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Abstract—We propose a simple yet complete lattice-based
scheme for secret key generation from Gaussian sources in the
presence of an eavesdropper, and show that it achieves strong
secret key rates up to1/2 nat from the optimal in the case of
“degraded” source models. The novel ingredient of our scheme
is a lattice-hashing technique, based on the notions of flatness
factor and channel intrinsic randomness. The proposed scheme
does not require dithering.

I. I NTRODUCTION

Secret key generation at the physical layer was first inves-
tigated by Maurer [1] and Ahlswede and Csiszár [2], who
showed that correlated observations of noisy phenomena could
be used to distill secret keys by exchanging information over
a public channel. Most existing secret key generation schemes
rely heavily on the assumption of discrete random sources over
finite or countable alphabets. In order to apply these techniques
to wireless communications, it is necessary to extend the
key generation framework to the case of continuous sources,
such as Gaussian sources [3, 4]. In [4], the authors study a
multi-terminal scenario for secret key generation in the special
case where the eavesdropper only has access to the public
channel. Beside providing a characterization of the optimal
strong secret key rate, they show that this optimal rate can
be achieved using lattice codes (for information reconciliation
only).

In this paper, we consider secret key generation between two
terminals, Alice and Bob, who observe correlated Gaussian
sequencesXn and Yn, in the presence of an eavesdropper,
Eve, who also obtains a correlated sequenceZn. For the sake
of simplicity, we suppose that a single round of unidirectional
public communication takes place in order to establish the
key. Our main contribution is to show that, in the case of a
“degraded” source model, a secret key rate up to half a nat
from the optimal can be achieved by a complete lattice-coding
scheme considerably different from and much simpler than [4].

Typically, secret key generation is composed of two distinct
procedures:information reconciliation, in which public mes-
sages are exchanged to ensure that Alice and Bob can construct
the same data sequence with vanishing error probability, and
privacy amplificationto extract from this shared sequence
a secret key which is statistically independent from Eve’s
observation and from the public messages.

Privacy amplification and randomness extraction:Our pri-
vacy amplification strategy is based on the concept ofchannel
intrinsic randomness, or the maximum bit rate that can be
extracted from a channel output independently of its input [5–
7]). We begin by considering a simplified scenario in which
Bob and Alice share the same variableXn. In this case,
the amount of randomness which can be extracted fromXn

independently ofZn is precisely the maximum available secret
key rate. We propose alattice-hashingtechnique to extract
the randomness, by reducing the source modulo a suitable
lattice. Although our main objective in this paper is to solve the
problem of privacy amplification, our lattice-hashing technique
is also an intriguing result in its own right, which could have
other applications.

The flatness factor:Furthermore, we provide a quantitative
characterization of the class of lattices which are good for
randomness extraction, which is based on a computable pa-
rameter, theflatness factor, as a function of the eavesdropper’s
noise variance. The concept of flatness factor relates to the
properties of Gaussian measures on lattices, and was first
introduced in [8] in the context of physical-layer network
coding. In [9], two of the authors also showed the relevance
of the flatness factor for secrecy and introduced the notion of
secrecy-good latticesfor the wiretap channel. In this paper,
we show that this class of lattices is also suitable for secret
key generation.

Information reconciliation and Wyner-Ziv coding:Our strat-
egy for information reconciliation follows the outline of [3, 4]:
first, the sourceXn is vector quantized; then, a public message
is generated in the manner of Wyner-Ziv coding, so that Bob
can decode the quantized variable using the sequenceYn

as side information. The existence of good nested lattices
for Wyner-Ziv coding has been established in [10] (see also
[11, 12]). We show that this construction is compatible with
the secrecy-goodness property to conclude our existence proof.

Organization:This paper is organized as follows. In Section
II we provide basic definitions about lattices and introducethe
flatness factor, which allows to define the notion of secrecy-
good lattices. In Section III, we focus on the extraction of
channel intrinsic randomness over Gaussian channels using
lattice hashing. In Section IV, we introduce the Gaussian
source model and describe our lattice-based secret key gen-
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eration scheme. The existence of sequences of nested lattices
satisfying the required conditions is shown in Section V.

