduction
distribution which achieves the infimum of the nonantici-
pative RDF, and we use the variational equality to find a
BAA for stationary nonanticipative RDF. Recently, we have
applied the nonanticipative RDF in source-channel matching
via symbol-by-symbol transmission. Specifically, we have
computedRna(D) explicitly for sources with memory without
anticipation [11], and we have usedRna(D) in filtering
applications [1], [12].
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