II. L ATTICES AND FLATNESS FACTOR

In this section, we introduce the mathematical tools we use
to describe and analyze our proposed scheme.

An n-dimensional latticeΛ in the Euclidean spaceRn is
the discrete set defined by

Λ = L (B) = {Bx : x ∈ Z
n}

where the columns of the basis matrixB = [b1 · · ·bn] are
linearly independent.

A measurable setR(Λ) ⊂ R
n is called a fundamental region

of the latticeΛ if the disjoint union∪λ∈Λ(R(Λ) + λ) = R
n.

Examples of fundamental regions include the fundamental
parallelepipedP(Λ) and the Voronoi regionV(Λ). All the
fundamental regions have equal volumeV (Λ).

For a vectorx, the modR(Λ) operation is defined byx 7→ x̄

wherex̄ is the unique element ofR(Λ) such that̄x− x ∈ Λ.
For simplicity, we write this operation as

x̄ = x modR(Λ). (1)

For any x ∈ R
n, the nearest-neighbor quantizer associated

with Λ is given byQΛ(x) = argminλ∈Λ ‖λ − x‖. Note that
x modV(Λ) = x−QΛ(x).

Suppose thatXn is ann-dimensional i.i.d. Gaussian random
variable of varianceσ2 with distribution

fσ(x) =
1

(
√
2πσ)n

e−
‖x‖2

2σ2 ,

for x ∈ R
n. We consider theΛ-periodic function

fσ,Λ(x) =
1

(
√
2πσ)n

∑

λ∈Λ

e−
‖x+λ‖2

2σ2 , (2)

for all x ∈ R
n. Observe thatfσ,Λ restricted toR(Λ) is the

probability density of̄x.

Definition 1 (Flatness factor [9]). For a lattice Λ and for a
parameterσ, the flatness factor is defined by:

ǫΛ(σ) , max
x∈R(Λ)

|V (Λ)fσ,Λ(x)− 1|

In other words,ǫΛ(σ) characterizes theL∞ distance of
fσ,Λ(x) to the uniform distributionUR(Λ) overR(Λ).

The flatness factor can be computed from the theta series
ΘΛ of the lattice, using the identity [9]

ǫΛ(σ) =

(

γΛ(σ)

2π

)
n

2

ΘΛ

(

1

2πσ2

)

− 1, (3)

γΛ(σ) =
V (Λ)

2
n

σ2 is the volume-to-noise ratio (VNR).

Remark 1. We have shown in [9] thatǫΛ is a monotonically
decreasing function, i.e., forσ < σ′, we haveǫΛ(σ′) ≤ ǫΛ(σ).

The notion of secrecy-goodness characterizes lattice se-
quences whose flatness factors vanish exponentially fast as
n → ∞.

Definition 2 (Secrecy-good lattices [9]). A sequence of lattices
Λ(n) is secrecy-goodif ǫΛ(n)(σ) = e−Ω(n) for all fixed
γΛ(n)(σ) < 2π.

In [9] we have proven the existence of sequences of secrecy-
good lattices as long as

γΛ(σ) < 2π. (4)

Remark 2. In fact, we can show a concentration result:
∀η > 0 there exists a mod-p lattice ensemble such that
lattice sequences from this ensemble are secrecy-good with
probability greater than1− η (see [9, Appendix III]).

III. L ATTICE HASHING FORGAUSSIAN SOURCES

Consider now a source model for secret key generation with
public discussion, in the presence of an eavesdropper. For
simplicity, we first assume that Alice and Bob observe the
same i.i.d. Gaussian random variableXn = Yn of varianceσ2

x

per dimension. Eve observes a correlated i.i.d. random variable
Zn. We assume thatXn andZn are jointly Gaussian, according
to the following model

X
n = Z

n +W
n, (5)

whereWn is an i.i.d. zero-mean Gaussian random vector of
varianceσ2 per dimension. We suppose thatW

n andZ
n are

independent.
Our aim is to extract fromXn a random number that is

almost uniform onR(Λ) and almost independent ofZn. To
do this, we apply the modR(Λ) operation in Eq. (1). Then,
the conditional density of̄Xn = Xn modR(Λ) givenZn is

pX̄n|Zn(x̄|z) =
∑

x: x̄=x modR(Λ)

pXn|Zn(x|z)

=
∑

x∈x̄+Λ

pXn|Zn(x|z) =
∑

λ∈Λ

1

(
√
2πσ)n

e−
‖x̄+λ−z‖2

2σ2

= fσ,Λ(x̄− z)1R(Λ)(x̄).

From the definition of the flatness factor, it then follows that

∀z ∈ R
n, ∀x̄ ∈ R(Λ),

∣

∣

∣

∣

pX̄n|Zn(x̄|z)− 1

V (Λ)

∣

∣

∣

∣

≤ ǫΛ(σ)

V (Λ)
.

(6)
With a similar reasoning, we also find

pX̄n(x̄) = fσx,Λ(x̄)1R(Λ)(x̄)

and again by definition of the flatness factor, we find

∀x̄ ∈ R(Λ),

∣

∣

∣

∣

pX̄n(x̄)− 1

V (Λ)

∣

∣

∣

∣

≤ ǫΛ(σx)

V (Λ)
. (7)

So, if the flatness factor is small,̄Xn is almost uniformly
distributed overR(Λ), and also almost independent ofZn.

It is worth mentioning that unlike other works which use
dithering or the high-resolution assumption [10], we obtain
uniformity and independence from the flatness factor.

One can now bound the mutual information

I(X̄n;Zn) =

∫

Rn

∫

R(Λ)

pX̄nZn(x̄, z) log
pX̄n|Zn(x̄|z)
pX̄n(x̄)

dx̄dz



≤
∫

Rn

∫

R(Λ)

pX̄nZn(x̄, z) log
1 + ǫΛ(σ)

1− ǫΛ(σx)
dx̄dz

= log (1 + ǫΛ(σ)) − log (1 − ǫΛ(σx)) ≤ ǫΛ(σ) + 2ǫΛ(σx)

if ǫΛ(σx) ≤ 1
2 . Sinceσx ≥ σ by Eq. (5), and recalling Remark

1, we haveI(X̄n;Zn) ≤ 3ǫΛ(σ). The sufficient condition in
Eq. (4) for the existence of secrecy-good lattices ensures that
I(X̄n;Zn) vanishes exponentially ifγΛ(σ) < 2π.

Observe that depending on the choice ofΛ, the rate of
extracted randomness can be arbitrarily large.

Remark 3. The asymptotic differential entropy rate ofX̄n is

r = lim inf
n→∞

1

n
h(X̄n) ≥ lim inf

n→∞

1

n
[logV (Λ)− log(1 + ǫΛ(σx))]

Taking a sequence of secrecy-good lattices such that
γΛ(n)(σ) → 2π asn → ∞, which is compatible with the con-
dition (4), we can obtain the asymptotic rater = log(

√
2πσ),

which is only 1
2 nat from the asymptotic differential entropy

rate of the Gaussian noiseWn (i.e., log(
√
2πeσ)).

Note that neither nearest-neighbor quantization nor dither
is used in our lattice-hashing scheme, and we only need to
implement the modR(Λ) operation, which can be performed
in polynomial time for many fundamental regionsR(Λ).
In particular, we can choose the fundamental parallelepiped.
Moreover, Remark 2 implies that if the latticeΛ is chosen
randomly in a mod-p ensemble, it is secrecy-good with high
probability, so that one can obtain explicit schemes.

IV. SECRET KEY AGREEMENT

From the above discussion, it seems that one can get an
arbitrarily high rate of the secret key, sinceX̄n is continuous.
However, this is fictitious, becauseXn 6= Yn in practice. This
requires Alice and Bob to agree on the key over a public
channel, which will lead to a finite key rate.

ALICE BOB

KEY

GENERATION
QUANTIZER pXYZ DECODER

EVE

K K̂

XnXn
Q Yn

ZnS S

S

public channel (noiseless)

Fig. 1. Secret key generation in the presence of an eavesdropper with
communication over a public channel.

We consider an i.i.d. memoryless Gaussian sourcepXYZ
whose components are jointly Gaussian with zero mean. The
distribution is fully described by the variancesσ2

x, σ2
y , σ2

z and
the correlation coefficientsρxy, ρxz, ρyz. We can write [3,
Eq. (6)]:

X
n = ρxy

σx

σy
Y
n +W

n
1 ,

X
n = ρxz

σx

σz
Z
n +W

n
2 ,

(8)

whereWn
1 andWn

2 are i.i.d. zero-mean Gaussian noise vectors
of variances

σ2
1 = σ2

x(1− ρ2xy), σ2
2 = σ2

x(1− ρ2xz), (9)

respectively. Further,Wn
1 is independent ofYn, andWn

2 is
independent ofZn.

The results of the previous section allow to extract fromXn

a random variablēXn that is almost statistically independent of
Zn, with σ2 replaced byσ2

2 . Note that the coefficientρxzσx/σz

does not affect the argument based on the flatness factor.
However, not all the extracted randomness can be exploited to
generate the key, because Bob has to reconstructXn with side
informationYn, which requires Wyner-Ziv coding. Also, in
secret key generation, we are not concerned with the standard
rate-distortion function, but with the error probability of the
key.

We assume that only one round of one-way public commu-
nication (from Alice to Bob) takes place. More precisely, Alice
computes a public messageS and a secret keyK from her
observationXn; she then transmitsS over the public channel
(see Figure 1). From this message and his own observation
Yn, Bob reconstructs a keŷK.

Let Kn and Sn be the sets of secret keys and public
messages respectively. Asecret key rate - public rate pair
(RK , RP ) is achievable if there exists a sequence of protocols
with

lim inf
n→∞

1

n
log |Kn| ≥ RK , lim sup

n→∞

1

n
log |Sn| ≤ RP ,

such that the following properties hold:

lim
n→∞

log |Kn| −H(K) = 0 (uniformity)

lim
n→∞

P

{

K 6= K̂

}

= 0 (reliability)

lim
n→∞

I(K; S,Zn) = 0 (strong secrecy).

To define our key generation scheme, we use the lattice
partition chainΛ1/Λ2/Λ3, where

• Λ1 is quantization-good, which serves as the “source-
code” component of Wyner-Ziv coding;

• Λ2 is AWGN-good, which serves as the “channel-code”
component in Wyner-Ziv coding;

• Λ3 is secrecy-good with respect toσ2, which serves as
the extractor of randomness.

The existence of such a chain of lattices will be shown in
Section V.

We suppose that the lattices are scaled so that their volumes
V1,V2,V3 satisfy

|Λ2/Λ3| =
V3

V2
= enRK , |Λ1/Λ2| =

V2

V1
= enRP .

The procedure of secret key generation is described as follows:

• Alice quantizesXn to Xn
Q = QΛ1(X

n) ∈ Λ1. She then
computes

S = X
n
Q modV(Λ2),



which belongs to a set of coset leaders ofΛ1/Λ2 in
V(Λ2), and transmits its index to Bob. Furthermore, Alice
computes the key

K = QΛ2(X
n
Q) modR(Λ3),

which belongs to a set of coset leaders ofΛ2/Λ3 in
R(Λ3). Note that

X
n = E

n
Q + S+ K+ λ3 (10)

for someλ3 ∈ Λ3, whereEn
Q = Xn−Xn

Q ∈ V(Λ1) is the
quantization error.

• Bob receivesS and reconstructs

X̂
n
Q = S+QΛ2

(

ρxy
σx

σy
Y
n − S

)

.

He then computes his version of the key

K̂ = QΛ2(X̂
n
Q) modR(Λ3).

Note thatK andS are functions of̄Xn = Xn modR(Λ3):
generalizing [13, Eq. (35)], we have

K = QΛ2(QΛ1(X
n)) modR(Λ3) =

= QΛ2(QΛ1(X
n) modR(Λ3)) modR(Λ3) =

= (QΛ2(QΛ1(X̄
n) modR(Λ3))) modR(Λ3) = f(X̄n);

moreover, it is not hard to see thatXn modV(Λ2) =
X̄n modV(Λ2), and thus

S = QΛ1(X
n modV(Λ2)) modV(Λ2) =

= QΛ1(X̄
n) modV(Λ2) = g(X̄n).

Uniformity: Using the results of the previous section, we
can show thatK is almost uniformly distributed onΛ2/Λ3:
from Eq. (10) we havēXn = Xn modR(Λ3) = (En

Q + S +
K) modR(Λ3), and∀k ∈ Λ2 ∩R(Λ3),

pK(k) =
∑

s∈Sn

∫

V(k+s)

pX̄n(x̄)dx̄.

whereV(k + s) = (V(Λ1) + k + s) modR(Λ3). Using the
bound in Eq. (7), we find that∀k ∈ Λ2 ∩R(Λ3),

∣

∣

∣

∣

pK(k)−
V2

V3

∣

∣

∣

∣

=

∣

∣

∣

∣

pK(k)−
1

enRK

∣

∣

∣

∣

≤ ǫΛ3(σx)

enRK

. (11)

Consequently, the entropy of the key is lower bounded by

H(K) ≥
∑

k∈Λ2∩R(Λ3)

pK(k) log

(

enRK

1 + ǫΛ3(σx)

)

=

= nRK − log(1 + ǫΛ3(σx)) ≥ nRK − ǫΛ3(σx).

Strong secrecy:We recall the following bound from [14]:

I(K; S,Zn) ≤ dav log
|Kn|
dav

,

where
dav =

∑

k∈Kn

pK(k)V(pSZn|K=k, pSZn),

andV denotes the variational distance.
Observe also that(S,K) → X̄

n → Z
n is a Markov chain.

Therefore we have

pSZn|K=k(s, z|k) =
pSZnK(s, z, k)

pK(k)
=

=
1

pK(k)

∫

R(Λ3)

pSZnK|X̄n(s, z, k|x̄)pX̄n(x̄)dx̄ =

=
1

pK(k)

∫

R(Λ3)

1{s=g(x̄),k=f(x̄)}pZn|X̄n(z|x̄)pX̄n(x̄)dx̄ =

=
1

pK(k)

∫

V(k+s)

pZnX̄n(z, x̄)dx̄

Similarly,

pSZn(s, z) =
∑

k∈Kn

∫

V(k+s)

pZnX̄n(z, x̄)dx̄.

From the bounds in Eq. (11) and Eq. (6), and noticing that
σ2 ≤ σx in Eq. (9), we find
∣

∣

∣

∣

∣

∫

V(k+s)

pX̄nZn(x̄, z)dx̄

pK(k)
− pZn(z)

enRP

∣

∣

∣

∣

∣

≤ 4ǫΛ3(σ2)

enRP

pZn(z),

∣

∣

∣

∣

∣

∑

k∈Kn

∫

V(k+s)

pX̄nZn(x̄, z)dx̄ − pZn(z)

enRP

∣

∣

∣

∣

∣

≤ ǫΛ3(σ2)

enRP

pZn(z)

provided thatǫΛ3(σ2) ≤ 1
2 . Consequently,

V(pSZn|K=k, pSZn) ≤
∑

s

∫

Rn

5ǫΛ3(σ2)

enRP

pZn(z)dz = 5ǫΛ3(σ2).

Thereforedav ≤ 5ǫΛ3(σ2). If Λ3 is secrecy-good, we find

I(K; S,Zn) ≤ 5ǫΛ3(σ2)(nRK − log 5ǫΛ3(σ2)) → 0.

(Actually, ǫΛ3(σ2) = o
(

1
n

)

is enough.)
Reliability: Let us analyze the error probabilityP{K 6= K̂}.

Note thatK = K̂ if X̂n
Q = Xn

Q. SinceXn
Q = S+QΛ2(X

n
Q), we

have

X̂
n
Q = X

n
Q ⇐⇒ QΛ2

(

ρxy
σx

σy
Y
n − S

)

= QΛ2(X
n
Q).

Since

QΛ2

(

ρxy
σx

σy
Y
n − S

)

= QΛ2

(

ρxy
σx

σy
Y
n − X

n
Q +QΛ2(X

n
Q)

)

= QΛ2

(

ρxy
σx

σy
Y
n − X

n
Q

)

+QΛ2(X
n
Q)

we derive

X̂
n
Q = X

n
Q ⇐⇒ QΛ2

(

ρxy
σx

σy
Y
n − X

n
Q

)

= 0

⇐⇒ QΛ2(E
n
Q −W

n
1 ) = 0.



When ǫΛ1(σx) and ǫΛ1(ρxyσx) are small, E
n
Q =

Xn modV(Λ1) is almost uniformly distributed onV(Λ1) and
almost independent ofWn

1 . The variance per dimension of
En
Q − Wn

1 is asymptoticallyG(Λ1)V
2/n
1 + σ2

1 , whereG(Λ1)
is the normalized second moment. According to [10], ifΛ1 is
good for quantization, then the effect ofEn

Q on the decoding
error probability is subexponential inn relative to the AWGN
of the same power.

By the AWGN-goodness ofΛ2, the error probability

P{K 6= K̂} ≤ P{QΛ2(E
n
Q −W

n
1 ) 6= 0}

will vanish exponentially as long as

V
2/n
2

1
2πeV

2/n
1 + σ2

1

> 2πe.

On the other hand, the secrecy-goodness ofΛ3 requires

V
2
n

3 /σ2
2 < 2π. (12)

Therefore, the rate of the secret key is bounded by

RK <
1

n
log

(

V3

V2

)

=
1

2
log

(

σ2
2

1
2πeV

2/n
1 + σ2

1

)

− 1

2
. (13)

This corresponds to the rate of public communication

RP =
1

n
log

(

V2

V1

)

>
1

2
log

(

1 +
2πeσ2

1

V
2/n
1

)

. (14)

If we makeΛ1 sufficiently fine such thatG(Λ1)V
2/n
1 ≪ σ2

1 ,
then the key rate approaches

RK <
1

2
log

(

σ2
2

σ2
1

)

− 1

2
. (15)

For degraded sources, i.e.σ1 < σ2 or equivalentlyρxy >
ρxz [3, Lemma 6], the secret key rate is upper-bounded by
I(X;Y) − I(X;Z). The key-rate in Eq. (15) is only1/2 nat
away from this bound. Achieving this rate requires a high rate
RP of public communication, butΛ1 need to be very fine
in practice. To see this, we substitute12πeV

2/n
1 = 0.1σ2

1 in
Eq. (13) and Eq. (14), so thatRK is almost the same as in
Eq. (15) whileRP > 1

2 log (1 + 10) ≈ 1.2 nats/dimension.
Note, however, that our scheme does not achieve the optimal
tradeoff betweenRK andRP identified in [3, Theorem 4] yet.
Achieving the optimal tradeoff will be our future work.

V. EXISTENCE OF ASEQUENCE OFNESTEDLATTICES FOR

SECRETKEY GENERATION

We begin by showing the existence of a suitable coarse
latticeΛ3. For the notions of AWGN-good, Rogers-good and
quantization-good lattices we refer the reader to [15, 13].
Following the same reasoning as in [9, Appendix III], it can be
shown that there exists a sequenceδn → 0 and an ensemble of
sequences of latticesΛ(n)

3 with second momentσ2(Λ
(n)
3 ) =

σ2
2

e
which are AWGN-good, Rogers-good and quantization-good
and such that

E

[

Θ
Λ

(n)
3

(

1

2πσ2
2

)]

≤ 1 + δn +
(2πσ2

2)
n

2

V
(n)
3

. (16)

Quantization-goodness then implies thatG(Λ
(n)
3 ) =

σ2(Λ
(n)
3 )/(V

(n)
3 )

2
n → 1/2πe, and consequentlyV (n)

3

tends to2πσ2
2 from below, as required to achieve optimal rate

while satisfying the condition in Eq. (12). From the average
bound in Eq. (16), and recalling the relation in Eq. (3)
between theta series and flatness factor, we can deduce the
existence of a sequenceΛ(n)

3 which is also secrecy-good.
By applying twice the technique in [15, Section VII], and

its extension in [16], we can find two sequences of fine lattices
Λ
(n)
1 , Λ(n)

2 with Λ
(n)
1 ⊃ Λ

(n)
2 ⊃ Λ

(n)
3 which are also Rogers,

quantization and AWGN-good and such that the volume ratios
are arbitrarily close to the bounds in Eq. (13) and Eq. (14).
Note that sinceǫΛ′(σ2) ≤ ǫΛ(σ2) wheneverΛ ⊂ Λ′, the
latticesΛ(n)

2 , Λ(n)
1 are also secrecy-good with respect toσ2.
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